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On Spaces of Kleinian Groups

IRWIN KRAT)

Let G be a finitely generated Kleinian group and M (G) the space of Beltrami
coefficients for G (all definitions will be repeated in the body of this paper). For each
pe M(G),let w* be the unique normalized p-quasiconformal automorphism of the com-
plex sphere C. Two Beltrami coefficients i and ve M (G) are called equivalent (Bers [6]),
if w* and w” agree on the limit set A of G, they are called strongly equivalent (Bers [7]),
if in addition w* is homotopic to w* on each component D of the region of discon-
tinuity Q of G, modulo the ideal boundary of D. The quasiconformal deformation
space T(G) is the set of equivalence classes of M (G), and the strong quasiconformal
deformation space T(G) is the set of strong equivalence classes. We shall prove that
T(G) is a complex analytic manifold (a result previously obtained by Maskit [17],
and under some restrictive assumptions by Bers [6]), and T(G) is its holomorphic
universal covering space.

Our method differs considerably from those of Maskit [17] or Bers [6]. We rely
instead on results of Bers [7]. With Bers and Maskit, we identify 7(G) with a product
of Teichmiiller spaces for the Fuchsian model of G, and show that T(G) is T(G)
factored by a fixed point free group I'(G) that operates discontinuously on T'(G).
Furthermore, our methods lead to more precise information about the fundamental
group I'(G) of T(G), and show that if G, ..., G, are a maximal set of inequivalent
stability subgroups of the components of Q, then

T(G) = Ty (Gy) x -+ x Ty (G,)»

where T, (G;) is a certain subspace of T'(G;),j=1,..., n.

The above decomposition of T(G) is apparently new. To obtain it we need the full
strength of Maskit’s Identity Theorem of [17]. However, we recover all other results
of [17], on the basis of a much weaker theorem (Th. 1 of Bers [7]). In our development
we also obtain characterizations of the trivial and strongly trivial Beltrami coefficients.

Finally, Bers [6] embeds T(G) holomorphically into a certain algebraic variety
and shows that if G satisfies a stability condition, then the image is a manifold. We
show how to recover this result by our methods.

§1. Denote by .# the Mébius group; that is, the group of conformal automorphisms

1) Research partially supported by NSF grant GP-19572. The author is currently a John Simon
Guggenheim Memorial Fellow.
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of the Riemann sphere C=C U {o0}. Denote by 2 the real Mobius group; that is, the
group of conformal automorphism of the upper half plane U={zeC; Imz>0}.

Let Go.# be a Kleinian group, and let 4 be an invariant union of connected
components of Q=Q(G), the region of discontinuity of G. Denote by A =A4(G), the
limit set of G.

§2. A Beltrami coefficient u for G is a measurable function satisfying
i) nu(gz) g’ (2)/g' (z)=u(z), geG, a.e. zeQ,
ii) u | A=0,

iii) ess sup|u|<1.

The Beltrami coefficients form the open unit ball of the Banach space (with respect
to the supremum norm, | - ||) of bounded measurable functions on Q/G. The space of
Beltrami coefficients for G with support in 4 is denoted by M (G, 4). It is well known
(Ahlfors-Bers [3]) that for every ue M (G, 4) there is a unique quasiconformal auto-
morphism w* of C satisfying the Beltrami equation

6w"_ ow"
7 " ez’

and w*(0)=0, w*(1)=1, w*(®)=c0.
For fixed geG and ue M (G, 4),

w“ogo(w")_lej. (1)
Thus each u determines an isomorphism (called a quasiconformal deformation of G)
1(1): G~ 4, @

where x (1) (g) is given by (1). We call ue M (G, 4) trivial if (2) is the identity isomor-
phism. The set of trivial Beltrami coefficients for G with support in 4 is denoted by
M, (G, 4). Consequently, u and ve M (G, A) are called equivalent if x(p)=x(v).

LEMMA 1. A Beltrami coefficient pe M (G, A) is trivial if and only if w* | A is the
identity.
Proof. If ue My (G, 4), then

weg=gow", geG.

Let xe A be the attracting fixed point of an element ge G. Then for all but (possibly)
four values zeC,

w'(x) = lim w*og"(z) = lim g"ow"(z) = x.

n—+ o0 n—w
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Since such points are dense in A, w* [ A is the identity. Conversely, let ue M (G, 4)
be such that w* | 4 =identity. Since g(4)=4, for geG, and
wrogo (W) 1 =g", geG,
we conclude that
g'(x)=g(x), forxed.
Since g*e.# and A has more than two points, g=g".

