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Konvexe Polytope mit Symmetriegruppe

G. EwaALD und K. Voss

1. Einleitung

Besitzen zwei konvexe Polytope des d-dimensionalen Euklidischen Raumes E‘
kombinatorisch isomorphe Randkomplexe, dann nennt man sie kombinatorisch dqui-
valent. Die Untersuchung von Klassen kombinatorisch dquivalenter Polytope gehort
zu den zentralen Fragen der Theorie konvexer Polytope. Insbesondere fragt man nach
der Anzahl solcher Klassen bei vorgegebenen Zusatzbedingungen, etwa Eckenzahl oder
Eckenzahl und zentrale Symmetrie (s. Griinbaum [1, 2], McMullen-Shepard [4]). Als
besonders schlagkréftige Methode bei derartigen Anzahlbestimmungen hat sich die
Methode der sogenannten Gale-Diagramme erwiesen. Mit ihrer Hilfe kann man
die Anzahl von Klassen konvexer Polytope im E“ in vielen Fillen explizit berechnen.
rechnen.

Wir geben in der vorliegenden Arbeit zundchst eine neue Darstellung der Gale-
Diagramme an (Abschnitt 2). Diese gestattet es, einen Zerfdllunsgsatz fiir die Gale-Dia-
gramme von Polytopen mit beliebig vorgegebener Symmetriegruppe zu beweisen
(Abschnitt 3) und so eine Reihe weiterer Anzahlbestimmungen von Klassen kom-
binatorisch dquivalenter Polytope vorzunehmen (Abschnitt 4). In einer auf die vor-
liegende Arbeit folgenden Veroffentlichung dehnen P. Kleinschmidt und C. Schulz
den Kreis derartiger Anzahlbestimmungen weiter aus [3].

Genaue Formulierung und Ausarbeitung der Beweise der Formeln (19), (20), (22)
sowie Formel (21) stammen von Herrn W. Schulte-Ladbeck [5]. Herr B. Kind hat
wertvolle Hinweise und Bemerkungen, insbesondere zu Abschnit 4, beigesteuert.

2. Gale-Diagramme

Wir betrachten im d-dimensionalen affinen Raum R ein n-tupel von Punkten x;,
die nicht in einem echten Teilraum von R? enthalten sind. Jedem solchen n-tupel
X=(x,,..., x,) lasst sich nach folgender Vorschrift ein n-tupel X*=(x},..., x5) von
Vektoren in einem Vektorraum der Dimension p=n—d— 1 zuordnen: Das Gleichungs-
system der affinen Abhingigkeiten im Punktsystem X

Z otixl=0, z Oti=0, (1)
i=1 i=1

wobei die «; Zahlen des zu Grunde gelegten Korpers sind, hat p linear unabhingige
Losungsvektoren (a4, ..., a,), die wir als Zeilenvektoren einer p x n-Matrix schreiben ;
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die Spalten dieser Matrix sind die Vektoren von X *1). Wir nennen X* ein zu X ge-
horiges Gale-Diagramm 2).

Im folgenden wird eine mehr koordinatenunabhingige Definition von X * gegeben,
wie sie sich fiir die Diskussion affiner Symmetrien als zweckmadssig erweist und aus
der sich auch sonst die Eigenschaften der Zuordnung X — X* leicht ablesen lassen.

Man kann die Punkte x von R? als Vektoren eines Vektorraums # der Dimension
g=d+1 auffassen, indem man zu den d Koordinaten &, in R? eine weitere Koordi-
nate £,;,, =1 hinzufiigt:

Rd={x=(fl,..., 6“, 1)}(: W. (2)
Affine Abhingigkeit (1) in R? ist dann gleichbedeutend mit linearer Abhingigkeit

.Zl OC,-x,- = 0 il’l W . (1,)

Seien jetzt U, V, W Vektorrdume iiber dem Grundkorper K mit
dimU=p, dimV =n, dimW=q und n=p+gq.

In ¥V sei eine Basis e, ..., e, fest gewdhlt. Der #n-dimensionale Vektorraum V* sei dual
zu V, das heisst: vermoge einer nicht ausgearteten bilinearen Funktion

(v*,v) fir v*eV* veV 3

mit Werten in K kann V'* als Menge der linearen Funktionen ¥ — K aufgefasst werden
und ¥ als Menge der linearen Funktionen V* > K. ¢%,..., ¥ seidie zu ey, ..., e, duale
Basis in V:

(e}, e;) =0;;. (4)
In W sei ein n-tupel von Vektoren mit maximalem Rang gegeben:

X =(x4,...,%,), x;€W, RangX=gq.
g sei diejenige lineare Abbildung, bei der

gV-oWw, ge)=x fir i=1,..,n. (5)
Wegen Rang X'=gq ist g epimorph, und fiir den Kern von g gilt

U=Kemg, dimU=n-q=p.

