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On Spaces of Kleinian Groups

Irwin Kra1)

Let G be a finitely generated Kleinian group and M (G) the space of Beltrami
coefficients for G (ail définitions will be repeated in the body of this paper). For each

\x e M(G), let w M be the unique normalized ju-quasiconformal automorphism of the com-
plex sphère Ê. Two Beltrami coefficients \x and veM(G) are called équivalent (Bers [6]),
if wM and wv agrée on the limit set A of G; they are called strongly équivalent (Bers [7]),

if in addition w11 is homotopic to wv on each component D of the région of discon-

tinuity Q of G, modulo the idéal boundary of D. The quasiconformal déformation

space T(G) is the set of équivalence classes of M (G), and the strong quasiconformal
déformation space T(G) is the set of strong équivalence classes. We shall prove that
T(G) is a complex analytic manifold (a resuit previously obtained by Maskit [17],
and under some restrictive assumptions by Bers [6]), and T(G) is its holomorphic
universal covering space.

Our method differs considerably from those of Maskit [17] or Bers [6]. We rely
instead on results of Bers [7]. With Bers and Maskit, we identify f(G) with a product
of Teichmûller spaces for the Fuchsian model of G, and show that T(G) is f(G)
factored by a fixed point free group F (G) that opérâtes discontinuously on f(G).
Furthermore, our methods lead to more précise information about the fundamental

group F (G) of T(G), and show that if G1,...9 Gn are a maximal set of inequivalent

stability subgroups of the components of Q, then

T(G)sT0{G1)x-xT0(Gn),

where T0(Gj) is a certain subspace of T(Gj),j=l9..., n.

The above décomposition of T(G) is apparently new. To obtain it we need the full
strength of Maskit's Identity Theorem of [17]. However, we recover ail other results

of [17], on the basis of a much weaker theorem (Th. 1 of Bers [7]). In our development
we also obtain characterizations of the trivial and strongly trivial Beltrami coefficients.

Finally, Bers [6] embeds T(G) holomorphically into a certain algebraic variety
and shows that if G satisfies a stability condition, then the image is a manifold. We
show how to recover this resuit by our methods.

§ l. Dénote by Jt the Môbius group ; that is, the group of conformai automorphisms

x) Research partially supportée by NSF grant GP-19572. The author is currently a John Simon
Guggenheim Mémorial Fellow.
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of the Riemann sphère C C u {oo}. Dénote by 0t the real Môbius group ; that is, the

group of conformai automorphism of the upper half plane U={zeC; Imz>0}.
Let GaJK be a Kleinian group, and let A be an invariant union of connectée

components of Q Q(G), the région of discontinuity of G. Dénote by A=A(G), the
limit set of G.

§2. A Beltrami coefficient \i for G is a measurable function satisfying

0 li{gz)YJz)lg'{z)=n{z), geG, a.e. zeQ,
iï) fi\A=0,
iii) ess sup|/x|<l.
The Beltrami coefficients form the open unit bail of the Banach space (with respect

to the supremum norm, || • ||) of bounded measurable functions on Q/G. The space of
Beltrami coefficients for G with support in A is denoted by M (G, A). It is well known
(Ahlfors-Bers [3]) that for every fie M (G, A) there is a unique quasiconformal
automorphism w" of C satisfying the Beltrami équation

ôz dz

and
For fixed geG and pteM{G, A),

(1)

Thus each \i détermines an isomorphism (called a quasiconformal déformation of G)

(2)

where x(v) (g) is given by (1). We call /ieM(G, A) trivial if (2) is the identity isomorphism.

The set of trivial Beltrami coefficients for G with support in A is denoted by
M0(G, A). Consequently, \x and veM(G, A) are called équivalent if /(ju)=%(v).

LEMMA 1. A Beltrami coefficient fieM(G9 A) is trivial if and only ifvf\A is the

identity.
Proof If lieMo (G, A), then

w"og=gow/i, geG.