Remark. The lemma shows that the definition of triviality agrees with the one
given in the introduction.

§3. The set M, (G, 4) acts as a group of right translations on M (G, 4) by

M (G, 4) x My (G, 4)3(v, p)—>vueM (G, 4), (3
where

W =wowh,

In this manner, we view M, (G, 4) as a group of biholomorphic automorphisms of
M (G, A). The quasiconformal deformation space of G with support in 4 is

T(G, 4) = M (G, 4)/M, (G, 4),

endowed with the quotient topology.

Remark. If F is a Fuchsian group operating on U, then
T(F,U)=T(F)

is the usual Teichmiiller space if and only if Fis of the first kind. If F is of the second
kind, T'(F) is the socalled reduced Teichmiiller space. See, for example, Earle [8] and
[9]. (Of course, we could have let 4 be an arbitrary G-invariant subset of Q(G).
With this convention T(F, U) makes sense for Fuchsian groups of the second kind.)

In either case, T(F) is a manifold. If F is of the first kind, it is a complex analytic
manifold. If dimT(F) < oo and Fis of the first kind (if and only if F finitely generated
of the first kind), then T'(F) is canonically representable as a bounded domain of
holomorphy in C", where 7 is the dimension of the space of cusp forms for F (with
support in U) of weight —4. See Ahlfors [2] or Bers [4] and the literature quoted there.

§4. Let {4;};., be a maximal collection of non-equivalent components of 4. For
each jeJ, let G; be the subgroup of G that leaves 4; invariant. Let
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be a holomorphic universal covering. Let K; be the covering group of 4;; that is,
K;={ke; hjok =h;}.

Let F; be the Fuchsian equivalent of G;; that is,
F,={feZ; 3geG; with h;o f =goh;}.

Then there is an exact sequence
{1~ K> F=6,- {1},

where y; is the uniformizing homomorphism of G ; with respect to the cover h;. We shall
call the collection {F;};.;, the Fuchsian model of G on A. Note that the pair (x;, A;)
satisfies the relation

hi°f=Xj(f)ohj, fEF;.

§5. We now recall some results of [13] and [14]. Let F be a Fuchsian group acting
on the upper half plane U. The pair (¥, k) is a deformation of Fif (i) x is a homomor-
phism of F into .#, and 4 is a meromorphic local homeomorphism of U onto an
(open) subset of C, such that hef=yx(f)°h, feF. For any deformation (y, ) of F,
the Schwarzian ¢ of A,

¢ =0;h = (W"[K) — (1/2) (W"[H')?,

is a holomorphic 2-form (automorphic form of weight —4) for F on U; that is,
o(fz)f'(z2)*=¢(z), zeU, feF.

It is a cusp form if
sup {(2Imz)*|¢p (z)|;zeU} <.

In [13], we proved

PROPOSITION 2. Let F be a finitely generated Fuchsian group of the first kind.
If (x, hy) and (x, h,) are deformations of F, then hy =h, whenever 0,h, and 0,h, are
cusp forms.

PROPOSITION 3. Let G be a Kleinian group with an invariant domain D. Let F
be the Fuchsian equivalent of G with respect to the universal holomorphic covering
h:U— D, and y:F— G, the corresponding uniformizing homomorphism. If D|G is of
finite type, then 0,h is a cusp form (for F on U).

Proof. See [14].
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THEOREM 4. Let G be a Kleinian group. Let A and D be invariant unions of
components of its region of discontinuity. Assume that A|G is of finite type. Let w: 4 — D
be a conformal homeomorphism such that weg=ge°w, all geG. Then w is the identity
map (in particular A=D).

Remark. This theorem is a special case of Maskit’s Identity Theorem (the main
theorem of [17]). Maskit shows that even if w is topological, quasiconformal or
conformal, it can be extended to an automorphism of € of the same type by setting w
to be the identity on € — 4 (provided 4 = D). Maskit proves first the topological theo-
rem, then the quasiconformal theorem, and finally the conformal theorem. We
present here a direct proof of the conformal case in the expectation that it will lead
to a new proof of the quasiconformal case. (Also, all the result of [17] on spaces of
Kleinian groups can be obtained without the full strength of Maskit’s Identity Theo-
rem. For some new results we shall, however, need this Identity Theorem.)

