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Categories with Ultraproducts

by ROBERT FITTLER

Introduction

The aim of this paper is to characterize those categories M with underlying set
functor U:M — S which are equivalent to the category M(T) (cf. I.5.) of models of
a theory T and homomorphisms, for a certain large class of first order theories 7. They
are called special theories (cf. 1.7.). They include for example equational algebraic
theories with finitary operations, universal Horn theories (cf. IV.4.), the theory of
(total) order, the theory of dense order without extreme elements (cf. 1.9.), as well as
many others.

In part I we introduce the notion of U-objects (A4, @) (cf. I.1.) of some category M
with underlying set functor U:M — S. They are objects 4 of M with a distinguished
finitary tuple @ of elements of UA. U-maps are classes of homomorphisms which
coincide on the elements of & (cf. 1.2.). the sets U-Hom ({4, @), M) of U-maps from
a U-object (A4, @) to the various objects M €M give rise to the so called U-represent-
able functor U-Hom ({4, d), —):M—S.

Roughly speaking a theory T turns out to be special if and only if the functors
M(T) — S, induced by the predicate constants, are U-representable (cf. lemma 1.8.).

In part II we define the notion of U-subcategories of M, as small categories of
U-objects of M and U-maps between such (cf. II.1. and I1.2.). Then we introduce
U-dense U-subcategories and U-adequate U-subcategories (cf. I1.4. and 6.), which
are formally analogous to the standard notions of dense and adequate subcategories
respectively (cf. [U] and [I]), and they turn out to be equivalent, too (cf. lemma II.6.
and also [U] lemma 1.7.).

In the case of a special theory T, the U-subcategory N(7) in M(T) having as
objects the U-representing U-objects for the predicate constants is an example of a
U-dense U-subcategory in M(T), (cf. IL.9.).

Any U-dense U-subcategory N of M gives rise to a category M (Ly ) of structures and
homomorphisms as well as to a full imbedding M= M(Ly) (cf. I1.10., 11.), which in
case of a special theory T reproduces the full imbedding of M(T) into the category
M(L(T)) of all L(T)-structures. (cf. I1.12.).

In part III we fully imbed the category M into the category U — ][ M of so called
U-direct products (cf. III.2.). M is assumed to have a U-dense U-subcategory N in
which U:M- S is U-representable. U —]] M consists of direct products of the so
called U-corepresentable functors U-Hom (—, M): N®* - S, M eM. (cf. IL.1.). In the
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case of a special theory T the category of U-direct products is equivalent to the cate-
gory [ M(T) of standard direct products of models of T (cf. IIL.6.).

We then introduce the U-ultraproducts (cf. IIL.9.) in U-[[ M in formal analogy
with Ohkuma’s definition (cf. [O]). In the case of a special theory T they turn out to
be the standard ultraproducts (cf. III.14.). More generally, the full imbedding
McM(Ly) commutes with ultraproducts, provided that U-representable functors
do so (cf. II1.12).

In part IV we introduce the notion of an ultra dense U-subcategory N of a cate-
gory M which is closed with respect to U-ultraproducts. Such an N is a U-dense
U-subcategory of M containing a U-representing U-object of U:M — S. Furthermore
U-representable functors commute with ultraproducts and any functor G:N°?* - S is
corepresentable if and only if some ultrapower G’/D of G is U-corepresentable. It
follows that M has an ultradense U-subcategory N if and only if M is equivalent to
the category M(T') of all models and their homomorphisms of a special theory T’
(cf. IV.5.). This is the functorial characterization of categories of models we aimed at.
It concerns a larger class of theories 7 than F. W. Lawvere’s and O. E. Kean’s charac-
terizations which deal with algebraic theories and universal Horn theories respectively
(cf. [L] and [Kn]).

In part V we investigate those special theories which have only finitely many
predicate constants and are F-axiomatized (cf. V.1.). They turn out to have a purely
syntactical description: they are “locally atomistic”” (cf. V.7. and 8.). The category
M(T), for such a T, is characterized by the conditions that it be closed with respect to
direct limits of directed systems and that it have a finite ultra dense U-subcategory
(cf. theorem V.9.). The model theoretic methods we use in part V are developped in
full generality in [F1] and [F2]. Here we will sometimes sketch them only in a form
adapted to what we need.

I. U-Representable Functors

1. U-Objects. Let S be the category of sets and let U:M— S be an “underlying
set functor’” of some category M. By a U-object {4, @) of M we understand an ordered
pair where A4 is an object of M and d is a finitary tuple (a,..., a,) of elements from UA.

