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Meromorphe Approximationen

von Alice Roth

§ 1. Approximationen durch rationale Funktionen

1.1. Die rationale Approximation ist in vielen Publikationen der letzten Jahrzehnte
behandelt worden. Eine zusammenfassende Darstellung der Sàtze und Beweise, sowie
eine Literaturûbersicht findet man in den Bûchern von Zalcman [12] und von Gamelin
[4].

Im folgenden interessiert, was rationale Approximationen anbelangt, zunâchst
der Fall, wo eine nirgendsdichte kompakte Teilmenge N der komplexen Ebene C

vorgelegt ist. Wie ûblich bezeichne C(N) die Menge aller auf N stetigen Funktionen
und R(N) die Menge aller Funktionen, die auf N durch rationale Funktionen mit
Polen ausserhalb N gleichmâssig approximierbar sind. Da R(N)czC(N)9 stellte sich
bekanntlich die Frage nach den Bedingungen, denen N genùgen muss, damit R(N)

C(N) ist. Einfache hinreichende (jedoch nicht notwendige) Bedingungen sind
z.B.:

(a) N hat das Flâchenmass 0 (Hartogs und Rosenthal [5]); (dass dièse Bedingung
nicht notwendig ist, folgt bereits daraus, dass dièse Autoren mit einem Uberdeckungs-
verfahren zeigten: ist fur jede Komponente Nt von JV die Bedingung R(Ni) C(Ni)
erfûllt, so ist auch R(N) C(N));

(b) N zerlegt die Ebene nicht (Lavrentieff [7] und Mergelyan [8]) (notwendig fur
Polynomapproximation) ;

(c) N ist von endlichem Zusammenhang (Mergelyan [10]).
Andererseits gibt es aber nirgendsdichte kompakte Mengen N, fur die R(N)^C(N)

ist. Dies wurde 1938 in [11], S. 96 und S. 103, gezeigt. Es handelt sich dabei um eine

nirgendsdichte Menge, die dadurch entsteht, dass aus einer abgeschlossenen Kreis-
scheibe abzahlbar viele in ihrem Innern enthaltene und zueinander paarweise fremde
offene Kreisscheiben, deren Radiensumme endlich ist, herausgestochen werden.

Mergelyan konstruierte 1952 ein allgemeineres Beispiel, bei dem statt der Kreise

Jordangebiete auftreten. Spâter wurde wieder auf das Beispiel mit den Kreisen zurûck-
gegriffen und die betreffende Menge ,,Swiss cheese" getauft.

Einen grossen Schritt vorwârts bedeutete es, dass Vitushkin 1959 (Darstellung
bei Zalcman [12]) zeigte, dass die Bedingung R(N) C(N) àquivalent ist mit gewissen

an die Menge N zu stellenden Bedingungen, in denen die analytische Kapazitât y auf-

tritt, u.a. mit der Bedingung:

y(K°(z,ô)\N) y(K°(z,ô)) ô, zeN, <5>0,
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wobei K° (z, ô) die offene Kreisscheibe mit dem Mittelpunkt z und dem Radius ô

bezeichnet.

1.2. Dièse Bedingung zeigt, dass die rationale Approximierbarkeit lokalen Charakter
besitzt. Dies geht bereits, ohne dass die Kapazitât herangezogen wird, aus einem
Satz von Bishop (Beweise von Garnett und von Bishop, dargestellt bei Zalcman [12],
S. 97 und S. 125) hervor : Es sei M eine echte undkompakte Teilmenge von S2 C u oo.

Gibt es zujedem zeM eine solche abgeschlossene Umgebung Kz, dass

f\MnKzeR(MnK2),

so istfeR(M).

1.3 Der folgende Hilfssatz ist das einzige Hilfsmittel aus dem Kreis der rationalen
Approximationen, das in §2 verwendet wird.

HILFSSATZ 1 : A und B seien zwei Teilmengen von C, deren in S2 abgeschlossene

Hùllen Â und B zueinander fremd sind. Ferner sei eine kompakte und nirgendsdichte
Teilmenge N von C gegeben, derart, dass fur jede kompakte Teilmenge N* von N, die

zu Au B fremd ist, R(N*) C(N*) ist. Dann kann zu jeder rationalen Funktion q,
deren Pôle ausserhalb BuN liegen, und zu jeder positiven Zahl s eine zweite rationale
Funktion r so bestimmt werden, dass

|r(z)|<e, zeA,
\r(z)-q(z)\<e, zeB,

Aus den Voraussetzungen folgt, dass in S2 zwei solche offene Mengen Ax und Bt
existieren, dass

(a) ^1n51=0,
(b) Âc:A1 und BcBl9
(c) q keinenPolhatauf BivN.

Ferner sei <p eine auf S2 stetige Funktion mit den Eigenschaften:

ç>(z) O,

<p{z) l,
<p(z)<l, zeS2.
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Definiert man:

/(z) 0, zeÂl9

so genûgt/auf der Menge ÂuBuN den Voraussetzungen des Satzes von Bishop.
Da nâmlich q auf BxuN keinen Pol aufweist, ist/ stetig auf ÂluB1u N; zu jedem
Punkt z von Ax bezw. Bt gibt es eine Umgebung Kz, die in At bezw. 5X liegt, und auf
der/selbst rational ist (0 bezw. q); andererseits kann zu jedem Punkt von N\(AluBl)
eine abgeschlossene Umgebung Kz gefunden werden, fur die Kzn(ÂvB) Q ist,
sodass fur N* KznNdie Bedingung R(N*)=C(N*) erfùllt und also f\N*eRJ(N*)
ist. Es gibt somit eine rationale Funktion r :

|r(z)-/(z)| <8, ze(ÂuBuN).

r(z) hat die geforderten Eigenschaften.

Anmerkung: Fur gewisse Punktmengen kann der Hilfssatz 1 auch ohne den Satz

von Bishop bewiesen werden. So ist dann, wenn ÂkjBuNdie Ebene nicht zerlegt, die

Bedingung R(N*) C(N*) erfûllt und der Satz von Mergelyan [9] kann angewendet
werden; fur r kann ein Polynom genommen werden. Ganz elementar wurden in [11]
die dortigen Hilfssâtze 2c und 3c als Vorlâufer von Hilfssatz 1 bewiesen.

§ 2. Approximationen mit Hilfe von Funktionen, die auf dem Kreis oder auf der Ebene

meromorph sind

2.1. Bezeichnungen

K bezeichnet das offene Einheitskreisgebiet oder die Ebene C, also

K {z | |z| < r}, wobei r 1 oder r oo

M ist eine in K abgeschlossene Teilmenge von K,
M0 das Innere von M,
M0 die in K abgeschlossene Huile von M°,
N=M\M° (der ,,nirgendsdichte Teil von M"),
N die in K abgeschlossene Huile von N.

M, M0 und N dûrfen kompakt sein; jedoch ist im folgenden nur der Fall von
wirklichem Interesse, wo M nicht kompakt ist, also ,,an den Rand von #heranreicht".
Auch môge beachtet werden, dass zwar M°nN=Q ist, jedoch dièse beiden Mengen

gemeinsame Randpunkte (auf {z | |z| =r}) aufweisen dûrfen.
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2.2. Soll eine Funktion/auf der Menge M gleichmâssig approximierbar sein durch
Funktionen, die auf K meromorph (d.h. bis auf Pôle regulâr analytisch) sind und
deren Pôle ausserhalb M liegen, so ist zweierlei notwendig:

(a) /(z) muss fur zeM stetig und fur zeM0 regulàr (d.h. in einer Umgebung von
z in eine Potenzreihe entwickelbar) sein. Wird, analog wie bei den rationalen Approxi-
mationen (dort fur eine kompakte Menge M) die Menge aller Funktionen mit dieser

Eigenschaft mit A (M) bezeichnet, so ist also notwendig, dass

feA(M);

(b) auf jeder kompakten Teilmenge M* von M muss die Beschrânkung /|M*
gleichmâssig approximierbar sein durch rationale Funktionen:

f\M.czR(M*).