Let xeA be the attracting fixed point of an élément geG. Then for ail but (possibly)
four values zeC,

wft(x) lim w^ogn(z) lim gBoWM(z) =x.
n-*oo
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Since such points are dense in A, vv" | A is the identity. Conversely, let pie M {G, A)
be such that wM | yl=identity. Since g(A)=A9 for geG, and

^og-K)"1»^, geG,

we conclude that

gfl(x) g(x), forxe^l.
and A has more than two points, g=gfl.

Remark. The lemma shows that the définition of triviality agrées with the one

given in the introduction.

§3. The set Mo (G9 A) acts as a group of right translations on M (G, A) by

where

wyfl

In this manner, we view M0(G, A) as a group of biholomorphic automorphisms of
M (G, A). The quasiconformal déformation space of G with support in A is

T(G9A)=M(G,A)/MO(G,A)9

endowed with the quotient topology.

Remark. If F is a Fuchsian group operating on U, then

T(F,U)
is the usual Teichmùller space if and only if Fis of the first kind. If Fis of the second

kind, T{F) is the socalled reduced Teichmùller space. See, for example, Earle [8] and

[9]. (Of course, we could hâve let A be an arbitrary G-invariant subset of Q(G).
With this convention T(F, U) makes sensé for Fuchsian groups of the second kind.)

In either case, T(F) is a manifold. If Fis of the first kind, it is a complex analytic
manifold. If dimr(F)< oo and Fis of the first kind (if and only if Ffinitely generated

of the first kind), then T(F) is canonically representable as a bounded domain of
holomorphy in CB, where n is the dimension of the space of cusp forms for F (with
support in U) of weight —4. See Ahlfors [2] or Bers [4] and the literature quoted there.

§4. Let {Aj}jGj be a maximal collection of non-equivalent components of A. For
let Gj be the subgroup of G that leaves Aj invariant. Let
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be a holomorphic universal covering. Let Kj be the covering group of hy that is,

Let Fj be the Fuchsian équivalent of Gy that is,

Fj {feâl; 3geGj with hjof gohj).

Then there is an exact séquence

where x, is the uniformizing homomorphism ofGj with respect to the cover hj. We shall
call the collection {Fj}jeJ, the Fuchsian model of G on A. Note that the pair (xj9 hj)
satisfies the relation

§5. We now recall some results of [13] and [14]. Let F be a Fuchsian group acting
on the upper half plane U. The pair (x, h) is a déformation of F if (/) x is a homomorphism

of F into *Jf9 and h is a meromorphic local homeomorphism of £/ onto an

(open) subset of C, such that h°f=x(f)°h,feF. For any déformation (x, h) of F,
the Schwarzian cp of /*,

is a holomorphic 2-form (automorphic form of weight —4) for F on U; that is,

<p{fz)f'{zf (p{z), zeU, feF.
It is a cuspform if

sup {(2 Im z)2 |(p (z)| ; ze U} < oo

In [13], we proved

PROPOSITION 2. Let F be afinitely generated Fuchsian group of thefirst kind.

V (z> ^i) and (x> hi) are déformations of F, then hx =h2 whenever 02^i and 02h2 are

cuspforms.

PROPOSITION 3. Let G be a Kleinian group with an invariant domain D. Let F
be the Fuchsian équivalent of G with respect to the universal holomorphic covering
h: U-+D, and X-F-+G, the corresponding uniformizing homomorphism. If DjG is of
finite type, then Q2h is a cuspform (for F on U).

Proof See [14].
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THEOREM 4. Let G be a Kleinian group. Let A and D be invariant unions of
components ofits région ofdiscontinuity. Assume that A/G is offinite type. Letw.A -> D
be a conformai homeomorphism such that w°g=g°w, ail geG. Then w is the identity

map (in particular A=DJ.

Remark, This theorem is a spécial case of Maskit's Identity Theorem (the main
theorem of [17]). Maskit shows that even if w is topological, quasiconformal or
conformai, it can be extended to an automorphism of C of the same type by setting w

to be the identity on C — A (provided A =D). Maskit proves first the topological theorem,

then the quasiconformal theorem, and finally the conformai theorem. We

présent hère a direct proof of the conformai case in the expectation that it will lead

to a new proof of the quasiconformal case. (Also, ail the resuit of [17] on spaces of
Kleinian groups can be obtained without the full strength of Maskit's Identity Theorem.

