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Meromorphe Approximationen

von ALICE RotH

§ 1. Approximationen durch rationale Funktionen

1.1. Dierationale Approximation ist in vielen Publikationen der letzten Jahrzehnte
behandelt worden. Eine zusammenfassende Darstellung der Sidtze und Beweise, sowie
eine Literaturiibersicht findet man in den Biichern von Zalcman [12] und von Gamelin
[4].

Im folgenden interessiert, was rationale Approximationen anbelangt, zundchst
der Fall, wo eine nirgendsdichte kompakte Teilmenge N der komplexen Ebene C
vorgelegt ist. Wie tiblich bezeichne C(N) die Menge aller auf N stetigen Funktionen
und R(N) die Menge aller Funktionen, die auf N durch rationale Funktionen mit
Polen ausserhalb N gleichmissig approximierbar sind. Da R(N)< C(N), stellte sich
bekanntlich die Frage nach den Bedingungen, denen N geniigen muss, damit R(N)
=C(N) ist. Einfache hinreichende (jedoch nicht notwendige) Bedingungen sind
z.B.:

(a) N hat das Flachenmass O (Hartogs und Rosenthal [5]); (dass diese Bedingung
nicht notwendig ist, folgt bereits daraus, dass diese Autoren mit einem Uberdeckungs-
verfahren zeigten: ist fiir jede Komponente N; von N die Bedingung R(N;)=C(N;)
erfillt, so ist auch R(N)=C(N));

(b) N zerlegt die Ebene nicht (Lavrentieff [7] und Mergelyan [8]) (notwendig fiir
Polynomapproximation);

(c) N ist von endlichem Zusammenhang (Mergelyan [10]).

Andererseits gibt es aber nirgendsdichte kompakte Mengen N, fiir die R(N)# C(N)
ist. Dies wurde 1938 in [11], S. 96 und S. 103, gezeigt. Es handelt sich dabei um eine
nirgendsdichte Menge, die dadurch entsteht, dass aus einer abgeschlossenen Kreis-
scheibe abzihlbar viele in ihrem Innern enthaltene und zueinander paarweise fremde
offene Kreisscheiben, deren Radiensumme endlich ist, herausgestochen werden.
Mergelyan konstruierte 1952 ein allgemeineres Beispiel, bei dem statt der Kreise
Jordangebiete auftreten. Spater wurde wieder auf das Beispiel mit den Kreisen zuriick-
gegriffen und die betreffende Menge ,,Swiss cheese* getauft.

Einen grossen Schritt vorwirts bedeutete es, dass Vitushkin 1959 (Darstellung
bei Zalcman [12]) zeigte, dass die Bedingung R(N )= C(N ) dquivalent ist mit gewissen
an die Menge N zu stellenden Bedingungen, in denen die analytische Kapazitét y auf-
tritt, u.a. mit der Bedingung:

7(K°(z,6)\N) =y(K°(2,8)) =6, zeN, §6>0,
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wobei K°(z, §) die offene Kreisscheibe mit dem Mittelpunkt z und dem Radius §
bezeichnet.

1.2. Diese Bedingung zeigt, dass die rationale Approximierbarkeit lokalen Charakter
besitzt. Dies geht bereits, ohne dass die Kapazitit herangezogen wird, aus einem
Satz von Bishop (Beweise von Garnett und von Bishop, dargestellt bei Zalcman [12],
S. 97 und S. 125) hervor: Es sei M eine echte und kompakte Teilmenge von S*=C U .
Gibt es zu jedem ze M eine solche abgeschlossene Umgebung K, dass

fIMnx,€ER(M N K,),
so ist fe R(M).

1.3 Der folgende Hilfssatz ist das einzige Hilfsmittel aus dem Kreis der rationalen
Approximationen, das in §2 verwendet wird.

HILFSSATZ 1: A und B seien zwei Teilmengen von C, deren in S* abgeschlossene
Hiillen A und B zueinander fremd sind. Ferner sei eine kompakte und nirgendsdichte
Teilmenge N von C gegeben, derart, dass fiir jede kompakte Teilmenge N* von N, die
zu AU B fremd ist, R(N*)=C(N*) ist. Dann kann zu jeder rationalen Funktion g,
deren Pole ausserhalb B N liegen, und zu jeder positiven Zahl ¢ eine zweite rationale
Funktion r so bestimmt werden, dass

Ir(z)l <e, zed,
Ir(z)—q(2) <e, zeB,
Ir(2)l<lq(z)| +&, zeAUBUN.

Aus den Voraussetzungen folgt, dass in S? zwei solche offene Mengen 4, und B,
existieren, dass

(a) 1‘1-1 N Bl =0,
(b) IICAI und BCBI,
(c) q keinen Pol hat auf B, UN.

Ferner sei ¢ eine auf S? stetige Funktion mit den Eigenschaften:

0(z2)=0, zed,,
¢(z)=1, zeb,
o(z2)<1, zeS>.
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Definiert man:

f(z2)=0, zed,,
f(2)=9¢(2)q(2), zeB,u(N\4,),

so geniigt f auf der Menge AU BU N den Voraussetzungen des Satzes von Bishop.
Da nidmlich g auf B; U N keinen Pol aufweist, ist f stetig auf 4; U B, UN; zu jedem
Punkt z von A, bezw. B, gibt es eine Umgebung K, die in 4, bezw. B, liegt, und auf
der f'selbst rational ist (0 bezw. ¢q); andererseits kann zu jedem Punkt von N\(4, U B,)
eine abgeschlossene Umgebung K, gefunden werden, fiir die K,n(4du B)=0 ist,
sodass fiir N*=K_ n N die Bedingung R(N*)=C(N*) erfiillt und also f |y.e R(N*)
ist. Es gibt somit eine rationale Funktion r:

lr(z) —f(2)l <e, ze(AuBUN).
r(z) hat die geforderten Eigenschaften.

Anmerkung: Fir gewisse Punktmengen kann der Hilfssatz 1 auch ohne den Satz
von Bishop bewiesen werden. So ist dann, wenn 4 U Bu N die Ebene nicht zerlegt, die
Bedingung R(N*)=C(N*) erfiillt und der Satz von Mergelyan [9] kann angewendet
werden; fiir r kann ein Polynom genommen werden. Ganz elementar wurden in [11]
die dortigen Hilfssétze 2c und 3c als Vorldufer von Hilfssatz 1 bewiesen.

§ 2. Approximationen mit Hilfe von Funktionen, die auf dem Kreis oder auf der Ebene
meromorph sind

2.1. Bezeichnungen

K bezeichnet das offene Einheitskreisgebiet oder die Ebene C, also
K={z|lzl<r}, wobeir=1oderr=o0,

M ist eine in K abgeschlossene Teilmenge von K,
M?° das Innere von M,

M?° die in K abgeschlossene Hiille von M°,
N=M\M? (der ,,nirgendsdichte Teil von M),
N die in K abgeschlossene Hiille von N.

M, M° und N diirfen kompakt sein; jedoch ist im folgenden nur der Fall von
wirklichem Interesse, wo M nicht kompakt ist, also ,,an den Rand von K heranreicht®.
Auch moge beachtet werden, dass zwar M %~ N=0 ist, jedoch diese beiden Mengen
gemeinsame Randpunkte (auf {z | |z| =r}) aufweisen diirfen.
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2.2. Soll eine Funktion f auf der Menge M gleichmissig approximierbar sein durch
Funktionen, die auf K meromorph (d.h. bis auf Pole regulidr analytisch) sind und
deren Pole ausserhalb M liegen, so ist zweierlei notwendig:

(@) f(z) muss fiir ze M stetig und fiir ze M ° regulir (d.h. in einer Umgebung von
z in eine Potenzreihe entwickelbar) sein. Wird, analog wie bei den rationalen Approxi-
mationen (dort fiir eine kompakte Menge M) die Menge aller Funktionen mit dieser
Eigenschaft mit A (M) bezeichnet, so ist also notwendig, dass

feA(M);

(b) auf jeder kompakten Teilmenge M* von M muss die Beschrinkung f lM*
gleichméssig approximierbar sein durch rationale Funktionen:

f,M* < R(M™).

