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Epimorphic Extensions of Non-Commutative Rings

HaNs H. STORRER

Introduction

Let R be a subring of the ring S. Following Isbell [9] we say, that an element
deS is dominated by R if f (d)=g(d) for every pair of ring homomorphisms f, g: S —»T
having the property, that f (r)=g(r) for all re R. The set of all elements dominated
by R is called the dominion Dom (R, S). This is clearly a subring of S containing R.
The inclusion map RS S is an epimorphism in the category of rings if and only if
Dom (R, S)=S. If this is the case, then we will say, that S is an epimorphic extension
of R. Expressed otherwise, this means, that every ring homomorphism with domain
R can be extended to S in at most one way.

In this paper, various properties of the dominion and of epimorphic extensions
are studied. In the first section, we state a number of criteria for an element to be
dominated. In section two it is shown, that the dominion behaves nicely (i.e. in the
expected way) under finite (though not under infinite) products, as well as under the
formation of matrix rings and of rings of the form eRe, where e is a suitable idempo-
tent. As a consequence, the property of having only trivial epimorphic extensions is
Morita invariant.

The third section deals with flat epimorphic extensions. Flat epimorphisms re-
cently have attracted considerable attention. We show, that flat epimorphic extensions
behave nicely under the various constructions mentioned above; this is done by
proving the corresponding results for flat ring extensions in general. In the fourth
section, we characterize the flat epimorphic extensions of a left perfect ring as the
endomorphism rings of certain two-sided ideals. Another result is, that a right perfect
ring has no proper epimorphic extensions provided it contains a copy of every simple
right module. In the last section, it is shown, that if R is a principal ideal domain
contained in the center of S, then the inclusion of R in its dominion is a ring epimor-
phism. This generalizes a result by Bousfield and Kan [4].

All rings under consideration are associative and have a unit element; ring homo-
morphisms and modules are unitary. In particular, any subring R of a ring S contains
the unit element of S. If M is an S-module and if we consider M as an R-module, we
shall always mean the R-module structure induced by the inclusion map.

The author wishes to thank M. André for some helpful comments. During the
preparation of this paper, the author was supported by “Schweizerischer National-
fonds zur Forderung der wissenschaftlichen Forschung”.
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1. Characterizations of the Dominion

The following definition, adapted from [9], will be useful. A zigzag for seS over
(R, S) is a representation

m n
s= 2 D Xa;y;
i=1 j=1
where x;, y;€S, a;;€eR, subject to the conditions
xa;€R for 1<j<n

a;;y;eR for 1<i<m.

;M: EMS

J=
Sometimes it is convenient to write the zigzag in matrix form:
s =XAY

where X = (x;) is a row vector over S, Y=(y;) a column vector over S and 4=(a;;)a
m x n matrix over R.

PROPOSITION 1.1. Let R be a subring of S and let deS. Then the following
Statements are equivalent:

(a) deDom(R, S),

(b) if M is any S-S-bimodule and if me M has the property that rm=mr for all
reR, then dm=md,

(©) d®1=1®d in SQgS,

(d) there exists a zigzag for d over (R, S).

Proof. The equivalence of (a), (b) and (c) was essentially proved by Silver [16, 1.1]
(see also [17, 13.5 and 13.6]), and (d) is due to Mazet [15, exposé 2], at least in the
commutative case. The proof uses lemma 10 of [3, chap. I, §2, No. 11] and works
equally well in the non-commutative case.

Another set of equivalent conditions is as follows:

PROPOSITION 1.2. Let R, S and d be as above. Then the following statements
are equivalent:

(@) d®1=1®d in S®yS,

(b) if M is a right and L a left S-module, then md@x=m®dx in M QgL for all
meM, xeL,

(¢) if h:M — N is an R-homomorphism of arbitrary right S-modules, then h(md)=
h(m)d for all me M.
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Proof. (a)=>(b). Apply the homomorphism p: M ®sS ® S RsL - M Q¢ L send-
ingm®s®R s’ ®x to ms ®s'x to the element mRAR/)NQRQx=mR 1 RQdR x.