For some new results we shall, however, need this Identity Theorem.)
Proof of Theorem. Let Ao be a component of A and G(A0) its stability subgroup.

Since the hypothesis on the pair (G, A) is inherited by (G(A0\ Ao), we may assume

that A is connected. Thus we let Fbe the Fuchsian équivalent of G with respect to the
universal holomorphic covering h and % the corresponding uniformizing homomor-
phism. Clearly 62h and 62 (w°h) are cusp forms by Proposition 3, and since they both
induce the same déformation, h w°h by Proposition 2. We hâve shown that w is the

identity.

§6. We start now with a Fuchsian group F operating on the upper half plane U.

For every fieM (F, U) there exists a unique quasiconformal automorphism w^ of U
that satisfies the Beltrami équation

dz dz

and the normalization wfl(0)=09 ^(1) w/l(oo) oo. Every iieM{F, U) détermines

an isomorphism

defined as follows :

w.o/ow;1, feF.

If /i and veM (F, £/), then we say that \x and v are strongly équivalent and write n~ v

if Wp | R=wv | R, where R is the real Une.

For arbitrary G we consider the biholomorphic map (with the correct définition
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of product: ii (fij)j9jeYljmj M(Fj9 U) if fijEM (Fj9 U) and \\fij\\ <*< 1, for allye/)

)^]\ M(Fj9U) (4)

defined as foliows: For fieM (G, A),

h*(ri=(h*(n\Aj))JeJ, (5)

where

h*{n\Aj){z)=n{hjz)k^\, zeU. (6)

Two éléments ju and veM(G, A) are calledstrongly équivalent withrespect to A(n~v)if

w>\C-A=wv\C-A9
and

An élément fieM (G, A) is called strongly trivial with respect to A if ju~O. The set

of strongly trivial Beltrami coefficients is denoted by fifo{G, A). Since

we use (3) to define an action

M (G, A) x Mo (G, A) -? M (G, ,d).

The strong quasiconformal déformation space of G with support in A is

Remarks. (1) If Fis a Fuchsian group operating on U, then

is the Teichmûller space as defined by Bers [4]. Thus for Fuchsian groups F of the
first kind T(F) T(F). In ail cases T(F) is a complex analytic manifold.

(2) See Bers [7] for a proof that the définition of strong équivalence given in this

paragraph agrées with the one given in the introduction.

§7. It is quite clear that if we define

r(G9A)=M0(G,A)ltt0(G9A)9

then F(G, A) acts as a group of biholomorphic homeomorphisms on T(G, A) and

T(G9A)*î(G,A)ir(G9A).
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In order to understand better the action of F(G9 A) on f(G9 A)wç note the mean-
ing of the map /i*. Let fieM(G9 A) and write for fixed jeJ, fij=hj(fi | Aj). Then for
this j, there is a commutative diagram

(7)

where kj is some holomorphic universal covering of wtt{Aj).
Let Gj and (j,. be the stability subgroups of Aj and wti(Aj), respectively. Let Fj

and Fj be their Fuchsian équivalents using the holomorphic universal coverings hj
and kj, and £/ and #,- be the corresponding uniformizing homomorphisms.

LEMMA 5. The quasiconformal homeomorphism wN conjugates Fj onto Fj.
Furthermore, the following is a commutative diagram of groups and homomorphisms:

Proof. Let/eFy. Abbreviate wN by w and w111 ^7- by W. Since fijeM(Fj9 U)9 w

conjugates Fj onto a Fuchsian group. To show/=w°/°w"1e// forfeFj9 it sufïices to
show that for some yeôj9 we hâve