In einer gewissen offenen Umgebung von M* ist die annihernde meromorphe
Funktion ndmlich reguldr und also der Satz von Runge iiber die rationale Approxima-
tion anwendbar.

Es fragt sich, ob umgekehrt jede Funktion f, fe 4 (M), auf der Menge M gleich-
missig approximierbar ist durch auf K meromorphe Funktionen, wenn M so be-
schaffen ist, dass fiir jede kompakte Teilmenge M* die Bedingung f'|,.€ R(M*)
erfiillt ist. Der folgende Satz I zeigt, dass dies mindestens dann zu bejahen ist, wenn
M nirgendsdicht (also M°=0, M=N, A(M)=C(M)). Im Falle, dass N nicht
kompaktist (also an den Rand von K heranreicht), zeigt sich gegeniiber der rationalen
Approximation die Méglichkeit einer tangentialen Approximation, wie sie bei der
Approximation mit ganzen Funktionen als ,,Carleman-Approximation‘‘ bekannt ist.

2.3. SATZ1: N sei eine nirgendsdichte, in K abgeschlossene Teilmenge von K und
(o) eine fiir 0<g<r definierte stetige, positive Funktion. Dann und nur dann, wenn
fiir jede kompakte Teilmenge N* von N die Bedingung R(N*)=C(N*) (s. 1.1.) erfiillt
ist, gibt es zu jeder Funktion f, fe C(N), eine auf K meromorphe Funktion m(z),
fiir die gilt:

Im(z) —f (2)l <e(lzl), zeN.

Die Notwendigkeit der Bedingung ergibt sich daraus, dass nach einem Satz von
Tietze jede auf N* stetige Funktion erginzt werden kann zu einer auf N stetigen
Funktion und aus der Uberlegung (b) von 2.2.

Die Konstruktion der Anndherungsfunktion habe ich fiir spezielle Punktmengen
in [11] mit einfachen Hilfsmitteln durchgefiihrt. (Sétze I, I’, IL, I’ jener Arbeit). Die
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dortigen Sétze I und I' betreffen den Fall, wo M das Flichenmass 0 hat. Deren Beweis
kann fast wortlich iibernommen werden, wenn statt des dortigen Hilfssatzes 2c der
allgemeinere Hilfssatz 1 der vorliegenden Arbeit benutzt wird. Dies auszufiihren
eriibrigt sich aber, da die Konstruktion der im Satz I vorkommenden Funktion m(z)
beim folgenden Hilfssatz 2 als Spezialfall enthalten ist.

2.4. HILFSSATZ 2: Gegeben seien

(a) die Mengen K, M=M° U N, N wie in 2.1., wobei N so beschaffen sein soll, dass
fiir jede kompakte Teilmenge N* von N die Bedingung R(N*)=C(N*) erfiillt ist;

(b) eine in K abgeschlossene Teilmenge N von N;

(c) eine Funktion f, feC(M ), fiir die gilt:

If(2)l<n (n>0), ze M°;

(d) e(p) wie in Satz 1.
Dann existiert eine auf K meromorphe Funktion m(z):

Im(z) - f(2) <50, zeM
Im(2) — f(2)l <e(lzl), zeN.

Beweis: {r,} sei eine Radienfolge r; <r,<r;<--- mit lim,, r,=r. Es bedeutet
keine Einschrinkung, anzunehmen, ¢(g) strebe streng monoton abnehmend gegen 0,
sodass die Zahlen

& =%(e(r,) —e(rps1)), n=1,23,.. (1)
alle positiv sind und dass
lime(r,) =0. 2)

Ferner kann vorausgesetzt werden, dass ¢(g) so gewihlt wurde, dass

}?sv = %e(ry) <n/6. 3

Als Punktmengen, die benutzt werden bei der Anndherung von f, fiihrt man ein:

Kn={zl|2|<rn}
N,=Nn{z|r,_y<|z|<r}, wobeir,=0.
K._2=K_1=K0=N0=m
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Da fe C(M )und nach der Voraussetzung iiber N gibt es eine rationale Funktion g,:
|9, — fl<e, auf N,_;UN,#0. 4)

Wenn N, _; = N,=0ist, braucht g, nicht erkldrt zu werden, da dann auch im folgenden
keine Bedingung mit diesem ¢, vorkommt.
Aus (4) und der Voraussetzung (c) folgt

lg,) <n+e, auf M°nN,. Q)
Rekursiv wird nun, nachdem ¢,=0 gesetzt wurde, eine zweite Folge von rationalen

Funktionen ¢, ¢,,... und zu jeder Menge N, eine kompakte Teilmenge M, so
bestimmt, dass folgende Bedingungen erfiillt sind:

t, hat keine Pole auf M, k=0,1,2,... (6)
It < & auf MyUK,_,, wobei ,=0; k=0,1,2,3,... @)
Yt,—qs <& auf N\M, n=1,23,.. ®)
1
Yt,—qs<inauf M,, n=1273,... ©)
i

Zur Konstruktion der Menge M, und der Funktion ¢, braucht bloss vorausgesetzt
zu werden, dass die Funktionen ¢, ¢,,..., t,_, so bestimmt wurden, dass sie (6) und
(7 fir k=0, 1,..., (n—1) erfiillen. Dann folgt zusammen mit (5)

n—1

dn — Z tv

0

<n+Ye auf M°AN,. (10)
o

Die Menge M, wird so definiert:

Ist M°AN,=0, so wird M,=0 gesetzt.

Falls M°nN,#0, gibt es eine offene Menge O,, die M° N N, enthilt und auf
deren abgeschlossener Hiille 0, die Ungleichung von (10) auch noch erfiillt ist. Setzt
man

M,,-“'—OnﬁN",

so ist also

n—1 n
dn— ) Li<n+Ye auf M,. (11)
0 1
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Weil NnM°=0, kann O, so gewihlt werden, dass
M,AnN =0. (12)

Nun wird Hilfssatz 1 angewandt auf die rationale Funktion (g,—Y o ' t,), die (wegen
f€C(M), (4) und (6)) keine Pole hat auf N,_, U N,. Fiir die im Hilfssatz 1. vorkom-
menderi Mengen 4, B, N werden diec Mengen M°UK,_,, N\M,, N,_, UM, ein-
gesetzt. Dabei ist zu beachten, dass die Konstruktion von M, so erfolgte, dass

(MOUK"_Z)I'\ (Nn\Mn) = @

ist, ferner, dass N,_, U M, eine nirgendsdichte, kompakte Teilmenge von N ist und also
fiir jede kompakte Teilmenge N* die Bedingung R(N*)=C(N*) nach der Voraus-
setzung liber N erfiillt ist. Nach Hilfssatz 1 existiert eine solche rationale Funktion
t,, dass

It,| <e, auf M°UK,_, (13)
n n—1
Z I, — g, = tn - (Qn - Z tv) <& auf Nn\Mn (14)
0 0

n—1 |

[t < +¢e4+, auf N,_,UM,. (15)

dn — Z tv

0 |

Setzt man voraus, dass r, so gewihlt wurde, dass N, #0, so ist fiir jede natiirliche
Zahlt n mindestens eine der Mengen, die in den zur Bestimmung von ¢, dienenden
Bedingungen (13), (14), (15) vorkommen, nicht leer. Enthilt eine Bedingung nur leere
Mengen, so wird sie weggelassen.

Aus (15), (11), (3) folgt

n n—1 n—1 n+1
Ztv—qn gltnl'*' qn—ztv<zqn_ztv +8n+1<2”+228v<%—"
0 0 0 1
auf M, . (16)

(13) zeigt, dass aus der vorausgesetzten Existenz der Funktionen ¢, t,..., f,-,, die (6)
und (7) geniigen, die Existenz der Funktion ¢,, die (7) erfiillt, folgt. Da ¢,=0, so erfiillt
t, die Bedingungen (6) und (7) und es folgt also nacheinander die Existenz der
Funktionen ¢,, t,,..., die (7) geniigen und fiir die ausserdem die durch Einsetzung von
t,=0 in (8) und (9) iibergehenden Abschitzungen (14) und (16) erfiillt sind.
Nunsollte ¢, noch der Bedingung (6) geniigen. Da, wie bereits bemerkt, (g,— Yo ' 2,)
keinen Pol auf N,_, U N, aufweist, folgt aus (13), (14) und (15), dass ¢, keinen Pol
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hat auf
A,=M°UK,_ ,UN,_;UN,.