(b)=(c). Let g be the canonical homomorphism N ® S — N and apply ¢ (h®15)
to the element md®1=m@de M ®S.

(c)=>(a). The map 4:S— S®x S given by A (s)=s®1 is a homomorphism of right
R-modules. Thus h(1)d=1Qd=h(d)=d®1.

It follows immediately, that a ring homomorphism R— S is an epimorphism if
and only if the canonical map S®zS— S is an isomorphism. Epimorphisms and
dominions in the category of commutative rings are also described by (1.1) and (1.2).
See e.g. [17, p. 76].

PROPOSITION 1.3. (a) Let R< S and deDom (R, S). If s€S has the property,
that rs=sr for all re R, then ds=sd.

(b) If R is commutative, then so is Dom (R, S). In particular, all epimorphic images
of a commutative ring are commutative.

Proof. (a) Apply (1.1, b) to M=S. (b) follows by using (a) twice: R commutes
elementwise with Dom (R, ), thus the latter commutes elementwise with itself.
Compare [16,1.2].

Isbell [10, p. 268] has given an example of a finite ring having an infinite epimor-
phic extension. This cannot happen in the commutative case [18, 5.9]; however, a
finite commutative ring may have an infinite dominion: Let K be a finite field and
let S be the K-algebra with basis elements

1= 4% ... Ugs Ug, Uz, ...
and multiplication given by
tit" ~ ti+j, uiul' = 0, u,-tj = tju,- = ui+j fOl‘ aH i, j .

The subalgebra R spanned by 1, u, and u, is finite. Now u, =1u,t is a zigzag over
(R, S), whence u,eDom(R, S). Since u;=tu,t is a zigzag over (Dom(R, S), S) it
follows, that u;eDom (R, S). Continuing in this fashion, we see, that all the u, are
in Dom(R, S).

Finally, we recall two definitions [9, 18]. A ring R is dominant (or absolutely
closed) if Dom (R, S)= R for all rings .S containing R, and a ring is saturated if it has
no proper epimorphic extensions. A dominant ring is saturated, the converse does
not hold in general. Among the dominant rings are the pure rings [5, 10, 18], a class
of rings, which includes the von Neumann regular and the self-injective rings. Com-
mutative Artinian rings are saturated [18, 5.9]. Some necessary conditions are given
in [18, 19].
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2. Invariance Properties of the Dominion
In this section, we study the behavior of the dominion under various constructions.

PROPOSITION 2.1. Let R be the product of two rings R,, R, with unit elements
ey, e, andlet R< S. Then Dom (R, S)=D; x D,, where D;=Dom(R,, e;Se;) fori=1, 2.

Proof. Let e d,e,+e,d,e,€D, x D, and assume, that f, g:S— T are ring homo-
morphisms coinciding on R. These maps may be restricted to e;Se; (i=1, 2) to yield
unitary ring homomorphisms e;Se; — f (e;) Tf (e;) coinciding on R,, whence f (e,d;e;) =
g (e, die;). Thisshows, that D, x D, = Dom (R, S). On the other hand, if deDom(R, S),
then d®1=1®d in S®;S. Since by (1.3) the e; commute with the elements
of Dom (R, S), we have e,d=de;=ede; (i=1, 2), thus d=e,de, + e,de,. Now S®z S
>~ Se; g, 15D Se; ®p,e,S by an isomorphism sending s®1 to (se;®eyt, se,@e,t),
and we have relations de;®e;=e;®e;d. By the remark above e;de;®e;=e;®e;de;, but
this relation holds already in e;Se; ® 3, e;Se;, since e;Se; is a direct summand of the
R;-modules Se; and e;S. Thus e, de;eD; (i=1, 2).

COROLLARY 2.2. In the situation of (2.1) if R< S is epimorphic then S=e;Se; x
x e,Se, and R;<e;Se; is epimorphic for i=1,2. If R,< S, is epimorphic for i=1, 2,
then Ry x R,= 8, x S, is epimorphic.

Of course similar results hold for any finite number of factors.

COROLLARY 2.3. A finite product of rings is dominant [saturated] if and only
if each factor is dominant [saturated].

