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Konvexe Polytope mit Symmetriegruppe

G. Ewald und K. Voss

1. Einleitung

Besitzen zwei konvexe Polytope des rf-dimensionalen Euklidischen Raumes Ed

kombinatorisch isomorphe Randkomplexe, dann nennt man sie kombinatorisch âqui-
valent. Die Untersuchung von Klassen kombinatorisch âquivalenter Polytope gehôrt
zu den zentralen Fragen der Théorie konvexer Polytope. Insbesondere fragt man nach
der Anzahl solcher Klassen bei vorgegebenen Zusatzbedingungen, etwa Eckenzahl oder
Eckenzahl und zentrale Symmetrie (s. Grunbaum [1, 2], McMullen-Shepard [4]). Als
besonders schlagkrâftige Méthode bei derartigen Anzahlbestimmungen hat sich die
Méthode der sogenannten Gale-Diagramme erwiesen. Mit ihrer Hilfe kann man
die Anzahl von Klassen konvexer Polytope im Ed in vielen Fâllen explizit berechnen.

rechnen.

Wir geben in der vorliegenden Arbeit zunâchst eine neue Darstellung der Gale-

Diagramme an (Abschnitt 2). Dièse gestattet es, einen Zerfâllunsgsatz fur die Gale-Diagramme

von Polytopen mit beliebig vorgegebener Symmetriegruppe zu beweisen

(Abschnitt 3) und so eine Reihe weiterer Anzahlbestimmungen von Klassen
kombinatorisch âquivalenter Polytope vorzunehmen (Abschnitt 4). In einer auf die vor-
liegende Arbeit folgenden Verôffentlichung dehnen P. Kleinschmidt und C. Schulz
den Kreis derartiger Anzahlbestimmungen weiter aus [3].

Genaue Formulierung und Ausarbeitung der Beweise der Formeln (19), (20), (22)
sowie Formel (21) stammen von Herrn W. Schulte-Ladbeck [5]. Herr B. Kind hat
wertvolle Hinweise und Bemerkungen, insbesondere zu Abschnit 4, beigesteuert.

2. Gale-Diagramme

Wir betrachten im rf-dimensionalen affinen Raum Rd ein n-tupel von Punkten xi9

die nicht in einem echten Teilraum von Rd enthalten sind. Jedem solchen w-tupel
X— (*!,..., xn) lâsst sich nach folgender Vorschrift ein n-tupel X* (x*,..., x*) von
Vektoren in einem Vektorraum der Dimension/?=n — d— 1 zuordnen : Das Gleichungs-

system der affinen Abhângigkeiten im Punktsystem X

£ «,*, <>, f af 0, (1)

wobei die 0Lt Zahlen des zu Grunde gelegten Kôrpers sind, hat p linear unabhângige

Lôsungsvektoren (<xl9..., art), die wir als Zeilenvektoren einer p x «-Matrix schreiben ;
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die Spalten dieser Matrix sind die Vektoren von X*1). Wir nennen X* ein zu X ge-
hôriges Gale-Diagramm2).

Im folgenden wird eine mehr koordinatenunabhângige Définition von X* gegeben,
wie sie sich fur die Diskussion affiner Symmetrien als zweckmâssig erweist und aus
der sich auch sonst die Eigenschaften der Zuordnung X-*X* leicht ablesen lassen.

Man kann die Punkte x von Rd als Vektoren eines Vektorraums PFder Dimension
q d+1 auffassen, indem man zu den d Koordinaten ^ in Rd eine weitere Koordi-
nate £d+1 l hinzufùgt:

R4={x (Çu...,Ç49l)}cW. (2)

Affine Abhângigkeit (1) in Rd ist dann gleichbedeutend mit linearer Abhângigkeit

£ 0^ 0 in W. (1')

Seien jetzt U, V9 W Vektorrâume iïber dem Grundkôrper K mit

dimU p, dimV n9 dimW q und n p + q.