2. U-maps in M are equivalence classes [ f]: {4, @)— M of morphisms f:4—->M
in M. Two morphisms f, g:4 =3 M being in the same class [ f]1=[g]:{4, d) > M if
f(a)=g(a), @=(ay,..., a,-.- a,). The set of U-maps {4, d)— M will be denoted
by U-Hom ({4, @), M ). For any fixed U-object {4, @) in M one can view U-Hom x
x ({4, @), —):M— S as a functor. The natural imbedding U-Hom ({4, @), —)cU"
(for d=(ay,..., a,)) [f1:<{4, @) - M f(d@)e[U (M)]" will be called the canonical
imbedding.
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3. U-representable Functors. A functor G:M — S which is naturally equivalent to
U-Hom ({4, @), —) will be called U-representable by the U-object {4, @). If a sub-
functor G of U" is the image of the canonical imbedding U-Hom ({4, d}, — )< U" it
will be called canonically U-representable by {4, d@)» (or “cU-representable™).

4. Dense Orders Without Extreme Elements. Let M be the category of densely
ordered sets without extreme elements, the morphisms being strictly order preserving
maps (i.e. imbeddings). U:M — S is the usual underlying set functor. It follows that
U is cU-representable for example by the U-object (Q, 0>, where Q is the order of the
rationals. Furthermore let ¥ :M— S be the subfunctor of U?:M —S where VM con-
sists of all pairs (a, b)e (UM )? which fulfill Mka<b (i.e. a precedes b in the order of
M). It can easily be shown that ¥ is cU-representable by the U-object <Q, 0, 1.

5. Categories of Models. Let T be a first order theory, having equality “="" as one
of its predicate constants p, q.... By M(T) we understand the category whose objects
are the models A4, B,... of T and whose morphisms are those maps f : 4 — B which
preserve the validity for the predicate constants, e.g. if AFp(ay, a,) then BEp( f (a,),
f (a;)). We will call them homomorphisms. By U:M (T)— S we denote the corre-
sponding underlying set functor.

For n-ary predicate constant p of T we denote by p(M), M e T, the set of all
n-tuples (a,..., a,) of elements in M which fulfill Mkp(ay,..., a,). Thus p:M(T)—S
becomes a functor, namely a subfunctor of U" : M (7T) — S. By abuse of language
we say that the predicate constant p is U-representable if the corresponding functor
p:M(T)->S is U-representable. E.g. in the case of dense orders without extreme
elements we have stated that the predicate constant x< y is U-representable. (cf.
1.4.). If p is cU-representable by {4, @) then it follows that Ak p(d).

U itself is cU-representable by {E, e) if and only if the binary predicate x=y
(equality) is cU-representable by (E, e, e).

6. Standard Direct Products. Let T be a first order theory. By L(T) we mean T
without its nonlogical axioms. The models of L(T') are sometimes also called L(7T)-
structures. By the standard direct product [[, M (i) of some family {M (i)};.; of
L(T)-structures one understands the L(T)-structure whose underlying set U ([,
M (i)) is the direct product [[; UM (i), and p([[; M ())=]1, pM (). [T M (i) is
also the direct product with respect to the category M(L(T)). The category [ | M(T)
is defined to be the full subcategory of M(L (7)) whose objects are standard direct
products []; M (i) of models in M (7). For any full subcategory K of M(L(T)) we
define [[K to be the full subcategory of M(ZL (7)) whose objects are the standard
direct products of objects in K.
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7. Special Theories. T is called a special theory if for any standard direct product
[1: M (i) of models, any finitary tuple i of elements in []; M (i) and any predicate
constant p of T with [[; M (i) kp (i) there exists a model N eM(T) with a finitary
tuple 7 of elements and a homomorphism f:N—[]; M (i) in [] M(T), fulfilling

(Ur) (7)=m.

8. LEMMA. T is special if and only if all its predicate constants are canonically
U-representable.

Proof. Let the predicate constants of 7"be canonically U-representable and assume
[ M (i)Ep (). Since p is cU-representable, say by {4, d@) such that Ak p(d), there
is a U-map [f(i)]:<4,d>—>M (i) with f(i)(@)=m(i), for any iel Hence
{f(@)}ier:A—>]]; M (i) and d—m. Thus T is special. Conversely let T be special.
Let || T'|| be the cardinality of the set of all formulas of 7. Let {<{N (i) #(i))};. be the
set of all possible (nonisomorphic) U-objects (N (i), #(i)) with |N (i)|<| | T| such
that NV (i) Epii(i)). Since T is special there exists N eM(T), and 7 such that N Fp ()
and furthermore some f:{f(i)}ic;: N=]]; N (i) such that f (i):fir>7i(i). We
claim that the U-object (N, #) is a cU-representing object for p. Let M kp (/) be
given. According to the downwards Lowenheim-Skolem theorem there exists some
elementary submodel M’'<M containing i with cardinality |M’|| < |T|. {(M', @)
is isomorphic to {N (i), 7 (i))for some iel. Thus thereis the homomorphism
S (i):N—N (i)=M'< M sending 7i—ni. Hence U-Hom ({¥, i), M )= p(M ) sending
[f1-f(#). QED.