An infinite product of epimorphisms need not be an epimorphism, however. In
order to give an example, we introduce the following definition. Let R<.S and let
deDom(R, S). Then d has a zigzag XAY and by inserting zeros, if necessary, we
may assume, that A is a square m x m matrix. The rank of dis defined to be the smallest
m occurring in all such zigzags for 4. If R is a finite ring and if the ranks of the elements
of an epimorphic extension S of R have a finite maximum, then S is necessarily finite.
To see this, we note that if s=XAY, s'=X'A4"Y’ are zigzags with XA=X'A', A=4',
AY=A'Y’, then s=XAY=X'A'Y=X'AY=X'A'Y'=s'. Thus s is completely deter-
mined by the matrices and vectors X4, 4 and AY over R, and the assumption on R
implies, that there are only finitely many of them. Hence S is finite. (Incidentally, the
argument shows, that the dominion of a finite ring is at most countable, and that
the dominion of an infinite ring R has the same cardinality as R. Compare [9,1.5])

Thus if R is a finite ring with an infinite epimorphic extension S (see [10, p. 268]
for an example), then S must have elements of arbitrarily high rank. Let now R*
(resp. S*) be a countably infinite product of copies of R (resp. S). If 5,eS(1<i< )
is a sequence of elements of strictly increasing rank, then s= (s;)e.S* cannot have a
zigzag over (R*, S*), for if it had one of rank p, say, projection onto the factors



76 HANS H.STORRER

would yield that rank s;<p for all i. This shows, that R*<S* is not epimorphic.

We now turn to matrix rings. The » x n matrix ring over R will be denoted by
R, There is a canonical embedding of R in R, sending re R to the diagonal matrix
diag(r,...,r)=4(r). If f:R— S is a ring homomorphism, there is an obvious ring
homomorphisms fi,y: R,y = S(,. In particular, if RS, then R, =S, Moreover,
every ring T, between R, and S, is of the form T,,, where T is the set of all coeffi-
cients of the matrices in T,. It follows, that Dom (R ,), S(,)) =Dy, for some ring D,
ReDcS.

PROPOSITION 2.4. With the notation above, D=Dom (R, S).

Proof. If deDom (R, S) and if f, g:S(,,— T coincide on Ry,), then f4(d)=gd4(d),
thus 4 (d)eDom (R,, S,), whence de D. Conversely, if deD and if f, g:S— T coin-
cide on R, then f,,4 (d)=g,4 (d). This implies f (d)=g(d) and deDom (R, S).

COROLLARY 2.5. R is dominant [saturated] if and only if R, is dominant
[saturated].

Proof. The “if”* part follows directly from (2.4). To prove the “only if”’ part,
note that whenever R, is a subring of a ring Sy, then S, =S,,, where S is the subring
of S, consisting of all elements commuting with the matrix units [11, p. 52]. R can be
identified with a subring of S and (2.4) applies.

PROPOSITION 2.6. Suppose e is an idempotent of R such that ReR=R. Let
Rc S and let D=Dom(R, S). Then eDe=Dom (eRe, eSe).

Proof. Let edeeDom (eRe, eSe). Any two ring homomorphisms f, g:S— T co-
inciding on R may be restricted to (unitary) ring homomorphisms eSe — f (e) If (e)
coinciding on eRe. Consequently f (ede)=g (ede), whence edeeeDe. The assumption
on e has not been used.

To prove the other inclusion, assume that ), p;eq;=1 (p;, ;€ R) and consider the
homomorphism A:S®zS— eSe® z.eSe of Abelian groups defined by h(s®t)
=Y esp;e®eq;te. One has to check, that h(sr®t)=h(s®rt):

h(sr@t) =) esrpe @ eq;te
j

= ) espeqirpje @ eq te = Z espie ® eq,rp;eq; te
ik Jsk

=) espe® eqrte = h(s® rt).
k

If deDom(R, S), then d®1=1®d. Now h(d®1)=ede®e and similarly 4(1®d)
=e®ede. Thus edeeDom (eRe, eSe).
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COROLLARY 2.7. Let R and e be as above and suppose eRe is dominant [satu-
rated]. Then R is dominant [saturated].