1) Vergleiche Griinbaum [1].
2) Bei Griinbaum: Gale transform.
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Der Teilraum U von ¥ ist der Raum der linearen Abhéingigkeiten im Vektorsystem
X fiir einen Vektor veV gilt

V= .; we el < -21 ax; =0. (6)

Wir wihlen noch einen Isomorphismus f zwischen U und U und fassen f als Abbildung
von U in V auf. Dann ist die Sequenz

0-ULVEW-0 @)

exakt, d.h. f ist monomorph, g epimorph und
Bild f =Kerng 3). (8)

Wir betrachten ausserdem die zu (7) duale Sequenz
0U*EvrEw* o, (7%)

Dabei sind f *, g* die zu f und g dualen Abbildungen; fiir die lineare Abbildung f *
gilt

(f*o* u) = (%, fu) ). )
Fiir den Ubergang von (7) zu (7%*) gilt: Der Funktor* ist exakt, also f * epimorph,
g* monomorph und Kern f * =Bildg*5).

Wir definieren nun das n-typel X*=(x7,..., xJ) von Vektoren in U* durch die
zu (5) dualen Formeln

fYRv*-sU*, xf=f*@EH) fir i=1,..,n. (5

Da e%,..., e} eine Basis und f* epimorph ist, wird Rang X*=p 8). X* heisst Gale-
Diagramm von X, der von X* aufgespannte Vektorraum U* Gale-Raum von X. Nor-
miert man die von Null verschiedenen x;* auf Linge 1 (beziiglich eines Skalarprodukts
in U¥*), so sprechen wir vom normierten Gale-Diagramm.

Ein Isomorphismus ¢: W — W fithrt X=(x,,... x,) in das linear dquivalente n-
tupel X' =(x4,..., x,) liber, wobei x;=¢ (x;). Ersetzt man g in (5) durch g'=¢g, so
wird Kern g=Kern g’; zu X und X’ gehort also dasselbe X*.

3) Fiir die Abbildungsmatrizen 4 und B von f und g bedeutet dies: A und B haben maximalen
Rang, und es ist BA=0.
4) Wihlt man auch in U und U* zueinander duale Basen uy, ..., #p und u*1, ..., u*p, so werden die

Abbildungsmatrizen von fund f* zueinander transponiert: aus f(u;)=X7-1 aye; folgt wegen (9) und
@) (f*e*x, w) = o, d.h. f*(e*x) = S0 -1 anrte®.

5) Dies folgt z.B. daraus, dass die in Anmerkung 3) genannten Eigenschaften beim Ubergang
zu den transponierten Matrizen erhalten bleiben.

) Da die Vektoren f(u;) in Anmerkung 4) eine Basis von U bilden, kann man die x*; nach der
Am anfang dieses Abschnitts erwdhnten Vorschrift berechnen.
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Andererseits ist f nur bis auf einen Isomorphismusy : U — Ubestimmt; Abidnderung
von f bewirkt einen Isomorphismus von U*. X* ist daher nur bis auf lineare Aqui-
valenz in U* bestimmt:

Durch (5*) wird jeder Klasse {X} linear dquivalenter n-tupel von Vektoren in W
mit Rang X =q eine Klasse {X*} linear dquivalenter n-tupel von Vektoren in U* mit
Rang X* =p zugeordnet.”)

Zwischen den Eigenschaften von X und X* besteht folgender Zusammenhang:

LEMMA 1. Y}.; a;x;=0 gilt dann und nur dann, wenn es eine lineare Funktion
L:U* - K gibt, so dass L(x})=uq, fiir i=1,..., n.

Beweis. L werde analog (3) als Element ue U aufgefasst, so dass L(x])=(x],u)
Indem man der Reihe nach (6), (4) und (8), (9) und (5*) anwendet, erhdlt man:
Y ax;=0<v=Y ae;e U< (ef, v)=a, und v=f ()< (x, u)=a;.

Die Abbildung I': {X'} — {X*} hat folgende Eigenschaften$8):

(a) I ist involutorisch, X ist also auch Gale-Diagramm von X *; insbesondere ist
I' bijektiv: zu vorgegebenem X* gibt es bis auf lineare Aquivalenz genau ein X.

Dies folgt daraus, dass der Ubergang von (7) zu (7*) und von den e, zu den e}
involutorisch ist.