9. The theory of dense order without extreme elements is easily seen to be an example
of a special theory (cf. also 1.4.). Thus the predicate constants x=y and x<y are
again proved to be cU-representable.

II. U-dense U-subcategories

1. U-maps Between U-objects [ f]:{A,dy—{B,b) are those U-maps[[]:
{4, @) — B such that Uf :UA — UB maps the g;’s onto some b,’s.

2. U-subcategories. A small category N consisting of U-objects of a category M
with underlying set functor U:M — S, and U-maps between those U-objects is called
a U-subcategory of M. For every M eM one gets then the functor U-Hom(—, M ): x
x N°? - § since U-Hom(—, —):N°*x M-S is a functor (in both variables).

3. U-direct Limits. Let 4 be a diagram of U-objects and U-maps of M. Such a
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diagram will be called a U-diagram. An object M eM is called a U-direct limit of 4,

—_

M =U-lim 4, if the following holds:
(a) Thereisa U-map {4, d) - M from every {4, @Y€ 4 such that for any U-map
(A, d)—{B, b) in 4 the diagram

4,y —<B,b)

N 4
M

of U-maps commutes.

(Such a family {<4,a) > M} 4 s5c4 of U-maps will be called a compatible
family of U-maps from 4 to M.)

(b) For every compatible family {<A4, @) = N} 4 4, 4 of U-maps into some object
N eM there exists precisely one morphism M — N in M such that the diagrams

{A,d>)—-M

NS
N

commute (as U-maps).
It follows immediately that any two U-direct limits of the same U-diagram are
isomorphic.
The U-maps (A4, d) —» M are called the universal U-maps.

4. U-dense U-subcategories. Let N be a U-subcategory of M. To every object
M eM we will associate the following U-diagram 4 (M) in N:It contains a copy of
(A, d)y for every possible U-map {4, d)— M. Those U-maps will be called the
canonical U-maps into M. A U-map {4, @) — (B, b)> between such U-objects be-
longs to 4(M) if for the corresponding canonical U-maps {4, @) - M — (B, b)>
the diagram

(4, @) =B, b}
N /
M
commutes.

N will be called U-dense in M if for every M eM M is a U-direct limit of the
U-diagram 4 (M) such that the canonical U-maps and the universal U-maps coincide.

5. Dense Orders Without Extreme Elements (cf. 1.4.). Let N be the U-category in
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M consisting of the U-objects <Q, 0> and {Q, 0, 1)) and all possible U-maps between
them. It is easy to show that N is U-dense in M. (cf. also 1.9. and I1.9.)

6. U-adequate U-subcategories. Let N be a U-subcategory of M. We define
Y:M—SY” to be the functor which assigns to M eM the functor ¥ (M)=
U-Hom (—,N° — S (cf. 2.).

The U-subcategory N of M is called U-adequate in M if the functor ¥ :M — SN
is full and faithful, i.e. any natural transformation U-Hom(—, M)— U-Hom(—, N)

f
is induced by some morphism M — N, and two different morphisms M = N induce
g

different natural transformations U-Hom(—, f)# U-Hom(—, g).

7. LEMMA. Some U-subcategory N of M is U-dense in M if and only if it is
U-adequate in M.

Proof. Let N be U-dense in M. Let the natural transformation «: U-Hom (~, M)—
—U-Hom(—, N) be given, M, NeM. Apply « to all the canonical U-maps {4, d) —
—M, (A,dy)ed(M). Thus one gets a compatible family of U-maps {4, @) — N,

_——-—) f
which induces a morphismM — N, since M~ U-lim4 (M ). If two morphisms M = N
g

are different then there must be some {4, d@)€A4 (M) such that the two compositions
—

s

(A, d)—> M =3 N are different since M is the U-lim4 (M) and {4, @) — M is universal.
g 5

But this means that the induced natural transformation U-Hom(—, f) and U-

Hom (—, g) act differently on {4, @) - M. Conversely let N be U-adequate in M. In
order to show that for any MeM M is a U-direct limit of 4 (M) and the canonical
U-maps {{A, @) = M} 4.2y c 4 are the universal ones, let {{4, @) — N} be any com-
patible family of U-maps from 4 (M) to some NeM. The correspondence between
the family {<A4, @) > M} 4,4y c s and the family {<A4, @) = N} 4 ay e aouy is €asily
seen to be a natural transformation U-Hom(—, M )— U-Hom(—, N). The latter is
induced by some morphism f:M— N in M, since N is U-adequate in M. Thus

(A,d>>M

N ST
AT

is commutative (as U-maps) for every {4, @) in 4(M). It is left to be shown that
there is no other morphism g: M — N which makes this triangle commutative. f#g
implies U-Hom (—, f)# U-Hom(—, g), since N is U-adequate in M. Hence there is
{4, d)— M on which U-Hom(—, f) and U-Hom(—, g) act differently. Thus U-
Hom (—, g) is not the original correspondence between {{4, @) = M }(4,ayeau) and

{<A, a) —’N}<A'a> e 4(M)* Q.E.D.
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8. Categories M(T') of Models (cf. 1.5.). Let N(T') be the U-subcategory of M(T)
containing one (ore more) U-representing U-object of each canonically U-represen-
table predicate constant of 7, the morphisms being all possible U-maps between them.