Proof of Theorem. Let 4, be a component of 4 and G (4,) its stability subgroup.
Since the hypothesis on the pair (G, 4) is inherited by (G (4,), 4,), we may assume
that 4 is connected. Thus we let F be the Fuchsian equivalent of G with respect to the
universal holomorphic covering 4 and x the corresponding uniformizing homomor-
phism. Clearly 6, and 0, (w° k) are cusp forms by Proposition 3, and since they both
induce the same deformation, A=we°h by Proposition 2. We have shown that w is the
identity.

§6. We start now with a Fuchsian group F operating on the upper half plane U.
For every pe M (F, U) there exists a unique quasiconformal automorphism w, of U
that satisfies the Beltrami equation

ow, B ow,

2 "’

and the normalization w,(0)=0, w, (1) =1, w,(c0) =0c0. Every ue M (F, U determines
an isomorphism

V(u):F—> 2%

defined as follows:

V(u)f =wuofow, ', feF.

If u and ve M (F, U), then we say that u and v are strongly equivalent and write u~ v
if w, | R=w, | R, where R is the real line.
For arbitrary G we consider the biholomorphic map (with the correct definition
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of product: p=(y;)jcs€[ [jes M(F;, U)if p;e M (F;, U) and ||p;| <k <1, for all jeJ)

h*:M (G, 4)—> [] M (F;, U) 4)
jelJ )
defined as follows: For ue M (G, 4),
R () = (k5 (1] 4))se0> )
where
hj(2)

by (n| 4;) (z) = p(hyz) zeU. (6)

hj(z)’
Two elements p and ve M (G, A) are called strongly equivalent with respect to A (u~v) if
w"IC—A =w"|C—A,
and
hi(u|4;) ~hi(v|4;), aljeJ.

An element ue M (G, 4) is called strongly trivial with respect to A if u~0. The set
of strongly trivial Beltrami coefficients is denoted by M, (G, 4). Since

M,y (G, 4) = M, (G, 4),
we use (3) to define an action
M (G, 4) x My (G, 4) > M (G, 4).
The strong quasiconformal deformation space of G with support in A is

T(G, 4) = M (G, 4)/M, (G, 4).

Remarks. (1) If Fis a Fuchsian group operating on U, then
T(F,U)=T(F)

is the Teichmiiller space as defined by Bers [4]. Thus for Fuchsian groups F of the
first kind T'(F)=T(F). In all cases T'(F) is a complex analytic manifold.

(2) See Bers [7] for a proof that the definition of strong equivalence given in this
paragraph agrees with the one given in the introduction.

§7. It is quite clear that if we define
I (G, 4) = My (G, 4)/M, (G, 4),

then I' (G, 4) acts as a group of biholomorphic homeomorphisms on T(G, 4) and
T(G,4)= T(G, 1)/l (G, 4).
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In order to understand better the action of I' (G, 4) on T(G, 4) we note the mean-
ing of the map h*. Let pe M (G, 4) and write for fixed jeJ, p;=hj (1| 4,). Then for
this j, there is a commutative diagram

U—ﬁ—) U
Ml lh’
wh | 4; (7)

4;——w*(4))

where k; is some holomorphic universal covering of w*(4;).

Let G; and Gj be the stability subgroups of 4; and w*(4;), respectively. Let F;
and F ; be their Fuchsian equivalents using the holomorphic universal coverings A;
and k;, and y; and £; be the corresponding uniformizing homomorphisms.

LEMMA 5. The quasiconformal homeomorphism w, conjugates F; onto F e
Furthermore, the following is a commutative diagram of groups and homomorphisms:

V(uj) 4

A
lll lxj.
x(1) | Gy
G

Proof. Let feF;. Abbreviate w, by w and w* | 4; by W. Since y;e M (F;, U), w
conjugates F; onto a Fuchsian group. To show f=we fow leF ; for feF;, it suffices to
show that for some yeG j» we have

kjof=yokj.
But for y=yx;(f)eG;, we have
kjof = kjoWofoW—l = WohjofoW—l
=Woyohjow " =x(u)yoWohjow™!
=x(W)yokjowow ™ =y (n)yok;.
The above calculation also shows that £, (u;)=x (1) | Gjox;-

§8. For future use we define another operation on Beltrami coefficients. For v and
pe M (U), the Beltrami coefficients on the upper half plane for the trivial group, we
define v@ueM(U) by

Wy@u = WyoW,,

and note that this composition of Beltrami coefficients is different from the one intro-
duced in §3. Furthermore, if F is a Fuchsian group, ve M (F, U), and ue M, (F, U),
then vQue M (F, U).
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Remark. The above composition of Beltrami coefficients introduces another ac-
tion of M, (F, U) (and M, (F, U)) on M(F, U). It is well known (see, for example,
Ahlfors [2]) that both of these actions lead to the same Teichmiiller space T'(F)
(respectively, T'(F)).