(b) L sei eine nicht identisch verschwindende lineare Funktion W — K und

Ri={x|L(x)=1}cW ¥9).

Dann gilt (bis auf lineare Aquivalenz in W):
x;eR? fir i=1,..,n < Y x=0. (10)

Dies folgt aus Lemma 1, angewandt auf X* (an Stelle von X)) und W (an Stelle von U*).
Von jetzt an sei K der Korper der reellen Zahlen. Wir betrachten speziell Punkt-
systeme X in RY, also Vektorsysteme in W mit der Zusatzbedingung (b).
(c) Bekanntlich sind die Punkte X=(x,,..., x,) in R? dann und nur dann die
Ecken eines konvexen Polytops, wenn

X;ECONV (X 1y .eey Xjmgs Xip1sees Xg)»  E=1,.,1. (11)

Ubergang zu X* liefert auf Grund von Lemma 1 folgendes zum Eckenkriterium (11)
dquivalente Halbraumkriterium:

7) Da die X bijektiv den Abbildungen g oder g* zugeordnet sind, entsprechen die Klassen {X}
auch bijektiv den g-dimensionalen Teilriumen W* =g*W* von V'*, die Klassen {X*} den p-dimen-
sionalen Teilrdumen U =fU von V.

8) Auf Grund von Anmerkung 7) kann I" auch als Dualitdtsabbildung im Sinne der projektiven
Geometrie aufgefasst werden, die jedem g-dimensionalen Teilraum W* von V* den p-dimensionalen
Teilraum U von ¥V zuordnet, der durch Nullsetzen von (3) definiert ist.

9) Bei geeigneter Wahl der Basis in W bekommt man fiir R¢ die Darstellung (2).
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(11*) Zu jeder nicht identisch verschwindenden linearen Funktion L:U*— K gibt
es mindestens zwei Indizes i mit L(x})>0.10)

(d) Fiir die Seiten eines konvexen Polytops mit Ecken X =(x;, ..., x,) gilt das fol-
gende Schwerpunktkriterium:

Ein Teilsystem von X — z.B. x;,..., X, — spannt dann und nur dann eine Seite eines
konvexen Polytops auf, wenn es positive Zahlen a,, ..., a, gibt mit a,x7 + - + o xp =011),

Fiir die o-dimensionalen Seiten (k=n—1) ist in (d) ein zu (c) dquivalentes Ecken-
kriterium enthalten.

(e) X und X seien die Eckenmengen zweier konvexer Polytope in R’

Aus (d) folgt: Die Polytope sind genau dann kombinatorisch dquivalent, wenn
es eine bijektive Zuordnung zwischen X und X gibt, so dassim Gale-Raum folgendes
gilt: Liegt O im relativen Innern der konvexen Hiille einer Teilmenge Y* von X*,
dann liegt O auch im relativen Innern der konvexen Hiille der entsprechenden Teil-
menge Y* von X*, und umgekehrt.

Diese Bedingung dndert sich nicht, wenn man einen der Vektoren x; mit einem
positiven Faktor multipliziert. Entsprechendes gilt beim Halbraumkriterium (c). Man
kann diese Bedingungen daher im normierten Diagramm nachpriifen. Ist ein nor-
miertes Diagramm mit(11%) vorgegeben, so lassen sich die Langen der x| so festlegen,
dass (10) gilt.

(f) Beim Ubergang von X zu X* kann es vorkommen, dass verschiedene Punkte
von X im Gale-Diagramm zusammenfallen (z.B. x;#Xx,, aber x} =x3), oder dass
zusammenfallende Punkte (etwa x, =x,) in X* aufgespalten werden (x} #xz) Hier-
iiber beweisen wir folgendes Kriterium:

LEMMA 2. Im Gale-Diagramm ist x; =x5=---=Xp 4+ (k=>0) dann und nur dann,
wenn in R? folgendes gilt: Es ist k<d; die Punkte x,,..., X,., Spannen ein nicht-aus-
geartetes k-Simplex auf, welches in dem affinen k-dimensionalen Teilraum S liegt; der
Schwerpunkt s=(1/(k+1)) (x; + -+ + X+, ) und die Punkte X, , ,, ..., X, spannen zusam-
men einen affinen Teilraum T der Dimension d—k auf; ST ist der Punkt s.