9. LEMMA. N(T) is U-dense (or U-adequate) in M(T) if T is special.

Proof. Since T is special, all its predicate constants are U-representable (cf. lemma
I.8.). Let any natural transformation «: U-Hom (—, M )— U-Hom(—, N) be given.
Since p(M)=~U-Hom ({4, d), M) a represents a homomorphism M — N. Two dif-
ferent morphisms M 3 N induce different maps UM =3 UN. If {E, e) U-represents U
(cf. 1.5.) we have two different maps U-Hom ({E, e}, M) =3 U-Hom ({E, e), N). Hence
the induced natural transformations U-Hom(—, M)3 U-Hom(—, N) cannot be
equal. Thus we have shown that N(7') is U-adequate in M(T), thus it is U-dense.

Q.E.D.

10. N-structures. Let N be a U-subcategory of M. By Ly we denote the first order
theory (without nonlogical axioms) which has one n-ary predicate constant p , ,, for
each U-object {4, d)e N with d=(a,,..., a,). We are going to define a functor s:M —
—M(Ly) from M into the category M(Ly) of Ly-structures and homomorphisms.
For this let Uy:M(Ly)— S be the underlying set functor. For MeM, s(M ) in M(Ly)
is defined by Un(s(M))=UM and p.,,; (M)=image of {U-Hom ({4, @), M) <
< (Un(s(M))} for <4,dyeN. For f:M—>N in M we set Ux(s(f))=U(f):
Un(s(M))— Ux(s(N)). s(f) is a homomorphism because f induces a natural trans-
formation U-Hom(—, f): U-Hom(—, M)— U-Hom(—, N), i.e.

U-Hom ({4, @), f):U-Hom ({4, @), M) » U-Hom ({4, @), N).
I |

P 4,350 - P 4,a5m)

Notice that s(M)eM(Ly) can be represented by U-Hom(—, M ):N°®? — S, while the
homomorphisms are the natural transformations U-Hom(—, M)— U-Hom(—, N),
provided that U is U-representable in N.

11. THEOREM. Let N be a U-subcategory of M which contains some cU-repre-
senting U-object {E, e for U. The functor s:M — M (Ly) is full and faithful if and only
if N is U-dense (or U-adequate) in M.

Proof. Let s:M—>M(Ly) be full and faithful. Any natural transformation U-
Hom(—, M)— U-Hom(—, N), for M, NeM, corresponds to a map UM = U-Hom
(E, €), M)—» UN=U-Hom ({E, e), N) which is a homomorphism s(M)—s(N) in
M (Ly). The latter is induced by a uniquely determined morphism M — N in M. Thus
N is U-adequate in M.
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Conversely, let N be U-adequate in M. Any homomorphism s(M)-s(N) in
M (Ly) corresponds to a unique natural transformation U-Hom(—, M)—- U-Hom
(=, N), which in turn is induced by a unique morphism M — N in M. Hence s is full
and faithful. Q.E.D.

12. Special Theories. For a special theory 7, the category N(T') is U-dense in
M(T) (cf. lemma I1.9.). Theorem 11 implies that s:M(T) > M(Lyr)) is a full im-
bedding. If one chooses N(T') such that it contains precisely one cU-representing
U-object for each predicate constant of T then it follows that Ly =L(T) and
M (Lycry)=M(L(T)). The full imbedding s:M(7T)—M(Lyr,) then coincides with
the canonical imbedding M(T)=M(L(T)).

ITI. Ultraproducts

1. U-corepresentable Functors. Let N be a U-subcategory of M. A contravariant
functor G in SN of the form Ge U-Hom(—, M), MeM, is called a U-corepresent-
able functor (with M as U-corepresenting object).

If N is U-dense (or U-adequate) in M it follows immediately that the U-corepre-
senting object M of some U-corepresentable functor is uniquely determined up to
isomorphism.

For the sake of simplicity we will in part 1II assume that N is a U-dense U-sub-
category in M containing a cU-representing object (E, ¢) of U:M—S.