Durch eine eventuelle Polverschiebung kann aber auch erreicht werden, dass ¢, keinen
Pol hat auf N\K,. Wire a Pol auf dieser Menge, so kann, da sie nirgendsdicht ist und
a einen positiven Abstand hat von 4,, ein Punkt b, beK\(4,U M), so nahe an a
gewihlt werden, dass sich (z—a)~! und (z—b) ™' auf 4, beliebig wenig unterscheiden.
Somit kann jede auf A4, rationale Funktion, welche (13), (14), (15) erfiillt, so gut durch
eine andere rationale Funktion mit Polen ausserhalb M angenihert werden, dass diese
Funktion (13), (14), (15) ebenfalls erfiillt.

Um auf N, auch noch die Funktion ¢,,, abzuschidtzen, ersetzt man in (15) n
durch (n+1)

Itn+1I < ; by = Qn+1| + &p42 < ;tv — gy + |qn _fl + |qn+1 _fl + &p42
auf N,. 17)
Aus (17), (8), (4) folgt
Itn+1l < 28,, + &nt1 + €n+2 auf Nn\Mna (18)
andererseits aus (17), (9), (4), (3)
Itn+1| <%’7+8u+8n+1 +8n+2<%" auf Mn' (19)

Fiir irgend eine natiirliche Zahl » ist nach (7) und (1)

[+ o3

2t

n

<Y e =4%e(r,) auf K,_,

Aus der Voraussetzung (2) und weil | J,~, K,_,=K ist, so ist

m(@) =36 ()

eine im ganzen Gebiet K meromorphe Funktion.
Aus (7), der Voraussetzung (c) und (3) folgt

Im = f1< Y |t,) +1f1 <2n auf M,. (20)
1
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Fiir die Abschidtzung von (m—f ) auf den Mengen N,\M, und M, benutzt man, dass

n

Ztv_qn

1

+ g = 1+ 1tysdl + Y 18]

n+2

Im —f1 <

So ergibt sich aus (8), (4), (18), (7) und (1)

Im — f| <4e, + €ys1 + Enea + 2, & <e(r,) auf N\M,, 2D

n+2

andererseits aus (9), (4), (19), (7) und (3)

Im—fl<in+e,+3n+ > & <57 auf M,. (22)

n+2

Aus (20), (21), (22) und da nach (3)
8(1’") < 8(7‘1) < n
ist, folgt

Im(z) — f(2)]| <57, wenn ze(]l-lou U N,,) =M.
1
Beriicksichtigt man, dass aus (12) und Nc N
NeUW,\M,)
1

folgt und dass ¢(r,)<e(|z|), zeN,, so ergibt sich aus (21)

PN

m(z)—f (@ <e(lzl), zeN.

Damit ist Hilfssatz 2 bewiesen.

Fiir einen spédtern Zweck soll noch folgende Modifikation angegeben werden:

Hilfssatz 2 bleibt richtig, wenn fiir jede kompakte Teilmenge N* von N die Beschrdn-
kung f |y« in R(N*) liegt, und wenn die Bedingung R(N**)=C (N**) fiir jede kompak te
Teilmenge N** von N (nicht mehr unbedingt von N) zutrifft.

Die erste Bedingung garantiert die Existenz der rationalen Funktion g,, die (4)
geniigt. Die Bedingung R (N **)= C(N**) spielt nur noch eine Rolle bei der Konstruk-
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tion der Funktion ¢, mit dem Hilfssatz 1; zu seiner Anwendbarkeit geniigt es, dass
N** irgend eine Teilmenge von N sein kann.

2.5. Anmerkungen zum Hilfssatz 2:

Der Satz 1 ergibt sich aus dem Hilfssatz 2, wenn M°=0 und N =N gesetzt wird.
Dann wird der Beweis kiirzer, da alle Mengen M, leer sind. Dies gilt auch dann, wenn
N M°=0. Auch in diesem Fall kann N =N genommen werden, da N=N. Ist aber
N MO°+#0, so darf im allgemeinen N nicht durch N und damit (wegen der Stetigkeit
von (m—f) auf N) auch nicht durch N ersetzt werden. Man wihle z.B. die Menge
M so, dass M° die obere Halbebene ist, dass N das Flichenmass 0 hat (sodass R(N*)
= C(N*) ist) und dass jeder Punkt der reellen Achse Haufungspunkt von N ist (also
zu N gehort). Sei feC(M); f(z)=0, zeM°. Dann ist die im Hilfssatz 2 vorkommende
Funktion (m— 1), die auf M° mit m zusammenfillt, auf der abgeschlossenen oberen
Halbebene regulidr und beschrinkt und kann bekanntlich nicht mit beliebiger Raschheit
gegen O streben, wenn z auf der positiven reellen Achse gegen oo strebt, ohne dass
m(z)=0, zeC. Falls also N =N gesetzt werden diirfte, so wiirde bei passender Wahl
von ¢(p) folgen, dass m=0 und somit | f(z)| <e&(|z]), ze N; dies braucht aber nicht
zu gelten.

2.6. Wenn die Menge M innere Punkte aufweist, so muss eine auf ihr durch mero-
morphe Funktionen mit Polen ausserhalb M gleichméssig approximierbare Funktion
f (2) fur jeden innern Punkt z, von M reguldr sein, d.h. in einer gewissen Umgebung
von z, in eine Potenzreihe von (z—z,) entwickelt werden konnen. Es sei zundchst
angenommen, f sei fiir alle Punkte von M regulir.

SATZ II: Vorgelegt sei eine im Gebiet K enthaltene und in ihm abgeschlossene

Menge M, eine fiir ze M regulire Funktion f (z) und eine positive Zahl n. Es gibt eine
auf K meromorphe Funktion m(z), fiir die gilt:

Im(z)—f(2)l<n, zeM.

Weil um jeden Punkt von M ein offenes Kreisgebiet gelegt werden kann, auf dem f
reguldr ist und jede Menge

Mn{zllZISQ}, O<g<r,

kompakt ist, gibt es eine abzihlbare Menge von Gebieten G, mit den folgenden Eigen-
schaften:
@) G,;NnG,=0, wenn i#Kk;
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(b) M= UY G,

(c) die Gebiete hiufen sich hochstens gegen den Rand {z| |z|=r} von K; d.h,,
irgend ein Kreisbereich {z | |z] <@ <r} hat mit nur endlich vielen der Gebiete einen
nicht leeren Durchschnitt;

(d) die Funktion f ist in jedem dieser Gebiete G, eine auf ihm regulidre analytische
Funktion f,; (fiir i #k brauchen aber die Funktionen f; und f, nicht durch analytische
Fortsetzung auseinander hervorzugehen).

Beriicksichtigt man diese Vorbemerkung, so ist der Satz II dann, wenn r= oo ist,
also K=C, identisch mit einem Satz, der in [11] bewiesen wurde und zwar mit dem
Zusatz

lim (m(z) - f(z))=0 gleichmissig auf M.
|

|z} = o0

Der entsprechende Zusatz ist im allgemeinen nicht richtig, wenn r endlich ist.
Enthilt z.B. M einen Kreissektor

S={z|lzl<r, |argz|<p<n}

als echte Teilmenge und setzt man f (z)=0, ze S, so wiirde aus

lim (m(z) — f(z))=0 gleichmassig auf M

lz}-r
folgen, dass m identisch O ist. Dann miisste auf der ganzen Menge M |f (z)| <n sein.

Der in [11] gefiihrte Beweis von Satz II fiir = co kann, abgesehen von den sich auf
den Zusatz beziehenden Stellen, mit geringen Modifikationen {ibernommen werden fiir
den Fall, dass r endlich und also K ein offenes Kreisgebiet ist. Nachdem man M,
=M n G, gesetzt hat, ist der dort auf S.106 vorkommende Kreisring

{z|]v—1<]zI <V}
zu ersetzen durch einen Kreisring

{ZI Fpn-1 < Izl < rn}’

wobei O=ry<r,<r,<r; ... mitlim,,, r,=r.
Die Beweismethode ist einfach, indem sie bloss den Satz I (2.3) fiir den speziellen Fall,
dass N das Flichenmass 0 besitzt und ein Cauchy-Integral benutzt.