But for y=Xj{f)eGj9 we hâve

kjof kjoWofoW~1 =WohjofoW~1
W ojohjow'1

The above calculation also shows that ^o^(^y)=x(Af) | Gj°Xj-

§8. For future use we define another opération on Beltrami coefficients. For v and

fieM(U)9 the Beltrami coefficients on the upper half plane for the trivial group, we
define v(g)fieM(U) by

and note that this composition of Beltrami coefficients is différent from the one intro-
duced in §3. Furthermore, if Fis a Fuchsian group, veM(F, U)9 and fieM0(F9 U)9

then v®/*eM(F, U).
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Remark, The above composition of Beltrami coefficients introduces another
action of M0(F9 U) (and fito(F, U)) on M(F9 U). It is well known (see, for example,
Ahlfors [2]) that both of thèse actions lead to the same Teichmûller space T(F)
(respectively, f(F)).

§9. From now on we make the assumption that for eachy,

Aj/Gj is of finite type.

It follows from Ahlfors' finiteness theorem [1], that Q/G is of finite type whenever G

is finitely generated.

LEMMA 6. (Maskit [17]). IffieM0(G9 A), then w^mapseach connectée!comportent

of A onto itself.
Proof. Suppose there is a component D of A with w11 (D) ^ D. Let H be the stability

subgroup of D. Since each élément of G commutes with w", H is also the stability
subgroup of w11 (D). Since D/H is of finite type, H is a finitely generated Kleinian

group with two invariant components. Hence, by Maskit [16], H is quasi-Fuchsian.
Since w11 interchanges two components of H and is the identity on A (H), w11 reverses
orientation. This is a contradiction.

LEMMA 7. Let fieM0(G9 A) and veM(G9 A). Then

vfx (h*yl[(k
where we define

[(*%) ® (*V)]y (k*v)j ® (h*n)j, jeJ,
and the map k* using the coverings kj of the domains Aj given by (7).

Proof For fixedy'e/, we hâve the foliowing commutative diagram

with holomorphic universal covering maps kj and lj. Thus

We hâve shown
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§ 10. Under the hypothesis of Lemma 7, for each j, kj and hj are holomorphic
coverings of the same domain Ajt Thus we hâve for some

This results in replacing the Fuchsian group Fj by

LEMMA 8. J/>eM0(G, A), then h}=kjor allj.
Proof. Since ju^iO^F,, U\ w^ | R=identity. Thus ^(^)=identity=x(/i). We

conclude from Lemma 5 that Fj — Fj and Xj—Xj- By Propositions 2 and 3, hj=kj.

LEMMA 9. 7/>eM0(G, A)andifthere is a comportent D ofA such that /a | D 0,
then wM | D identity.

Proof. This is an immédiate conséquence of Theorem 4, since

geG

§11. As a resuit of the above facts, (4) projects to a well defined surjective
holomorphic mapping

To see this let v and aeM(G9 A). We map thèse éléments into h* v and h*<r

efIi6jM(F/, £/).Now if v and (rare équivalent under M0(G, A\ then a vfx for some

jueM0(G, A). Thus h*a (h*v)®(h*fi). But for each jeJ, (h*ii)j~O. Thus we hâve a
well defined mapping into the product of the Teichmûller spaces (again with the

correct définition of product).
From now on we assume (in order to minimize topological questions) that A/G

is of finite type, and consists of n components.

LEMMA 10. Let fieM (G, A) and assume that

hj(fi\ Aj)~0, ; l,...,n. (8)

ThenfieSÏ0(G,A).
Proof. Consider the map

h*:£îo(G9 A)-»£ïo(Fl9 U) x .- x M0(Fn9 U) ê. (9)

Since h* is one-to-one (as the map given by (4)), and since (8) shows that A*/i6<f, it
suffices to show that the map h* of (9) is surjective.
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Let F be any Fuchsian group. First, iOr0 (F, U) is connectée if and only if T(F)
is simply connectée (Earleand Eells [11]). Furthermore, T{F) iscontractible(therefore
simply connectée), when Fis finitely generated (Keen [12], Earle [10]). We conclude
that ê is connected. Let

v /iV with fie]ÏÏ0(G9 A)}.