2. U-direct Products. We are going to define a subcategory U—]| M in the cate-
gory SN°° of contravariant functors from N into the category of sets. The objects of
U—]]M are the direct products of U-corepresentable functors [];., U-Hom (—,
M(i)):N—S, M(i)eM, iel, I non empty. The morphisms are the natural trans-
formations between such functors. U—[] M is called the category of U-direct pro-
ducts of M. It follows readily that U—]] M is closed with respect to direct products
and the full imbedding U—[] M < S™* commutes with such. Furthermore the functor

M- U—]]M, M+ U-Hom(—, M) is a full imbedding, since N is U-adequate in M
(cf. IL7.) ,

3. Extended Functor U:U—][[M~S. U:M-S can be extended to a functor
U-J] M-S which we will call again U. We set U([];; U-Hom(—, M(i)))=
=[]ier U-Hom (KE, >, M(i))=]];c; U(M(i)). For a natural transformation o:
[Lie; Hom(—, M(i))>[]; s Hom(—, N(j)) we determine Ua by Ua=a (L, €)):
[lie;r U-Hom(<E, ey, M(i))>[];e; U-Hom(<E, ey, N(j)). Notice that U:
U—]]M—S thus is the functor “evaluation at {E, e)”.

4. Extended Functor U-Hom(—,—):N®*x U—~][ M- S. The notions of U-ob-
jects and U-maps (cf. L.1.,, 1.2.) in U—][M are determined by the definition of
U:U—][ M-S in 3. Thus it makes sense to talk about U-subcategories and U-den-
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sity as well as U-adequacy. Any U-object (U-map) of M can be regarded as a U-object
(U-map) of U~ M in view of MU —] [ M. U-subcategories of M thus become
U-subcategories of U—] | M. A straight forward computation shows that for a U-ob-
ject {4, @) of M U-Hom ({4, @), —):U—]] M-S is given by U-Hom ({4, a), [,
U-Hom (—, M(i)))=]]; U-Hom ({4, @), M (i)) i.e. by “‘evaluation at {4, @»”. The
functor U-Hom(—,—):N®x U—~[[M—S thus is just the evaluation functor.

5. LEMMA. The U-dense U-subcategory N of M is also U-dense in the category
U—[] M of U-direct products of M.

Proof. Nis U-adequate in U~ [ | M, since the morphisms [ [; U-Hom (—, M (i))—
- []; U-Hom(—, N(j)) in U-~]]M coincide with the natural transformations

U-Hom (—, IT1 U-Hom (—, M (i))) » U-Hom (—, IT U-Hom (—, N (})))
I J

I |
II U-Hom (—, M (i) - IT U-Hom (—, N (}))

between the corresponding U-Hom functors (cf. 111.4.). The rest follows from lemma
II.7. Q.E.D.

6. LEMMA. Let N be a U-dense subcategory of M containing a cU-representing
U-object {E, ) of U:M—S. Then there is an equivalence of categories U—[] M=
=[] s(M).

Proof. Recall that s(M) is the image of the full imbedding s:M—M(Ly) (cf.
theorem II.11.), and [ | s(M) is the full subcategory of M(Ly) whose objects are the
standard direct products of structures in s(M). It follows readily that the functors

{F:U—IIM—+IIS(M) }and{G:IIs(M)—»U—l’IM }
III U-Hom (—, M (i)) ¥ 111 s(M (i) IIIS(M(i))& rII U-Hom (—, M (i))

are inverse up to natural equivalence. Q.E.D.

7. Special Theories. For a special theory T the category U—][] M(T) of U-direct
products of models of T and U-transformations is equivalent to the category [ M(T)
of standard direct products of models of T and homomorphisms.

Proof. According to lemma 6 it is left to be shown that [[ M(T)~]] s(M(T)).
We know from I1.12. that s:M(T)=M(Ly(r)) is a full imbedding. Thus we have a
diagram of full imbeddings

M(L(T)) 2 M(T)

]
M (Lycr)) 2 s(M(T))
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It is easily seen that the equivalence s can be extended to an equivalence [ M(T)~

~[] s(M(T)). QE.D.

8. COROLLARY. N(T) is U-dense in [[ M(T), provided that T is special.
Proof. Apply lemma III.6.

9. U-Ultraproducts. Let M (i), iel, be a collection of objects in the category M.
Assume D is an ultrafilter on 1. Let 4 be the following diagram in U—]] M: Its ob-
jects are the U-direct products [[, U-Hom(—, M (j)), JeD. There is a morphism
pix:1]; U-Hom(—, M(j))—-][]x U-Hom(—, M (k))in 4 for every pair J, Ke D with
KcJ, namely the “projection”. If the direct limit of 4 in U—]] M exists, it will be
called the U-ultraproduct U—[]; M (i)/D of {M(i)}; ;- M is said to be closed with
respect to U-ultraproducts if U—][; M (i)/D exists and is in M for any set  and any
ultrafilter D on I and any family {M (i)}, .; of objects in M. We say that a U-represent-
able functor U-Hom ({4, @), —), {4, d)eN, commutes with some U-ultraproduct
U—[]; M(i)/D if there is an isomorphism U-Hom ({4, d), U—][]; M(i)/D)=
~[]; U-Hom ({4, @, M(i))/D. We say that U-Hom ({4, d), —) commutes with
U-ultraproducts if there is a natural equivalence U-Hom ({4, @), U—[] M (i)/D)=
=[] U-Hom (<4, @), M(i)/D) for every U-ultraproduct U—[] M (i)/D in M.