Beweis. Aus dem Bestehen der Abhingigkeiten (10) und x}—x¥*=0 fir
i=2,...,k+1 folgt nach Lemma 1 (in dualer Form) die Existenz von linearen Funk-
tionen L(x) (gemdss (b)) und L,(x), fiir welche L,(x,)=1, L;(x;,)=—1, L;(x;)=0
fiir alle j# 1, i, und daher auch L;(s)=0. Dabei sind L, L,,..., L, ., linear unabhéngig,
wie man bestétigt, indem man in einer Abhingigkeit AL+ A,L,+ -+ 4441 Lx+1=0
der Reihe nach x;, x,,..., x;,, einsetzt. Die k Gleichungen L,(x)=0 (i=2,..., k+1)

10) Das heisst: bei jeder nicht-trivialen Abhingigkeit (1°) der-x; treten mindestens zwei positive
a3 auf, Man beachte, dass beim d-Simplex in R n=d + 1, also p =0 ist.

11) Das heisst (nach Lemma 1 in dualer Form): es gibt ein L: W — K mit L(x;)>0fiiri=1,..., k
und L(x;)=0fiiri=k+1,..., n. Fiir £ >1 bedeutet das: es gibt eine Stiitzhyperebene von X in R4,
die mit X den Durchschnitt xx,1,..., x» hat.
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definieren einen Teilraum 7; von W mit der Dimension d+1—k, welcher s und
Xi425 -5 X, €nthdlt; Schnitt mit L (x)=1 liefert den affinen Teilraum T von R
Fiir die Vektoren in W gilt Rang(x, ..., x;,,)=Rang(x,,..., X, s) und

Rang(x;,..., X, s) =a<k+1 } (12)

Rang(s, Xy42,-., %) =b<d+1—-k (inT,),

ferner Rang (X, ..., Xg+1s Xg+25-+5 Xp)=Rang(xy, ..., X, 5, X4 2,-.. X,)=d+1. Wegen
L(s)=1 ist s#0. Da die beiden Vektorsysteme in (12) also den ganzen Raum W
aufspannen, aber den Vektor s#0 gemeinsam haben, folgt a=k+1, b=d+1—k.
Daraus ergeben sich die Behauptungen von Lemma 2 iiber die Lage der x;.

Haben umgekehrt die x; die in Lemma 2 angegebene Lage, so spannt 7 zusammen
etwa mit x,..., X, 4+, eine Hyperebene in R? auf, die den Mittelpunkt der Strecke
X1 X, enthilt; es gibt also ein L, (x) mit L, (x,)=1, L,(x,)=—1, L,(x;)=0 fiir alle
j>2. Nach Lemma 1 gilt daher xT —x3=0. Analog folgt x¥=x} fiir i=3,..., k+1.

Lemma 2 folgt auch aus den im Abschnitt 3 bewiesenen Sitzen 1 und 2.
(g) Aus Lemma 1 folgt ferner:

LEMMA 3. Im Gale-Diagramm ist x{ =0 dann und nur dann, wenn die Punkte
X5, ..., X, in einer Hyperebene von R* liegen. Ist X Eckenmenge eines Polytops, so hat
man also eine Pyramide mit Spitze x,.

Im Hinblick auf die beabsichtigten Symmetriebetrachtungen nehmen wir nun fol-
gende Normierungen vor: Erstens identifizieren wir U mit U=Kern g: Es sei also
U=Kern gV und f die Injektion von U in V. Zweitens fithren wir in V ein Skalar-
produkt ein und wahlen fiir e, ..., e, eine feste orthonormierte Basis. Drittens nehmen
wir V*=V, U*= U und fiir (3) das Skalarprodukt in V. Gemiiss (4) wird dann ¢ =e¢;
fiir i=1,..., n. Wir haben

V=U®U*, U"* = orthogonales Komplement von U .
Aus (9) folgt (f*v, u)=(v, u) fiir alle ue U, an Stelle von (5*) haben wir also jetzt
f* = Orthogonalprojektion von V auf U . (5"

Das Gale-Diagramm entsteht also durch Projektion der Basis e; auf den Raum U der
Abhingigkeiten.

3. Zerfillungssatz

Wir untersuchen nun affine Abbildungen ¢ von R®, welche das Punktsystem X in
sich transformieren. Als Nullpunkt in R? nehmen wir den Schwerpunkt s von X. R}
sei der Teilraum von W, der aus R? durch Parallelverschiebung in Richtung —s ent-
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steht, bei dem also in (2) &,,, =0 gesetzt ist; man hat
W=Ri®wW'. (13)

Wegen ¢ (s)=s kann man ¢ als lineare Abbildung von W auffassen, die R} (und R?)
in sich abbildet und W1 elementweise festlisst.

