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Eine Anwendung der K-Theorie in der Théorie der H-Râume

François Sigrist (Université de Neuchâtel) und

Ulrich Suter (Forschungsinstitut fur Mathematik, ETH, Zurich)

Einleitung

In der Théorie der H-Râume ist die K-Theorie ein wichtiges Hilfsmittel, um
Nicht-Existenzfragen zu beantworten. So ist zum Beispiel der berùhmte Adams'sche
Satz [1] uber die Nicht-Existenz von H-Raumstrukturen auf den Sphâren Sn, n=£l,
3 oder 7, von Adams und Atiyah [5] im Rahmen der K-Theorie auf einfache Weise

neu bewiesen worden. Wir befassen uns in der vorliegenden Arbeit mit einem gleich-
artigen Problem. Es handelt sich um die folgende Frage, deren Beantwortung fur
die Klassifikation der H-Râume vom Rang 2 wesentlich ist: Welche S3-Prinzipal-
bûndel iiber S1 sind H-Râume?

Die Prinzipalbûndel mit Strukturgruppe S3 und Basisraum S7 werden klassifiziert
durch Elemente aus n6 (S3)^Z12. Das Blakers-Massey-Element œ ist ein Erzeugendes

von n6 (S3), und es sei En der Totalraum des durch n-co klassifizierten Bûndels. Man
sieht leicht, dass es 7 verschiedene Homotopie-Typen von solchen Totalrâumen gibt
[12], nàmlich Eo, Eu E2,E3, E±,E5 und E6. Es ist E0=S3xS7 und E1=Sp(2)
(siehe [12]), d.h. Eo und Ex sind H-Râume. Hilton und Roitberg [12] haben gezeigt,
dass Es eine Hopf-Multiplikation besitzt. Nach Stasheff [14] sind auch E3 und E4
H-Râume. Zabrodsky hat dann in [17] bewiesen, dass E2 und auch E6 keine H-Raum-
struktur zulassen. Der Beweis von Zabrodsky benûtzt hôhere Kohomologieoperatio-
nen (dritter Ordnung). Anlâsslich der H-Raum-Konferenz in Neuchâtel (August
1970, siehe Springer Lecture Notes No. 196) wurde deshalb die Frage aufgeworfen,
ob nicht, analog wie im Falle der Sphâren, ein einfacherer Beweis mit Hilfe der K-
Theorie gefunden werden kônne. Die vorliegende Arbeit beantwortet dièse Frage
positiv.

Der Raum En besitzt die folgende CW-Struktur [12]:

Wir zeigen:

SATZ A. Es sei X ein CW-Komplex der Form (53un/7)ue10, ncoen6(S3).
Falls X eine H-Raumstruktur zulâsst, so ist n^2 (mod4).
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Wie ûblich in der Théorie der H-Râume beweisen wir diesen Satz, indem wir
zunâchst aus der Existenz einer Hopf-Multiplikation in X=(S3vrme1)ue10 auf die
Existenz eines CW-Komplexes Qn mit speziellen Eigenschaften schliessen. (In unserem
Fall ist Qn ein Teilkomplex der projektiven Ebene von X.) Satz A ist dann eine Kon-
sequenz von Satz B, der fur sich selbst von Interesse ist.

SATZ B. Es sei Qn ein CW-Komplex, welcher den beiden folgenden Bedingungen

unterworfen ist:
(a) Der ganzzahlige Kohomologiering von Qn ist gegeben durch:

H*(QH) Z[x, y-]l(x\ x2y, xy\ y3), xeH*{Qn), yeH*(Qn)

d.h. H* (Qn) ist eine geschnittene Polynomalgebra mit zwei Erzeugenden.

(b) Qn enthàlt als Teilkomplex den Komplex S*unIo)e8 =Z(S3un(Oe1), der die

Erzeugenden x und y von H*(Qn) trâgt, d.h. fails i:S4unI(Oe8 -» Qn die Einbettung
ist, so erzeugt das Elément i*(x) bzw. i*(y) die Gruppe H4(S4unI(Oe8) bzw.

Die Bedingungen (a) und(b) implizieren: w^é2(mod4).

Zum Beweis von Satz B genûgt weder die KU- noch die KO-Theorie. Wir brauchen
dazu den Funktor

L( )=KO( )0KSP(

Das Tensorprodukt von reellen und quaternionalen Vektorbûndeln definiert auf
L(Z) eine Z2-graduierte Ringstruktur; die fur Vektorbûndel definierten âusseren

Potenzen induzieren auf L (X) A-Operationen und somit auch i/r-Operationen. Mit
Hilfe der t/f-Operationen auf L (Qn) làsst sich Satz B beweisen.