In V sei eine Basis el9..., en fest gewâhlt. Der «-dimensionale Vektorraum V* sei dual
zu V, das heisst: vermôge einer nicht ausgearteten bilinearen Funktion

(v*,v) fur v*eV*,veV (3)

mit Werten in ^Tkann V* als Menge der linearen Funktionen F-> iTaufgefasst werden
und V als Menge der linearen Funktionen F* -> K. e*,..., e* sei die zu el9..., en duale
Basis in V:

(eî,eJ) ôiJ. (4)

In W sei ein w-tupel von Vektoren mit maximalem Rang gegeben:

X (xli...,xn), xteW, RangZ ^f.

g sei diejenige lineare Abbildung, bei der

g:V-+W, g(et) xt fur î l,...,n. (5)

Wegen RmgX=q ist g epimorph, und fur den Kern von g gilt

Û Kern g, dim Û= n — q p.

x) Vergleiche Grunbaum [1].
2) Bei Griinbaum: Gale transform.
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Der Teilraum Û von V ist der Raum der linearen Abhângigkeiten im Vektorsystem
X: fur einen Vektor ve V gilt

n n

»= Z <*&£& o Z ««*i 0. (6)

Wir wâhlen noch einen Isomorphismus/zwischen (/und £?und fassen/als Abbildung
von U in V auf. Dann ist die Sequenz

0-*U^V±W->0 (7)

exakt, d.h./ist monomorph, g epimorph und

Bild/ Kerng 3). (8)

Wir betrachten ausserdem die zu (7) duale Sequenz

0<-.U*£v*£w*<-0. (7*)

Dabei sind/*, g* die zu/und g dualen Abbildungen; fur die lineare Abbildung/*
gilt

tfV, ii) (*•,/!#) 4). (9)

Fur den Obergang von (7) zu (7*) gilt: Der Funktor* ist exakt, also/* epimorph,
g* monomorph und Kern/* Bildg*5).

Wir definieren nun das «-typel X* (x*9...9 x*) von Vektoren in U* durch die

zu (5) dualen Formeln

f*:V*-+U*9 x* /*(e*) fur t l,...,«. (5*)

Da e*,...9 e* eine Basis und/* epimorph ist, wird RangX* =p6). X* heisst Gale-

Diagramm von X, der von X* aufgespannte Vektorraum U* Gale-Raum von X. Nor-
miert man die von Null verschiedenen xf auf Lange 1 (beziiglich eines Skalarprodukts
in U*), so sprechen wir vom normierten Gale-Diagramm.

Ein Isomorphismus ç: W^> W fiihrt X=(xl9... xn) in das linear âquivalente n-

tupel X' (x'l9...9 x'n) ûber, wobei x/i (p(xi). Ersetzt man g in (5) durch g' çg, so

wird Kern g Kern g'; zu Xund Z' gehôrt also dasselbe X*.

3) Fur die Abbildungsmatrizen A und 5 von/und # bedeutet dies: A und J5 haben maximalen
Rang, und es ist BA=0.

4) Wàhlt man auch in U und U* zueinander duale Basen mi, up und w*i,..., w%, so werden die

Abbildungsmatrizen von/und/* zueinander transponiert: aus/(#0=2y-i a^y fûlgt wegen (9) und

(4) (f*e*k, m) aik, d.h. f*(e*k) Sf-i oi*«*i.
5) Dies folgt z.B. daraus, dass die in Anmerkung 3) genannten Eigenschaften beim Obergang

zu den transponierten Matrizen erhalten bleiben.
6) Da die Vektoren/(«i) in Anmerkung 4) eine Basis von Û bilden, kann man die x*i nach der

Am anfang dièses Abschnitts erwâhnten Vorschrift berechnen.
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Andererseits ist/nur bis auf einenlsomorphismusi^: U-+ t/bestimmt; Abânderung
von/bewirkt einen Isomorphismus von U*. X* ist daher nur bis auf lineare Âqui-
valenz in U* bestimmt:

Durch (5*) wirdjeder Klasse {X} linear âquivalenter n-tupel von Vektoren in W
mit Rang X~q eine Klasse {X*} linear âquivalenter n-tupel von Vektoren in U* mit
Rang X*=p zugeordnet.7)

Zwischen den Eigenschaften von X und X* besteht folgender Zusammenhang:

LEMMA 1. £"=i afxf 0 gilt dann und nur dann, wenn es eine lineare Funktion
L: U*-+Kgibt, so dass L(xf) <xlfur i= 1,..., n.

Beweis. L werde analog (3) als Elément ueU aufgefasst, so dass L(xf) (xf9u)
Indem man der Reihe nach (6), (4) und (8), (9) und (5*) anwendet, erhâlt man:

Die Abbildung F: {X} -> {X*} hat folgende Eigenschaften8):
(a) F ist involutorisch, X ist also auch Gale-Diagramm von X* ; insbesondere ist

F bijektiv: zu vorgegebenem X* gibt es bis auf lineare Âquivalenz genau ein X.
Dies folgt daraus, dass der Ûbergang von (7) zu (7*) und von den ex zu den ef

involutorisch ist.