In einer gewissen offenen Umgebung von M* ist die annâhernde meromorphe
Funktion nâmlich regulâr und also der Satz von Runge ûber die rationale Approximation

anwendbar.
Es fragt sich, ob umgekehrt jede Funktion/, feA (M), auf der Menge M

gleichmâssig approximierbar ist durch auf K meromorphe Funktionen, wenn M so be-

schaffen ist, dass fur jede kompakte Teilmenge M* die Bedingung f\M*eR(M*)
erfûllt ist. Der folgende Satz I zeigt, dass dies mindestens dann zu bejahen ist, wenn
M nirgendsdicht (also M° 0, M=N, A{M) C{M)). Im Falle, dass N nicht
kompakt ist (also an den Rand von Xheranreicht), zeigt sich gegenûber der rationalen

Approximation die Môglichkeit einer tangentialen Approximation, wie sie bei der

Approximation mit ganzen Funktionen als ,,Carleman-Approximation" bekannt ist.

2.3. SATZ I: N sei eine nirgendsdichte, in K abgeschlossene Teilmenge von K und

b(q) eine fur 0<Q<r definierte stetige, positive Funktion. Dann und nur dann, wenn

fur jede kompakte Teilmenge N* von N die Bedingung R(N*) C(N*) (s. 1.1.) erfûllt
ist, gibt es zu jeder Funktion f feC(N), eine auf K meromorphe Funktion m(z),
fur die gilt:

|m(z)-/(z)|<s(|z|), zeN.

Die Notwendigkeit der Bedingung ergibt sich daraus, dass nach einem Satz von
Tietze jede auf N* stetige Funktion ergânzt werden kann zu einer auf N stetigen
Funktion und aus der (Jberlegung (b) von 2.2.

Die Konstruktion der Annâherungsfunktion habe ich fur spezielle Punktmengen
in [11] mit einfachen Hilfsmitteln durchgefûhrt. (Sâtze I, I', II, IF jener Arbeit). Die
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dortigen Sâtze I und l'betreffen den Fall, wo M das Flâchenmass 0 hat. Deren Beweis

kann fast wôrtlich ûbernommen werden, wenn statt des dortigen Hilfssatzes 2c der

allgemeinere Hilfssatz 1 der vorliegenden Arbeit benutzt wird. Dies auszufùhren

erûbrigt sich aber, da die Konstruktion der im Satz I vorkommenden Funktion m (z)
beim folgenden Hilfssatz 2 als Spezialfall enthalten ist.

2.4. HILFSSATZ 2: Gegeben seien

(a) die Mengen K, M=M°uN, N wie in 2.1., wobeiNso beschajfen sein soll, dass

fùrjede kompakte Teilmenge N* von N die Bedingung R(N*) C(N*) erfullt ist;
(b) eine in K abgeschlossene Teilmenge fî von N;
(c) eine Funktion f, feC(M), fur die gilt:

|/(z)|<ij (f/>0), zeM°;

(d) s(q) wie in Satz I.
Dann existiert eine auf K meromorphe Funktion m(z):

\m(z)-f(z)\<5ti, zeM
|m(z)-/(z)|<e(|2|), zeti.

Beweis: {rn} sei eine Radienfolge rt<r2<r3<--- mit limB_00 rn=r. Es bedeutet
keine Einschrânkung, anzunehmen, e(g) strebe streng monoton abnehmend gegen 0,
sodass die Zahlen

«. *(«(»-.)-8(r.+1)), h 1,2, 3,... (1)

aile positiv sind und dass

lima(r.) 0. (2)
n->co

Ferner kann vorausgesetzt werden, dass b(q) so gewâhlt wurde, dass

(3)

Als Punktmengen, die benutzt werden bei der Annâherung von/, fûhrt man ein:

Kn {z \ \z\ < rn}

z\rn_x<, \z\ < rn), wobei r0 0.
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Da/eC(M)undnachder Voraussetzung ûber N gibt es eine rationale Funktion qn:

\qn-f\<sn auf N^vN.ïQ. (4)

Wenn Nn_l Nn=0 ist, braucht qn nicht erklàrt zu werden, da dann auch im folgenden
keine Bedingung mit diesem qn vorkommt.

Aus (4) und der Voraussetzung (c) folgt

\qn\<rj auf M°nNn. (5)

Rekursiv wird nun, nachdem to 0 gesetzt wurde, eine zweite Folge von rationalen
Funktionen tu *2,... und zu jeder Menge Nn eine kompakte Teilmenge Mn so

bestimmt, dass folgende Bedingungen erfûllt sind:

tk hat keine Pôle auf M, k 0,1, 2,...

|*k| < ek auf Mo u Kk_2, wobei e0 0; k 0,1, 2, 3,...

î
auf « 1,2,3,...

« 1,2,3

(6)

(7)

(8)

(9)

Zur Konstruktion der Menge Mn und der Funktion tn braucht bloss vorausgesetzt
zu werden, dass die Funktionen t0, tu..., tn-l so bestimmt wurden, dass sie (6) und
(7) fur k=0, 1,...,(«— 1) erfûllen. Dann folgt zusammen mit (5)

fl-1
auf M°nNn. (10)

Die Menge Mn wird so defîniert:
Ist M°nNn=99 so wird Mn=0 gesetzt.
Falls M°c\Nnï% gibt es eine offene Menge On, die M°nNn enthâlt und auf

deren abgeschlossener Huile 0n die Ungleichung von (10) auch noch erfûllt ist. Setzt

man

so ist also

0»- I auf MB. (H)
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Weil J^nM°=0, kann Ôn so gewâhlt werden, dass

Mnnft <&.

157

(12)

Nun wird Hilfssatz 1 angewandt auf die rationale Funktion (</„ — £J 1
fv), die (wegen

f eC{M), (4) und (6)) keine Pôle hat auf Nn-X vNn. Fur die im Hilfssatz 1. vorkom-
menden Mengen A,B,N werden die Mengen M°\jKn^2> Nn\Mn, N^^^uMn e^n"

gesetzt. Dabei ist zu beachten, dass die Konstruktion von Mn so erfolgte, dass

ist, ferner, dass Nn_xKjMn eine nirgendsdichte, kompakte Teilmenge von N ist und also

fur jede kompakte Teilmenge TV* die Bedingung R(N*) C(N*) nach der Voraus-

setzung ûber N erfûllt ist. Nach Hilfssatz 1 existiert eine solche rationale Funktion
tn9 dass

-2
n-1

-('¦-?'¦) < a, auf Nn\Mn

n-1
eB+1 auf

(13)

(14)

(15)

Setzt man voraus, dass rx so gewâhlt wurde, dass Nt # 0, so ist fur jede natûrliche
Zahlt n mindestens eine der Mengen, die in den zur Bestimmung von /„ dienenden

Bedingungen (13), (14), (15) vorkommen, nicht leer. Enthâlt eine Bedingung nur leere

Mengen, so wird sie weggelassen.

Aus(15), (11), (3)folgt

î U - qn
0

< \tn\ +
n-1

qn - I u
0

<2
n-1

q, - I 'v
0

en+1<2n
n+1

auf MM. (16)

(13) zeigt, dass aus der vorausgesetzten Existenz der Funktionen t0, tu..., rB_1? die (6)

und (7) geniigen, die Existenz der Funktion tn, die (7) erfûllt, folgt. Da t0=0, so erfûllt
t0 die Bedingungen (6) und (7) und es folgt also nacheinander die Existenz der

Funktionen tu t2,..., die (7) genûgen und fur die ausserdem die durch Einsetzung von

fo=0 in (8) und (9) ûbergehenden Abschâtzungen (14) und (16) erfûllt sind.