Die Arbeit ist wie folgt organisiert. In § 1 stellen wir die wichtigsten Eigenschaften
des A-Rings L(X) zusammen. Im zweiten Abschnitt wird der CW-Komplex Qn kon-
struiert. In §3 untersuchen wir den Ring L(5'4 unIcûe8) und seine i^-Operationen. Die
Ergebnisse von §3 werden dann in §4 benûtzt, um L(gn) samt ^-Operationen zu
bestimmen. In §5 beweisen wir den Satz B.

Am Schluss der Arbeit gehen wir noch kurz auf eine andere Fragestellung ein.

Wir zeigen mit unserer Méthode: Fur ungerades n ist die Projektion n\En^> S1 keine

H-Abbildung, wie immer man auch die Hopf-Multiplikationen auf En und S7 wâhlt.

(Damit beantworten wir teilweise eine der in [18] gestellten Fragen.)

§1. Der A-ring KO (X)®KSP(X)

Es sei VectR(Z) bzw. Vectnpf) das Monoid der Isomorphieklassen von reellen
bzw. quaternionalen Vektorbûndeln ûber einem zusammenhângenden CW-Komplex
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X. Das Tensorprodukt von Vektorbûndeln induziert auf

VectR(X)®VectH(X)

eine kommutative, Z2-graduierte Semiring-Struktur. (Ist F ein réelles und sind
W, W' quaternionale Vektorbûndel, so ist V®W quaternional und W®W' reell;
siehe Bott [7].) Eine Eins ist durch das réelle triviale Linienbûndel gegeben.

Sowohl fur réelle, als auch fur quaternionale Vektorbûndel sind âussere Potenzen
Ak, k=0, 1,2,... definiert. Fur ein quaternionales Bûndel W ist das Vektorbûndel
Ak{W) reell, falls k gerade ist und quaternional, falls k ungerade ist (vgl. [4, 3.63]). Es

gilt die Beziehung Ak(V®V')^®k=0 AJ (V)®Ak~ j (V), F und F' reell oder F und
F' quaternional. Man erhâlt somit auf VectR(Ar)©VectH(lr) eine Z2-graduierte
A-Semiring-Struktur. (Fur ,,gemischte" Elemente ([F], [)PF])eVectR(lr)©VectH(Z)
sei Àk durch A*([F], [W])=]£5=o AJ"([F], 0)'Àk~j(09 [W]) definiert).

Es sei nun

L(X)=KO(X)®KSP(X)
der Grothendieck'sche Ring von VectR(Ar)©VectH(Ar). Es ist L(X) ein kommutativer
Z2-graduierter À-Ring (siehe [13, 12/1]). Eine stetige Abbildung/:JT-* Y induziert
einen Ringhomomorphismus /! : L Y) -? L (X).

Fur einen CW-Komplex X mit Basispunkt, pthx, definieren wir wie ûblich

11 (X) KO (X) © KSP (X) ker il

und erhalten eine natûrliche Zerlegung

L(X)*L(pt)®L(X). (1.0)

In (1.0) identifizieren wir den Ring L(/>*)^Z©Z mit dem Unterring von L(X), der
durch die trivialen Vektorbûndel bestimmt ist. Dieser Unterring wird additiv erzeugt
von der Eins und dem durch das triviale H-Linienbûndel reprâsentierten Elément

eeKSP(Z). Es gilt die Relation

82=4eKO(Z). (1.1)

Auf dem A-Ring L(Ar)=KO(Z)©KSP(Ar) lassen sich wie ûblich Adams'sche

Operationen \j/k, A:=0, 1, 2,... definieren [13, 12/2]. Dièse Operationen stimmen auf
KO(X) mit den reellen Adams'schen \J/k ûberein, und es ist i^*(0, /?)eKO(Z) falls k
gerade ist und i^*(0, P)eKSP(X) falls k ungerade ist. Die Operationen sind mit der

Zerlegung (1.0) vertrâglich. Auf e sind sie bestimmt durch

* gerade
k ungerade.