(b) L sei eine nicht identisch verschwindende lineare Funktion W-+ K und

Dann gilt (bis auf lineare Âquivalenz in W) :

xteRd fur i l,...,« o £x* 0. (10)

Dies folgt aus Lemma 1, angewandt aufX* (an Stelle von X) und W(an Stelle von U*).
Von jetzt an sei K der Kôrper der reellen Zahlen. Wir betrachten speziell Punkt-

systeme X in Rd9 also Vektorsysteme in W mit der Zusatzbedingung (b).
(c) Bekanntlich sind die Punkte X=(xu..., xn) in Rd dann und nur dann die

Ecken eines konvexen Polytops, wenn

..,*„), i 1,..., n. (11)

Ûbergang zu X* liefert auf Grund von Lemma 1 folgendes zum Eckenkriterium (11)

âquivalente Halbraumkriterium:

7) Da die X bijektiv den Abbildungen g oder g* zugeordnet sind, entsprechen die Klassen {X}
auch bijektiv den ^-dimensionalen Teilrâumen W* =g*JV* von F*, die Klassen {X*} den />-dimen-
sionalen Teilrâumen Û=fU von V.

8) Auf Grund von Anmerkung 7) kann F auch als Dualitâtsabbildung im Sinne der projektiven
Géométrie aufgefasst werden, die jedem ^-dimensionalen Teilraum W* von V* den /ï-dimensionalen
Teilraum Û von V zuordnet, der durch Nullsetzen von (3) definiert ist.

g) Bei geeigneter Wahl der Basis in W bekommt man fur R* die Darstellung (2).
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(11*) Zu jeder nicht identisch verschwindenden linearen Funktion L:U*-+K gibt
es mindestens zwei Indizes i mit L(xf)>0.10)

(d) Fur die Seiten eines konvexen Polytops mit Ecken X= (jcj xn) gilt das fol-
gende Schwerpunktkriterium :

Ein Teilsystem von X - z.B. xk+l9..., xn - spannt dann und nur dann eine Seite eines

konvexen Polytops auf, wenn espositive Zahlen ccl9...,ak gibt mit axx\ H h ockxk 0 n).
Fur die o-dimensionalen Seiten (k n— 1) ist in (d) ein zu (c) âquivalentes Ecken-

kriterium enthalten.
(e) X und Jl seien die Eckenmengen zweier konvexer Polytope in Rd.

Aus (d) folgt: Die Polytope sind genau dann kombinatorisch âquivalent, wenn
es eine bijektive Zuordnung zwischen X und ^ gibt, so dass im Gale-Raum folgendes
gilt: Liegt O im relativen Innern der konvexen Huile einer Teilmenge Y* von X*,
dann liegt O auch im relativen Innern der konvexen Huile der entsprechenden
Teilmenge Y* von X*, und umgekehrt.

Dièse Bedingung ândert sich nicht, wenn man einen der Vektoren xf mit einem

positiven Faktor multipliziert. Entsprechendes gilt beim Halbraumkriterium (c). Man
kann dièse Bedingungen daher im normierten Diagramm nachpriifen. Ist ein nor-
miertes Diagramm mit(l 1 *) vorgegeben, so lassen sich die Lângen der xf so festlegen,
dass (10) gilt.

(f) Beim Ûbergang von X zu X* kann es vorkommen, dass verschiedene Punkte

von X im Gale-Diagramm zusammenfallen (z.B. xi¥zx2, aber x*=x*), oder dass

zusammenfallende Punkte (etwa xl—x2) in X* aufgespalten werden(x*#x*).Hier-
iiber beweisen wir folgendes Kriterium:

LEMMA 2. Im Gale-Diagramm ist x\ x* • • • x*+1 (k ^ 0) dann und nur dann,

wenn in Rd folgendes gilt: Es ist k^d; die Punkte xl9..., xk+1 spannen ein nicht-aus-

geartetes k-Simplex auf, welches in dem affinen k-dimensionalen Teilraum S liegt; der

Schwerpunkt s=(\j(k+\)) (xx H \-xk+1) und die Punkte xk+2,..., xn spannen zusam-

men einen affinen Teilraum Tder Dimension d—k auf; SnTist der Punkt s.