10. THEOREM. Let N be a U-dense U-subcategory of M containing a cU-repre-
senting U-object {E, e) of U:M — S. It follows that for some collection {M (i)};.; of
objects in M, D an ultrafilter on I, U-][; M(i)/D exists in M and U-representable
functors commute with this U-ultraproduct if and only if the functor [], U-Hom
(—, M (i))/D is U-corepresentable in M.

Proof. If U—[]; M (i)/D exists in M and U-representable functors commute with
it we can write U-Hom (-, U~[]; M (i)/D)=[]; U-Hom(—, M (i))/D which proves
one direction.

Conversely let U-Hom(—, M)=[], U-Hom (-, M (i))/D:N°* —S be a natural
equivalence. This implies that U-Hom(—, M) in SN is the “ultraproduct in the
category SN°"’. A fortiori it is the ultraproduct in the category U—] ] M. Since M
is in M, we conclude M=~ U—]][; M (i)/D. That U-representable functors commute
with this ultraproduct follows from the given natural equivalence. Q.E.D.

The following is a straight forward

11. COROLLARY. Let N be U-dense in M and containing a cU-representing ob-
ject {E, e> of U:N=»S. M is closed with respect to U-ultraproducts and U-representing
functors commute with them if and only if ultraproducts of U-corepresentable functors
are U-corepresentable.
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12. LEMMA. s:M - M(Ly) carries U-ultraproducts into standard ultraproducts.
Proof.

s:U — IIM( )/D — U-Hom (—, U — I1 M (i)/D)
a !
IT U-Hom (—, M (i))/D
I
AUl
TLs(M (@)D Q.E.D.

13. THEOREM. Let N be a U-dense subcategory of M containing a cU-repre-
senting U-object {E,e) of U:M—S. Ultraproducts of U-corepresentable functors
N°P — S are again U-corepresentable if and only if the full imbedding (cf. 11.11.) s: M+
— M (Ly) sends M onto a subcategory s(M) of M (Ly) which is closed with respect to
standard ultraproducts.

Proof. Since M is closed with respect to U-ultraproducts (cf. corollary 11) s(M)
is closed with respect to standard ultraproducts (cf. lemma 12).

Conversely, s(M) being closed with respect to standard ultraproducts means that
[1: U-Hom(—, M (i))/D=s(M)=U-Hom (—, M) for an appropriate MeM. Thus it
follows that ultraproducts of U-corepresentable functors are again U-corepresentable.

Q.E.D.

14. Special Theories. For a special theory T the U-ultraproducts in M (T') coincide

with the standard ultraproducts.
Proof. This follows from theorem III.13. and I1.12. Q.E.D.

15. THEOREM. Let L be any first order theory without nonlogical axioms. Let
K<=M(L) be any full subcategory. By K we understand the full subcategory of M(L),
whose objects are isomorphic to some object in K. It follows that for KcM(L) the
closure K is equal to M(T)=M(L) for an appropriate theory T if and only if K is closed
with respect to standard ultraproducts and the full subcategory whose objects are in
Ob(M(L))—Ob(K) is closed with respect to ultrapowers.

This theorem can be found for example in [K] (theorem 2.8). It depends upon
Keisler’s ultrapower theorem saying that two structures are elementarily equivalent
if and only if they have isomorphic ultrapowers (cf. [K], theorem 2.6.). The proof of
the latter uses the generalized continuum hypothesis. But this is not necessary ac-
cording to Shelah (cf. [Sh]).

16. Special Theories. Any contravariant functor GeS™'" such that some ultrapower
G'/DeSN” is U-corepresentable in M (T) is itself U-corepresentable in M(T), provided
that T is a special theory.
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Proof. We know that G'//D~U-Hom(—, M):N(T)—S, and there is a natural
imbedding

G G'ID.

Consider the L(T)-structure N whose underlying set UN consists of all elements in the
image of G({E, e))= G ({E, e))'/D=U-Hom ({E, ey, M)=UM.

For any U-object {4, d) in N it follows by naturality that the composition
G{4,3>=G{A, a)!'/D=U-Hom({A4, @), M)=p 4,5 M= (UM)" factors through
(UN)'s(UM)".

We set p 4,4, (N)=image of G({4, d@>) in (UN)".

Thus we get an injective homomorphism of N — M, making the following diagram
commutative

G(K4,3d) =P (N)
nt nj
G (<4, 5))1/0 = Py a5 (M)

Hence N'/D=M. According to theorem III.15, N is in M(T). Thus we get an iso-
morphism G ({4, @))=p 4,2 (N)= U-Hom ({4, @), N) which is natural in {4, a@).