Wir betrachten eine Gruppe G von Permutationen der Elemente 1,2,...,n. Zu
jeder Permutation

N\

P:v-oi, fir v=1,..,n (14)
gibt es hochstens eine affine Abbildung

@:R*>R? mit o¢(x,)=x; fir v=1,..,n, (14)

denn da unter den x; d+1 Punkte in allgemeiner Lage vorkommen, ist ¢ durch die
Eigenschaft (14) eindeutig festgelegt.

Wir sagen, G lasse sich als affine Symmetriegruppe von X darstellen, wenn es zu
jedem ¢eG eine Abbildung ¢ mit Eigenschaft (14) gibt. Die Menge G= {¢} ist dann
eine homomorphe Darstellung von G als Untergruppe der affinen Gruppe des R?.

HILFSSATZ 1. Falls X aus n verschiedenen Punkten besteht, ist G isomorph zu G.
N\
¢ legt dann ndmlich nach (14) und (14) die Permutation ¢ eindeutig fest.

Falls dagegen in X mehrere Punkte zusammenfallen, z.B. x;=x,=--=X; 4, SO
konnen verschiedene Permutationen durch dieselbe affine Abbildung dargestellt
werden; z.B. lisst sich jede Permutation von 1,..., n mit Fixelementen k+2,...,n
durch die identische Abbildung ¢ affin darstellen.

SATZ 1. Wenn sich die Permutationsgruppe G als affine Symmetriegruppe von X
darstellen lisst, dann gibt es auch eine Darstellung von G als orthogonale Symmetrie-
gruppe G* von X*. Falls dabei X* aus n verschiedenen Punkten besteht, ist G* isomorph
2 €. .

Jeder Permutation (14) aus G lésst sich also eine orthogonale Abbildung

e*:U->U mit o*(x})=x' fir v=1,..,n (14%)
zuordnen. ¢ und ¢* bewirken gemadss (14) und (14*) in X und X'* dieselbe Permutation
N\
(14) der Indizes.

Wir beweisen zuerst

HILFSSATZ 2. G={®} sei eine Permutationsgruppe, welche sich als affine Sym-
metriegruppe G={@} von X darstellen Idsst. Dann gibt es eine isomorphe Darstellung
G’ ={¢’} von G als orthogonale Gruppe von V mit folgenden Eigenschaften:
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(A) ¢’ bewirkt auf den Basisvektoren die Permutation ¢

(B) g0'=0g

(C) G lisst U und U* invariant

(D) Die Restriktion von G' auf U* ist linear dquivalent zu G.

Beweis. Zu jedem @eG gibt es genau eine orthogonale Abbildung ¢’ mit der
Eigenschaft

V-V, o¢'(e)=¢, fir v=1,...,n. (14"

G’ ={¢'} ist also eine Darstellung von G mit (A).

Wegen (5), (14) und (14’) folgt fiir jeden Vektor v=) a.e,, dass go’ (v)=pg(v)
ist, also (B).

Fiir u=) a,e,eU wird g(x)=0, also auch ¢g(u)=0=g(¢’'(w)), d.h. ¢’ (u)eU.
¢’ bildet also U in sich ab, und da ¢’ orthogonal ist, wird auch U+ in sich abgebildet,
es gilt also (C). '

Wegen U=XKern g bildet g den Teilraum U* von V isomorph auf W ab; nach (B)
gilt also fiir die Restriktionen von g und ¢’ auf U*:¢’ =g~ 1og, also (D).

Beweis des Satzes 1. Die Darstellung
G* = Restriktion von G’ auf U

hat die gewiinschten Eigenschaften: denn wegen (C) und (5') gilt ¢'f*=f*¢’, wegen
(5") folgt also (14*). Nach Hilfssatz 1 sind G* und G isomorph, falls X* aus verschie-
denen Punkten besteht.

Wir betrachten nun die Orbits (Transitivititsklassen), die bei der Anwendung von
G auf die Elemente 1,2,..., n entstehen. Sei
k, = Anzahl der Orbits der Lingev, Y vk,=n.

v

Wir nehmen an, G lasse sich als affine Symmetriegruppe G von X darstellen. Es sei
FixraumvonG =A< R®, dimA=a. (15)

Von den Punkten x; von X liegen also genau k, Punkte in A4; allgemein entspricht
jedem Orbit der Lange v ein Orbit von v Punkten in X, die in einem zu A transversalen
Teilraum G-symmetrisch verteilt sind.