(Man beachte, dass À2(e) l und A*(e)=0,
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Es sei KU(X) der Grothendieck-Ring der komplexen Vektorbûndel ùber X. Auf

LU (X) KU (X) 0 KU (X)

lâsst sich eine Z2-graduierte A-Ringstruktur definieren durch :

gerade

Die daraus resultierenden i^-Operationen stimmen selbstverstândlich, bis auf die
Graduierung, mit den komplexen Adams'schen \j/k ûberein. Speziell gilt also:

(1.3)

Die kanonischen Homomorphismen (vgl. [4, 3.5] oder [7])

c:KO(X)-KU(X), c':KSP(X)->KU(X)
r : KU (X) -? KO (Z), g : KU (X) -? KSP (X)

induzieren die folgenden natûrlichen Abbildungen

b r®q:IAJ(X)->L(X)

Es ist a ein 2-Ringhomomorphismus, d.h. insbesondere:

a ist mit den i/r-Operationen vertrâglich. (1.4)

Im allgemeinen ist b nur ein Gruppenhomomorphismus (siehe aber [11, §12]). Aus
b°a=2 (vgl. [4, 3.6]) folgt mit (1.4) und (1.3): Falls L(Z) keine Torsion besitzt, so ist
a injektiv; fur die i^-Operationen auf L(Z) gilt dann

il/koil/l(i)=^kl(0 C,qeL(AJ. (1.5)

1.6. Bemerkung. Die Beziehungen (1.5) sind allgemein gûltig, d.h. auch wenn L (1")
Torsion besitzt. Der Beweis von Adams [2] fur K\J(X) und KO(Z) lâsst sich auf
L(Z) ubertragen.

Die natûrliche Transformation a kann oft dazu benûtzt werden, um den Ring L (X)
samt ^-Operationen zu bestimmen. Wir tun dies z.B. fur die Sphâre S4. (Im folgenden
identifizieren wir Elemente aeKO^f) bzw. jSeKSP(Z) mit ihren Bildern (a, 0) bzw.
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1.7. HILFSSATZ. Der Ring rL(S4)=KO(S4)®KSP(S4)^Z®Z wird additiv

erzeugt durch ein Elément veKSP(S4) und das Elément £veKO(S4). Es ist v2=0.
Die ij/'Operationen sind gegeben durch (1.2) und

[k2
Tav' fegerade

k2v, fcungerade.

Beweis. Es seien vReKO(S4), vceKU(S4) und v vHeKSP(5'4) die kanonischen
Erzeugenden; d.h. als stabile Vektorbûndelklassen werden vR, vc und vH durch das

entsprechende zum Hopf-Bùndel S7-?S4 assoziierte Vektorbûndel repràsentiert. Es
ist c(vR)=2vc [7, 3.15] und c'(vH) vc [7, 3.14]. Somit erhâlt man

*(vH) (0,vc), a(vR) (2vc,0).

Mit a(e) (0, 2) folgt nun

a (vR) (0, 2) • (0, vc) a (s) ¦ a (vH) a (evH)

d.h. vR=evH, denn a ist injektiv.
Fur die ^-Operationen berechnet man mit (1.4), falls k gerade ist:

ao^(vH) ^(0, vc) (^(vc), 0) (fe2vc> 0) a (j
also

2k

Analog wird der Fall k ungerade behandelt, und 1.7 ist somit bewiesen.

Nach Bott [7] gibt es einen Isomorphismus B:<KSP(X)^KO4(X)=KO(S4 aX).
(Es sei Xa 7 das ,,smashed" Produkt von if und Y.) Mit Hilfe von Bott's Beweis in
[7] prûft man leicht nach, dass B einen natûrlichen ifr'wg-Homomorphismus

L (X) KO (X) 0 KSP (X) s KO0 (X) 0 KO4 (X) c KO* (X) (1.9)

bewirkt. Zur Bestimmung der Ringstruktur von L(X) kann somit die KO-Theorie
herangezogen werden.

Die Gerûst-Filtrierung pt c= X° c • • • c XJf cz • • • <z X1 X von X induziert Filtrierun-
gen vonL(Z)und KO°(Ar)©KO4(Z), welche mit dem Isomorphismus (1.7) ver-
trâglich sind. Man erhâlt somit einen Isomorphismus der assoziierten graduierten
Ringe,

©L(Z) s © (KO0 (X) 0 KO4 (X)). (1.10)
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Der folgende Hilfssatz gibt die Beziehung zwischen den i^-Operationen aufKSP (X)
und den reellen i/f-Operationen auf KO (S4 a X).