Proof. If R< S is epimorphic, then eRe<SeSe is epimorphic, and thus eRe=eSe.
Since ReR=R, this yields R=S. A similar argument works for the dominion.

An example to be presented later (3.8) will show, that some condition on e is
necessary in (2.6) and (2.7). The converse of (2.7) is also true. This will follow from
the result below. Two rings R, R are said to be Morita equivalent, if the categories
of right (or equivalently of left) R-modules and R’-modules are equivalent. This holds
if and only if R'=eR e for some n, where e is an idempotent of R, such that
RimeR =R, (see [6, p. 47]). A property of rings is said to be Morita invariant if it
is shared by all rings in a Morita equivalence class.

PROPOSITION 2.8. The properties of being dominant or saturated are Morita
invariant.

Proof. 1t is sufficient to show, that if R and R’ are Morita equivalent and if R is
not saturated (or not dominant), then so is R’. This follows immediately from (2.5),
(2.7) and the formula for R’ quoted above.

3. Flat Epimorphic Extensions

The ring homomorphism A:R— S is called a right flat epimorphism if h is a ring
epimorphism and if S is a flat left R-module for the R-module structure induced by A.
Flat epimorphisms have been characterized by Popescu and Spircu [14]; the reader
is also referred to the notes by Stenstré6m [17, Thm. 13.10]. Specialized to extensions,
their result is as follows:

PROPOSITION 3.1. If R< S is a ring extension, then the following statements are
equivalent '

(@) R<S is a right flat epimorphism,

(b) (s~* R)S=S for all seS,

(€) the set ¥ of right ideals J of R such that JS=S is a topology (also called an
idempotent topologizing set) and there is an isomorphism g from S to Qg (R), the quotient
ring of R relative to §, such that the restriction of g to Ris the canonical map R — Qg (R).

For the theory of quotient rings, the reader may consult [17, §7]. By s™!R we
mean the right ideal of all ae R such that saeR.

From (3.1, b) one sees, that every element s of S has a zigzag of the special form

s=sy a;y; with a;,sa;eR and ) a;y;=1. (3.2)
i j

Thus one might be tempted to define, for an arbitrary extension R< S, the analog
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of the dominion as the set of all seS having a zigzag of the form (3.2). This set is,
however, not in general a ring, unless some additional conditions are imposed, such
as commutativity of R or flatness of zS. On the other hand, it follows from results of
Morita [13, 1.2], that the set of all s such that sr has a zigzag of the form (3.2) for all
reR is indeed a subring of S.

We now wish to show, that flat epimorphisms behave nicely under the various
constructions already studied in section two. We first prove three lemmas on flat
extensions in general and we shall use freely and repeatedly the following well-known
result [3, chap. I, §2, No. 7, Prop. 8]: If R, S are rings and if g Mg, ¢N are (bi)modules
such that kM and gN are flat, then M @gN is a flat left R-module.

LEMMA 3.3. Let R,cS; (1<i<m) be rings and let R=[] R;, S=]]S;. Then
S is a flat left R-module if and only if S, is a flat left R;-module for every i.

Proof. Since direct sums and direct summands of flat modules are flat, it suffices
to observe, that S; is a flat R,-module if and only if it is a flat R-module.

LEMMA 3.4. If RcS are rings, then S is a flat left R-module if and only if S,
is a flat left R,-module.

Proof. If ¢S is flat, then so is the left R,)-module S =R, ®rS, since R,
is a free R-module. Conversely, if S, is flat as R,-module, then the left R-module
R"®g., Sw s flat, where R" denotes the direct sum of n copies of R. Now h: R"®pg,,, S
— S" given by A((r;)®(s;;))= (. r:s;;) is an isomorphism of left R-modules, thus S”
and consequently S is flat.

LEMMA 3.5 Let R< S be rings and let e be an idempotent of R such that ReR= R.
Then S is a flat left R-module if and only if eSe is a flat left e Re-module.