2.7. Der folgende Satz 1II enthilt fiir M°=0 den Satz I und ist fiir N=0 im Satz II
enthalten.
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SATZ III: Gegeben seien

(a) eine im Gebiet K enthaltene und in ihm abgeschlossene Menge M, bei der die in
K abgeschlossene Hiille des Innern mit M° bezeichnet wird,

(b) eine in K abgeschlossene Teilmenge N von N=M\M°,

(c) eine stetige, positive Funktion ¢(9), 0<g <r, und eine positive Zahl 1.

Dann und nur dann, wenn fiir jede kompakte Teilmenge N* von N R(N*)=C(N*)
ist, gibt es zu jeder Funktion f (z), die stetig ist fiir ze M und die reguldr ist fiir ze M°,
eine auf K meromorphe Funktion m(z):

im(z)~f () <n, zeM (23)
m(z) — f (2) <e(lzl), zeN (24)

Notwendigkeit der Bedingung: Ist f*e C(N*), so kann f* erginzt werden zu einer
auf der ganzen Menge M die Bedingungen erfiillenden Funktion f. Nach einem Satz
von Tietze gibt es nimlich (da N* n M °=0) eine Funktion f, fe C(M); f (z)=f*(2),
zeN*; f(z)=0, ze M°. Aus der Existenz der meromorphen Anniherungsfunktion
m folgt nach 2.2, Absatz (b), dass R(N*)=C(N*) sein muss.

Konstruktion der Anndherungsfunktion m(z):

Im Gegensatz zu den Vorausetzungen von Hilfssatz 2 ist nicht mehr vorausgesetzt,
dass die Bedingung R(N*)= C(N*) fiir jede kompakte Teilmenge N * von N (sondern
nur von N) erfiillt sei. Deshalb muss die Menge M ° zur Vorbereitung der Anwendung
von Hilfssatz 2 ersetzt werden durch eine sie enthaltende Umgebung. Da f auch noch
in einer gewissen Umgebung von M ° regulir ist und M ° n N =0ist, gibt es eine offene
Menge U:

M°cUcK, UnN=0,

auf deren in K abgeschlossener Hiille U die Funktion f noch regulir ist. Nach Satz IT
existiert eine auf K meromorphe Funktion m, (z):

Imy(2) = f ()l <n/5, zeU.

Es darf angenommen werden, m, habe keine Pole auf U u N. Fiir U gilt dies ohnehin.
Durch eine eventuelle Verschiebung von abzdhlbar vielen Polen und eine entsprechen-
de Konvergenziiberlegung kann erreicht werden, dass auch keine Pole von m, auf
N\U liegen. Analog wie beim Beweis von Hilfssatz 2 wird benutzt, dass N\U nirgends-
dicht ist.

Nun wird der Hilfssatz 2 angewandt auf die Funktion ( f—m, ), die auf der Menge
U U N stetig ist. Die im Hilfssatz 2 vorkommende Menge M ° wird ersetzt durch U und
die Menge N durch die Menge N\U, sodass jede kompakte Teilmenge N* von N\U
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auch Teilmenge von N ist. Es gibt also eine zweite auf K meromorphe. Funktionm, (z):

Im,(2) = (f (z2) = my(2))l <n, zeUUN,
Im,(2) = (f (z) — m; (2))l <e(lz]), zeN.

Da McUuU N, erfiillt die Funktion m(z)=m, (z) +m,(z) die an die Anndherungs-
funktion gestellten Bedingungen.

Im allgemeinen darf im Satz 111 die Menge N nur dann, wenn N=N ist, durch die
Menge N ersetzt werden (s. das Beispiel in 2.5., wo f auch den Anforderungen von
Satz IIT gentigt.)

Zwischen Satz II und Satz III besteht nicht nur die Beziehung, dass fiir N=0
III aus II folgt, sondern Satz Il kann auch aus Satz 111 hergeleitet werden. Um dies
einzusehen, braucht man nur zu beachten, dass die im Satz II vorkommende Menge
M in einer offenen Menge U enthalten ist, auf deren in K abgeschlossener Hiille U
f nocht regulér ist.

2.8. In Anbetracht des in 2.6 fiir den Fall r= oo geltenden Zusatzes zu Satz II, fragt
es sich, unter welchen Bedingungen fiir M im Satz 111

lim (m(z) —f(2))=0 (25)

[z]-r

nicht bloss auf N, sondern auf einer in K abgeschlossenen Teilmenge von M, die
umfassender ist als jede Menge N, gleichmissig erfiillbar ist. Zur Untersuchung dieser
Frage dient der folgende Zusatz 1 zu Satz 1I1: Ist h(z) eine auf K meromorphe Funk-
tion, die nicht konstant 1 ist, und fiir die

0<|h(2)I<1, zeM, (26)
so darfim Satz 111 die Bedingung (23) ersetzt werden durch die schirfere Bedingung
Im(2) = f (2 <nlh(2), zeM @7)

(wobei gleichzeitig (24) weiterbesteht).
Wendet man ndmlich den Satz III an auf die Funktion f(z)/h(z), so ergibt sich
die Existenz einer auf K meromorphen Funktion m* (z):

* f(z)

m (z)——wh(z)<n, zeM
*(z —f~————(z) e(lz z

n” (z) h(z)< (IzI), zeN

Dann ist m(z)=m*(z) h(z) die gesuchte Anndherungsfunktion.
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Eine entsprechende, jedoch ganze, bzw. in einem allgemeinen Gebiet reguldre
Hilfsfunktion 4(z) wurde bereits von KeldyS-Mergelyan [10], bzw. von Arakeljan [1]
bei ihren Approximationen mit Hilfe von ganzen bzw. von in einem Gebiet regulidren
Funktionen eingefiihrt, vergl. 4.9.

2.9. Es soll gezeigt werden, dass fiir K=C die Bedingung (25) fiir die ganze Menge
M erfiillbar ist. Dies zeigt sich zuerst in trivialer Weise, wenn M =C ist, denn dann ist
f eine ganze Funktion und es kann m(z) = f (z) gesetzt werden. Es darf also angenom-
men werden, es gebe einen Punkt z,, zoe K\M.

Zusatz 2 zu Satz 111: Ist K=C, so kann m(z) so bestimmt werden, dass

lim (m(z)—f(z))=0 gleichmissigauf M.
|

|z] o0

Ist zoe K\M und n eine beliebige natiirliche Zahl, so kann ndmlich
Im(z) —f(2)l <nlz—2z|™", zeM, (28)

und gleichzeitig (24) erfiillt werden.
Zum Beweis sei 5, 0< 5 < 1, so klein angenommen, dass {z ] |z— 24| <8} ausserhalb
M liegt. Dann wird im Zusatz 1, 2.8.,

h(z)=0"(z—z,)™" eingesetzt.

Wenn iiber die Menge M keine weiteren Voraussetzungen als diejenigen von
Satz III gemacht werden, so ist die durch (28) gegebene Anndgherungsstirke bestmoglich
in dem Sinn, dass |z—z,| ™" nicht durch eine rascher als jede solche Potenzfunktion
fiir |z|]—> o0 gegen O strebende positive Funktion ersetzt werden kann, ausser dann,
wenn f selbst meromorph ist und m = f gesetzt wird. Enthélt ndmlich M das Kreisdus-
sere {z | 0<g<|z| <}, so hat (m—f') in co entweder eine Nullstelle von bestimmter
Ordnung oder es ist m= f. Hingegen braucht bei speziellen Voraussetzungen liber M
die Approximation (28) nicht bestmdglich zu sein, vergl. 4.10.