1.11 HILFSSATZ. Es sei L(Z) torsionsfrei. Dann sind die beiden folgenden
Diagramme kommutativ:

k gerade k ungerade

KSP(Z)~^>KO(S4 a X) KSP(Z)-^KO(S4 a X)
Bott Bott

KO(Z)

KSP(Z)^KO (S4'a Z) KSP(Z)£+KO(S4 a Z)

Bemerkung. Der obige Hilfssatz gilt auch wenn L (Z) Torsion besitzt. Wir setzen hier

lediglich Torsionsfreiheit voraus, um (1.5) anwenden zu kônnen (siehe Bemerkung 1.6).

Beweis des Hilfssatzes : Es seien^ : S4 x Z-> S4, p2 : S4 x Z-> XJ : S4 x Z -> S4 A X
die kanonischen Projektionen, und es sei veKSP(S4)^Z das Erzeugende (siehe 1.7).

Wir betrachten

dabei sei cp definiert durch

Nach Bott [7, Th. 1] ist <p ein Isomorphismus von L(Z) auf das Bild der Injektion

f\ mit anderen Worten: 5 (/!)"1°(p:L(I)^L(lS4Al) ist der Bott'sche
Isomorphismus.

Es sei nun k gerade, und es seien /?eKSP(Z), yeKO(54 aX) zwei Elemente, so

dass/!(y) <p(j3), d.h. y=B(fi). Man berechnet mit Hilfe von (1.5), (1.7) und der

Natûrlichkeit von \\/k:

fViy) Wv(fi)) riÀ %

also ist

Der Fall k ungerade ist analog und 1.11 somit bewiesen.
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§2. Konstruktion von Qn

Es sei co das Blakers-Massey Erzeugende von n6(S3)^Zî2, und es sei Em

w=0, 1,2,..., 11, der Totalraum des durch n-œ klassifizierten iS3-Prinzipalbùndels
ûber S7. (Das Elément co ist durch Ex Sp(2) charakterisiert). Nach [12, Prop. 2.1]
kann En mit der Zellenstruktur (S3 un(ae7)ue10 versehen werden.

Wir betrachten nun allgemein einen CW-Komplex der Form

I (S3uBffle7)ue105 ncoen6(S3),

(d.h. die anheftende Abbildung von e10 ist beliebig) und nehmen an, dass X eine

Hopf-Multiplikation

m;X xX-+X

besitze. Es sei PX ait durch dièse Multiplikation bestimmte projektive Ebene [8]. Wir
identifizieren den Raum PX mit dem Abbildungskegel der Hopfkonstruktion H (m)
von m (siehe [15]),

f H(m) fiX * X +IX ^-~+Cf=PX (2.0)

(Es sei X*X der ,,join" von X mit sich selbst, und I sei die reduzierte Suspension.)
Der ganzzahlige Kohomologiering von PX kann nach [8] zerlegt werden in

H*(PX) A®S,

wobei A ein Unterring der Form

A s Z[x, y\l{x\ x2y, xy\ y3), xeH4(PX), yeH8(PX) (2.1)

ist, d.h. A ist eine geschnittene Polynomalgebra mit zwei Erzeugenden. Mit der exak-

ten Kohomologiefolge von/(siehe (2.0)) ergibt sich ûberdies [8]

A= 0 H4r(PX); (2.2)
r 0

(d.h. S enthâlt keine Elemente in den Dimensionen 0, 4, 8, 12 und 16).

Leider lâsst sich der Ring KO*(PX) und damit L,(PX) nicht ohne weiteres be-

rechnen; das Vorhandensein von S erschwert die Bestimmung der Differentiale in der

Atiyah-Hîrzebruch-Spektralreihe der KO-Theorie. Wir konstruieren deshalb einen

CW-Komplex, dessen ganzzahliger Kohomologiering mit A identisch ist.
Es sei Zn~S3un(ûe1. Im Blick auf (2.0) bewirkt die Einbettung j:Znc+X ein

Diagramm
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f H(m)
X*X

g=Ôn

(2.3)

dabei sei Cg Qn der Abbildungskegel von g, l die induzierte Abbildung und gi,fx die
kanonischen Inklusionen. Die Abbildung i=gl °Zj bettet den CW-Komplex
ZZn=Z(S3 vn(Oe7) S4yjnI(Oe8 als Teilkomplex in Qn ein (wir nehmen an, dass H(m)
zellulâr sei). Qn ist der von uns gesuchte CW-Komplex.