Nun sollte tn noch der Bedingung (6) genûgen. Da, wie bereits bemerkt, (qn—£S~1 tv)
keinen Pol auf Nn-1vNn aufweist, folgt aus (13), (14) und (15), dass tn keinen Pol
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hat auf

Durch eine éventuelle Polverschiebung kann aber auch erreicht werden, dass tn keinen
Pol hat auf N\Kn. Wâre a Pol auf dieser Menge, so kann, da sie nirgendsdicht ist und
a einen positiven Abstand hat von An, ein Punkt b, beK\(AnuM), so nahe an a
gewâhlt werden, dass sich (z—a)'1 und (z—b)'1 auf An beliebig wenig unterscheiden.
Somit kann jede auf An rationale Funktion, welche (13), (14), (15) erfûllt, so gut durch
eine andere rationale Funktion mit Polen ausserhalb M angenâhert werden, dass dièse

Funktion (13), (14), (15) ebenfalls erfullt.
Um auf Nn auch noch die Funktion tn+i abzuschâtzen, ersetzt man in (15) n

durch (n + l)

*n+ll Zh-q,
aufJV,,

Aus (17), (8), (4) folgt

|t.+1| < 2eB + sB+1 + en+2 auf NB\Mn)

andererseits aus (17), (9), (4), (3)

I'»+iI<t'/ + «» + «»+i+eb+2<t'? auf M,.

Fur irgend eine natûrliche Zahl n ist nach (7) und (1)

(17)

(18)

(19)

Aus der Voraussetzung (2) und weil U"=i Ar,_2=APist, so ist

m(r) f tv(z)
1

eine im ganzen Gebiet K meromorphe Funktion.
Aus (7), der Voraussetzung (c) und (3) folgt

|m - 2if auf (20)
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Fur die Abschàtzung von (m—f) auf den Mengen Nn\Mn und Mn benutzt man, dass

00

n + 2

So ergibt sich aus (8), (4), (18), (7) und (1)

00

\m-f\< 4en + en+l + en+2 + £ ev < e(rn) auf Nn\Mn9 (21)
n + 2

andererseits aus (9), (4), (19), (7) und (3)

f ev < 5rj auf Mw. (22)
n + 2

Aus (20), (21), (22) und da nach (3)

eW<fi(ri)<»!

ist, folgt

\m(z)-f(z)\<5r1, wenn ze

Berûcksichtigt man, dass aus (12) und

folgt und dass e(rn)^e(\z\), zeNn, so ergibt sich aus (21)

|m(z)-/(z)|<e(|z|), zeft.

Damit ist Hilfssatz 2 bewiesen.

Fur einen spâtern Zweck soll noch folgende Modifikation angegeben werden:
Hilfssatz 2 bleibt richtig, wennfur jede kompakte Teilmenge N* von fî die Beschrân-

kungf\N* in R(N*) liegt, und wenn die Bedingung R(N**) C(N* *)furjede kompakte
Teilmenge N** von N (nicht mehr unbedingt von fit) zutrifft.

Die erste Bedingung garantiert die Existenz der rationalen Funktion qn, die (4)

genûgt. Die Bedingung R (TV**) C(N**) spielt nur noch eine Rolle bei der Konstruk-
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tion der Funktion tn mit dem Hilfssatz 1 ; zu seiner Anwendbarkeit genûgt es, dass

N** irgend eine Teilmenge von N sein kann.

2.5. Anmerkungen zum Hilfssatz 2:
Der Satz 1 ergibt sich aus dem Hilfssatz 2, wenn M°=0 und f} N gesetzt wird.

Dann wird der Beweis kûrzer, da aile Mengen Mn leer sind. Dies gilt auch dann, wenn
fînM°=Q. Auch in diesem Fall kann fî=N genommen werden, da N=N. Ist aber

Nn A?°#0, so darfim allgemeinen Ê nicht durch N und damit (wegen der Stetigkeit
von (m—/) auf N) auch nicht durch N ersetzt werden. Man wâhle z.B. die Menge
M so, dass M° die obère Halbebene ist, dass N das Flâchenmass 0 hat (sodass R(N*)

C(N*) ist) und dass jeder Punkt der reellen Achse Hâufungspunkt von N ist (also

zu i?gehôrt). Sei feC(M) ; /(z)=0, zeM°. Dann ist die im Hilfssatz 2 vorkommende
Funktion (m—/), die auf M0 mit m zusammenfâllt, auf der abgeschlossenen oberen

Halbebene regulâr und beschrânkt und kann bekanntlich nicht mit beliebiger Raschheit

gegen 0 streben, wenn z auf der positiven reellen Achse gegen oo strebt, ohne dass

m(z)=0, zeC. Falls also ft=N gesetzt werden dûrfte, so wûrde bei passender Wahl
von s(q) folgen, dass m 0 und somit |/(z)|<e(|z|), zeN; dies braucht aber nicht
zu gelten.

2.6. Wenn die Menge M innere Punkte aufweist, so muss eine auf ihr durch mero-
morphe Funktionen mit Polen ausserhalb M gleichmâssig approximierbare Funktion

/(z) fur jeden innern Punkt z0 von M regutâr sein, d.h. in einer gewissen Umgebung
von z0 in eine Potenzreihe von (z—z0) entwickelt werden kônnen. Es sei zunâchst

angenommen, / sei fur aile Punkte von M regulâr.

SATZ II: Vorgelegt sei eine im Gebiet K enthaltene und in ihm abgeschlossene

Menge M, eine fur zeM regulâre Funktion f(z) und eine positive Zahl n. Es gibt eine

aufK meromorphe Funktion m (z), fur die gilt :

\m(z)-f(z)\<rJi zgM.

Weil um jeden Punkt von M ein offenes Kreisgebiet gelegt werden kann, auf dem /
regulâr ist und jede Menge

Mn{z| |z|<g}, 0<Q<r9

kompakt ist, gibt es eine abzâhlbare Menge von Gebieten Gn mit den folgenden Eigen-
schaften:

(a) GinGfc=0, wenn
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(b) Mcz y? Gn;

(c) die Gebiete hâufen sich hôchstens gegen den Rand {z\ |z|=r} von K\ d.h.,
irgend ein Kreisbereich {z | |z|<e<r} hat mit nur endlich vielen der Gebiete einen
nicht leeren Durchschnitt;

(d) die Funktion/ ist in jedem dieser Gebiete Gn eine auf ihm regulâre analytische
Funktion/n; (fur i^k brauchen aber die Funktionen ft und/fc nicht durch analytische
Fortsetzung auseinander hervorzugehen).

Berûcksichtigt man dièse Vorbemerkung, so ist der Satz II dann, wenn r=oo ist,
also K=C, identisch mit einem Satz, der in [11] bewiesen wurde und zwar mit dem
Zusatz

lim (m (z) — / (z)) 0 gleichmâssig auf M.
|z|-oo

Der entsprechende Zusatz ist im allgemeinen nicht richtig, wenn r endlich ist.

Enthâlt z.B. M einen Kreissektor

S {z | \z\ < r, |argz | < p < n}

als echte Teilmenge und setzt man /(z)=0, zeS, so wûrde aus

lim (m (z) — / (z)) 0 gleichmâssig auf M

folgen, dass m identisch 0 ist. Dann mûsste auf der ganzen Menge M |/(z)| <r\ sein.

Der in [11] gefûhrte Beweis von Satz II fur r oo kann, abgesehen von den sich auf
den Zusatz beziehenden Stellen, mit geringen Modifikationen ûbernommen werden fur
den Fall, dass r endlich und also K ein offenes Kreisgebiet ist. Nachdem man Mn

Mn Gn gesetzt hat, ist der dort auf S. 106 vorkommende Kreisring

zu ersetzen durch einen Kreisring

wobei 0=ro<ri<r2<r3 mit lim,,^ rn r.
Die Beweismethode ist einfach, indem sie bloss den Satz I (2.3) fur den speziellen Fall,
dass N das Flâchenmass 0 besitzt und ein Cauchy-Integral benutzt.