Given a ve #, there is a,fieM(G, A) such that h*n v. We must show that fxeAi0 (G, A).
For veê with sufficiently small norm, this was done by Bers (Th. 1 of [7]). Thus F
contains a neighborhood of the origin from S. Next we show that Fis open. Consider
veE. Then there is a neKïo(G, A) such that h*ii v. Consider a of small norm,
Then a=h*g9 q of small norm qeAÏ0(G, A), and

(since geM0 (G, A)). Thus a neighborhood of v is also in F. Finally, F is closed. For if
Vj€E and lim vs v g S,

J-oo

then there is a nieSîQ{G,A)9 Vj=h*fij, with lim^^^^. =fxeM(G, A). Clearly, for
i 1,...,«, (A*/x) is équivalent to zéro. We must only verify that wM | C — A =identity.
But for each zeù — A, we hâve

w" (z) lim wN (z) z.

Since Fis open, closed and non-empty, and ê is connected, F=<f. Thus (9) is indeed

a surjective isomorphism.
We hâve just established

THEOREM 11. Let A be an invariant union of components of a Kleinian group G

with A/G offinite type. Let {Fl9 F2,..., Fn} be the Fuchsian model of G on A. Then

(10)

In particular, f(G, A) is a simply connected complex analytic manifold.

§12. We now turn to the action of F (G, A) on T(F1)x---xT(Fn). Let F be an
arbitrary Fuchsian group operating on U. Let w be an arbitrary (not necessarily

normalized) quasiconformal automorphism of U, with

Every such w induces a biholomorphic automorphism w* of M (F, U) defined as

follows. For fieM(F, U),
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where ae^ is chosen so that (x°w^°w fixes 0, 1 and oo. It is trivial to verify that for

fi, veM(F9 U)9 fi is équivalent to v under Af0 (F, U) if and only if w*fi is équivalent to
w*v under Afo(F, U). Thus we view w* has a biholomorphic self mapping of T(F).
The set of ail such mappings forms F (F), the modular group of f(F). For finitely
generated Fof the first kind F (F) acts discontinuously on T(F) (Kravetz [15], Earle
andEells [11]).

We hâve seen in §7 and § 10 that for each fieM0 (G9 A)9 wN (they-th component of
h*n is Hj) conjugates Fj into fij1 Fftj. Thus Pj0^^ conjugates Fj into itself and hence

induces an élément of F (Fj).
We now establish a homomorphism

by defining for fxeMQ(G9 A)

Ofi=(P1oW*i9...,PnoW*J.

The vérification that for fi9 veM0(G, A),

0(vfi) 0Vo0fi

is straightforward and is thus left to the reader.

LEMMA 12. Under the hypothesis of Theorem 11, F (G, A) is isomorphic to a

fixedpoint free subgroup of F(Fl)x xF(Fn). Furthermore, the isomorphism (10) of
Teichmuller spaces commutes with this isomorphism ofmodular groups.

Proof We hâve already remarked that every fieM0 (G, A), induces the identity
élément of F(Fx)x ••• xF(Fn). We show next that if fieM0(G, A) and if the corre-
sponding élément of F(Fj) has a fixed point, then /f/~0. This will show that fie
i(3r0(G, A). And hence the two statements, that the correspondence we hâve established
is one-to-one and that the image group acts fixed point freely, will follow at once.
Let w pjowflj. Find vjeM(Fjy U) such that for some a^e^,

<*joWyjoPjoWN | R WVJ R.

Let G] be the Beltrami coefficient of wy^1 °^jowVj°PjowfiJ, then aseSî0 (Fj9 U). Choose

aeM0(G, A) such that (<rl9...9 Gn)=h*a. Similarly, let QjeM(Fj9 U) be the Beltrami
coefficient of oij0wVJ0f}p and let (qj,..-, Qn)=k*Q9 and (vl5..., vrt)=/i*v, veM(G, A)9

çeM(G9 A). Then

ButQj=f}*Vja.ndkJ=f}J°hJ. Thus v=g and hence <r=fi. In particular, juei(5r0(G, A).
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The last statement of the theorem follows from the commutativity of the following
diagram for 6eF(G, A) and the corresponding élément 0der(F1)x--' xF(Fn):

§ 13. We summarize the above results in the following theorem.