Beweis. Aus dem Bestehen der Abhângigkeiten (10) und x* — xf 0 fur
/=2,..., k+1 folgt nach Lemma 1 (in dualer Form) die Existenz von linearen Funk-
tionen L(x) (gemâss (b)) und Lt(x)9 fur welche Ll(x1)=l, Lf(;x:f)= —1, Lf(xj)=0
fiir alle/# 1, i, und daher auch Lt(s)=Q. Dabei sind L, L2,..., Lk+l linear unabhângig,
wie man bestâtigt, indem man in einer Abhângigkeit XL + À2L2-\ hAk+1Lk+1=0
der Reihe nach xu x2,..., x*+i einsetzt. Die k Gleichungen L,(x)=0 2,..., k+1)

10) Das heisst: bei jeder nicht-trivialen Abhângigkeit (10 der xi treten mindestens zwei positive
on auf. Man beachte, dass beim J-Simplex in Rd n — d+1, also p — 0 ist.

u) Das heisst (nach Lemma 1 in dualer Form) : es gibt ein L : W-+ K mit L{xj) > 0 fiir / 1,..., k
und L(xt) 0 fur i k 4-1,..., n. Fur k > 1 bedeutet das: es gibt eine Stiitzhyperebene von Xin Rd,
die mit Xden Durchschnitt Xk+u..., xn hat.
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definieren einen Teilraum Tt von W mit der Dimension d+l—k, welcher s und

xk+2,..., xn enthâlt; Schnitt mit L(x) 1 liefert den affinen Teilraum T von Rd.

Fur die Vektoren in W gilt Rang (xt,..., xk+1 Rang (jq,..., xk9 s) und

9s) a^k+1 1

L(»s)=l ist s^O. Da die beiden Vektorsysteme in (12) also den ganzen Raum W
aufspannen, aber den Vektor s^O gemeinsam haben, folgt a=k+\, b d+\—k.
Daraus ergeben sich die Behauptungen von Lemma 2 ûber die Lage der Xj.

Haben umgekehrt die Xj die in Lemma 2 angegebene Lage, so spannt Tzusammen
etwa mit x3,..., xk+i eine Hyperebene in Rd auf, die den Mittelpunkt der Strecke

xtx2 enthâlt; es gibt also ein L2(x) mit L2(x1)=l, L2(x2)= -1, L2(xj) 0 fur aile

j>2. Nach Lemma 1 gilt daher x*-x* 0. Analog folgt x* xf fur ï 3,..., A:+1.

Lemma 2 folgt auch aus den im Abschnitt 3 bewiesenen Sâtzen 1 und 2.

(g) Aus Lemma 1 folgt ferner:

LEMMA 3. Im Gale-Diagramm ist x* 0 dann und nur dann, wenn die Punkte

x2,..., xn in einer Hyperebene von Rd liegen. Ist X Eckenmenge eines Polytops, so hat
man also eine Pyramide mit Spitze xx.

Im Hinblick auf die beabsichtigten Symmetriebetrachtungen nehmen wir nun fol-
gende Normierungen vor: Erstens identifizieren wir U mit Û=Kcmg: Es sei also

£/=Kern gczV und/die Injektion von U in V. Zweitens fùhren wir in V ein Skalar-

produkt ein und wâhlen fur el9..., en eine feste orthonormierte Basis. Drittens nehmen

wir F* V, U* U und fur (3) das Skalarprodukt in V. Gemâss (4) wird dann ef et
fur i 1,...,/i. Wir haben

V U © U1, U1 orthogonales Komplement von U.

Aus (9) folgt (/*!>, u) (v, u) fiir aile ue U9 an Stelle von (5*) haben wir also jetzt

/* Orthogonalprojektion von V auf U. (5;)

Das Gale-Diagramm entsteht also durch Projektion der Basis et auf den Raum U der

Abhângigkeiten.

3. Zerfâllungssatz

Wir untersuchen nun affine Abbildungen <p von Rd, welche das Punktsystem X in
sich transformieren. Als Nullpunkt in Rd nehmen wir den Schwerpunkt s von X. Rq
sei der Teilraum von W9 der aus Rd durch Parallelverschiebung in Richtung — s ent-
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steht, bei dem also in (2) Çd+i 0 gesetzt ist; man hat

W Rd0®W1. (13)

Wegen cp(s) s kann man cp als lineare Abbildung von Wauffassen, die RdQ (und Rd)
in sich abbildet und W1 elementweise festlâsst.