2.7. Der folgende Satz III enthâlt fur M°=Q den Satz I und ist fur N=Q im Satz II
enthalten.
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SATZ III : Gegeben seien

(a) eine im Gebiet K enthaltene und in ihm abgeschlossene Menge M, bel der die in
K abgeschlossene Huile des Innern mit M0 bezeichnet wird,

(b) eine in K abgeschlossene Teilmenge ff von N=M\M°,
(c) eine stetige, positive Funktion s(q), 0<Q<r, und eine positive Zahl n.
Dann undnur dann, wennfùrjede kompakte Teilmenge JV* von N R(N*) C(N*)

ist, gibt es zujeder Funktion f(z), die stetig istfùr zeM und die regulâr istfûr zeM°,
eine auf Kmeromorphe Funktion m(z)\

\m(z)-f(z)\<ti9 zeM (23)

|m(z)-/(z)|<e(|z|), zeiV (24)

Notwendigkeit der Bedingung: Ist /*eC(7V*), so kann /* ergânzt werden zu einer
auf der ganzen Menge M die Bedingungen erfûllenden Funktion /. Nach einem Satz

vonTietze gibt es nâmlich (da N* nM° <&) eine Funktion/, /eC(M);/(z)=/*(z),
zeN*; f(z) 0, zeM0. Aus der Existenz der meromorphen Annâherungsfunktion
m folgt nach 2.2, Absatz (b), dass R(N*) C(N*) sein muss.

Konstruktion der Annâherungsfunktion m(z):
Im Gegensatz zu den Vorausetzungen von Hilfssatz 2 ist nicht mehr vorausgesetzt,

dass die Bedingung R(N*) C(N*) fur jede kompakte Teilmenge N* von N(sondern
nur von N) erfûllt sei. Deshalb muss die Menge M0 zur Vorbereitung der Anwendung
von Hilfssatz 2 ersetzt werden durch eine sie enthaltende Umgebung. Da / auch noch
in einer gewissen Umgebung von M0 regulâr ist und M0 nft 0 ist, gibt es eine offene

Menge U:

M°œUc:K, Onft <fr,

auf deren in K abgeschlossener Huile Û die Funktion / noch regulâr ist. Nach Satz II
existiert eine auf K meromorphe Funktion mx (z):

\mt(z)-f(z)\<fil5, zeÛ.

Es darf angenommen werden, m± habe keine Pôle auf ÛvN. Fur U gilt dies ohnehin.
Durch eine éventuelle Verschiebung von abzâhlbar vielen Polen und eine entsprechen-
de Konvergenzûberlegung kann erreicht werden, dass auch keine Pôle von m1 auf
iV\£7liegen. Analog wie beim Beweis von Hilfssatz 2 wird benutzt, dass N\Û nirgends-
dicht ist.

Nun wird der Hilfssatz 2 angewandt auf die Funktion (f-m^, die auf der Menge
Ou N stetig ist. Die im Hilfssatz 2 vorkommende Menge M0 wird ersetzt durch 0 und
die Menge N durch die Menge N\U9 sodass jede kompakte Teilmenge N* von N\U
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auch Teilmenge von N ist. Es gibt also eine zweite aufKmeromorphe. Funktion m2 (z) :

\m2(z)-(f(z)-m1(z))\<ri, z

\m2(z) - (f(z) - m, (z))\ < e(|z|), zefi.

Da MczÙvN, erfûllt die Funktion m(z)=ml(z)+m2(z) die an die Annâherungs-
funktion gestellten Bedingungen.

Im allgemeinen darf im Satz III die Menge Ê nur dann, wenn N=N ist, durch die

Menge N ersetzt werden (s. das Beispiel in 2.5., wo / auch den Anforderungen von
Satz III genûgt.)

Zwischen Satz II und Satz III besteht nicht nur die Beziehung, dass fur N=0
III aus II folgt, sondern Satz II kann auch aus Satz III hergeleitet werden. Um dies

einzusehen, braucht man nur zu beachten, dass die im Satz II vorkommende Menge

M in einer offenen Menge U enthalten ist, auf deren in K abgeschlossener Huile U

f nocht regulâr ist.

2.8. In Anbetracht des in 2.6 fur den Fall r oo geltenden Zusatzes zu Satz II, fragt
es sich, unter welchen Bedingungen fur M im Satz III

lim(m(z)-/(z)) 0 (25)
\z\-+r

nicht bloss auf iV, sondern auf einer in K abgeschlossenen Teilmenge von M, die

umfassender ist als jede Menge #, gleichmâssig erfûllbar ist. Zur Untersuchung dieser

Frage dient der folgende Zusatz 1 zu Satz III: Ist h(z) eine aufK meromorphe Funk-

tion, die nicht konstant 1 ist, undfur die

0<|A(z)|<l, zeM, (26)

so darfim Satz III die Bedingung (23) ersetzt werden durch die schârfere Bedingung

\m(z)-f(z)\<t1\h(z)\9 zeM (27)

(wobei gleichzeitig (24) weiterbesteht).
Wendet man nâmlich den Satz III an auf die Funktion f(z)/h(z), so ergibt sich

die Existenz einer auf K meromorphen Funktion m* (z):

m*

m*(z)-

h{z)
zeM

<e(\z\),
h(z)

Dann ist m(z)=m*(z) h(z) die gesuchte Annâherungsfunktion.
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Eine entsprechende, jedoch ganze, bzw. in einem allgemeinen Gebiet regulâre
Hilfsfunktion h(z) wurde bereits von KeldyS-Mergelyan [10], bzw. von Arakeljan [1]
bei ihren Approximationen mit Hilfe von ganzen bzw. von in einem Gebiet regulâren
Funktionen eingefuhrt, vergl. 4.9.

2.9. Es soll gezeigt werden, dass fur K=C die Bedingung (25) fur die ganze Menge
M erfûllbar ist. Dies zeigt sich zuerst in trivialer Weise, wenn M C ist, denn dann ist

/eine ganze Funktion und es kann m(z)=f(z) gesetzt werden. Es darf also angenom-
men werden, es gebe einen Punkt z0, zoeK\M.

Zusatz 2 zu Satz III: Ist K=C, so kann m{z) so besîimmt werden, dass

lim (m (z) —/ (z)) 0 gleichmâssig auf M.
|z|-oo

Ist zoeK\M und n eine beliebige natùrliche Zahl, so kann nâmlich

|m(z)-/(z)|<r?|z-zorw, zeM, (28)

und gleichzeitig (24) erfùllt werden.

ZumBeweis sei<5,0<<5< 1, so kleinangenommen, dass {z | |z—zo|<5} ausserhalb

M liegt. Dann wird im Zusatz 1, 2.8.,

h (z) ôn (z - z0) "n eingesetzt.

Wenn ûber die Menge M keine weiteren Voraussetzungen als diejenigen von
Satz III gemacht werden, so ist die durch (28) gegebene Annâherungsstàrke bestmôglich

in dem Sinn, dass |z-zo|~" nicht durch eine rascher als jede solche Potenzfunktion
fur |z|~>oo gegen 0 strebende positive Funktion ersetzt werden kann, ausser dann,

wenn / selbst meromorph ist und m =/ gesetzt wird. Enthâlt nâmlich M das Kreisâus-

sere {z | 0<#<|z|<oo}, so hat (m—/) in oo entweder eine Nullstelle von bestimmter

Ordnung oder es ist m=/. Hingegen braucht bei speziellen Voraussetzungen ûber M
die Approximation (28) nicht bestmôglich zu sein, vergl. 4.10.

2.10. Kann dann, wenn die Menge M innere Punkte aufweist, nicht bloss (25),

sondern sogar (24) fur die ganze Menge M erfûllt sein? Dass solche Mengen existieren

und zwar fur endliches r, wie fur r= ex», zeigt:
Zusatz 3 zu Satz III: Sind sàmtliche Komponenten von M0 kompakt, (ohne dass

dies auch fur M0 selbst zu gelten braucht) so kann die Annâherungsfunktion m so

bestimmt werden, dass

|m(z)-/(z)|<fi(|z|), zeM.



Meromorphe Approximationen 165

Skizze des Beweises : Es gibt eine Folge von in K enthaltenen abgeschlossenen
Jordanbereichen Bu B2, B3,..., mit den Eigenschaften:

(a) Bn liegt im Innern B°+l von £n+1,

Qy)\J Bn K9

(c) (B2n\B2n^1)nM0 0, (M0 liegt also ganz in der Vereinigungsmenge der ge-
trennten Bereiche Bl9 (B3\B°2),... (B2n+î\B°2n)...).