2.4. SATZ. Faite der CW-Komplex (S^u^e^ue10 eine Hopf-Multiplikation be-

sitzt, so gibt es einen CW-Komplex Qn, der den beiden folgenden Bedingungen unter-

worfen ist:
(a) Der ganzzahlige Kohomologiering von Qn ist gegeben durch:

H*(Qn) s Z[*, y-]l{x\ x2y, xy\ y3); xeH4(Qn), yeH*(Qn).

(b) Qn besitztZZn S*unIa)e8 als Teilkomplex, Ist i:ZZn<+Qn die Einbettung, so

erzeugt das Elément i*(x) bzw. i*(y) die Gruppe H4(ZZn)^Z bzw. Hs(ZZn)^Z.
Beweis. Wir zeigen (a) und (b) fur den vorhin konstruierten CW-Komplex Qn Cg

mit Teilkomplex ZZn. Aus (2.3) erhalten wir einen Homomorphismus der exakten

Kohomologiefolge von/in diejenige von g.

•~->Hr~1(ZX)-+Hr-i(X*X) ->Hr(Cf)-+Hr(ZX)-+Hr(X*X)->-
I- i- I- I- !"

• • • -» H'~l {SX) - H'~ » (Z, * Z.) - Hr (Cf) -> H' (IX) - H' (Z. * Z.) -> • • •.

Der Homomorphismus A:* ist vollstàndig bekannt, und man beweist leicht mit Hilfe
des Fûnfer-Lemmas, dass

(f) (g) (g)
S=l S=l

Mit (2.2) erhâlt man dann einen Ringisomorphismus

l*\A: A*H*(Cg),

und es folgt (a) unseres Satzes aus (2.1).
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Es bleibt zu zeigen, dass die Elemente i * (x) und i * y) die entsprechenden Kohomo-
logiegruppen von IZn erzeugen ; dies folgt aus der exakten Sequenz von g und /=gt <> Zj.
Somit ist 2.4 bewiesen.

§3. Die (//-Operationen auf L(S4vnI(ûe8)

In diesem Abschnitt soll der L-Ring samt ^-Operationen fur SZn=S4unS(ùe8,
nIœen7(S4), bestimmt werden. Dièse Ergebnisse werden dann in §4 benûtzt, um
Information ûber die i^-Operationen auf L (Qn) zu erhalten.

Bemerkung. Wir verzichten auf eine allgemeine Betrachtung der ^-Operationen
aufL,(S2qve2m); im Sinne von [3] wùrde dies ein Studium der quaternionalen £-In-
variante eH nach sich ziehen. Die réelle e-Invariante eR und eH sind durch Hilfs-
satz 1.11 miteinander verknûpft.

Die Kofaserung 54c;54ulllco es-*S8 induziert exakte Sequenzen

^ t
« (3.1)

0 -? KSP(S8)-^KSP(S4 unI(ûe*)^>KS?(S4) -> 0
Z

Der Ring L(54 uwIû,e8) =KO(S4 urtIû)e8)©KSP(S4 unIcoe8) ist also torsionsfrei, und
es lassen sich in ihm spezielle Erzeugende auszeichnen.

3.2 SATZ. Es sei veKSP (S4 vnI(Oe8) ein Elément, das underj1 aufein Erzeugendes

vonKSP (S4) abgebildet wird, undes sei fieKO (S4 vnIa)e8)dasp-Bildeines Erzeugenden

von KO (S8). Dann gilt: ^(i) v, ev, fi, Efi bilden eine Basis der freien abelschen Gruppe L(S4unI(Oe8) (s ist

das vom trivialen H-Linienbùndel reprâsentierte Elément; fi, eveKO(S4 vnI(Oe8) und

v9eiieKSP(S4vnI(Oe8)).
(ii) v2 v/*=jU2=O

(iii)

k2 fc2(fc2-l)
— ev + q (n)- \i, k gerade
2 o

fe2(fe2 - 1)
k2v + q(n)' — eu, k ungerade,

dabei ist q{n) eine ganze Zahl der Form: q(n)=n-m + l2l, m teilerfremdzu 12.