Proof. If ReR=R, then the right R-module eR is a finitely generated projective
generator ([2, I1.4.4]) hence eR is finitely generated projective as left module over its
endomorphism ring eRe and furthermore Re ® g.eR= R (see [2, 11.4.2 and II.3.5]).
Of course all this can be proved directly. To prove e.g. that eR is projective over eRe,
one observes, that if ) peq;=1, then {eq;} and {f;} form a pair of dual bases
([2, 11.4.5]), where f;:eR— eRe is given by f;(er)=erpe.

Suppose now, that ;S is flat, then so is the left eRe-module eR @z S=eS, and
eSe is a direct summand of eS. Conversely, since Re ® .gz.,eR= R, there are isomor-
phisms

S=>~Re®.g.¢R @S ®rRe @ g.€R = Re @ g.€5€¢ @ . €R

and if eSe is a flat eRe-module, then S is a flat R-module.
As an immediate consequence of the three preceding lemmas and the results in
section two, we obtain the following statements:
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PROPOSITION 3.6. (a) If R;=S; (1<i<m) are rings and if R=]| R, S=[] S,,
then R< S is a right flat epimorphism if and only if R;< S, is a right flat epimorphism
for every i.

(b) R S'is a right flat epimorphism if and only if R, < S, is a right flat epimor-
phism.

(c) If e is an idempotent of R such that ReR=R, then R< S is a right flat epimor-
phism if and only if eRe< eSe is a right flat epimorphism.

PROPOSITION 3.7. (a) A4 finite product of rings has no proper right flat epimor-
phic extensions if and only if each factor has this property.

(b) The property of having no proper right flat epimorphic extensions is Morita
invariant.

Finally, we give two examples to show, that some condition on e is necessary for
(2.6), (2.7), (3.5) and (3.6, c).

EXAMPLE 3.8. Let S be the full 4 x4 matrix ring over a commutative field K
and let R be the subring of S consisting of all matrices of the form

=R ™R

0
0
&
4

OO ™ O
m O O O

Then, for any seS

4
S=5 ) ejey;
j=1
is a zigzag of the form (3.2), where the e;; are the matrix units [11, p. 52]. Thus RS S
is a right flat epimorphism by (3.1). This would also follow from the fact, that the
simple ring S is the complete right quotient ring of R. If e=e,,+e33+ €44, then
eRe#eSe and the inclusion is not an epimorphism, since eRe is a commutative local
Artinian ring and hence saturated [18, 5.9]. Furthermore, eSe is not a flat left eRe-
module.

EXAMPLE 3.9 Let S be the ring of all 3 x 3 matrices of the form

«a 0 O
o
0 & «o
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and let R be the subring consisting of all matrices in .S with e=0. Then § is not a flat
left R-module, but for e=e,, eSe=eRe.

4. Epimorphic Extensions of Perfect Rings

We recall a few definitions. A ring R is left perfect if it satisfies the minimum
condition on principal right ideals. The Jacobson radical of R will be denoted by N.
R is left perfect if and only if R/N is Artinian and N is left T-nilpotent [1]. A right
Artinian ring is both left and right perfect. A left perfect ring 1s called primary (resp.
local) if R/ N is a simple ring (resp. a division ring). R is said to be primary decomposable
if it is a finite product of primary rings. For a subset X of R, /(X) and r(X) denote
the left and right annihilators; for any left perfect ring, /(N) is the right socle.

We now describe the flat epimorphic extensions of a left perfect ring.

PROPOSITION 4.1. Let R be left perfect and let I be a two-sided ideal of R such
that

() I*=1,
(i) I(I)=0,
(iii) I is a finitely generated projective right R-module.

Then the monomorphism R—Homg (I, Iz)=S sending re R to the homomorphism
induced by left multiplication with r is a right flat epimorphism.

Conversely, every right flat epimorphism R< S is of this form.

Proof. We shall prove the first part in detail. From (i) it follows, that
S=Homg(Iz, Rg)=1I*, the dual of I.