Werden die Voraussetzungen ûber/, die Voraussetzung/?(#*) ==(?(#*) und der
Satz von Bishop (1.2.) berûcksichtigt, so zeigt sich, dass fur jede kompakte Teilmenge
M* von M die Bedingung fM*eR(M*) erfûllt ist. Somit existieren rationale Funk-
tionen^, ?2,..., ?„,...:

kn~/i <sn auf Mn(B2n\B°2n.3)y wobei B.t 0,

Ist ^ eine rationale Funktion ohne Pôle auf M, fur die \tl — q1\<e1 auf i?2, so

erhâlt man durch die fortgesetzte Anwendung von Hilfssatz 1 (1.3.) eine weitere Folge
von rationalen Funktionen t2,t3,..., deren Pôle ausserhalb Mliegen (was durch eine

éventuelle Polverschiebung erreicht wird) und fur die gilt:

< 28..J + 2en auf Mn (B2B_2\B°n_3)

<en auîMn(B2n\B°2tt-2)

Durch geeignete Wahl der positiven Zahlen en erreicht man, dass YÂ *v eine

meromorphe Funktion m darstellt und dass

|m(z)-/(z)|<e(|z|), wenn zeM.

Anmerkung: Es kann durch andere Beispiele belegt werden, dass die Bedingung
von Zusatz 3 nicht notwendig ist fur die Môglichkeit einer e(|z|)-Approximation (24)
fur die ganze Menge M.

2.11. Der Zusatz 2 in 2.9. zeigt, dass im Fall K= C die Bedingung (25) stets erfûllbar
ist. Wie bereits im AnschJuss an den Satz II in 2.6. bemerkt wurde, gilt dies im all-
gemeinen nicht, wenn K das Kreisgebiet ist. Im folgenden Beispiel wird eine Menge
M konstruiert, bei der zwar sâmtliche Komponenten von M0 an den Kreisrand heran-
reichen und die e(|z|)-Annâherung (24) nicht môglich ist, jedoch immerhin eine tan-
gentiale Approximation (25) erreicht wird:
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{an} sei eine abzâhlbare Menge von Punkten auf dem Rand {z\ |z| l} von K.
Jedem Punkt an sei eine offene Kreisscheibe Dn, DnaK, deren Rand den Rand von K
in an berûhrt, zugeordnet. Wird mit Dn die in K abgeschlossene Huile von Dn bezeichnet,
so môgen die Kreise so gewâhlt werden, dass DtnDk=$, wenn i^k.

Sei ferner fit eine in K enthaltene und abgeschlossene nirgendsdichte Menge, die
zu (J Dn fremd ist und bei der jede kompakte Teilmenge N* die Bedingung R(N*)

C(N*) erfûllt. Dann kann zu jeder Funktion/, die auf

stetig und auf M° \J Dn regulâr ist, eine auf K meromorphe Funktion m gefunden
werden, die ausser (23) und (24) auch (25) gleichmâssig auf M erfûllt.

Beweis: Sei cp(z) die Funktion, die man erhâlt durch die Festsetzungen:

(p(z) 4(z-an)~i9 zeDni « 1,2,...,
<p(z) 2, zeft.

Nach Satz III existiert eine auf K meromorphe Funktion k:

\k{z) — ç(z)\ < 1, wenn zeM.

Die Funktion h=h~l erfûllt auf M die Bedingung (26) und zudem ist

lim A(z) 0 auf \jDn

und zwar (wie eine elementargeometrische Ûberlegung zeigt) gleichmâssig auf \J Dn.
Aus dem Satz III, seinem Zusatz 1 in 2.8. und daraus, dass lim^ e(^)=0 vorausge-
setzt werden darf, folgt die Existenz einer auf K meromorphen Funktion m, welche
die Abschàtzungen (23) und (24) erfûllt und fur die

lim (m (z) - / (z)) 0 gleichmâssig auf M.
l*l-i
Anmerkung: Im Hinblick aufAnwendungen dièses Beispiels zur Konstruktion von

von auf K meromorphen Funktionen mit gewissem Randverhalten ist beachtenswert:

zwar ist \j3nnN=09 jedoch konnenPunkte von {an} gemeinsame Randpunkte der
beiden Mengen sein. Ferner: die Beschrânkungen/)^ sind voneinander unabhângige
regulâre analytische Funktionen und auch unabhângig von /|#.

2.12. Zurûckkommend auf das in 2.2. angeschnittene Problem fragt es sich, ob der
Satz III richtig bleibt, wenn die in ihm vorkommende Voraussetzung ûber die Funk-
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tion / ersetzt wird durch die Voraussetzung

feA(M)9

dass also / bloss noch auf M0 statt auf M0 regulâr zu sein braucht. Dies ist nicht
môglich, ohne dass dafûr an die Menge M schârfere Forderungen gestellt werden. Es

gibt nâmlich eine kompakte Menge M—M° (fur die also JV=0 und somit die Beding-

ung R(N*) C(N*) dahinfâllt), bei der R(M)^A(M) ist, s. Zalcman [12], 9.8.

Wie in 2.2. (b) ausgefùhrt wurde, kann dann die Funktion/ dièses Gegenbeispieles
auch nicht durch Funktionen, die meromorph sind in einem M enthaltenden Kreis-
gebiet K, gleichmâssig approximiert werden.

Falls die Menge M kompakt ist und also die Annâherungsfunktionen nach 2.2. (b)
als rational angenommen werden kônnen, muss M die Forderung R(M) A(M)
erfûllen. Vitushkin (vgl. Zalcman [12], S. 100) stellte fur eine kompakte Menge M
unter der Verwendung der ,,^4C-Kapazitât a" Bedingungen auf, die mit R (M) A (M)
âquivalent sind.

Wie bereits beim Satz III die Bedingung fur die meromorphe Approximation auf
einer nicht kompakten Menge M zurûckgefûhrt wurde auf das Problem der rationalen
Approximierbarkeit auf gewissen Teilmengen (dort der Mengen N*), kann vermutlich
auch dann, wenn bloss feA(M) vorausgesetzt wird, eine solche Zurûckfûhrung
gelingen. Insbesondere stellt sich die Frage:

Existiert zujeder Funktion f, feA (M), eine aufKmeromorphe Funktion m, welche

die Bedingungen (23) und (24) von Satz III erfiïllt, wenn die Menge M so beschaffen ist,
dass fur jeden abgeschlossenen Kreisbereich K*9 K*cK, die Bedingung

R(MnK*) A(Mn K*) (29)

erfùlltist?
Mindestens unter gewissen noch spezielleren Voraussetzungen ûber die Menge M

genûgt die Voraussetzung feA(M), zunâchst natûrlich im Fall M° 0 (Satz I), da

dann A (M) C(M) ist, jedoch auch fur die im Zusatz 3 (2.10.) vorkommende Menge,
wenn die Voraussetzung R(N*) C(N*) ersetzt wird durch die schârfere Voraussetzung

(29). (Dies geht aus dem Beweis jenes Zusatzes hervor.) Vor allem genûgt die

Voraussetzung feA (M) bei den Mengen, dieim §4 als y4K-Mengen eingefûhrt werden.

Im ûbrigen steht meines Wissens die Anwort auf die oben gestellte Frage noch aus.

Immerhin kann folgender Hinweis gemacht werden: Es genûgt, das gestellte
Problem fur den Spezialfall M=M° (bei dem (24) wegfâllt) zu lôsen, also zu unter-
suchen, ob der Satz IIfur M= M0 richtig bleibt unter den verânderten Voraussetzungen.