Wir betrachten eine Gruppe ô von Permutationen der Elemente 1,2,..., n. Zu
jeder Permutation

@:v->iv fur v l,..., n (14)

gibt es hôchstens eine affine Abbildung

cp:Rd^Rd mit <p(xv) xiv fur v 1 w, (14)

denn da unter den Xj d-\-1 Punkte in allgemeiner Lage vorkommen, ist ç durch die

Eigenschaft (14) eindeutig festgelegt.
Wir sagen, ô lasse sich als affine Symmetriegruppe von X darstellen, wenn es zu

jedem 0eô eine Abbildung cp mit Eigenschaft (14) gibt. Die Menge G= {cp} ist dann
eine homomorphe Darstellung von G als Untergruppe der affinen Gruppe des Rd.

HILFSSATZ 1. Falls X aus n verschiedenen Punkten besteht, ist G isomorph zu ô.

cp legt dann nâmlich nach (14) und (14) die Permutation 0 eindeutig fest.

Falls dagegen in X mehrere Punkte zusammenfallen, z.B. xl=x2 '-=xk+î9 so

kônnen verschiedene Permutationen durch dieselbe affine Abbildung dargestellt
werden; z.B. lâsst sich jede Permutation von l,...,n mit Fixelementen k + 2,...,«
durch die identische Abbildung cp affin darstellen.

SATZ 1. Wenn sich die Permutationsgruppe ô als affine Symmetriegruppe von X
darstellen làsst, dann gibt es auch eine Darstellung von ô als orthogonale Symmetrie-

gruppe G* von X*. Falls dabei X* aus n verschiedenen Punkten besteht, ist G* isomorph
zuÔ.

Jeder Permutation (14) aus 6 lâsst sich also eine orthogonale Abbildung

(p*:U->U mit <p* (x*) x£ fur v l,...,n (14*)

zuordnen. cp und q>* bewirken gemâss (14) und (14*) in Xund X* dieselbe Permutation

(14) der Indizes.
Wir beweisen zuerst

HILFSSATZ 2. ô {0} sei eine Permutationsgruppe, welche sich als affine
Symmetriegruppe G {(p) von X darstellen lâsst. Dann gibt es eine isomorphe Darstellung
G' {q>'} von ô als orthogonale Gruppe von V mit folgenden Eigenschaften:
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(A) <p' bewirkt aufden Basisvektoren die Permutation 0
(B) gcp'^cpg
(C) G' lâsst U und U1 invariant
(D) Die Restriktion von G' auf U1 ist linear âquivalent zu G.

Beweis. Zu jedem 0eô gibt es genau eine orthogonale Abbildung cp' mit der
Eigenschaft

(p':V-+V9 (p'(ev) eiv fur v l,...,n. (14')

G' {<p'} ist also eine Darstellung von ô mit (A).
Wegen (5), (14) und (14') folgt fur jeden Vektor t? ]T<vv, dass g(p'(v) (pg(v)

ist, also (B).
Fur w £aveve£/ wird g(w)=0, also auch (pg(u) 0=g((p'(u)), d.h. (p'(u)eU.

q>' bildet also U in sich ab, und da cp' orthogonal ist, wird auch U1 in sich abgebildet,
es gilt also (C).

Wegen £/=Kern g bildet g den Teilraum U1 von Fisomorph auf W ab; nach (B)
gilt also fur die Restriktionen von g und cp' auf U1:(p'=g~1cpg, also (D).

Beweis des Satzes 1. Die Darstellung

G* Restriktion von G' auf U

hat die gewùnschten Eigenschaften: denn wegen (C) und (5') gilt (p'f*=f*q>'9 wegen
(5') folgt also (14*). Nach Hilfssatz 1 sind G* und ô isomorph, falls X* aus verschie-
denen Punkten besteht.

Wir betrachten nun die Orbits (Transitivitâtsklassen), die bei der Anwendung von
ô auf die Elemente 1,2,..., n entstehen. Sei

kv Anzahl der Orbits der Lange v, £ vkv n.
V

Wir nehmen an, ô lasse sich als affine Symmetriegruppe G von X darstellen. Es sei

Fixraum vonG AcRâ, dim A a. (15)

Von den Punkten xt von X liegen also genau kt Punkte in A ; allgemein entspricht
jedem Orbit der Lange v ein Orbit von v Punkten in X, die in einem zu A transversalen
Teilraum G-symmetrisch verteilt sind.