Since I is finitely generated projective, there exist x;el, s;eS=I* (i=1,---, n)
such that

X = 2:: x5 (x) = Z X;8;%
)

for all xeI (See [2, 11.4.5]). Thus (1— ) x;s;) I=0 and from (ii) we obtain 1= x;s;.
Since sx;e1 for all se S, we get a zigzag of the form (3.2) for s over (R, S). Thus RS S
is a right flat epimorphism by (3.1). Actually S is finitely generated projective, being
the dual of the finitely generated projective module Iz. Furthermore S is again left
perfect.

The converse follows by putting together several known results. From (3.1) we
know, that S is (isomorphic over R to) the quotient ring of R relative to the topology
&={J | JS=S}. Since R is left perfect, it follows from [7], that the intersection / of
all right ideals in & is a two-sided idempotent ideal which lies also in §, whence



Epimorphic Extensions of Non-Commutative Rings 81

IS =S, and consequently /(1)=0. Furthermore, we have S=Homg (3, Iz) and IS= S
implies, again by [2, I1.4.5], that I is finitely generated projective. See [20] for a
special case of this.

If R is a right Artinian ring with right singular ideal zero, then the conditions of
the proposition are satisfied for 7=I/(N). See [17, 20] for more examples along these
lines.

Since every flat right epimorphic extension of R is contained in the complete right
quotient ring Q(R) [12], a right rationally complete ring (i.e. a ring with R=Q(R))
has no proper right flat epimorphic extensions. The converse does not hold; indeed
the ring R of [20, 7.2] is not right rationally complete, yet no ideal different from
R satisfies (i), (ii) and (iii) of (4.1).

We now return to epimorphic extensions in general.

PROPOSITION 4.2. Let R be a right perfect ring and suppose, that every simple
right R-module is isomorphic to a minimal right ideal. Then R is saturated.

Proof. Let R<S be an epimorphic extension. Then S® S~ S or, equivalently,
S/R®zS=0. Thus Homg(S/R®zsS, S)=~Homg (S/R, Homg(S, S))=0 where S is
considered as R-S-bimodule. Since Homg(S, $)2 S as right R-modules, we find that
Homg (S/R, §)=0. If S/R#0, then S/R maps onto a simple right R-module [1],
which is isomorphic to a submodule of S by assumption. This contradiction shows,
that R=S.

Rings containing a copy of every simple right module are characterized by the
condition, that every proper right ideal has a nonzero left annihilator [17, 18.1]. Note
that this property is Morita invariant.

Among the left perfect rings, these rings are just those having the property, that
r(I(N))=N [20, 5.1]. We thus have proved the following result:

PROPOSITION 4.3. A left and right perfect ring is saturated if r(I(N))=N or
if 1(r(N))=N.

COROLLARY 4.4. A left and right perfect ring R is saturated if it satisfies one
of the following conditions:

(a) R is primary decomposable,

(®) r(N)SI(N) [or I(N)SF(N)],

(¢) R is a quasi-Frobenius ring,

(d) N is in the center of R.

Proof. All these rings satisfy the condition of (4.3) [20, 5.4].

The following result yields another proof of (4.4, a).

PROPOSITION 4.5 Let R be right perfect and let R< S be an epimorphic exten-
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sion. Suppose further, that S, as left R-module, maps onto every simple left R-module.
Then R=S.

Proof. As in the proof of (4.2) we have S/R ® g S=0. The assumption on S implies,
that S/R®x U=0 for every simple left R-module U. Since R/N is a direct sum of
simple left R-modules, it follows that S/R®z R/N=(S/R)/(S/R)N=0. But over a
right perfect ring a generalized form of Nakayama’s Lemma holds [1]: MN=M
implies M =0 for all right modules M. Thus S/R=0.

In order to obtain (4.4, a) from (4.5) we first note, that by (2.3) it suffices to con-
sider primary rings (actually, by (2.5), local rings would do). Now a primary ring has
only one isomorphism class of simple modules and S, as left module over a left per-
fect ring has to map onto some simple module [1], hence onto all simple modules.