Angenommen, dies treffe zu, so folgt, dass auch beim Satz III die Voraussetzungen

feA (M) und (29) hinreichend sind fur die Existenz der den Bedingungen (23) und (24)
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genûgenden Annâherungsfunktion m ml+m2. Zuerst folgt nâmlich âhnlich wie beim
Beweis von Satz III (jedoch einfacher, da statt der dortigen Menge 0 direkt M0 ein-

tritt) aus dem verânderten Satz II die Existenz der Funktion ml9 die auf M0 die
Bedingung \m1—f\<rj/5 erfûllt. Dann ergibt die am Schluss von 2.2. angegebene
Modifikation von Hilfssatz 2 die Existenz der Funktion m2, fur die

\m2{z)-{f{z)-m1{z))\<f]9 zeM,
\m2(z) - (f(z) - m, (z))\ < e(|z|), ze#.

Die dortigen Voraussetzungen R(N**) C(N**) und fN*eR(N*) sind nâmlich
erfûllt, wenn feA(M) und (29) zutrifft.

Fur weitere Untersuchungen ûber die Approximationen mit Hilfe von meromor-
phen Funktionen dûrfte die vollstândige Abklârung des Problems von Bedeutung
sein. Doch habe ich den Satz III hauptsâchlich aufgestellt im Hinblick auf die Kon-
struktion von meromorphen Funktionen mit vorgeschriebenem Randverhalten, worûber
ich in einer spàteren Arbeit zu berichten hoffe. Fur dièse Anwendungen spielt es aber
keine wesentliche Rolle, die Voraussetzung ûber / im Satz III zu ersetzen durch die

Voraussetzung/ev4(M), besonders, da dies erkauft werden muss durch komplizier-
teie Voraussetzungen ûber die Menge M. Die Untersuchung, wann eine kompakte
nirgendsdichte Menge N* die Bedingung R(N*) C(N*) erfûllt, ist nâmlich einfacher
als die Beantwortung der Frage, wann eine kompakte Menge M* mit inneren Punkten
die Bedingung R (M*)=A (M*) erfûllt (Unterschied der in 1.1. erwâhnten Kapazitât y
und der ^4C-Kapazitât a).

§ 3. Approximationen mit Hilfe von Funktionen, die in einem beliebigen offenen Gebiet

meromorph sind

3.1. Im Satz III von 2.7. kannfur K ein beliebiges offenes Gebiet G genommen werden.

Dabei wird die fruhere Funktion e(|z|) ersetzt durch eine auf Ê stetige und positive
Funktion e(z). (Natûrlich kônnen dièse beiden Aenderungen auch in den im Satz III
enthaltenen Sâtzen I und II vorgenommen werden.)

Nachdem die im §2 angewandten Beweismethoden bereits so gestaltet wurden,
dass K sowohl das offene Kreisgebiet als auch die Ebene C sein kann, genûgen einige
einfache Anpassungen der Beweise, wenn G eingefûhrt wird.

Die in den Beweisen von Hilfssatz 2 in 2.4. und von Satz II in 2.6. vorkommende
Folge {Kn} von Kreisscheiben wird ersetzt durch die Folge {Gn} der abgeschlossenen

Hûllen einer Folge {Gn} von Gebieten, die eine normale Gebietsausschôpfung von
G bilden.

Bekanntlich versteht man darunter eine Folge von Teilgebieten von G mit den

Eigenschaften:
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(a) UGn G9

(b) GnczGn+i9

(c) jedes Gebiet Gn wird berandet von endlich vielen paarweise fremden Jordan-
kurven, die ganz in G liegen.

Natûrlich muss dementsprechend der Durchschnitt einer Menge mit
{z | rB»1<z<rll} ersetzt werden durch den Durchschnitt mit ((jw\(?,,_!), wobei Go 0.

Die Einfûhrung der neuen Funktion s(z) kann so erfolgen: es sei rji >rj2>rj3> •••

eine monoton abnehmende Folge positiver Zahlen mit limn_00 rçn 0, fur die fjn<s(z),
wenn z e (Gn\Gn _ n #.

Dann wird im Beweise von Hilfssatz 2 die dort vorkommende Zahl s(rn) ersetzt
durch rjn.

Nach diesen beiden Modifikationen kônnen aile anderen Ueberlegungen bei den
Beweisen von Hilfssatz 2 und von Satz II ûbernommen werden. Der sich auf dièse

beiden Sâtze stûtzende Beweis von Satz III bleibt unveràndert, wenn K durch G

ersetzt wird und fur die Funktionen mu m2, m auf G meromorphe Funktionen genom-
men werden.

3.2. Die zur Verbesserung der Approximationsstârke auf Mengen mit inneren Punkten
dienenden Zusâtze 1 (in 2.8.) und 3 (in 2.10) (und ihre Beweise) sind unveràndert gùltig,
wenn fur K ein beliebiges Gebiet G eintritt.

§ 4. Approximationen mit regulâren analytischen Funktionen

4.1. Welche Bedingung muss die Menge M erfullen, damit im (nach §3) fur ein

allgemeines offenes Gebiet G verallgemeinerten Satz III als approximierende Funktion
m eine auf G regulàre analytische Funktion genommen werden darf Die Approximation

mit regulâren analytischen Funktionen wurde im Gegenstaz zur meromorphen
Approximation in einer grôsseren Reihe von Publikationen behandelt.

Zunâchst ist leicht einzusehen, dass G\M keine Komponente enthalten darf, deren

in G abgeschlossene Huile kompakt ist. (Aile Komponenten von G\M mûssen vielmehr

,,an den Rand von G heranreichen"). Bereits bei Keldys-Mergelyan [10] wurde gezeigt,
dass bei einem unbeschrânkten Teilkontinuum von C dièse Bedingung nicht hinreicht.

4.2. Définition der AG-Menge:
Eine Menge M heisst dann und nur dann eine AG-Menge, wenn M im offenen Gebiet

G enthalten und abgeschlossen ist und wenn eine solche normale Gebietsausschôpfung

{Gn} (s.3.1.) existiert, dass die in G abgeschlossene Huile jeder Komponente von G\M
und von G\(Mkj Gn), « 1,2, 3,..., nicht kompakt ist.

Bezeichnet G* die Einpunktkompaktrifizierung von G, so ist dièse Définition
âquivalent damit, dass G*/Af zusammenhângend und lokal susammenhângend ist.
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Im Zusammenhang mit Approximationsproblemen wurden fur G=C die AG-

Menge (mit anderen Bezeichnungen) zuerst in [11] und dann bei Keldys-Mergelyan
[10] eingefûhrt. Arakeljan [1] legt ein allgemeines Gebiet D zugrunde und gebraucht
die Bezeichnung ÀTD-Menge.

Die Bezeichnung mit den Buchstaben A und G môge darauf hinweisen, dass die

^4G-Mengen identisch sind mit denjenigen Teilmengen M von G, auf denen jede
Funktion ffeA(M), auf M gleichmâssig angenâhert werden kann durch auf G

regulâre Funktionen g, geA(G) (s. Satz Ax in 4.5.).

4.3. HILFSSATZ 3: Ist M eine AG-Menge, m eine auf G meromorphe Funktion,
deren Pôle ausserhalb M liegen und e eine positive Zahl, so existiert eine solche auf G

regulâre analytische Funktion g, dass

\g(z)- m(z)\ <e, zeM.

Dieser Hilfssatz wurde in [11] (S. 110) fur den Fall G C bewiesen und zwar mit
dem Zusatz

lim (g(z)-m(z)) 0.
|*|-oo

(Ein entsprechender Zusatz ist im allgemeinen fur G^C nicht gùltig.)
Der mit einer Polverschiebung gefûhrte Beweis kann, abgesehen von den sich auf

den Zusatz beziehenden Stellen, ûbernommen werden, wenn die dortige Folge von
Kreisbereichen ersetzt wird durch die Folge der abgeschlossenen Hûllen der besondern

in der Définition von 4.2. vorkommenden Gebietsausschôpfung {Gn}.

4.4. HILFSSATZ 4: Ist M eine AG-Menge und Gn ein Glied der in A2. eingefûhrten

Folge {Gn},)ferner N* eine kompakte Teilmenge von N=M\M°, so ist
(a) R(MnGn)=A(MnGn)9
(b) R(N*) C(N*).