(iv) r(»)=k4fi
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Beweis. Es seien vReKO(S4), vHeKSP(S4l hreKO(Ss) und fiHeKSP(S8) er-
zeugende Elemente. In L(S4) gilt nach (1.6):

vR=±svH (3.3)

Analog wie im Beweis von (1.6) zeigt man

/%=±e/*R (3.4)

(Wir identifizieren die Elemente aeKO^) bzw. jSeKSPpf) mit ihren Bildern (a, 0)
bzw. (0, p) in L(X)). Sei veKSP(S4uIIl£0e8) ein Elément mit f(v) vH. Aus (3.2),
(3.3) und (3.4) folgt nun, dass die Elemente

v, ev, ti=pl([iR), sii=p](sfiR)

eine Basis von "L(S*unS<oes)bilden. Die Aussage (ii) ergibt sich, weil S4unI(0es —IZn
eine Suspension ist.

Es bleibt zu zeigen, dass die ^-Operationen durch (iii) und (iv) gegeben sind. Dazu

betrachten wir die KO-Theorie der Kofaserungen

08^08.. ,,12j\ol2 „__ /ç»8\ S ^ 7O C>j3 Ua^ —>ù CCETlnyo 7l3 Zj24

In KO(58 uae12)^Z©Z kônnen wir wiederum Erzeugende £ und y\ so wâhlen, dass

Ç vonj1 auf ein Erzeugendes von KO (S8) abgebildet wird und rj dasp'-Bild eines Er-

zeugenden von KO(512) ist. Fur die ^-Operationen gilt nach Adams [3]:

dabei ist k (a) eine von k unabhângige rationale Zahl; À(<x) (mod 1) ist die sogenannte

^-Invariante von a [3, §5]. Der Homomorphismus

*i:*n (S*) -Q/Z
(a) (modl)

ist injektiv (siehe [3, 7.17]), und nach Toda [16, (5.5)] hat das Elément I5œenil
Z24 die Ordnung 12. Es ergibt sich somit:

X (nl5œ) n h/; m,/eZ und m teilerfremd zu 12.

Wir setzen

q{n) n-m + 12/
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und erhalten fur die i^-Operationen auf KO (S8 unl5û) e12)

^(0 ^ + q(nyk4{k2i~1U (3.5)

Das Diagramm

()-? KSP(S8) -> KSP(S*unIae8) -? KsT(S4) -?0

_ siB __ =lB __ =lB
0 -? KO (S4 a S8) ->• KO (S4 a (S4 unî<oe8)) -> KO (S4 a S4) -> 0

0-^ KO (S12) -> KO(S8u,î%eB) -> KO (S8) -^0

ist kommutativ, und es folgt, dass (3.5) insbesondere fur Ç =B(v), ri (efi) richtig ist.

Mit (1.10), (3.5) und (1.1) berechnet man nun, falls k gerade ist:

d.h.

und durch Multiplikation mit a erhâlt man

Der Fall k ungerade wird analog behandelt.
Nach [2, 5.2] ist il/k(^R)=k4fiR, und es folgt \j/k(n)=k*n. Damit ist Satz 3.2 be-

wiesen.

§4. Bestimmung des Ringes L(gn) und seiner i/^-Operationen

Es sei Qn der in §2 konstruierte CW-Komplex mit Teilkomplex ZZn=S*vnI(Oe8.
Nach Satz 2.4 gilt fur die ganzzahlige Kohomologie:

(a) H*(Qn)^Z{x9y-]/(x39x2y9xy29y3); xeH*(Qn)9 yeH*(Qn).
(b) Der Teilkomplex SZnczQn trâgt die Erzeugenden x und y von H*(Qn)9 d.h.

das Elément i*(x) bzw. ***(}>) erzeugt die Gruppe HA{lZn)^Z bzw. H*(ZZn)^Z.
Die L-Theorie von gB ist im folgenden Satz beschrieben.
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4.1. SATZ. Der Ring L (Qn) ist torsionsfrei undesgibt in ihm Elemente aeKSP (gn),

/?eKO(gn) mit den Eigenschaften:

(i) Es ist L(ôw) L(/?O®Z[a,j5]/(a3, a2j5,aj?2,j83); insbesondere bilden die
Elemente ea, fi, oc2, ea/?, fi2 bzw. a, ej8, ea2, a/?, sfi2 eine Basis derfreien abelschen Grup-

pe KO (fi.) bzw. F
k2 xfc2(fc2-n 2 n n2— ea + q (n) B + sjx + tkmp -f ukp k gerade
2 6

k2a + q (n) — ej? + ^kea2 + tk<xfi + ukefi2, k ungerade,

dabei sind sk, tk, ukeZ und q(n) ist eine ganze Zahl der Form: q(ri)=n-m+\2l, m
teilerfremd zu 12.