2.10. Kann dann, wenn die Menge M innere Punkte aufweist, nicht bloss (25),
sondern sogar (24) fiir die ganze Menge M erfiillt sein? Dass solche Mengen existieren
und zwar fiir endliches r, wie fiir r= 00, zeigt:

Zusatz 3 zu Satz 11: Sind simtliche Komponenten von M°® kompakt, (ohne dass
dies auch fiir M° selbst zu gelten braucht) so kann die Anndherungsfunktion m so
bestimmt werden, dass

Im(z) - f(2)l <e(lz]), zeM.
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Skizze des Beweises: Es gibt eine Folge von in K enthaltenen abgeschlossenen
Jordanbereichen B, B,, B,,..., mit den Eigenschaften:

(a) B, liegt im Innern BY,, von B, .,

(b U B,=K,

(¢) (B2,\BYs—1) N M°=0, (M° liegt also ganz in der Vereinigungsmenge der ge-
trennten Bereiche By, (B3\B3), ... (Bzn+1\B3x)---)-

Werden die Voraussetzungen iiber f, die Voraussetzung R(N*)=C(N*) und der
Satz von Bishop (1.2.) beriicksichtigt, so zeigt sich, dass fiir jede kompakte Teilmenge
M* von M die Bedingung f,.€ R(M*) erfiillt ist. Somit existieren rationale Funk-
tionen gy, g,y -.-s Gps--- :

g —fl <&, auf M (By\B3,_3), wobei B_, =09,
Ist ¢, eine rationale Funktion ohne Pole auf M, fiir die |¢, —q,| <&, auf B,, so
erhélt man durch die fortgesetzte Anwendung von Hilfssatz 1 (1.3.) eine weitere Folge

von rationalen Funktionen ¢,, t5,..., deren Pole ausserhalb M liegen (was durch eine
eventuelle Polverschiebung erreicht wird) und fiir die gilt:

ltnl <&, auf B2n—3

Z tv — qx < 28n-—1 + 2811 auf Mn(BZn——Z\B(Z)n-S)
|

21: tv = qn <& auf M n (B2n\B(2)n—2)

Durch geeignete Wahl der positiven Zahlen ¢, erreicht man, dass ) ¢ ¢, eine auf K
meromorphe Funktion m darstellt und dass

Im(z) —f(2)l <e(|z]), wenn zeM.

Anmerkung: Es kann durch andere Beispiele belegt werden, dass die Bedingung
von Zusatz 3 nicht notwendig ist fiir die Moglichkeit einer ¢(|z])-Approximation (24)
fiir die ganze Menge M.

2.11. Der Zusatz 2 in 2.9. zeigt, dass im Fall K= C die Bedingung (25) stets erfiillbar
ist. Wie bereits im Anschluss an den Satz II in 2.6. bemerkt wurde, gilt dies im all-
gemeinen nicht, wenn K das Kreisgebiet ist. Im folgenden Beispiel wird eine Menge
M Kkonstruiert, bei der zwar sémtliche Komponenten von M° an den Kreisrand heran-
reichen und die £(|z|)-Anndherung (24) nicht moglich ist, jedoch immerhin eine tan-
gentiale Approximation (25) erreicht wird:
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{a,} sei eine abzdhlbare Menge von Punkten auf dem Rand {z | |z|]=1} von K.
Jedem Punkt a, sei eine offene Kreisscheibe D,, D, < K, deren Rand den Rand von K
in a, beriihrt, zugeordnet. Wird mit D, diein K abgeschlossene Hiille von D, bezeichnet,
so mogen die Kreise so gewihlt werden, dass D, ~ D, =9, wenn i #k.

Sei ferner N eine in K enthaltene und abgeschlossene nirgendsdichte Menge, die
zu | J D, fremd ist und bei der jede kompakte Teilmenge N* die Bedingung R(N*)
= C(N*) erfiillt. Dann kann zu jeder Funktion f, die auf

M=\JD,uN

stetig und auf #°=| D, reguldr ist, eine auf K meromorphe Funktion m gefunden
werden, die ausser (23) und (24) auch (25) gleichméssig auf M erfiillt.
Beweis: Sei ¢(z) die Funktion, die man erhilt durch die Festsetzungen:
o(z)=4(z—a,)"', zeD,, n=12,..,
p(z)=2, zeN.

Nach Satz III existiert eine auf K meromorphe Funktion
k(z) —o(z)l <1, wenn zeM.
Die Funktion A=k~ erfiillt auf M die Bedingung (26) und zudem ist

lim A(z)=0 auf |JD,

lz]—-1
und zwar (wie eine elementargeometrische Uberlegung zeigt) gleichmissig auf | ) D,
Aus dem Satz III, seinem Zusatz 1 in 2.8. und daraus, dass lim,_,; £(¢)=0 vorausge-
setzt werden darf, folgt die Existenz einer auf K meromorphen Funktion m, welche
die Abschitzungen (23) und (24) erfiillt und fiir die

lim (m(z) —f(2))=0 gleichmissig auf M.
lz]=1

Anmerkung: Im Hinblick auf Anwendungen dieses Beispiels zur Konstruktion von
von auf K meromorphen Funktionen mit gewissem Randverhalten ist beachtenswert:
zwar ist |JD,n N=0, jedoch kénnen Punkte von {a,} gemeinsame Randpunkte der
beiden Mengen sein. Ferner: die Beschrinkungen f | p, sind voneinander unabhéingige
reguldre analytische Funktionen und auch unabhingig von f In-

2.12. Zuriickkommend auf das in 2.2. angeschnittene Problem fragt es sich, ob der
Satz III richtig bleibt, wenn die in ihm vorkommende Voraussetzung iiber die Funk-
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tion f ersetzt wird durch die Voraussetzung
fedA(M),

dass also f bloss noch auf M° statt auf M° regulir zu sein braucht. Dies ist nicht
moglich, ohne dass dafiir an die Menge M schdirfere Forderungen gestellt werden. Es
gibt nimlich eine kompakte Menge M = M ° (fiir die also N=0 und somit die Beding-
ung R(N*)=C(N*) dahinfillt), bei der R(M )+ A (M) ist, s. Zalcman [12], 9.8.

Wie in 2.2. (b) ausgefiihrt wurde, kann dann die Funktion f dieses Gegenbeispieles
auch nicht durch Funktionen, die meromorph sind in einem M enthaltenden Kreis-
gebiet K, gleichméssig approximiert werden.

Falls die Menge M kompakt ist und also die Anndherungsfunktionen nach 2.2. (b)
als rational angenommen werden konnen, muss M die Forderung R(M)=A(M)
erfiillen. Vitushkin (vgl. Zalcman [12], S. 100) stellte fiir eine kompakte Menge M
unter der Verwendung der ,,4 C-Kapazitit o Bedingungen auf, die mit R(M )=A (M)
dquivalent sind.

Wie bereits beim Satz III die Bedingung fiir die meromorphe Approximation auf
einer nicht kompakten Menge M zuriickgefiihrt wurde auf das Problem der rationalen
Approximierbarkeit auf gewissen Teilmengen (dort der Mengen N *), kann vermutlich
auch dann, wenn bloss feA (M) vorausgesetzt wird, eine solche Zuriickfiihrung
gelingen. Insbesondere stellt sich die Frage:

Existiert zu jeder Funktion f, fe A(M), eine auf K meromorphe Funktion m, welche
die Bedingungen (23) und (24) von Satz 111 erfiillt, wenn die Menge M so beschaffen ist,
dass fiir jeden abgeschlossenen Kreisbereich K*, K* c K, die Bedingung

R(MnK*)=A(MnK* (29)

erfiillt ist?

Mindestens unter gewissen noch spezielleren Voraussetzungen iiber die Menge M
geniigt die Voraussetzung fe A (M), zunichst natiirlich im Fall M°=0 (Satz I), da
dann 4 (M )=C(M)ist, jedoch auch fiir die im Zusatz 3 (2.10.) vorkommende Menge,
wenn die Voraussetzung R(N*)=C(N*) ersetzt wird durch die schirfere Voraus-
setzung (29). (Dies geht aus dem Beweis jenes Zusatzes hervor.) Vor allem geniigt die
Voraussetzung f'e A (M ) bei den Mengen, dieim §4 als Ag-Mengen eingefiihrt werden.
Im {ibrigen steht meines Wissens die Anwort auf die oben gestellte Frage noch aus.

Immerhin kann folgender Hinweis gemacht werden: Es geniigt, das gestellte
Problem fiir den Spezialfall M= M° (bei dem (24) wegfdllt) zu losen, also zu unter-
suchen, ob der Satz 11 fiir M = M?° richtig bleibt unter den veréinderten Voraussetzungen.