SATZ 2 (ZERFALLUNGSSATZ). Wenn X die affine Symmetriegruppe G mit
a-dimensionalem Fixraum A gestattet, so lisst sich die von G auf X bewirkte Permuta-
tionsgruppe im Gale-Raum als orthogonale Symmetriegruppe G* von X* darstellen, und
fiir den Fixraum A* von G* gilt

dimAd*=a*=Yk, —a—1. (16)
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Hierbei brauchen die Punkte von X nicht alle verschieden zu sein, und im Gale-Raum
konnen einzelne Orbits zu einem Punkt in 4* zusammenfallen. A* heisst Gale-Achse.

Beweis. Auf Grund von Satz 1 ist nur noch die Dimensionsaussage (16) zu be-
weisen.

a) G'={¢’} sei die orthogonale Darstellung (14') von G in V. Bei G’ werden die-
jenigen Basisvektoren unter e,,..., e,, die zu einem Orbit gehGren, untereinander
transitiv vertauscht. Fiir einen Vektor v=) a,e, gilt daher ¢ (v)=v fiir alle peG
genau dann, wenn die Koordinaten «,, die zu einem Orbit geh6ren, untereinander
gleich sind. Es sind also genau so viele Koordinaten frei wahlbar wie es Orbits gibt.
Dabher folgt

Fixraumvon G' = A' <V, dimA' =) k,. (17)

b) Wir fassen jedes ¢ aus G gemdss (13) als lineare Abbildung von W auf. Da
W1 elementweise festbleibt, hat der Fixraum von G in W die Dimension a+1. G’
ldsst U und U* invariant. G sei die Restriktion von G’ auf U*. Dann folgt aus Hilfs-
satz 2, (D):

Fixraumvon G =Ac U*, dimAd=a+1. (18)

c) Jeder Vektor ve V besitzt die eindeutige Zerlegung v =u+u* mit ue U, u*eU*".
Wegen (C) (Hilfssatz 2) folgt fiir alle ¢'eG’: ¢’ (v)=v<>¢’ (u)=u und ¢’ (u*)=u",
dass heisst

A=A A,
also dim A* =dim A4’ —dim 4. Aus (17) und (18) folgt (16).

Ausser in den Vektorriumen ¥V und U kann man auch noch in W ein Skalar-
produkt einfiithren, den affinen Raum R also als Euklidischen E“ auffassen; dabei
kann das Skalarprodukt in W so gewdhlt werden, dass die affine Symmetriegruppe
G von X aus orthogonalen Abbildungen, also Bewegungen von E* besteht.

4. Abzidhlung kombinatorischer Klassen von Polytopen

Seien P ein Polytop im E? und G eine Symmetriegruppe von P. Wie oben sei 4
der Fixraum von G und dim A =a. A ist die Gesamtheit aller Punkte des E?, die unter
samtlichen Elementen von G festbleiben. 4 heiBt Achse von P (beziiglich G). ¢; (v, d, a)
sei definiert als die Anzahl der Klassen kombinatorisch dquivalenter d-Polytope mit
v Ecken, Symmetriegruppe G (als abstrakte Gruppe vorgegeben) und zugehdriger
Achsendimension a. Werden dabei nur simpliziale Polytope betrachtet, so setzen wir
cg (v, d, a) fiir die entsprechende Anzahl. Beschranken wir uns auf den Fall, daB keine
Ecke des Polytops auf der Achse liegt, so wird die verbleibende Zahl mit c3 (v, d, a)
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bezeichnet. Mit ¢ (v, d) wird die Zahl aller kombinatorischen Klassen von d-Polytopen
mit v Ecken benannt (Griinbaum [1]). Wir geben nun einige Anwendungen des
Zerféllungssatzes (Satz 2) auf die Berechnung von Anzahlen der genannten Art an.

(19) Sei p eine Primzahl und k> 2 eine natiirliche Zahl. Dann gilt (Z,=zyklische
Gruppe der Ordnung p):

k(o= k4 1,1) =[5 ]

Fiir p=2 ist dies Formel (23) in [4].

Beweis. Fiirdie Dimension des Gale-Raumes erhalten wir d*=pk—(p—1)k—1-1
=k —2. Die Gale-Achse besitzt die Dimension a*=k—1—1=k-2. Folglich besteht
der Gale-Raum nur aus Fixpunkten, und daher wird jeder der k Orbits von G auf
einen p-fach belegten Punkt abgebildet. Wegen der Halbraumbedingung fdllt hchstens
einer dieser Punkte in den Nullpunkt.

Die Anzahl der moglichen kombinatorischen Typen ist unabhingig von dem Wert
der Primzahl p. Wir kdnnen also aus der Formel (23) in [4] den behaupteten Wert
folgern. (Shepard und McMullen benutzen eine elementare Abzdhlmethode, ohne
Gale-Diagramm. In [5] ist auch mit Hilfe von Gale-Diagrammen die obige Formel
noch einmal explizit berechnet worden).