SATZ 2 (ZERFÂLLUNGSSATZ). Wenn X die affine Symmetriegruppe G mit
a-dimensionalem Fixraum A gestattet, so lâsst sich die von G auf X bewirkte Permuta-

tionsgruppe im Gale-Raum als orthogonale Symmetriegruppe G* von X* darstellen, und

fiir den Fixraum A* von G* gilt

a* £ kv - a - 1. (16)
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Hierbei brauchen die Punkte von A'nicht aile verschieden zu sein, und im Gale-Raum
kônnen einzelne Orbits zu einem Punkt in A* zusammenfallen. A* heisst Gale-Achse.

Beweis. Auf Grund von Satz 1 ist nur noch die Dimensionsaussage (16) zu be-

weisen.

a) G' {q>'} sei die orthogonale Darstellung (14') von ô in V. Bei G' werden die-

jenigen Basisvektoren unter el9...9en9 die zu einem Orbit gehôren, untereinander
transitiv vertauscht. Fur einen Vektor t? Xavev gil* daher cp(v) v fur aile cpeG

genau dann, wenn die Koordinaten av, die zu einem Orbit gehôren, untereinander
gleich sind. Es sind also genau so viele Koordinaten frei wâhlbar wie es Orbits gibt.
Daher folgt

Fixraum von G' A! c V, dim Af £ kv. (17)
V

b) Wir fassen jedes (p aus G gemâss (13) als lineare Abbildung von W auf. Da
W1 elementweise festbleibt, hat der Fixraum von G in W die Dimension a+l. G'
lâsst U und U1 invariant. G sei die Restriktion von G' auf U1. Dann folgt aus Hilfs-
satz2, (D):

Fixraum vonè ÂciU1, dim,f a + 1. (18)

c) Jeder Vektor veFbesitzt die eindeutige Zerlegung v u + u1 mit ueU, uLeUL.
Wegen (C) (Hilfssatz 2) folgt fur aile cp'eG': (pf(v) v<xpf(u) u und (p'(uL) uL9

dass heisst

A'=A*®Â,
also dim,4* dim,4'-dimi'. Aus (17) und (18) folgt (16).

Ausser in den Vektorrâumen V und U kann man auch noch in W ein Skalar-

produkt einfuhren, den affinen Raum Rd also als Euklidischen Ed auffassen; dabei

kann das Skalarprodukt in W so gewâhlt werden, dass die affine Symmetriegruppe
G von X aus orthogonalen Abbildungen, also Bewegungen von Ed besteht.

4. Abzâhlung kombinatorischer Klassen von Polytopen

Seien P ein Polytop im Ed und G eine Symmetriegruppe von P. Wie oben sei A
der Fixraum von G und àimA=a. A ist die Gesamtheit aller Punkte des Ed9 die unter
sâmtlichen Elementen von G festbleiben. A heiBt Achse von P (beziiglich G). cG (v9 d, a)
sei definiert als die Anzahl der Klassen kombinatorisch âquivalenter rf-Polytope mit
v Ecken, Symmetriegruppe G (als abstrakte Gruppe vorgegeben) und zugehôriger
Achsendimension a. Werden dabei nur simpliziale Polytope betrachtet, so setzen wir
c*g (v> d9 à) fur die entsprechende Anzahl. Beschrânken wir uns auf den Fall, dafi keine
Ecke des Polytops auf der Achse liegt, so wird die verbleibende Zahl mit c£ (v9 d9 d)



146 G. EWALD UND K. VOSS

bezeichnet. Mit c(v, d) wird die Zahl aller kombinatorischen Klassen von rf-Polytopen
mit v Ecken benannt (Griinbaum [1]). Wir geben nun einige Anwendungen des

Zerfâllungssatzes (Satz 2) auf die Berechnung von Anzahlen der genannten Art an.

(19) Sei p eine Primzahl und k^2 eine naturliche Zahl. Dann gilt (Zp zyklische
Gruppe der Ordnung p) :

Fur p 2 ist dies Formel (23) in [4].
Beweis. Fur die Dimension des Gale-Raumes erhalten wir d* —pk — {p — 1 )k — 1 -1

=k-2. Die Gale-Achse besitzt die Dimension a* k-l-l=k--2. Folglich besteht
der Gale-Raum nur aus Fixpunkten, und daher wird jeder der k Orbits von G auf
einen /?-fach belegten Punkt abgebildet. Wegen der Halbraumbedingung fâllt hôchstens
einer dieser Punkte in den Nullpunkt.

