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Hohere Whitehead Produkte der zwei dimensionalen Sphire

HANS JOACHIM BAUES

In Theorem 2.4 von [3] wurde gezeigt, das Whitehead Produkte [«, 8]ex,(S?)
fiir n# 3 trivial sind. K. A. Hardie bemerkt im AnschluB an Theorem 5.5 in [2], daB
auch Whitehead Produkte dritter Ordnung £en, (S?) fiir n+# 3 verschwinden. In dieser
Arbeit zeigen wir, daB allgemein Whitehead Produkte héherer Ordnung éen, (S?) fiir
n# 3 trivial sind.

Sei P=8""x...xS8™. ein Produkt von Sphiren mit m;>1 fiir alle i. Die Grund-
punkte dieser Sphédren bestimmen eine Zellenzerlegung von P mit genau einer N-Zelle
e, N=Y m,. Sei P'=P —e" und sei w: SV ! - P- die anheftende Abbildung fiir die
Zelle e". Zu einer Abbildung g: P- »X heiBt dann das Element w*(g)eny_,(X)
hoheres Whitehead Produkt, siehe [4].

SATZ. Sei w*(g)eny_,(S?) hoheres Whitehead Produkt zu g: P- — S?, dann ist
w*(g)=0 fiir N #4.

Aus diesem Satz folgt, daB es im Kern der Suspension, zum Beispiel in ¢ (S?),
Elemente gibt, welche nicht durch Whitehead Produkte héherer Ordnung darstellbar
sind. Weiterhin erhalten wir wegen 2.4 in [4] das Korollar:

KOROLLAR. Sei P* das k-Skelett von P. Fiir k>4 lift sich jede Abbildung f :
P¥*— S? iiber P fortsetzen.

Der Beweis des Satzes macht keine Schwierigkeit, wenn alle m; > 3. Falls in dem
Produkt P auch 1-Sphéren oder 2-Sphéren vorkommen, so bendtigen wir zum Beweis
des Satzes den folgenden zahlentheoretischen Hilfssatz. Sei M, ;, die Menge der
k-elementigen Teilmengen von {1, 2,..., n}. y

Fiir @, be M, ;, mit c=aUbeM,, ,, sei ¢, ,€{—1, 1} das Vorzeichen der 2k-stel-
ligen Permutation ¢ mit ¢,;=a; fiir 1<i<k und c,;=b;_, fiir k<i<2k. Dabei sei
€y <+ <Cyp» @y <++<a und b, <---<b, fiir c;ec, a;ea und b;eb mit i=1, 2,..., 2k
bzw. i=1,2,..., k.

HILFSSATZ. Seis= (s, | aeM, ,) mit s,eZ ein Tupel von ganzen Zahlen, so daf
fiir alle ce M, , gilt

Y €p5S.85,=0.
aUb=c¢

Dann gibt es eine ganzzahlige nx 2-Matrix A= (a;;), so daf s,=det(4,) fiir alle
aeM, ,. Dabei sei A,=(a;;);., die durch a bestimmte 2 x 2-Untermatrix von A.



Hohere Whitehead Produkte der zwei dimensionalen Sphéire 117

Beweis des Hilfssatzes. Sei s#0. Falls 5;,=1, sei 4 gleich L(s)= (a;;) mit a;, =
=a,,=1, a;,=a,;=0 und a;; = —5,;, a;;=s,; fiir n>i>2. Es operiert BeGL(n, Z)
auf der Menge der Tupel s, die die Gleichung im Hilfssatz erfiillen, durch

firae M, ,, (B, , sei die a x b Untermatrix von B). Dazu vergleiche den Laplaceschen
Entwicklungssatz. Sei 7= Min {|(B¢s),,|, BeGL(n, Z) und (Bos);, #0},(|...| bezeich-
ne den Absolutbetrag), und sei BoeGL (n, Z) mit (Byos),,=m und |m|=m#0. Dann
gilt, daB m Teiler ist von (B,os), fiir alle ae M, ,. Die Matrix 4 im Hilfssatz sei nun

1
gegeben durch das Produkt B, 1L(— Bo s) E,, von Matrizen mit E, = (’(7)1 ?)
m

Beweis des Satzes. Fiir N <4 ist die Behauptung trivial, sei also N > 4. Sei
T,=S'x..-xS8' der n-dimensionale Torus und sei T* das k-Skelett von T,. Sei
pn: Ty— T,/Th™'=S" die Projektion. Das Produkt p,,, x -+ X p,, : Ty~ P induziert
eine Abbildung p, fiir die das Diagramm

SN—I
W/ \w

Ty—— P

homotopiekommutativ ist. Dabei ist Ty= Ty '= Ty—e". Die Darstellung von S?
als universeller Uberlagerungsgruppe von SO(3) bestimmt eine Abbildung m:S 3 x
x 82— S§2 vom Typ (7, 1,), wo yen;(S?) das Hopfelement und 1,en,(S?) ein Er-
zeugendes ist. Wir konstruieren zu f= gp geriistweise eine Abbildung F, fiir die das
Diagramm

Ty ., g2
F m'/ m
/

id % py

S x T,—> 8% x §2

homotopiekommutativ ist. Dabei sei m'=m(id x p,). Da S°x T, ein H-Raum ist,
folgt w*(F)=0 und damit auch w*(g)=w*(f)=0, was zu beweisen ist. Sei
f*: T% - §? die Einschrinkung von f. Die Abbildung f? bestimmt ein Tupel von
Zahlen s= (s, | ae My ,), so daB f? zu der Hintereinanderschaltung

22,131 = v 521,87
aeMn, 2
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homotop ist mit j als Projektion. Aus dem Satz in der Einleitung von [1] folgt wegen
N >4, daB s die Gleichungen in obigem Hilfssatz erfiillt. Die zu s gegebene
Matrix 4 induziert dann eine Abbildung 4, so daB f2 zu der Hintereinanderschaltung

T2 c Ty T, -2 52
homotop ist. Sei F? gegeben durch die Hintereinanderschaltung

F2TE e T, 22, 8% x T,

mit O als trivialer Abbildung. Es ist dann m’F?~ f2 homotop. Sei nun fiir k>3 eine
Abbildung F*~1: Tk ' - §3 x T, konstruiert mit m'F* "'~ f*~! Dannist F*~! iiber
Ty, fortsetzbar, denn S° x T, ist H-Raum. Dam :m, (83 x T,) - m(S?) surjektiv ist,

gibt es zu F*~! sogar eine Fortsetzung F* mit m'F*~ f* Wir setzen F=F"~!, Damit
ist der Satz bewiesen.
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