§9. From now on we make the assumption that for each j,
4;/G; is of finite type .

It follows from Ahlfors’ finiteness theorem [1], that Q/G is of finite type whenever G
is finitely generated.

LEMMA 6. (Maskit [17]). If ne M, (G, 4), then w* maps each connected component
of 4 onto itself.

Proof. Suppose there is a component D of A with w*(D)# D. Let H be the stability
subgroup of D. Since each element of G commutes with w*, H is also the stability
subgroup of w*(D). Since D/H is of finite type, H is a finitely generated Kleinian
group with two invariant components. Hence, by Maskit [16], H is quasi-Fuchsian.
Since w* interchanges two components of H and is the identity on A (H ), w" reverses
orientation. This is a contradiction.

LEMMA 7. Let ne My (G, 4) and ve M (G, A). Then
v = (") (k") @ (h*p)],

where we define
[(k*)® (h*w)]; = (K*v); ® (K*w);,  JeJ,

and the map k* using the coverings k; of the domains A; given by (7).
Proof. For fixed jeJ, we have the following commutative diagram

w Wy

U . > U

h.il lkf llj’
wh | 4; wY | 4;
|

»w™ (4;)

j it

with holomorphic universal covering maps k; and /;. Thus
Wy, @u = Wy,0 Wy,
We have shown

h* (vp) = k* () ® h* ().



On Spaces of Kleinian Groups 61

§10. Under the hypothesis of Lemma 7, for each j, k; and #; are holomorphic
coverings of the same domain 4;. Thus we have for some B;e Z,

This results in replacing the Fuchsian group F; by

Fj = ﬁlejﬁr

LEMMA 8. If ueM, (G, 4), then h;=k; for all j.
Proof. Since p;eM,(F;, U), Wy, | R=identity. Thus ¥ (u;)=identity =y (u). We
conclude from Lemma 5 that F j=F ; and x;=%;. By Propositions 2 and 3, h;=k;.

LEMMA 9. If ne My (G, A) and if there is a component D of A such that u | D=0,
then w" | D =identity.
Proof. This is an immediate consequence of Theorem 4, since

ulgEJGg(D)=0-

§11. As a result of the above facts, (4) projects to a well defined surjective holo-
morphic mapping

T (G, 4)- ] T(F, U).
jelJ

To see this let v and ce M (G, 4). We map these elements into #* v and A*e
€[1;esM (F;, U).Now if v and o are equivalent under M, (G, 4), then ¢ = vu for some
ueM, (G, 4). Thus h*e =(h*v)®(h*p). But for each jeJ, (h*u);~0. Thus we have a
well defined mapping into the product of the Teichmiiller spaces (again with the
correct definition of product).

From now on we assume (in order to minimize topological questions) that 4/G
is of finite type, and consists of n components.

LEMMA 10. Let ue M (G, 4) and assume that
hi(p|4;)~0, j=1,..,n. (8)

Then peM, (G, 4).
Proof. Consider the map

h*: M (G, 4) > My (F;, U) x ---x My (F,, U)=¢. )

Since h* is one-to-one (as the map given by (4)), and since (8) shows that A*ueé, it
suffices to show that the map A* of (9) is surjective.
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Let F be any Fuchsian group. First, M, (F, U) is connected if and only if T'(F)
is simply connected (Earleand Eells [11]). Furthermore, T(F) is contractible (therefore
simply connected), when F is finitely generated (Keen [12], Earle [10]). We conclude
that & is connected. Let

E ={ved; v=h*u with ue M, (G, 4)}.