THEOREM 13. Under thehypothesisofTheorem 11, T(G, A) is a complex analytic
manifold with T(G, A) as a holomorphic universal covering space. Furthermore, ifeach
component of A is simply connected, then

T(G,A) T(G,A).

Froof. Since F (G, A) acts properly discontinuously and fixed point freely on
T(G, A), we conclude that T(G, A) is a complex analytic manifold. Since T(G9 A) is

simply connected and the covering

f(G,A)-+T(G,A)
is Galois, f(G, A) is a holomorphic universal covering of T(G, A).

Now assume that each component of A is simply connected. Let pieM0(G, A),
and let [ij=hj(n | Aj). We use the results and notation of Lemma 5. Note that
x(/j)=identity, and hence

Hence

wwo/ow;/, feF.
Hence Pj0^^ | jR=identity, and in particular j8/°w*y is the identity in F(Fj). Thus
F (G, A)is the trivial group.

Remark. The fact that T(G, A) is a complex analytic manifold has also been

obtained by Maskit [17].

§14. We can in a certain sensé strengthen the above theorem. The déformation

space of a Kleinian group recognizes only how the Riemann surfaces are represented
by the Kleinian group and not how thèse Riemann surfaces are put together to form
the group. Observe that if we define for j=1,..., n, Fj {y eF (G, A ; y corresponds to
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an élément fieM0 (G, A) with \i supportée in Di [JgeG g(Aj)}9 then we recognize at
once that

Furthermore, if ixjeM0{Gi £>,), y l,..., n, then (as a conséquence of Lemma 9)

We thus hâve established (by Lemma 10) a monomorphism

r(G, do x... x r(G, Dn)->r(G, a).

The above map is an isomorphism (surjective), for if 6eF(G, A), then we represent 0

by an élément /j,eM0(G, A). Since h>" induces the identity on G, so does

_
fwM on Dj,

Wj ~~ jidentity on Ê - Dj,

j l,...,«. Letting [ij—l1 \ Dp we conclude by Maskifs Identity Theorem [17], that
Wj w^J, provided {0, 1, oo } c A (G). This latter condition involves no loss of generality.

It thus follows that

T(G, A) s TCFO/roCFO x x T(Fn)/r0(Fn),

where ro(Fj) is a certain fixed point free subgroup of r(Fj),j=l,..., n.
We thus hâve

THEOREM 14. Let A be an invariant union of components of a Kleinian group G

with A/G offinite type. Let Al9..., An be a maximal inequivalent set of components of A.

Let Gj {geG;gAj=Aj}9j l,...,n. Then

T(G9A)*T(Gl9A1)x-..xT(GH9An).

Proof We begin with the obvious isomorphism

where

r gsG

We hâve already shown that

r(G, A) siT(G, Dt) x .» x r(G, Dn),

and hence

T(G, A) S T(G, £>0 x x T(G, Dn).
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To prove the theorem it suffices to show that for fixed j,

T(Gj9Aj)*T(G9Dj). (11)

We establish an isomorphism

as follows: Let fieM(Gj9 Aj). Set

*fi\g-1(Aj) g^\g-l(AJ)9 geG,

and note that * is well defined. For if g~1 (Aj) =g~[ 1 (Aj) for another g± e G9 then

g-1

since

It is a trivial conséquence of Lemma 10, that

*:tto(Gj9Aj)^iïo(G9Dj).

It thus remains to verify that

*:M0(Gj9 Aj)^M0(G,Dj). (12)

Since fieM0(Gj9 Aj), by Lemma 6, wfÂ(Aj)=Aj. For the sake of convenience we

assume that 0, l,aoeA(Gj). We define a function w on (2(G) as follows

We note that w is well defined. For if zegï1 (Aj) with g±eG, then on g~1(Aj)
iAj) wehave

The second of the above equalities hold since g°gï1eGj and w" commutes with each

élément of Gj. It is also clear that w commutes with each élément of G. By the main
theorem of Maskit [17], there is a global quasiconformal homeomorphism PFsuch that

W |û(C)«w.
In particular (since W | A (G) is the identity), JFis normalized. An obvious calculation
shows that W=w*fl. We hâve thus verified that (12) is an isomorphism. To finish the



On Spaces of Kleinian Groups 67

proof of the isomorphism (11), ît suffices to show that action defined by (3) commutes
with the isomorphism* ; that îs,

ail veM(GJ9 A3).