Die Anzahl der môglichen kombinatorischen Typen ist unabhângig von dem Wert
der Primzahl p. Wir kônnen also aus der Formel (23) in [4] den behaupteten Wert
folgern. (Shepard und McMullen benutzen eine elementare Abzâhlmethode, ohne

Gale-Diagramm. In [5] ist auch mit Hilfe von Gale-Diagrammen die obige Formel
noch einmal explizit berechnet worden).

(20) Sei p>2 eine Primzahl und a^O eine ganze Zahl. Dann gilt
c$p(p(
wobei

!0
fur a 0 oder 1

a
+5 3) + i (a

~ *) + i - *(« - 5) [i(3a - 5)] sonst,

l,tf—2)=Ofura 0oder 1. (<5Ps3 Kroneckersymbol).
Oberein Gegenstiickzu dieser Formel fur/? 2 vgl. Shepard-McMullen [4, (26)].

Beweis. Der Gale-Raum ist jetzt 2-dimensional, die Gale-Achse 0-dimensional. Es

gibt a+1 Orbits der Lange p. Das Bild eines Orbits ist entweder ein p-Eck, oder es

fâllt ganz nach O. Im Falle eines /?-Ecks ist dièses regelmâBig, weil es wieder Zp als

Symmetriegruppe hat. Durch Obergang zu Einheitsvektoren im Gale-Diagramm
kônnen wir annehmen, daB aile p-Ecke einem Kreis einbeschriebenen sind (Figur 1

fur /? 3). Liegt eine Ecke eines /?-Ecks einer Ecke eines zweiten /?-Ecks gegeniiber,
so liegen auch die anderen Ecken des ersten /?-Ecks gegenuber Ecken des zweiten
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/?-Ecks. Um die wesentlich verschiedenen Môglichkeiten zu studieren, genùgt es daher,
die Verteilung von Punkten in einem halboffenen Kreisbogen der Lange n/p und
dessen Spiegelbild bei der Punktspiegelung an O zu betrachten. Wir bezeichnen die

Vereinigungsmenge der beiden halboffenen Kreisbogen mit W. Statt nun die
Verteilung von Ecken in W zu studieren, kônnen wir wieder die ganze Kreislinie W
betrachten, indem wir W durch die komplexe Abbildung z-*zp auf W abbilden;
mit der MaBgabe allerdings, daB jetzt die Halbraumbedingung nicht zu gelten braucht.
Es miissen nur mindestens zwei Ecken auf der Kreislinie liegen, da diesen zwei p-
Ecke zugeordnet sind, die die Gultigkeit der Halbraumbedingung im ursprûnglichen
Problem gewâhrleisten. Im Fallep^5 geniigt sogar eine Ecke.

Fig. 1

Um die Abzâhlung durchzufùhren, betrachten wir zuerst den Fall, daB die
Verteilung der Ecken auf Wdie Halbraumbedingung erfùllt. Die q Punkte auf W(q ^ a +1
zusammen mit dem (a+l— #)-fach belegten Nullpunkt sind dann Gale-Diagramm
eines (a—2)-dimensionalen Polytops mit a+1 Ecken. Wir erhalten hierfiir c(a+l,
a —2) Môglichkeiten. (Man beachte die in (20) festgelegte Schreibweise c(l,— 2)

c(2,-l) 0).
Als nâchsten Fall nehmen wir an, daB in jedem offenen Halbkreis von W mindestens

eine Ecke liegt, in mindestens einem dieser Halbkreise aber auch nur eine Ecke.

Man erhâlt (bis auf zulâssige Abânderungen) Verteilungen der in Fig. 2 angedeuteten
Art (m, n usw. bedeuten die Vielfachheiten der Belegung). Dièse sind aber in [4, S. 284]
fur a + 3 statt a+l untersucht worden. Setzen wir in der dort angegebenen GrôBe

x(a) formai a+l statt a+3, so erhalten wir die in (20) vorkommende Anzahl/(a)
von Môglichkeiten.

SchlieBlich betrachten wir den Fall, daB es einen offenen Halbkreis von W gibt, in
dem keine Ecke liegt. Wir erhalten die in Fig. 3 angedeuteten Verteilungen. Dabei
kônnen wir aus Symmetriegrûnden r^s annehmen. Ferner gilt r+,s+# + f=a+l.