Angenommen, dies treffe zu, so folgt, dass auch beim Satz III die Voraussetzungen
f€A(M)und (29) hinreichend sind fiir die Existenz der den Bedingungen (23) und (24)



168 ALICE ROTH

geniigenden Anndherungsfunktion m=m, +m,. Zuerst folgt nimlich &hnlich wie beim
Beweis von Satz III (jedoch einfacher, da statt der dortigen Menge U direkt M ° ein-
tritt) aus dem verdnderten Satz II die Existenz der Funktion m,, die auf M° die
Bedingung [ml —f1<n/5 erfiillt. Dann ergibt die am Schluss von 2.2. angegebene
Modifikation von Hilfssatz 2 die Existenz der Funktion m,, fiir die

Imy(z) = (f(2) —my (2l <n, zeM,
m2(2) = ( (2) = my () < e(lzl),  zeM.

Die dortigen Voraussetzungen R(N**)=C(N**) und fy.e R(N*) sind nidmlich
erfiillt, wenn feA (M) und (29) zutrifft.

Fiir weitere Untersuchungen iiber die Approximationen mit Hilfe von meromor-
phen Funktionen diirfte die vollstindige Abkldrung des Problems von Bedeutung
sein. Doch habe ich den Satz III hauptsidchlich aufgestellt im Hinblick auf die Kon-
struktion von meromorphen Funktionen mit vorgeschriebenem Randverhalten, woriiber
ich in einer spiteren Arbeit zu berichten hoffe. Fiir diese Anwendungen spielt es aber
keine wesentliche Rolle, die Voraussetzung iiber f im Satz III zu ersetzen durch die
Voraussetzung fe A (M), besonders, da dies erkauft werden muss durch komplizier-
terte Voraussetzungen iiber die Menge M. Die Untersuchung, wann eine kompakte
nirgendsdichte Menge N * die Bedingung R (N *)= C(N*) erfiillt, ist nimlich einfacher
als die Beantwortung der Frage, wann eine kompakte Menge M * mit inneren Punkten
die Bedingung R(M*)= A (M*) erfiillt (Unterschied der in 1.1. erwdhnten Kapazitit y
und der AC-Kapazitit a).

§ 3. Approximationen mit Hilfe von Funktionen, die in einem beliebigen offenen Gebiet
meromorph sind

3.1. Im Satz III von 2.7. kann fiir K ein beliebiges offenes Gebiet G genommen werden.
Dabei wird die friihere Funktion e(|z|) ersetzt durch eine auf N stetige und positive
Funktion &(z). (Natiirlich konnen diese beiden Aenderungen auch in den im Satz III
enthaltenen Sétzen I und II vorgenommen werden.)

Nachdem die im §2 angewandten Beweismethoden bereits so gestaltet wurden,
dass K sowohl das offene Kreisgebiet als auch die Ebene C sein kann, geniigen einige
einfache Anpassungen der Beweise, wenn G eingefiihrt wird.

Die in den Beweisen von Hilfssatz 2 in 2.4. und von Satz II in 2.6. vorkommende
Folge {K,} von Kreisscheiben wird ersetzt durch die Folge {G,} der abgeschlossenen
Hiillen einer Folge {G,} von Gebieten, die eine normale Gebietsausschépfung von
G bilden.

Bekanntlich versteht man darunter eine Folge von Teilgebieten von G mit den
Eigenschaften:
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(@ U G,=6,

(b) G,= G4y,

(c) jedes Gebiet G, wird berandet von endlich vielen paarweise fremden Jordan-
kurven, die ganz in G liegen.

Natiirlich muss dementsprechend der Durchschnitt einer Menge mit
{z | ra—y <z<r,} ersetzt werden durch den Durchschnitt mit (G,\G,-,), wobei G,=0.

Die Einfiihrung der neuen Funktion &(z) kann so erfolgen: es sei 7, >n,>n;> -
eine monoton abnehmende Folge positiver Zahlen mit lim,,, ,, 5, =0, fiir die n,<&(z),
wenn ze(G,\G,-,)nN.

Dann wird im Beweise von Hilfssatz 2 die dort vorkommende Zahl ¢(r,) ersetzt
durch 7,.

Nach diesen beiden Modifikationen kénnen alle anderen Ueberlegungen bei den
Beweisen von Hilfssatz 2 und von Satz II {ibernommen werden. Der sich auf diese
beiden Sitze stiitzende Beweis von Satz III bleibt unverdndert, wenn K durch G
ersetzt wird und fiir die Funktionen m,, m,, m auf G meromorphe Funktionen genom-
men werden.

3.2. Die zur Verbesserung der Approximationsstirke auf Mengen mit inneren Punkten
dienenden Zusdtze 1 (in 2.8.) und 3 (in 2.10) (und ihre Beweise) sind unverdndert giiltig,
wenn fiir K ein beliebiges Gebiet G eintritt.

§ 4. Approximationen mit reguliiren analytischen Funktionen

4.1. Welche Bedingung muss die Menge M erfiillen, damit im (nach §3) fiir ein
allgemeines offenes Gebiet G verallgemeinerten Satz III als approximierende Funktion
m eine auf G regulire analytische Funktion genommen werden darf? Die Approxima-
tion mit reguldren analytischen Funktionen wurde im Gegenstaz zur meromorphen
Approximation in einer grosseren Reihe von Publikationen behandelt.

Zunichst ist leicht einzusehen, dass G\ M keine Komponente enthalten darf, deren
in G abgeschlossene Hiille kompakt ist. (Alle Komponenten von G\ M miissen vielmehr
,»,-an den Rand von G heranreichen*). Bereits bei KeldyS-Mergelyan [10] wurde gezeigt,
dass bei einem unbeschrinkten Teilkontinuum von C diese Bedingung nicht hinreicht.
4.2. Definition der A;-Menge: -

Eine Menge M heisst dann und nur dann eine A;-Menge, wenn M im offenen Gebiet
G enthalten und abgeschlossen ist und wenn eine solche normale Gebietsausschopfung
{G,} (s.3.1.) existiert, dass die in G abgeschlossene Hiille jeder Komponente von G\M
und von G\(M U G,), n=1,2, 3,..., nicht kompakt ist.

Bezeichnet G* die Einpunktkompaktrifizierung von G, so ist diese Definition
dquivalent damit, dass G*/M zusammenhdngend und lokal susammenhdngend ist.
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Im Zusammenhang mit Approximationsproblemen wurden fiir G=C die A;-
Menge (mit anderen Bezeichnungen) zuerst in [11] und dann bei Keldy$-Mergelyan
[10] eingefiihrt. Arakeljan [1] legt ein allgemeines Gebiet D zugrunde und gebraucht
die Bezeichnung K,-Menge.

Die Bezeichnung mit den Buchstaben 4 und G mége darauf hinweisen, dass die
Ag-Mengen identisch sind mit denjenigen Teilmengen M von G, auf denen jede
Funktion f, feA (M), auf M gleichmissig angendhert werden kann durch auf G
reguldre Funktionen g, ge 4 (G) (s. Satz 4, in 4.5.).

4.3. HILFSSATZ 3: Ist M eine Agz-Menge, m eine auf G meromorphe Funktion,
deren Pole ausserhalb M liegen und ¢ eine positive Zahl, so existiert eine solche auf G
regulire analytische Funktion g, dass

Ié(z) —-m(z)l<e, zeM.

Dieser Hilfssatz wurde in [11] (S. 110) fiir den Fall G=C bewiesen und zwar mit
dem Zusatz

Ilim (g(z) —m(2))=0.
z| =
(Ein entsprechender Zusatz ist im allgemeinen fiir G# C nicht giiltig.)

Der mit einer Polverschiebung gefiihrte Beweis kann, abgesehen von den sich auf
den Zusatz beziehenden Stellen, iibernommen werden, wenn die dortige Folge von
Kreisbereichen ersetzt wird durch die Folge der abgeschlossenen Hiillen der besondern
in der Definition von 4.2. vorkommenden Gebietsausschopfung {G,}.