Givenaved, thereis a ue M (G, 4) such that A*u=v. We must show that ue M, (G, 4).
For ve & with sufficiently small norm, this was done by Bers (Th. 1 of [7]). Thus E
contains a neighborhood of the origin from &. Next we show that E is open. Consider
veE. Then there is a ue M, (G, 4) such that A*u=v. Consider ¢ of small norm, ceé.
Then g =h*g, g of small norm ge M, (G, 4), and

h*(ue) =h* ()@ h*(e) =v®0
(since ge M, (G, 4)). Thus a neighborhood of v is also in E. Finally, E is closed. For if

v;eE and limv; =ved,
jm o

then there is a yje]VIo (G, 4), v;=h*p;, with lim;, ,u;=pe M (G, 4). Clearly, for
i=1,...,n, (b p) is equivalent to zero. We must only verify that w* | C— 4 =identity.
But for each ze C— 4, we have

wh(z) = lim w" (z) = z.

j—oo

Since E is open, closed and non-empty, and & is connected, E=¢&. Thus (9) is indeed
a surjective isomorphism.

We have just established

THEOREM 11. Let A be an invariant union of components of a Kleinian group G
with A|G of finite type. Let {Fy, F,,..., F,} be the Fuchsian model of G on A. Then
T(G, )= T(F,) x--x T(F,). (10)
In particular, T(G, A) is a simply connected complex analytic manifold.
§12. We now turn to the action of I'(G, 4) on T(F,)x ---x T(F,). Let F be an

arbitrary Fuchsian group operating on U. Let w be an arbitrary (not necessarily
normalized) quasiconformal automorphism of U, with

w iFw=F.

Every such w induces a biholomorphic automorphism w* of M(F, U) defined as
follows. For ue M (F, U),

th“'—"aowuow,
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where ae £ is chosen so that a°ow,°w fixes 0, 1 and co. It is trivial to verify that for
1, ve M (F, U), u is equivalent to v under M, (F, U)if and only if w*u is equivalent to
w*v under M, (F, U). Thus we view w* has a biholomorphic self mapping of T'(F).
The set of all such mappings forms I' (F), the modular group of T'(F). For finitely
generated F of the first kind I" (F) acts discontinuously on T'(F) (Kravetz [15], Earle
and Eells [11]).

We have seen in §7 and § 10 that for each ue M, (G, 4), w,, (the j-th component of
h*p is p;) conjugates F; into ;' FB;. Thus B;°w, conjugates F; into itself and hence
induces an element of I (F;).

We now establish a homomorphism

O:My(G, A)>T (F,) x--x I'(F,),

by defining for ue M, (G, 4)
Op=(BroWys.-es ByoWp,).
The verification that for u, ve My (G, 4),
O (vu) =0OvoOu

is straightforward and is thus left to the reader.

LEMMA 12. Under the hypothesis of Theorem 11, I' (G, 4) is isomorphic to a
fixed point free subgroup of I' (F\)X ... xI'(F,). Furthermore, the isomorphism (10) of
Teichmiiller spaces commutes with this isomorphism of modular groups.

Proof. We have already remarked that every ue M, (G, 4), induces the identity
element of I'(F;) x -+ x I'(F,). We show next that if ue M, (G, 4) and if the corre-
sponding element of I'(F;) has a fixed point, then u;~0. This will show that ue
M (G, 4). And hence the two statements, that the correspondence we have established
is one-to-one and that the image group acts fixed point freely, will follow at once.
Let w=f;ow,;. Find v;e M (F;, U) such that for some ;e Z,

ajonjoﬁjoW”le =W,, | R.

Let o, be the Beltrami coefficient of w,, ' ca;ow, °B;°w, , then 6;€ M, (F;, U). Choose
oeM, (G, A) such that (ay,..., 5,)=h*c. Similarly, let ;e M (¥}, U) be the Beltrami
coefficient of a;°w, °B;, and let (g;, ..., 0,)=k*e, and (Vys--s Vo) =h*v, ve M (G, 4),
0€M (G, 4). Then

wlowh =w'ow’.

But ¢;=pf}v; and k} =B} °h}. Thus v=g and hence ¢ =p. In particular, pei, (G, 4).
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The last statement of the theorem follows from the commutativity of the following
diagram for eI’ (G, 4) and the corresponding element @0eI (F,) x --- x I'(F,):

T(G, 4)— T(F,) x - x T(F,)

) N leo
T (G, 4)> T (F,) x--x T(F,).

§13. We summarize the above results in the following theorem.