(20) Sei p>2 eine Primzahl und a>0 eine ganze Zahl. Dann gilt
cz,(p(a+1), p(a+1)-3,a)=c(a+1,a—2)+f(a)+a+1-5, 5 +g(a),
wobei

0 fir a=0 oder 1

FO= (5 +4 ("3 ) +1-4@-9HGa-5] soms,

a+1}|[a+3 a a+1

o=+ [ ][5JCL] 5] )
und c(a+1, a—2)=0 fiir a=0 oder 1. (8, = Kroneckersymbol).
Uber ein Gegenstiick zu dieser Formel fiir p=2 vgl. Shepard-McMullen [4, (26)].

Beweis. Der Gale-Raum ist jetzt 2-dimensional, die Gale-Achse 0-dimensional. Es
gibt a+1 Orbits der Linge p. Das Bild eines Orbits ist entweder ein p-Eck, oder es
fillt ganz nach O. Im Falle eines p-Ecks ist dieses regelmédBig, weil es wieder Z, als
Symmetriegruppe hat. Durch Ubergang zu Einheitsvektoren im Gale-Diagramm
kO6nnen wir annehmen, dal} alle p-Ecke einem Kreis einbeschriebenen sind (Figur 1
fiir p=3). Liegt eine Ecke eines p-Ecks einer Ecke eines zweiten p-Ecks gegeniiber,
so liegen auch die anderen Ecken des ersten p-Ecks gegeniiber Ecken des zweiten
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p-Ecks. Um die wesentlich verschiedenen Moglichkeiten zu studieren, geniigt es daher,
die Verteilung von Punkten in einem halboffenen Kreisbogen der Linge =n/p und
dessen Spiegelbild bei der Punktspiegelung an O zu betrachten. Wir bezeichnen die
Vereinigungsmenge der beiden halboffenen Kreisbogen mit W’. Statt nun die Ver-
teilung von Ecken in W’ zu studieren, konnen wir wieder die ganze Kreislinie W
betrachten, indem wir W’ durch die komplexe Abbildung z— z? auf W abbilden;
mit der Mallgabe allerdings, daB3 jetzt die Halbraumbedingung nicht zu gelten braucht.
Es miissen nur mindestens zwei Ecken auf der Kreislinie liegen, da diesen zwei p-
Ecke zugeordnet sind, die die Giiltigkeit der Halbraumbedingung im urspriinglichen
Problem gewdhrleisten. Im Falle p>5 geniigt sogar eine Ecke.

Fig. 1 Fig. 2

Um die Abzdhlung durchzufiihren, betrachten wir zuerst den Fall, daB die Ver-
teilung der Ecken auf W die Halbraumbedingung erfiillt. Die g Punkte auf W (g<a+1),
zusammen mit dem (@+ 1 —g)-fach belegten Nullpunkt sind dann Gale-Diagramm
eines (a—2)-dimensionalen Polytops mit a+1 Ecken. Wir erhalten hierfiir ¢(a+1,
a—2) Moglichkeiten. (Man beachte die in (20) festgelegte Schreibweise c¢(1, —2)=
c(2,—1)=0).

Als nichsten Fall nehmen wir an, daf in jedem offenen Halbkreis von W minde-
stens eine Ecke liegt, in mindestens einem dieser Halbkreise aber auch nur eine Ecke.
Man erhilt (bis auf zuldssige Abdnderungen) Verteilungen der in Fig. 2 angedeuteten
Art (m, n usw. bedeuten die Vielfachheiten der Belegung). Diese sind aber in [4, S. 284]
fiir a+ 3 statt a+1 untersucht worden. Setzen wir in der dort angegebenen Grofe
x (a) formal a+1 statt a+3, so erhalten wir die in (20) vorkommende Anzahl f(a)
von Moéglichkeiten.

SchlieBlich betrachten wir den Fall, daB es einen offenen Halbkreis von W gibt, in
dem keine Ecke liegt. Wir erhalten die in Fig. 3 angedeuteten Verteilungen. Dabei
konnen wir aus Symmetriegriinden r<s annehmen. Ferner gilt r+s+g+t=a+1.

Sei zuerst r=0. Dann konnen die iibrigen ¢+ s Punkte auf der Kreislinie zusam-
mengeschoben werden, ohne daBB man den kombinatorischen Typ verdndert (Fig. 4).
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Liegt die Z, als Symmetriegruppe vor, so muB zusitzlich s>2 eingeschrinkt werden
(sonst widre im urspriinglichen Gale-Diagramm die Halbraumbedingung verletzt).
Dies ergibt a Moglichkeiten. Ist p>5, dann sind alle Fille 1 <s<a+1 zugelassen,
und wir erhalten a+ 1 kombinatorische Typen. Fiir beliebiges p konnen wir bei r=0
auch a+1-4,, ; als Anzahl schreiben.