Remark 4.6. For a different proof of (4.4, d) see Isbell [10]. In the same paper,
Isbell proves that if a finite dimensional algebra R over a field K has proper epimorphic
extension, then it has two orthogonal primitive idempotents contained in a copy of
the 2 x 2 triangular matrices over K, but not contained in the full 2 x 2 matrix ring
over K. This follows directly from (4.4, a). Indeed, if R is not saturated, then R is not
primary decomposable. This is equivalent to the condition, that there are orthogonal
primitive idempotents e, f such that eRf#0 and eR is not isomorphic to fR. This in
turn translates readily into Isbell’s condition.

We now turn to dominant rings. It has already been noted, that self-injective
rings, in particular quasi-Frobenius rings, are dominant. Thus a stronger result than
(4.4, ¢) holds. We are now going to show, that there are left and right Artinian rings
which are dominant, but not quasi-Frobenius.

If M is a right R-module, then it is a left R-module over its endomorphism ring
E=Homg (M, M), and there is a canonical ring homomorphism f: R - Homg (M, M ).
M is said to be balanced if f is surjective. The reader is referred to [8] for recent results
on balanced modules and balanced rings (rings for which every module is balanced).

PROPOSITION 4.7. If every faithful right R-module is balanced, then R is domi-
nant.

Proof. Let R< S and let deDom (R, S). Applying (1.2, c) to M =Sy we see, that
h(md)=h(m)d for every heHomg(S, S)=E. Thus deHom(S, S), whence deR.

We can now give the promised example. The exceptional ring R constructed in
[8, Lemma III.7.1] is balanced (thus left and right Artinian), but not self-injective.
Indeed, one readily checks, that not every right R-module homomorphism from the
radical of R to R is obtained by left multiplication with some element of R.

Other examples can be obtained as follows. A finite dimensional algebra R is
called a QF-1 algebra if every finitely generated faithful R-module is balanced [21].
If N2=0, then, according to a private communication from C. M. Ringel, it follows,
that every faithful R-module is balanced. An example of a QF-1 algebra with N2=0
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which is not quasi-Frobenius is given in [21]. This example also shows, that the class
of dominant algebras properly contains the class of pure algebras, for a (finite dimen-
sional) pure algebra is quasi-Frobenius. The last statement may be proved using [3,
Theorem 5.5].

As another application of (4.7) we have the following result, which has indepen-
dently been proved by C. M. Ringel.

COROLLARY 4.8. A commutative Noetherian ring is quasi-Frobenius if and only
if every faithful module is balanced.

Proof. It is well-known, that quasi-Frobenius rings have this property. Indeed,
every faithful module is a generator and generators are balanced [8, 1.2.3]. Con-
versely, it was shown in [19], that a commutative Noetherian ring which is dominant
is a quasi-Frobenius ring.

5. Epimorphic Extensions of Principal ideal Domains

In [4, 2.2] Bousfield and Kan proved, that for any commutative ring S the homo-
morphism Z — Dom (f(Z), S) is a ring epmiorphism, where f (Z) is the image of Z
in S. Their proof does not seem to be applicable to the case where S is non-com-
mutative. In this section, we shall present the following generalization of this result.

PROPOSITION 5.1. Let R be a commutative principal ideal domainandlet f- R — S
be a ring homomorphism mapping R into the center of S. Then f induces a ring epi-
morphism R— Dom( f(R), S).

Proof. We first settle the case where fis not injective. Then f (R) is a proper homo-
morphic image of R, hence self-injective (actually a quasi-Frobenius ring). This is
readily proved by using Baer’s criterion for injectivity. It then follows from [18, 5.4]
that f (R) is dominant, whence f (R)=Dom ( f (R), S).

Thus we may assume, that R is a subring of the center of S. Let deDom (R, S)=D
with zigzag d=XAY. Now A is a mx n matrix over a principal ideal domain, thus
there exist invertible m x m resp. n x n matrices P and Q over R such that PAQ is a
diagonal matrix. Then

d=(XP~')(PAQ) (Q"'Y)
is also a zigzag for d. In terms of components, this new zigzag reads

d= ; X;a:)

for suitable x;, y;€S, a;,eR and each d;=x,a;y; is a zigzag over (R, S). We have to
show, that d; has a zigzag over (R, D) and for this it is sufficient to find elements s;, ¢;
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of D such that x,a;=s,a; and a;y;=a;t,, for then d;=s,a;t; will be the required zigzag.
The existence of s; (and similarly of #,) now follows from the next lemma.