THEOREM 13. Under the hypothesis of Theorem 11, T (G, A) is a complex analytic
manifold with T'(G, A) as a holomorphic universal covering space. Furthermore, if each
component of A is simply connected, then

T(G,4) =T (G, 4).

Proof. Since I' (G, A) acts properly discontinuously and fixed point freely on
T(G, 4), we conclude that T(G, 4) is a complex analytic manifold. Since T'(G, 4) is
simply connected and the covering

(G, 4) - T (G, 4)

is Galois, T(G, 4) is a holomorphic universal covering of T(G, 4).

Now assume that each component of 4 is simply connected. Let pe M, (G, 4),
and let p;=h} (u|4;). We use the results and notation of Lemma 5. Note that
x (1) =identity, and hence

V() =12;"on
Hence
v(u)f =kj_1 ohjofoh;lokj =ﬂj_10fo,3j
=w,ofow,', f€F.
Hence B;°w,, | R=identity, and in particular §;°wj, is the identity in I'(F;). Thus
I' (G, 4) is the trivial group.

Remark. The fact that T(G, 4) is a complex analytic manifold has also been
obtained by Maskit [17].

§14. We can in a certain sense strengthen the above theorem. The deformation
space of a Kleinian group recognizes only how the Riemann surfaces are represented
by the Kleinian group and not how these Riemann surfaces are put together to form
the group. Observe that if we define for j=1,...,n, I';={yel' (G, 4); y corresponds to
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an element pe M, (G, 4) with u supported in D;=|_J,.¢ £(4;)}, then we recognize at
once that

r;=r(G,D)).
Furthermore, if uje M, (G, D;), j=1,..., n, then (as a consequence of Lemma 9)
Hy--- Halt1 €My (G, 4).
We thus have established (by Lemma 10) a monomorphism
r(G,D,) x-x I'(G,D,)~I(G, 4).

The above map is an isomorphism (surjective), for if 8" (G, 4), then we represent 0
by an element ue M, (G, 4). Since w* induces the identity on G, so does

W = w" on Dj;,
77 )identity on C — D;,

Jj=1,...,n. Letting p;=p | D;, we conclude by Maskit’s Identity Theorem [17], that
w;=wh, provided {0, 1,00} = A (G). This latter condition involves no loss of generality.
It thus follows that

T(G, A) g T(Fl)/FO (Fl) X oo X T(Fn)/ro (Fn),
where I', (F;) is a certain fixed point free subgroup of I' (F;), j=1,..., a.
We thus have

THEOREM 14. Let A be an invariant union of components of a Kleinian group G
with A|G of finite type. Let 4,, ..., 4, be a maximal inequivalent set of components of 4.
Let G;={geG; gd;=4,},j=1,..., n. Then

T(G,4) =T (Gy, 44) x-+-x T(G,, 4,).
Proof. We begin with the obvious isomorphism
T(G,4)=T(G,D,) x--x T(G,D,),

where

D; =1 g(4;).

geG

We have already shown that
r(G,4)=r(G,D,) x-xI(G,D,),
and hence

T(G,4)=T(G,D,) x--x T(G,D,).
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To prove the theorem it suffices to show that for fixed j,
T(G;, 4;)= T (G, D;). (11)
We establish an isomorphism
*:M(G,, 4,)— M (G, D;)

as follows: Let ue M (G;, 4;). Set
*ulg7l(4)=¢g"n|g7 " (4)), g=G,

and note that * is well defined. For if g7'(4,)=g{ " (4,) for another g, €G, then
*ulet(4) =g*u|g 7 (4)) =g*o(gr ) g *n| 27" (4))

=g*n|g7'(4)),
since

g*o(er')" = (g1 0g)*, andgi'.geG;.

It is a trivial consequence of Lemma 10, that

*: M, (G;, 4;,)— F4 (G, D;).

It thus remains to verify that

*:M, (G;, 4;)=> M, (G, D;). (12)

Since pe M, (G;, 4;), by Lemma 6, w*(4,)=4;. For the sake of convenience we
assume that 0, 1,00€4(G;). We define a function w on Q(G) as follows

()= (8 W e8(@), zeg7'(4).  geC,

Z, zeQ(G) - D;.

We note that w is well defined. For if zeg; * (4;) with g, €G, then on g~*(4;)=
g1 ' (4;) we have

g1 ow'ogr =81 o(gogr ) oW o(gogr")og:

=g lowtog.