Q.E.D.
1V. Ultradense U-Subcategories

1. DEFINITION. Let M be a category with underlying set functor U:M— S.
A U-subcategory N of M is called ultradense in M if

(a) Nis U-dense in M;

(b) U:M — S is cU-representable by a U-object {E, e> in N;

() ultraproducts of U-corepresentable functors in SN°° are again U-corepresent-
able;

(d) Any functor G in S¥°* for which some ultrapower G'/D is U-corepresentable
1s itself U-corepresentable.

Notice that (c) can be replaced by the condition that M is closed with respect to
U-ultraproducts and U-representable functors carry them into ultraproducts (cf.
IIL.11).

2. LEMMA. The category M(T) of models of some special theory T has an
ultradense subcategory, namely N(T) (cf. I1.12).

Proof. 1V.1 (a) follows from I1.9; (b) follows from 1.5 and 1.8; (c) follows from
II1.11, 14 and 15 and (d) follows from IIL.16. Q.E.D.

3. Dense Orders Without Extreme Elements. Let M be as in 1.4. It follows from
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lemma 2 that the U-subcategory N of M (cf. I1.5) consisting of the U-objects {Q, 0),
{Q,0,1) and all possible U-maps between them is an ultradense subcategory of M.

4. M(T) Closed with Respect to Standard Direct Products. If T is such that M(T)
is closed with respect to standard direct products, there exists an ultradense U-sub-
category N of M(T). E.g. if T'is an equational algebraic theory in the sense of Birkhoff
with finitary operations of if T is a universal Hom theory (cf. [ Kn]). Notice that for
the special theory T of dense order without extreme elements (cf. IV.3) M(T) is not
closed with respect to standard direct products.

5. THEOREM. Any category M with underlying set functor U: M — S is equiva-
lent to the category M (T) (with a compatible underlying set functor U(T):M(T)—S),
for an appropriate special theory T if and only if M has an ultradense subcategory N.

Proof. One direction is proved by lemma IV.2.

Conversely, assume that M has an ultradense subcategory N. Since N is U-dense
in M (cf. IV.1(a)) it follows that s:M — M (Ly) is a full imbedding (cf. II.11). In order
to show that M is equivalent to M (T'), where T is a theory with the same language as
Ly is, it suffices to show that s(M) in M (Ly) is closed with respect to standard ultra-
products and the full subcategory of M(Ly) whose objects are those Ly-structures in
M(Ly) which are not in s (M) is closed with respect to standard ultrapowers (cf. theo-
rem III.15). Property 1(c) guarantees that s(M) is closed with respect to standard
ultraproducts, according to theorem III.13.

It remains to be shown that the full subcategory whose objects are in M (Ly) —-sP(—M)
is closed with respect to standard ultrapowers. Let N eM(Ly) be any Ly-structure

such that for some ultrafilter D on I the standard ultrapower N'/D is in JM). ILe.
there is some object M eM such that s(M)=N'/D. Let G in S¥* be the following
subfunctor of the U-corepresentable functor U-Hom(—, M):N-S. G({4, d)) <
c U-Hom{4, @), M) consists of those U-maps [ f]:{4, @) - M such that f(ad) is
in the image of p4, 25 (N)SP(<u,ay(N'/D)2p( 4,25 (M). Tt follows that G'/Dx
=U-Hom(—, M). Property 1(d) guarantees that G itself is U-corepresentable by
some object N'eM. Since U-Hom ({4, @), N')=G({A4, @)= p4,s,(N) it follows

that s(N’')=N. Hence N e;—(M). Thus we know that M~M (T)<=M/(Ly). The theory
T is special because the predicate constants are canonically U-representable by the
U-objects of the form {sA, d>, where {4, d)eN. (cf. also lemma 1.8). Q.E.D.

V. Locally Atomistic Theories

1. F-axiomatized Theories (cf. [F2] I11.22). Let T be a theory. The set of its predi-
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cate constants will be called F. T will be called F-axiomatized if the axioms of T can
be written in the following form
I. universal sentences;

II. equivalences of the form VX (P (X)<>Q(X)) where P (X) is a conjunction of
predicate constants and Q(X) arises from predicate constants by applying conjunc-
tion, disjunction and existential quantification.

Furthermore, for all formulas Q;(%X) in the inductive build up of Q (%) there is an
axiom (or sentence) of the form VX (P;(X)<>Q;(X)) in T, where P;(X) is a conjunction
of predicate constants.

2. T (N, F)-types (cf. also [F2] I1.10). Let N be any L(T)-structure. By T (N, F)
we understand the theory T together with one new individual constant a for each
element a of N and the additional axioms p(a,,..., a,) for any predicate constant
p and n-tuple (ay,..., a,) for which N kp(a,..., a,) holds.

By an me-ary T (N, F)-type I(xy,...,x,) we understand a set of formulas
p(ays..., & Y1,-.., ¥1), where p is a predicate constant, a,,..., a; are individual con-
stants of T (N, F) and yi,..., y, are some of the variables x, ..., x,,. Furthermore,
I has to be consistent with T (N, F), otherwise we call I a virtual T (N, F)-type.