Since *(v/x) and (*v) (*[i)eM0(G, Dj), ît suffices to show that

But

and if

for any three Beltrami coefficients q, a, t, then

dz

Now smce fieM0(Gj, Aj),

w*fl\AJ=wfl.

Thus

Remark, This îs the flrst time we made full use of Maskit's Identity Theorem of [17].

§ 15. We charactenze next the éléments of Mo (G, A). In view of the last paragraph,
ît suffices to assume that A îs an invariant component of the (finitely generated)
Kleinian group G. Using notation that îs standard by now, we hâve a commutative
diagram (7), where we drop the index j. Letting K and fc be the covenng groups corre-
sponding to the covenngs h and k, we note from Lemma 5 that w^ conjugates K into
Ê. (note K=x x (1) and & =%~1 (!))• We thus rewnte the commutative diagram from
Lemma 5 as

y(a\
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and note that ail the homomorphisms are now isomorphisms. Next assume that
fieM0(G, A). Let w=jft° wh*^ then w conjugates F and K into F and K respectively.
Furthermore, since x(/j)= identity

WofoW~\f~leK, all/eF. (13)

THEOREM 15. Let G be a finitely generated Kleinian group with an invariant
component A. Let F be the Fuchsian équivalent of G with respect to the holomorphic
universal covering h. Let K be the corresponding covering group. Then jâeM0(G9 A) if
andonly ifthere exists a weF(F), w=P°wh*fl, $e0l such that (13) holds.

Proof. The only if part has already been established. For the reverse implication
consider the commutative diagram

u
h\

w
A >A

u*u
h\ !*•'¦

± w *AA
From (13) we conclude that wh*n conjugates K into ft'1^. Thus wh*^ projects to a

quasiconformal mapping JFas above. The Beltrami coefficient of Wis \x. From (13)

once again, we see that

Wog=goW, allgeG.

Thus by Maskit's Theorem [17], we may assume that Wis the identity offA.lt involves

no loss of generality to assume {0, l,oo}c:C — A. Thus iieM0(G, A).

§16. In this last paragraph we show the connections between our and Maskit's [17]

approaches with the one taken by Bers [6].
Assume that the Kleinian group G is generated by r éléments; yu..., yr. A homo-

morphism x\G-*Jt naturally détermines a point

The set of ail such homomorphisms, Hom (G, Jt\ forms an affine algebraic sub-

variety (see Bers [5], [6]) of Jtr. The group G is called (Bers [6]) quasi-stable if every
quasiconformal déformation of G which is sufficiently close to the identity (in the

topology of Hom (G, ^)) can be induced by a quasiconformal automorphism of the

Riemann sphère with a dilitation arbitrarily close to 1. The group G is called strongly

quasi-stable, if for every quasiconformal déformation % of G, x(G) is quasi-stable. Let
A be an invariant union of components of G. There is, of course, a map

&:M(G, A) -> Hom (G, Jt) c J!r (14)

defined by ^OO^xG") ?!>•••> xOO ?>•)•
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THEOREM 16. (Bers [6]. Let A be an invariant union of components ofa Kleinian

group G generatedby r éléments: yl9..., yr. The mapping 0 definedby (14) is holomorphic.

Furthermore,for strongly quasi-stable G, <P(M(G9 A)) is a submanifold of Jtr.
Proof It is almost obvious that # is holomorphic (see Bers [5]). Furthermore $

projects to a well defined holomorphic map

<P:T(G,A)-+JT. (15)

The assumption of strong quasi-stability guarantees that the maps <f> of (14) and (15)

are open. Since T(G, A) is a manifold, so is <P(T(G, A)).
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