4.4, HILFSSATZ 4: Ist M eine Ag-Menge und G, ein Glied der in 4.2. eingefiihrten
Folge {G,},) ferner N* eine kompakte Teilmenge von N=M\M°, so ist

(a) R(MNG,)=4(MnG,),

(b) R(N*)=C(N*).
(Bedeutung von R, 4, C's. 1.1. und 2.2.)

Der Beweis kann mit dem folgenden Satz von Mergelyan [10] gefiihrt werden
(unter Anwendung des Satzes von Bishop auch mit dem einfacheren Satz von Merge-
lyan iiber die Polynomapproximation):

Ist M eine kompakte Menge, deren Komplement C\M aus endlich vielen Kompo-
nenten besteht, so ist R(M)=4(M).

Aus 4.2. folgt, dass jede Komponente von G,\M zusammenhingt mit C\G,. Da
C\G, endlich viele Komponenten aufweist, so gilt dies auch fir C\(MnG,)
=(C\G,) v (G,\M) und damit ist (a) bewiesen.

G, werde so gewihlt, dass N*cG,. Da N* n M°=0 ist, hat C\N* (unabhéngig
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davon, dass M eine 4;-Menge ist) hchstens so viele Komponenten wie C\(M N G,),
also wieder endlich viele. Daraus folgt (b).

4.5. Nach dem Hilfssatz 4b ist die im Satz III von 2.7. vorkommende Bedingung
R(N*)=C(N¥*) fir eine Ag-Menge erfiillt. Durch die Anwendung von Hilfssatz 4
auf den fiir G verallgemeinerten Satz III folgt also

HILFSSATZ 5: Jede auf einer Az;-Menge M stetige und auf M° regulire Funktion
f kann auf M gleichmdssig angendhert werden durch Funktionen, die auf G reguldir
analytisch sind.

Dieser Satz ist enthalten in einem Satz von Arakeljan [1], der (mit den Bezeichnun-
gen, die hier eingefiihrt wurden) lautet:

(A,) Ist M eine im offenen Gebiet G enthaltene und abgeschlossene Menge, so kann
dann und nur dann, wenn M eine Ag-Menge ist, jede Funktion f, feA(M), auf M
gleichmdissig angendhert werden durch auf G regulire analytische Funktionen.

4.6. Um auf der in G abgeschlossenen Teilmenge N von N=M\M° zur gleichmissi-
gen Approximation auf der ganzen Menge M hinzu noch eine ¢(z)-Anndherung zu
erhalten, kann der folgende Hilfssatz, der eine fiir eine A;-Menge geeignete Modifika-
tion von Hilfssatz 2 in 2.4. darstellt, verwendet werden.

HILFSSATZ 6: Gegeben seien eine Ag-Menge M, die Menge N wie oben, eine
Funktion f, fe A(M), die auf M° der Abschéitzung | f|<n(n>0) geniigt, und eine auf
N stetige und positive Funktion ¢(z). Dann existiert eine auf G reguldre analytische
Funktion g:

lg(z2)—f(2) <51, zeM,
lg(z) = f (2)l <e(z), zeN.

Zuriickgreifend auf den Beweis von Hilfssatz 2 wird zunichst die Folge {K,}
ersetzt durch die Folge {G,}, wobei die besondere Gebietsausschépfung von 4.2. ge-
nommen wird. Die Einfiihrung von &(z) erfolgt wie in 3.1. Sodann miissen noch
folgende Anderungen vorgenommen werden:

(a) Die Existenz der rationalen Funktion g,, die der Bedingung (4) geniigt, folgt
jetzt aus fe A (M) und dem Hilfssatz 4a.

(b) Bei der Einfiihrung der Funktion ¢, wird die Bedingung (6) ersetzt durch die
Bedingung

k
) t, hat keine Pole  auf M U G,; (6")
0
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dies kann mit einer eventuellen Polverschiebung nach Runge auf Grund der Definition
der A;-Menge erreicht werden.

(c) Die Anwendbarkeit von Hilfssatz 1 zur Konstruktion der Funktion ¢, ist jetzt
deshalb moglich, weil nach dem Hilfssatz 4b fiir jede kompakte Teilmenge N* von
(N,-1 UN,)n N die Bedingung R(N*)=C(N*) erfiillt ist.

Alle anderen Ueberlegungen des Beweises von Hilfssatz 2 bleiben unverindert.
Da (6) durch (6') ersetzt wurde, ist g=) 1 ¢, eine auf G reguldre Funktion.

4.7. Korollar zum Satz 111

Gegeben seien ein beliebiges offenes Gebiet G von C, eine AG-Menge M, eine in G
abgeschlossene Teilmenge N von N=M\M?°, eine auf N stetige und positive Funktion
¢(z) und eine positive Konstante n. Dann gibt es zu jeder auf M stetigen und auf M°
reguliren Funktion f eine auf G reguldre analytische Funktion g, fiir die

lg(z)—f(2)l<n, zeM, (30)
lg(z) —f(2)l <e(z), zeN. (31)

Beweis: Mit M ist, wie aus 4.2. sofort folgt, auch M° eine 4;-Menge. Nach dem
Hilfssatz 5 existiert eine auf G reguldre Funktion g, :

lgs —fl <in auf M°.

Weil die Funktion (g, — /) auf M stetig und auf M ° reguldr ist, ist erst recht (g, — f )&
e A (M) und nach dem Hilfssatz 6 in 4.6. existiert eine zweite auf G reguldre Funktion

82
g2(2) = (f(2) —g. (2))l <n, zeM,
lg.(2) — (f(2) — g, (2))l < e(z), zeN.

Die auf G regulidre analytische Funktion g=g, +g, geniigt den Bedingungen (30)
und (31).

Setzt man M°%=0Q (wobei feC(N) wird und (30) wegfillt), so ergibt sich aus
diesem Korollar (oder bereits aus Hilfssatz 6) ein zweiter Satz A, von Arakeljan [1],
der dem Satz I von §2 fiir den Fall dass N eine A;-Menge ist, entspricht. Dieser Satz
und der in 4.5. zitierte Satz A, wurden unter der Annahme, dass N bezw. M eine
zusammenhéidngende A -Menge ist, bereits von Keldys-Mergelyan [10] bewiesen.

Abgesehen vom noch folgenden Satz IV und der Anregung zur Einfiihrung eines
allgemeinen Gebietes G, entstand die vorliegende Arbeit unabhingig von [1]. Auf
diese Publikation von Arakeljan machte mich dann Herr Prof. A. Pfluger, dem ich
auch fiir weitere Hinweise dankbar bin, aufmerksam.

Wihrend der Satz III geméss den Ausfiihrungen von 2.12. nicht richtig bleibt, wenn



Meromorphe Approximationen 173

dort die Bedingung, f sei regulidr auf M°, ersetzt wird durch die Bedingung, f sei
regulir auf M9, ist diese schwiichere Bedingung nach Arakeljan beim Hilfssatz 5 und
(wie Satz IV zeigen wird) auch beim Korollar von Satz 1II hinreichend. Der wichtige
Schritt der Beschrinkung auf die Voraussetzung fe 4 (M) wurde bei den rationalen
Approximationen schon seit lingerer Zeit ausgefiihrt, zuerst von Walsh bei seiner
Verschirfung des Satzes von Runge, dann aber vor allem, nachdem Mergelyan bei
seinen Beweisen nicht bloss Sédtze iliber allgemeine konforme Abbildungen, sondern
die Formel von Green verwendete. Diese beiden Hilfsmittel habe ich nicht benutzt
beim sehr elementaren Beweis von Satz II (den einzig man, wie ich in 2.12. ausfiihrte,
bei der Beschrinkung auf die Bedingung fe 4 (M), zu dndern braucht).

4.8. Die beiden Sdtze A; und A, von Arakeljan und das Korollar zum Satz III in
4.7. sind enthalten im

SATZ IV: Gegeben seien die Mengen G, M, N, die Funktion ¢(z) und die Konstante
n wie im Korollar 4.7.

Dann und nur dann, wenn M eine Ag-Menge ist, gibt es zu jeder Funktion f, die
A (M) angehirt, eine auf G regulire analytische Funktion g(z), die den Abschdtzungen
(30) und (31) geniigt.