LEMMA 5.2. Suppose xa=b with xeS, a, be R. Then there exists se€ D such that
xa=sa.

Proof. Let c be the greatest common divisor of @ and b (determined up to a unit),
then c=ad’ +bb’ with @', b’e R. Now xax is a zigzag for x’a=xb over (R, S) (recall
that Ris central in §), thus xbe D, and it follows, that xc = xaa’ + xbb’ € D. Furthermore
x%c=xcx is a zigzag over (D, S) and this implies, that x*ceD. By induction x"c
=x""1cx is again a zigzag over (D, S), whence x"ceD for all n>1.

We claim, that there exist elements ¢, re R and a natural number m such that
s=x"cr+qe D satisfies the desired relation xa=sa. To this end, let a=a,c, b=b,c.
Here a, and b, are relatively prime. Let now ¢; be the product of all the prime factors
of ¢, that divide a,, and ¢, the product of all the others. Then a, and c, are relatively
prime, and ¢, divides a suitable power of a,, i.e. there exists pe R and a natural number
m such that c;p=a7 ! holds, as well as

cp=at lc,. (5.3)

Since a, and ™ !¢, are relatively prime, we have
1 1 2 y

"

1=aa” 4+ b7 'c,c”, with a’,c"eR. (5.4)
If we put u=c,c”, r=pc” and g=b,a", then from (5.3) and (5.4) we obtain

cr=at lu, (5.5)

b, =qa, + bju. (5.6)

From xa,c=b,c, we compute x’a>c=xa,b,c=xab, =bb, =b3¢c, and continuing in
this fashion, we get

x"alc = bTc. 5.7

Then sa= (x"cr+q) a=x"da} 'uca, + qa,c=b7jcu+qa,c=b,c=b= xa. The first equal-
ity holds by (5.5), the second by (5.7) and the third by (5.6). This completes the proof
of the lemma and hence of proposition (5.1).

We note, that the conclusion of (5.1) remains valid, if R is an epimorphic exten-
sion of a principal ideal domain R,. Indeed, in this case Dom (R, S)=Dom(R,, S)
and since R, = Dom (R, ) is epimorphic by (5.1), so is ReDom (R, S).

Another consequence of (5.1) is, that if the principal ideal domain R is central in
S and if de S is dominated by R in S, then d is already dominated in a commutative
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subring S, of S, viz. Dom(R, S). We do not know, whether such a statement holds
for commutative rings in general, with or without the assumption of centrality.

Finally, we answer the following question: Which rings are absolutely central in
the sense, that they are in the center of every ring containing them?

PROPOSITION 5.8. The ring S is absolutely central if and only if there is a ring
epimorphism g:Z — S.

Proof. If g is not injective, then by the argument used in the proof of (5.1),
S=~Z/(m) for some non-zero integer m, and this ring is clearly absolutely central.
If S is an epimorphic extension of Z, and if T contains S, then Z=.S< Dom(Z, T).
Since Z is central in T, so is S by (1.3), thus S is absolutely central.

To prove the converse, consider an extension R< S of commutative rings, which
is not epimorphic. Let d¢ Dom (R, S), M=S®gS and z=1®]1. Let T be the semi-
direct product of S and M, i.e. the direct sum S@®M with product defined by (s, m)
(8', m')=(ss', sm’ +ms"). S can be considered as a subring of T in the obvious way,
but as such it is not central in T since (d, 0) (0, z)#(0, z) (4, 0). Thus if S is to be
absolutely central, it must be an epimorphic extension of every subring, or, equivalent-
ly, of its smallest subring. This is either Z/(m), m+#0 (in this case S=Z/(m)) or Z.
In either case, there is an epimorphism g as required.

In [4], Bousfield and Kan have given a description of all the epimorphic images
of Z as certain direct limits.
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