A principal n-ary T (N, F)-type or T (N, F)-character is a T (N, F)-type which
is realized by some n-tuple (by,..., b,) of elements in each model of T (N, F). An
n-ary T (N, F)-type [ is called real if there is a model M of T and an n-tuple of elements
by,..., b, such that the T (N, F)-type of (by,..., b,) in M is precisely 1.

An n-ary T (N, F)-atom is an n-ary principal T (N, F)-type which is maximal
(i.e. not properly contained in another principal T (N, F)-type) and which is real.

If N is the empty structure the 7' (N, F)-types are called T-types.

According to [F2] II1.28 we have

3. THEOREM. The following statements are equivalent :
(a) T is F-axiomatized
(b) M(T) is closed with respect to direct limits of directed systems of models and
homomorphisms
(¢) T can be axiomatized in the way that an L(T )-structure N is a model of T if and
only if :
(@) The unary principal T (N, F)-types are realized in N.
(b) For any finite substructure M =N and any element meN the virtual
T (M, F)-type of mis a real T (M, F)-type.

4. Atomistic theories. A theory T is called atomistic if any principal T-type is
contained in a T-atom.
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5. Prime models (cf. also [F1] 1.19). A prime model O of a theory T is a model 0
which permits a homomorphism 0 — M for any model M of T.

6. THEOREM (cf. also [F1] IV.17). An F-axiomatized theory T with only finitely
many predicate constants is atomistic if and only if it has a denumerable (or finite)
prime model 0.

Proof. Assume first that 0is a denumerable prime model of 7. Consider all #-tuples
d(k), keK of elements in 0, which realize a certain given n-ary principal T-type I.
Let I, be their respective T-types. Since there are only finitely many predicate con-
stants there are only finitely many distinct n-ary T-types ;. They are partially ordered
by inclusion. This order must have some maximal element, say J. It follows imme-
diately that J is a T-atom containing 1.

Conversely, we assume that T is atomistic in order to construct a prime model
which is at most denumerable.

First we add a denumerable set {c;},<,, of new individual constants to the language
of T, thus yielding a new theory S.

Let ¢,, ¢,,... be a denumeration of all finite tuples of new individual constants in S.

Let I, (x), I,(x),... be a denumeration of all finite unary S-types. We are going to
define inductively a sequence Sy, Sj,..., Sp,...,n<w of theories such that §,.,
extends S,. Set S,=S.

Assuming that S, is already determined consider the finite unary S-types I;(x),
O<i<n. If I, is a principal S,-type add the formulas I;(c,(;) to S, as new axioms,
where k (i) is the smallest index such that ¢; ;) does not occur in the nonlogical axioms
of S, or in the axioms I;(¢,;), 0</<i.

Now let I (%) be the set of predicate constants p (X) such that p(¢) is a nonlogical
axiom of S, or p (&) is in one of the I;(c,(;))’s, 0<i <n. Thus I (X) is a principal S-type.
Let (d,,..., d,)=4d consist of those ¢’s in &,,, which do not already occur in I (¢).
Let J (%, y1,..-, ¥m) be an atom which contains 7 (X). S, is defined then to be §,
together with all formulas of J (¢, d).

It follows that S, is a principal extension of T.

The union S,=|J,<, S, is consistent; it is even a principal extension of T. The
following structure 0 can be proved to be a prime model of 7. Its underlying set is the
set {¢;};<, modulo the relation ¢;~c;if S, ¢;=c;. The predicate constants are deter-

mined on 0 by
OFp(&)<S,Fp(d).

Notice that the finiteness condition on 7 guarantees that 7-types are equivalent to
finite conjunctions of predicate constants. This is useful for showing that S, is a
principal extension of 7, and that 0 is prime. For the proof that 0 is actually a model
of T one has to use theorem 3 ((a) and (c)). Q.E.D.
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7. Locally Atomistic Theories. Let T be a first order theory. For any predicate
constant p of T, let T, be the theory T together with a finitary tuple ¢ of new indi-
vidual constants and the new axiom p ().

T is called locally atomistic if T,z is atomistic for each predicate constant p of T.

According to theorem 6 we know that an F-axiomatized theory T with only finitely
many predicate constants is locally atomistic if and only if the theories T, have
prime models. But this means that the predicate constants are canonically U-repre-
sentable (cf. L.5).

From lemma 1.8 we can thus conclude

8. LEMMA. An F-axiomatized theory T with only finitely many predicate con-
stants is special if and only if it is locally atomistic.

9. THEOREM. A category M with underlying set functor U: M — S is equivalent
to the category M(T) (compatible with U (T):M(T)—S) for an F-axiomatized
locally atomistic theory T with only finitely many predicate constants if and only if M
is closed with respect to direct limits of directed systems and has a finite ultradense
U-subcategory.

Proof. Apply theorem IV.5, theorem V.3 and lemma V.8. Q.E.D.
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