Die Notwendigkeit der Bedingung wurde bereits von Arakeljan bei seinem durch
Weglassung von (31) entstehenden Satz A, begriindet.

Die Konstruktion der Anndherungsfunktion g erfolgt wie beim Beweisdes Korollars
in 4.7. mit dem einzigen Unterschied, dass jetzt die Existenz von g, wegen der ver-
minderten Annahme fe4 (M) mit dem Satz A; von Arakeljan (fiir den Spezialfall
M = M") begriindet wird.

Der Satz IV diirfte alle fritheren Resultate iiber die Approximation einer Funktion
f, feA(M), auf einer 4;-Menge M durch auf G reguldre analytische Funktionen
umfassen. '

Ist M kompakt, so handelt es sich um rationale Approximationen (fiir einfach-
zusammenhidngendes G um Polynomapproximationen), die friih einsetzten mit den
Sdtzen von Weierstrass, Runge und Walsh, denen der bereits in 1.1. zitierte Satz von
Lavrentieff folgte und die abgeschlossen wurden durch den Satz von Mergelyan, bei
dem die Menge M die allgemeinste kompakte 4;-Menge ist, indem das Komplement
C\M endlich viele Komponenten aufweist.

Spezialfille von Satz IV fiir eine nicht kompakte 4;-Menge wurden in den folgen-
den Publikationen bewiesen: Carleman [3], Roth [11], KeldyS-Lavrentieff-Mergelyan
(Zusammenfassung in [10]), Bagemihl und Seidel [2], Kaplan [6] und Arakeljan [1]
(in chronoldgischer Reihenfolge, leider vielleicht unvollstindig).

Alle Autoren erreichen dann, wenn M nirgendsdicht ist, eine Carleman-Approxi-
mation (31). Ist G=C, also die Anndherungsfunktion ganz, so gelingt fiir eine Menge
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mit innern Punkten stets wenigstens eine tangentiale Anndherung (s. Zusatz 2’ in 4.10.)
Hingegen kommt noch nirgends im Fall M°®#0, N#0, ausser der gleichmissigen
Approximation auf der ganzen Menge M eine gleichzeitige Carleman-Approximation
auf einer Teilmenge von N vor, wie dies der Satz IV aufweist.

Die Approximation auf der allgemeinen Ag;-Menge erfolgte durch Arakeljan,
nachdem Kaplan bereits frither das allgemeine Gebiet G eingefiihrt hatte, jedoch mit
ganz speziellem M.

Anmerkung: Wie beim Satz III kann im Satz IV die Menge N im allgemeinen nur
dann durch N ersetzt werden, wenn N = N ist. Beim Beispiel von 2.5. kann M leicht so
konstruiert werden, dass eine 4;-Menge entsteht.

4.9. Zusatz 1’ zu Satz 1V : Ist h eine auf G regulire Funktion, welche die Bedingung
O0<|h(2)|<1, zeM, (32)
erfiillt, so darf im Satz IV die Bedingung (30) ersetzt werden durch
lg(z) —f (@)l <nlh(2)l, zeM, (33)

wobei (31) weitergilt.

Dieser Zusatz kommt mit (33), jedoch ohne (31), bei Keldys-Mergelyan (fiir
G=C) und bei Arakeljan vor.

Der Beweis verlduft ganz entsprechend wie der einfache Beweis vom Zusatz 1 in
2.8., nur dass jetzt der Satz IV angewendet wird.

4.10. Besonders interessiert wieder der Fall G=C, wobei die Anndherungsfunktion
g jetzt eine ganze Funktion ist. Analog wie bei den meromorphen Approximationen
(Zusatz 2 in 2.9.) gilt:

Zusatz 2’ zu Satz IV: g kann so bestimmt werden, dass lim,,,_,, (g(z)—f(2))=0
gleichmdissig auf M.

Zum Beweis geniigt es, eine ganze Funktion 4 zu finden, die ausser (32) noch die
Bedingung lim, ., /#(z) =0 gleichmassig auf M erfiillt, und dann den Zusatz 1’ von
4.9. anzuwenden. Die Konstruktion von 4 ist nicht mehr so einfach wie in 2.9., wo
h den Pol z,, z,¢ M, haben durfte.

Bei Keldy$-Mergelyan [10] wird eine solche Hilfsfunktion 4 fiir den Fall, dass M
eine zusammenhidngende A-Menge ist, konstruiert. Dabei werden bestmdgliche Ap-
proximationen fiir den allgemeinen Fall und bei den Spezialfillen, wo*M in einem
Winkelraum oder in einem Parallelstreifen liegt, ausgefiihrt. Ausserdem wird das
Wachstum der Annidherungsfunktion untersucht.
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Arakeljan [1] gibt eine Verfeinerung und Ergdnzung jener Resultate an, wobei
M eine allgemeine A -Menge ist.

Diesen, eine lingere und subtile Herleitung erfordernden Untersuchungen habe
ich ergdnzend bloss beizufiigen, dass bei allen diesen Approximationen, entsprechend
4.9., zusdtzlich auf der Teilmenge N die stirkere Anndherung (31) maglich ist.

4.11. Das im Zusatz 3 von 2.10. angeschnittene Problem, welche zusitzlichen
Bedingungen die Menge M (mit inneren Punkten) erfiillen muss, damit auf ganz M
eine Carleman-Approximation (31) moglich ist, wurde fiir den Fall, dass M eine A4;-
Menge ist, vollstindig gelost von Nersesian [14].

4.12. Entsprechend wie in 2.11., gibt es auch, wenn G# C, A;-Mengen, bei denen die
Komponenten des Innern an den Rand von G heranreichen und fiir die doch im Satz
IV die Abschitzungen (30) und (31) erginzt werden kénnen durch die Bedingung,
dass (g(z)— f (z)) gegen O strebe, wenn z sich dem Rand von G néhert. Man wihle
etwa im Beispiel von 2.11. die Menge N so, dass M eine A;-Menge ist.

4.13. Nach der Beendigung der vorliegenden Arbeit wurde mir freundlicherweise
Einsicht gewihrt in eine noch unveréffentlichte Untersuchung von Brown und Gauthier
[13], die einen Approximationssatz enthdlt, aus dem sich Satz IV ohne weiteres
ableiten lisst, nimlich: (mit den Bezeichnungen dieses §)

Ist M eine Ag-Menge und &(z) eine auf M stetige und positive Funktion, die zudem
konstant ist auf jeder Komponente von M°, so gibt es zu jeder Funktion f, die A(M)
angehort, eine solche auf G regulire analytische Funktion g, dass

lg(z) = f(2) <e(z), zeM.

Der Beweis stiitzt sich auf den Satz A, (4.5.) von Arakeljan und wird dadurch
ganz kurz, dass eine raffiniert einfach konstruierte Hilfsfunktion A eingefiihrt wird,
wobei

0<|h(2z)<e(z), zeM,

und dann die Methode von Zusatz 1’ in 4.9. angewandt wird.

Der Kunstgriff von Brown und Gauthier ldsst sich ohne die Anwendung des
Satzes A,, jedoch mit dem Hilfssatz 5 in 4.5. leicht so modifizieren, dass dadurch das
Korollar in 4.7. kiirzer bewiesen werden kann, nimlich ohne den Hilfssatz 6.

Die von Brown und Gauthier angewandte Konstruktion von A kann nicht iiber-
tragen werden auf eine bei den meromorphen Approximationen vorkommende Menge
M, sofern sie nicht eine 4;-Menge ist.
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4.14. Ausblick: Sollte es gelingen, die zur Einfiihrung der reduzierten Bedingung
feA(M)im Satz ITI von 4.7. notwendigen und hinreichenden schirferen Bedingungen
fiir M zu finden (dass es sich z.B. erweisen sollte, dass die in 2.12. gestellte Frage
positiv zu beantworten ist), so liessen sich die Resultate von §4 aus der meromorphen
Approximation recht kurz ableiten. Aus dem entsprechend modifizierten Satz III
konnte dann mit den einfachen Hilfssdtzen 3 und 4 sofort der Satz A, und daraus die
Hilfsfunktion und der Approximationssatz von Brown und Gauthier hergeleitet
werden.
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