(Bedeutung von R,A,Cs. 1.1. und 2.2.)
Der Beweis kann mit dem folgenden Satz von Mergelyan [10] gefûhrt werden

(unter Anwendung des Satzes von Bishop auch mit dem einfacheren Satz von Mergelyan

ûber die Polynomapproximation):
Ist M eine kompakte Menge, deren Komplement C\M aus endlich vielen Kompo-

nenten besteht, so ist R(M)=A(M).
Aus 4.2. folgt, dass jede Komponente von Gn\M zusammenhàngt mit C\Gn. Da

C\Gn endlich viele Komponenten aufweist, so gilt dies auch fur C\(MnGn)
(C\Gn)Kj(Gn\M) und damit ist (a) bewiesen.

Gn werde so gewâhlt, dass N*cGn. DaiV*nM°=0 ist, hat C\N* (unabhàngig
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davon, dass M eine ^4G-Menge ist) hôchstens so viele Komponenten wie C\(Mn (/„),
also wieder endlich viele. Daraus folgt (b).

4.5. Nach dem Hilfssatz 4b ist die im Satz III von 2.7. vorkommende Bedingung

R(N*) C(N*) fur eine ^4G-Menge erfûllt. Durch die Anwendung von Hilfssatz 4

auf den fur G verallgemeinerten Satz III folgt also

HILFSSATZ 5: Jede auf einer AG-Menge M stetige und auf M0 regulàre Funktion

f kann auf M gleichmàssig angenàhert werden durch Funktionen, die auf G regulâr
analytisch sind.

Dieser Satz ist enthalten in einem Satz von Arakeljan [1], der (mit den Bezeichnun-

gen, die hier eingefûhrt wurden) lautet:
(Ax) Ist M eine im offenen Gebiet G enthaltene und abgeschlossene Menge, so kann

dann und nur dann, wenn M eine AG-Menge ist, jede Funktion ffeA(M), auf M
gleichmàssig angenàhert werden durch auf G regulàre analytische Funktionen.

4.6. Um auf der in G abgeschlossenen Teilmenge ft von N= M\M° zur gleichmâssi-

gen Approximation auf der ganzen Menge M hinzu noch eine e (z)-Annâherung zu

erhalten, kann der folgende Hilfssatz, der eine fur eine ^fG-Menge geeignete Modifîka-
tion von Hilfssatz 2 in 2.4. darstellt, verwendet werden.

HILFSSATZ 6: Gegeben seien eine AG-Menge M, die Menge ft wie oben, eine

Funktion f feA (M), die auf M0 der Abschàtzung \f\ <rj(n>0) geniigt, und eine auf
f} stetige und positive Funktion e(z). Dann existiert eine auf G regulàre analytische
Funktion g:

|g(z)-/(z)|<5iy, zeM,
\g(z) — f (z)\ < e(z), zeft.

Zurûckgreifend auf den Beweis von Hilfssatz 2 wird zunâchst die Folge {Kn}
ersetzt durch die Folge {(/„}, wobei die besondere Gebietsausschôpfung von 4.2. ge-

nommen wird. Die Einfûhrung von e(z) erfolgt wie in 3.1. Sodann mûssen noch

folgende Ânderungen vorgenommen werden:

(a) Die Existenz der rationalen Funktion qn, die der Bedingung (4) genûgt, folgt
jetzt aus feA(M) und dem Hilfssatz 4a.

(b) Bei der Einfûhrung der Funktion tn wird die Bedingung (6) ersetzt durch die

Bedingung

k

Y tv hat keine Pôle auf M u Gk ; (6')
o
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dies kann mit einer eventuellen Polverschiebung nach Runge auf Grund der Définition
der AG-Menge erreicht werden.

(c) Die Anwendbarkeit von Hilfssatz 1 zur Konstruktion der Funktion tn ist jetzt
deshalb môglich, weil nach dem Hilfssatz 4b fur jede kompakte Teilmenge N* von
(Nn.xKjNn)rsNdit Bedingung R(N*) C(N*) erfûllt ist.

Aile anderen Ueberlegungen des Beweises von Hilfssatz 2 bleiben unverândert.
Da (6) durch (6') ersetzt wurde, ist £==£? *v eine auf G regulâre Funktion.

4.7. Korollar zum Satz III:
Gegeben seien ein beliebiges offertes Gebiet G von C, eine AG-Menge M, eine in G

abgeschlossene Teilmenge # von N=M\M°, eine auf N stetige und positive Funktion
e(z) und eine positive Konstante rj. Dann gibt es zu jeder auf M stetigen und auf M0
regulâren Funktion f eine auf G regulâre analytische Funktion g, fur die

\g{z)-f(z)\<r,, zeM, (30)

\g(z)-f(z)\<s(z), zeti. (31)

Beweis: Mit M ist, wie aus 4.2. sofort folgt, auch M0 eine ^G-Menge. Nach dem
Hilfssatz 5 existiert eine auf G regulâre Funktion gt :

|gl-/!<*,/ auf M0.

Weil die Funktion (gt —f) auf M stetig und auf fif° regulâr ist, ist erst recht (gt —f)e
eA (M) und nach dem Hilfssatz 6 in 4.6. existiert eine zweite auf G regulâre Funktion

\g2(z)-{f(z)-gi(z))\<r,, zeM,
\g2(z)-(f(z)-gl(z))\<e(z), zeti.

Die auf G regulâre analytische Funktion g=gi+g2 genûgt den Bedingungen (30)
und (31).

Setzt man M°=0 (wobei feC(N) wird und (30) wegfâllt), so ergibt sich aus
diesem Korollar (oder bereits aus Hilfssatz 6) ein zweiter Satz A2 von Arakeljan [1],
der dem Satz I von §2 fur den Fall dass N eine ^4G-Menge ist, entspricht. Dieser Satz

und der in 4.5. zitierte Satz Ax wurden unter der Annahme, dass N bezw. M eine

zusammenhângende v4c-Menge ist, bereits von Keldys-Mergelyan [10] bewiesen.

Abgesehen vom noch folgenden Satz IV und der Anregung zur Einfûhrung eines

allgemeinen Gebietes G, entstand die vorliegende Arbeit unabhàngig von [1]. Auf
dièse Publikation von Arakeljan machte mich dann Herr Prof. A. Pfluger, dem ich
auch fur weitere Hinweise dankbar bin, aufmerksam.

Wâhrend der Satz III gemâss den Ausfûhrungen von 2.12. nicht richtig bleibt, wenn
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dort die Bedingung, / sei regulàr auf M0, ersetzt wird durch die Bedingung, / sei

regulâr auf M0, ist dièse schwàchere Bedingung nach Arakeljan beim Hilfssatz 5 und
(wie Satz IV zeigen wird) auch beim Korollar von Satz III hinreichend. Der wichtige
Schritt der Beschrànkung auf die Voraussetzung/ev4(Af) wurde bei den rationalen
Approximationen schon seit làngerer Zeit ausgefûhrt, zuerst von Walsh bei seiner

Verschârfung des Satzes von Runge, dann aber vor allem, nachdem Mergelyan bei

seinen Beweisen nicht bloss Sâtze ûber allgemeine konforme Abbildungen, sondern
die Formel von Green verwendete. Dièse beiden Hilfsmittel habe ich nicht benutzt
beim sehr elementaren Beweis von Satz II (den einzig man, wie ich in 2.12. ausfûhrte,
bei der Beschrànkung auf die Bedingung feA (M), zu ândern braucht).

4.8. Die beiden Sâtze Ax und A2 von Arakeljan und das Korollar zum Satz III in
4.7. sind enthalten im

SATZ IV: Gegeben seien die Mengen G, Af, #, die Funktion s(z) und die Konstante

rj wie im Korollar 4.7.