The second of the above equalities hold since gog; *e G ; and w* commutes with each
element of G;. It is also clear that w commutes with each element of G. By the main
theorem of Maskit [17], there is a global quasiconformal homeomorphism W such that

W|Q(G)=w.

In particular (since W | A(G) is the identity), W is normalized. An obvious calculation
shows that W=w**. We have thus verified that (12) is an isomorphism. To finish the
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proof of the isomorphism (11), it suffices to show that action defined by (3) commutes
with the isomorphism*; that is,

o) = (*v) (*n), allpeM,(G;, 4,),
all ve M (G, 4;).

Since *(vu) and (*v) (*u)e M, (G, D;), it suffices to show that
*ow) | 4;= (") (*w) | 4;-
But
)| 4, = | 45
and if
wl=wow',

for any three Beltrami coefficients g, o, t, then

ow’

_ (@) +01(2) ot (o
Q(Z) —1+‘f(Z) O'I(Z)’ 04 (Z) - ( ( ))?}ﬁf'
0z

Now since ue M, (G, 4,),
wH l 4; =wh.

Thus
*v) (*w) l dj=vu|4;.

Remark. Thisis the first time we made full use of Maskit’s Identity Theorem of [17].

§15. We characterize next the elements of M, (G, 4). In view of the last paragraph,
it suffices to assume that A4 is an invariant component of the (finitely generated)
Kleinian group G. Using notation that is standard by now, we have a commutative
diagram (7), where we drop the index j. Letting K and K be the covering groups corre-
sponding to the coverings 4 and k, we note from Lemma 5 that w, conjugates K into
K (note K=x"*(1) and K =4""(1)). We thus rewrite the commutative diagram from

Lemma 5 as

FIKX, AR

A
=P
x(n)

5 6
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and note that all the homomorphisms are now isomorphisms. Next assume that
peM, (G, 4). Let w=p°w,,,, then w conjugates F and K into F and K respectively.
Furthermore, since y(u)=identity

wofow lof leK, all feF. (13)

THEOREM 15. Let G be a finitely generated Kleinian group with an invariant
component A. Let F be the Fuchsian equivalent of G with respect to the holomorphic
universal covering h. Let K be the corresponding covering group. Then ue My (G, A) if
and only if there exists a wel (F), w=p°W,, Be & such that (13) holds.

Proof. The only if part has already been established. For the reverse implication
consider the commutative diagram

U4y

hl i l""”'

4— 4

From (13) we conclude that w,., conjugates K into $~'Kp. Thus w,., projects to a
quasiconformal mapping W as above. The Beltrami coefficient of W is p. From (13)
once again, we see that

Wog=goW, allgeG.

Thus by Maskit’s Theorem [17], we may assume that W is the identity off 4. It involves
no loss of generality to assume {0, 1,00} =C— 4. Thus ue M, (G, 4).

§16. In this last paragraph we show the connections between our and Maskit’s [17]
approaches with the one taken by Bers [6].

Assume that the Kleinian group G is generated by r elements; v,,..., 7,. A homo-
morphism x:G — # naturally determines a point

(x(y1)s - x (7)) A"

The set of all such homomorphisms, Hom (G, #), forms an affine algebraic sub-
variety (see Bers [5], [6]) of A#". The group G is called (Bers [6]) quasi-stable if every
quasiconformal deformation of G which is sufficiently close to the identity (in the
topology of Hom (G, .#)) can be induced by a quasiconformal automorphism of the
Riemann sphere with a dilitation arbitrarily close to 1. The group G is called strongly
quasi-stable, if for every quasiconformal deformation x of G, y(G) is quasi-stable. Let
A be an invariant union of components of G. There is, of course, a map

&: M (G, 4) - Hom (G, A) < M" (14)
defined by @ (1) =(x (1) 715---» X (1) 72)-
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THEOREM 16. (Bers [6]. Let A be an invariant union of components of a Kleinian
group G generated by r elements: v,,..., y,. The mapping @ defined by (14) is holomor-
phic. Furthermore, for strongly quasi-stable G, ®(M (G, 4)) is a submanifold of A",

Proof. It is almost obvious that @ is holomorphic (see Bers [5]). Furthermore &
projects to a well defined holomorphic map

&:T (G, 4) > M. (15)

The assumption of strong quasi-stability guarantees that the maps @ of (14) and (15)
are open. Since T(G, 4) is a manifold, so is &(T'(G, 4)).
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