Sei zuerst r 0. Dann kônnen die ubrigen q+s Punkte auf der Kreislinie zusam-

mengeschoben werden, ohne daB man den kombinatorischen Typ verândert (Fig. 4).
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Liegt die Z3 als Symmetriegruppe vor, so muB zusâtzlich s>2 eingeschrânkt werden
(sonst wâre im urspriinglichen Gale-Diagramm die Halbraumbedingung verletzt).
Dies ergibt a Môglichkeiten. Ist/?^5, dann sind aile Fâlle l^s^a+1 zugelassen,
und wir erhalten a+1 kombinatorische Typen. Fur beliebiges p kônnen wir bei r=0
auch a-f 1 — ôPt3 als Anzahl schreiben.

Fig. 4

Bleibt also r^l zu untersuchen. Die hierbei durchzufùhrenden Rechnungen sind

zwar elementar, aber etwas langwierig; wir fiihren sie hier nicht aus (vgl. [5]). Man
bekommt als Anzahl die in (20) angegebene Zahl g (a). Insgesamt ergibt sich der
behauptete Wert.

BEISPIEL: c£3(6, 3, 1)=2. Reprâsentanten der beiden Klassen sind in Fig. 5

gezeichne (Dreiseitprisma und Oktaeder).

Fig. 5

(21) Seip eine Primtahl unda^O eine ganze Zahl. Dann gilt

0 falls /> 2

— ô (a, p) sonst,
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wobei

s, i 1 falls a 0 und p 3
S (a, p) <Lv 5jP; (0 sonst

w«rf cs (1, - 2) c5 (2, -1 0 gesétfz/1 wrf.

Beweis. Wir gehen genauso vor wie im Beweis von (20) und haben die Verteilungen
von a+1 Ecken auf der Kreislinie Wzu untersuchen. Da jetzt nur simpliziale Polytope
betrachtet werden, dùrfen im urspriinglichen Gale-Diagramm zwei /?-Ecke niemals so

liegen, daB eine Ecke des einen einer Ecke des anderen gegeniiberliegt. Dies ist âquiva-
lent damit, daB keine zwei Ecken den Abstand n/p haben. Ferner fâllt keine Ecke
nach O. In W berûcksichtigen wir diesen Umstand, so daB keine diamétral gelegenen
Punkte gleichzeitig Ecken sind und keine Ecke nach O fâllt.

Liegen in jedem offenen Halbkreis von W mindestens zwei der a+1 Ecken, so

erhalten wir (?{a+\, a —2) Môglichkeiten. Nehmen wir also an, daB ein Halbkreis
von W mit nur einer Ecke im Innern existiert. Dann lassen sich die anderen Ecken,
wie in Fig. 6 angezeigt, zusammenschieben. Aus Symmetriegrûnden kônnen wir q^r
annehmen. Ferner gilt <7^1,r^l und q+r=a. Daraus erhâlt man [fl/2] Môglichkeiten.

Fig. 6

SchlieBlich gebe es einen Halbkreis mit keiner der a+1 Ecken im Innern. Wir
miissen dann wie im Beweis von (20) p==3 und p>3 unterscheiden. Im ersten Fall
erhalten wir fur a=0 keine zulâssige Eckenverteilung, im zweiten Fall und im Fall
a>0,p 3 kônnen wir uns aile Ecken zusammengeschoben denken und erhalten so-

mit genau einen kombinatorischen Typ. ZusammengefaBt ergibt das 1 — ô (a, p).

(22) Seip eine Primzahl. Dann gilt

cfp{p{a + 3), p(a + 3) - 3, a) cs(a + 3, a) + [jl + 1.

Beweis. Gale-Raum und Gale-Achse sind jetzt beide 2-dimensional. Das Gale-

Diagramm besteht daher aus a+3 Punkten mitp-facher Belegung. Da nur simpliziale
Polytope betrachtet werden, fâllt kein Punkt des Gale-Diagramms nach O, und gegen-
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ûberliegende Punkte gehôren nicht gleichzeitig zum Gale-Diagramm. Die Fâlle, in
denen die a+3 Ecken selbst die Halbraumbedingung erfùllen, ergeben cs(a + 3, a)
Môglichkeiten.

Nehmen wir also an, ein Halbraum mit O auf dem Rand und nur einer (/?-fach-

belegten) Ecke im Innern existiert. Dann lassen sich die ûbrigen Punkte wie in Fig. 6

angezeigt zusammenschieben. Aus Symmetriegrûnden kann man wieder q^r an-
nehmen. Es ergeben sich jetzt [a/2] +1 kombinatorische Typen.

Ein Halbraum mit O auf dem Rand und keiner Diagramm-Ecke im Innern existiert
nicht, da sonst die Halbraumbedingung verletzt wâre. Insgesamt erhalten wir also

Formel (22).
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