Dann und nur dann, wenn M eine AG-Menge ist, gibt es zu jeder Funktion f, die

A (M) angehôrt, eine auf G regulàre analytische Funktion g(z), die den Abschâtzungen

(30) und (31) genûgt.
Die Notwendigkeit der Bedingung wurde bereits von Arakeljan bei seinem durch

Weglassung von (31) entstehenden Satz At begrûndet.
Die Konstruktion der Annâherungsfunktiong erfolgt wie beim Beweis des Korollars

in 4.7. mit dem einzigen Unterschied, dass jetzt die Existenz von gx wegen der ver-
minderten Annahme feA(M) mit dem Satz At von Arakeljan (fur den Spezialfall

M=M°) begrûndet wird.
Der Satz IV dûrfte aile frûheren Resultate ûber die Approximation einer Funktion

/, feA(M), auf einer v4G-Menge M durch auf G regulâre analytische Funktionen
umfassen.

Ist M kompakt, so handelt es sich um rationale Approximationen (fur einfach-

zusammenhângendes G um Polynomapproximationen), die frûh einsetzten mit den

Sâtzen von Weierstrass, Runge und Walsh, denen der bereits in 1.1. zitierte Satz von
Lavrentieff folgte und die abgeschlossen wurden durch den Satz von Mergelyan, bei

dem die Menge M die allgemeinste kompakte v4G-Menge ist, indem das Komplement
C\M endlich viele Komponenten aufweist.

Spezialfâlle von Satz IV fur eine nicht kompakte ^G-Menge wurden in den folgen-
den Publikationen bewiesen: Carleman [3], Roth [11], Keldys-Lavrentieff-Mergelyan
(Zusammenfassung in [10]), Bagemihl und Seidel [2], Kaplan [6] und Arakeljan [1]

(in chronolcfgischer Reihenfolge, leider vielleicht unvollstândig).
Aile Autoren erreichen dann, wenn M nirgendsdicht ist, eine Carleman-Approximation

(31). Ist G=C, also die Annâherungsfunktion ganz, so gelingt fur eine Menge
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mit innern Punkten stets wenigstens eine tangentiale Annâherung (s. Zusatz 2' in 4.10.)
Hingegen kommt noch nirgends imFallM°^0, N^Q, ausser der gleichmâssigen
Approximation auf der ganzen Menge M eine gleichzeitige Carleman-Approximation
auf einer Teilmenge von N vor, wie dies der Satz IV aufweist.

D^e Approximation auf der allgemeinen ^4G-Menge erfolgte durch Arakeljan,
nachdem Kaplan bereits frûher das allgemeine Gebiet G eingefûhrt hatte, jedoch mit
ganz speziellem M.

Anmerkung: Wie beim Satz III kann im Satz IV die Menge JV im allgemeinen nur
dann durch N ersetzt werden, wenn N=N ist. Beim Beispiel von 2.5. kann Mleicht so

konstruiert werden, dass eine ^4G-Menge entsteht.

4.9. Zusatz Y zu Satz IV: Ist h eine auf G regulâre Funktion, welche die Bedingung

0<|/i(z)|<l, zeM, (32)

erfùllt, so darf im Satz IV die Bedingung (30) ersetzt werden durch

\g(z)-f(z)\<rj\h(z)\, zeM, (33)

wobei (31) weitergilt.
Dieser Zusatz kommt mit (33), jedoch ohne (31), bei Keldys-Mergelyan (fur

(j C) und bei Arakeljan vor.
Der Beweis verlâuft ganz entsprechend wie der einfache Beweis vom Zusatz 1 in

2.8., nur dass jetzt der Satz IV angewendet wird.

4.10. Besonders interessiert wieder der Fall G=C, wobei die Annâherungsfunktion
g jetzt eine ganze Funktion ist. Analog wie bei den meromorphen Approximationen
(Zusatz 2 in 2.9.) gilt:

Zusatz 2' zu Satz IV: g kann so bestimmt werden, dass lim^j.^ (g(z)—f(z))=0
gleichmâssig aufM.

Zum Beweis genûgt es, eine ganze Funktion h zu finden, die ausser (32) noch die

Bedingung lim^i^ h(z)=0 gleichmâssig auf M erfûllt, und dann den Zusatz Y von
4.9. anzuwenden. Die Konstruktion von h ist nicht mehr so einfach wie in 2.9., wo
h den Pol z0, zo$M, haben durfte.

Bei KeldyS-Mergelyan [10] wird eine solche Hilfsfunktion h fur den Fall, dass M
eine zusammenhângende yic-Menge ist, konstruiert. Dabei werden bestmôgliche

Approximationen fur den allgemeinen Fall und bei den Spezialfâllen, wo *M in einem

Winkelraum oder in einem Parallelstreifen liegt, ausgefuhrt. Ausserdem wird das

Wachstum der Annâherungsfunktion untersucht.
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Arakeljan [1] gibt eine Verfeinerung und Ergànzung jener Resultate an, wobei

M eine allgemeine ^C-Menge ist.

Diesen, eine lângere und subtile Herleitung erfordernden Untersuchungen habe

ich ergânzend bloss beizufûgen, dass bei allen diesen Approximationen, entsprechend
4.9., zusâtzlich aufder Teilmenge N die stârkere Annâherung (31) môglich ist.

4.11. Das im Zusatz 3 von 2.10. angeschnittene Problem, welche zusâtzlichen

Bedingungen die Menge M (mit inneren Punkten) erfûllen muss, damit auf ganz M
eine Carleman-Approximation (31) môglich ist, wurde fur den Fall, dass M eine AG-

Menge ist, vollstàndig gelôst von Nersesian [14].

4.12. Entsprechend wie in 2.11., gibt es auch, wenn G ^ C, y4G-Mengen, bei denen die

Komponenten des Innern an den Rand von G heranreichen und fur die doch im Satz

IV die Abschâtzungen (30) und (31) ergânzt werden kônnen durch die Bedingung,
dass (g(z)— f(z)) gegen 0 strebe, wenn z sich dem Rand von G nâhert. Man wàhle

etwa im Beispiel von 2.11. die Menge ft so, dass M eine v4G-Menge ist.

4.13. Nach der Beendigung der vorliegenden Arbeit wurde mir freundlicherweise
Einsicht gewâhrt in eine noch unverôffentlichte Untersuchung von Brown und Gauthier

[13], die einen Approximationssatz enthâlt, aus dem sich Satz IV ohne weiteres

ableiten lâsst, nâmlich: (mit den Bezeichnungen dièses §)

Ist M eine AG-Menge und s(z) eine auf M stetige und positive Funktion, die zudem

konstant ist aufjeder Komponente von M0, so gibt es zujeder Funktion f} die A (M)
angehôrt, eine solche auf G regulâre analytische Funktion g, dass

|g(z)-/(z)|<e(z), zeM.

Der Beweis stûtzt sich auf den Satz At (4.5.) von Arakeljan und wird dadurch

ganz kurz, dass eine raffiniert einfach konstruierte Hilfsfunktion h eingefuhrt wird,
wobei

0<\h(z)\ <e(z), zeM,

und dann die Méthode von Zusatz Y in 4.9. angewandt wird.
Der Kunstgriff von Brown und Gauthier lâsst sich ohne die Anwendung des

Satzes Ai9 jedoch mit dem Hilfssatz 5 in 4.5. leicht so modifizieren, dass dadurch das

Korollar in 4.7. kûrzer bewiesen werden kann, nâmlich ohne den Hilfssatz 6.

Die von Brown und Gauthier angewandte Konstruktion von h kann nicht ûber-

tragen werden auf eine bei den meromorphen Approximationen vorkommende Menge

M, sofern sie nicht eine ^4G-Menge ist.
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4.14. Ausblick: Sollte es gelingen, die zur Einfûhrung der reduzierten Bedingung

feA (M) im Satz III von 4.7. notwendigen und hinreichenden schârferen Bedingungen
fur M zu finden (dass es sich z.B. erweisen sollte, dass die in 2.12. gestellte Frage
positiv zu beantworten ist), so liessen sich die Resultate von §4 aus der meromorphen
Approximation recht kurz ableiten. Aus dem entsprechend modifizierten Satz III
kônnte dann mit den einfachen Hilfssâtzen 3 und 4 sofort der Satz At und daraus die

Hilfsfunktion und der Approximationssatz von Brown und Gauthier hergeleitet
werden.
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