(N t
N

S

Fig. 3 Fig. 4

Bleibt also r>1 zu untersuchen. Die hierbei durchzufiihrenden Rechnungen sind
zwar elementar, aber etwas langwierig; wir fithren sie hier nicht aus (vgl. [5]). Man
bekommt als Anzahl die in (20) angegebene Zahl g(a). Insgesamt ergibt sich der
behauptete Wert.

BEISPIEL: cz,(6, 3, 1)=2. Reprisentanten der beiden Klassen sind in Fig. 5
gezeichne (Dreiseitprisma und Oktaeder).

PIANN

/
Vi
x

(21) Sei p eine Primzahl und a>0 eine ganze Zahl. Dann gilt

Fig. 5

0 falls p=2

sk — =
| cz,(p(a+1),p(a+1)-3,a) cs(a+1,a_2)+[§:|+1-—6(a,p) sonst,
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wobei

1 falls a=0 und p=3
G p)‘{o sonst

und ¢’ (1, —2)=c*(2, —1)=0 gesetzt wird.

Beweis. Wir gehen genauso vor wie im Beweis von (20) und haben die Verteilungen
von a+ 1 Ecken auf der Kreislinie W zu untersuchen. Da jetzt nur simpliziale Polytope
betrachtet werden, diirfen im urspriinglichen Gale-Diagramm zwei p-Ecke niemals so
liegen, daB3 eine Ecke des einen einer Ecke des anderen gegeniiberliegt. Dies ist dquiva-
lent damit, daB keine zwei Ecken den Abstand z/p haben. Ferner fillt keine Ecke
nach O. In W beriicksichtigen wir diesen Umstand, so daB keine diametral gelegenen
Punkte gleichzeitig Ecken sind und keine Ecke nach O fillt.

Liegen in jedem offenen Halbkreis von W mindestens zwei der a+1 Ecken, so
erhalten wir ¢*(a+ 1, a—2) Moglichkeiten. Nehmen wir also an, daB ein Halbkreis
von W mit nur einer Ecke im Innern existiert. Dann lassen sich die anderen Ecken,
wie in Fig. 6 angezeigt, zusammenschieben. Aus Symmetriegriinden kénnen wir g<r
annehmen. Ferner gilt g>1,r>1 und g+r=a. Daraus erhdlt man [a/2] Mdglich-
keiten.

Fig. 6

SchlieBlich gebe es einen Halbkreis mit keiner der a+1 Ecken im Innern. Wir
miissen dann wie im Beweis von (20) p=3 und p>3 unterscheiden. Im ersten Fall
erhalten wir fiir a=0 keine zuldssige Eckenverteilung, im zweiten Fall und im Fall
a>0, p=3 konnen wir uns alle Ecken zusammengeschoben denken und erhalten so-
mit genau einen kombinatorischen Typ. ZusammengefaBt ergibt das 1 -4 (a, p).

(22) Sei p eine Primzahl. Dann gilt
a
z,(p(a+3),p(a+3)-3,a)=c(a+3,a)+ [5] +1.

Beweis. Gale-Raum und Gale-Achse sind jetzt beide 2-dimensional. Das Gale-
Diagramm besteht daher aus a+ 3 Punkten mit p-facher Belegung. Da nur simpliziale
Polytope betrachtet werden, fillt kein Punkt des Gale-Diagramms nach O, und gegen-
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iiberliegende Punkte gehOren nicht gleichzeitig zum Gale-Diagramm. Die Fille, in
denen die a+3 Ecken selbst die Halbraumbedingung erfiillen, ergeben c¢*(a+ 3, @)
Moglichkeiten.

Nehmen wir also an, ein Halbraum mit O auf dem Rand und nur einer (p-fach-
belegten) Ecke im Innern existiert. Dann lassen sich die iibrigen Punkte wie in Fig. 6
angezeigt zusammenschieben. Aus Symmetriegriinden kann man wieder g<r an-
nehmen. Es ergeben sich jetzt [a/2]+ 1 kombinatorische Typen.

Ein Halbraum mit O auf dem Rand und keiner Diagramm-Ecke im Innern existiert
nicht, da sonst die Halbraumbedingung verletzt wire. Insgesamt erhalten wir also
Formel (22).
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