(iii) èk (B) k4B + vkeaB + wkB2, vk, wk e Z.

Beweis. Nach (1.9) gibt es einen Ringisomorphismus L (Qn) sKO ° (gn)©KO 4 (gn),
und wir betrachten deshalb die Atiyah-Hirzebruch-Spektralreihe [6] von Qn fur die
KO-Theorie. Weil H*(Qn) torsionsfrei ist, erhâlt man fur den ^-Term:

E2(Qn) H* (Qn) ® KO* (pt).

Aus der besonderen Struktur von H* (Qn) und der Derivationseigenschaft der DifFer-
entiale [10] folgt leicht, dass die Spektralreihe zusammenbricht. (Est ist </b(jc®1)

dn(y®l)=09 n^2, und trivialerweise gilt <4(l®f)=0, ÇeKO*(pt).) Somit ist

reZ, seZ8t

und als Ring ist

iuen) #*(e«)® ko*

Fur den zum filtrierten Ring KO°(g»)©KO4(gll) (Gerûstfiltrierung) assoziierten

graduierten Ring ergibt sich daher

© (KO0 (Qn) © KO4 (Q.)) s H* (Qn) ® (KO0 (pt) © KO4 (pt))

(Man beachte, dass H* (Qn) nur in den Dimensionen 4m von null verschieden ist.)
Auf Grund von (1.10) ist dann

©L (ft.) s (Z [*, >;]/(x3, xV, x/, y3)) ® (KO0 (pi) © KO4 (pt)), (4.2)

und es folgt insbesondere, dass L(gn) keine Torsion besitzt.
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Wir wâhlen nun ein Elément oceKSP(Qn)cz'L(Qn) bzw. peKO(Qn)<=:L(Qn),
welches x® 1 e©L (Qn) bzw. y®le®L(Qn) reprâsentiert. (Wir fassen x®l, y®l
ûber (4.2) als Elemente von ®L(gn) auf.)Das Elément eeKSF(Qn)czL(Qn) reprâsentiert

l®e'e©L(<2n), wobei e' ein geeignet gewâhltes Erzeugendes von KO4 (/>*)£ Z
ist. Man sieht nun leicht, dass a, /te, a2e, a/?, p2e bzw. ae, /?, a2, aj8e, j82 eine Basis der

freien abelschen Gruppe KSP (Qn) bzw. KO (Qn) bilden ; denn die durch (4.3) gegebene

Multiplikation auf © (KO0 (&,)©KO4 (Qn)) s ©L (gB) stimmt ûberein mit derjenigen,
die durch das Produkt in L (Qn) auf ©L (gn) induziert wird [10] (d.h. ae, a2,... eL (gw)
reprâsentieren die Elemente x®e', x2®l,...e©L(g/J)). Der Ringhomomorphismus

a:L(gw)->LU(gw) ist injektiv und in LU(gM) verschwinden Produkte mit drei
Faktoren (es ist KV*(Qn)<8)Q^H*(Qn; Q) Q[x,y~\j{x\ x2y9y2x,y3)); somit er-
hâlt man a3 =a2/?=aj82 =P3 =0, und (i) von 4.1 ist bewiesen.

Wir betrachten nun das Diagramm

S8

Man schliesst ohne Schwierigkeit (z.B. mit dem Spektralreihen-Homomorphismus
{Er(i):Er(QH)-+Er(S*unIoe*)}), dass das Elément jl°il(a) ein Erzeugendes von

]KSP(S4) ist, und dass il(P)=pl(tiR) fur ein Erzeugendes /iE von KO (S8). D.h. die
Elemente i1 (a) und /*(/?) erfullen die Voraussetzungen von Satz 3.2. Wir erhalten nun
die i^-Operationen auf a mit ^fc°ïl=/!°^fc, 3.1 (ii) und /l(a2) ï!(a]8) ïI(iS2)=0.
(Es ist S4 unIû)e8 eine Suspension).

Es bleibt die Aussage (iii) von 4.1 zu beweisen. Auf Grund der obigen Betrachtun-

gen und 3.2 (iii) ist es klar, dass

ij/k(p) ]£$ + mka2 + vkeap + wkp2 ; mk, vk, wkeZ.

Wir haben mk=0 zu zeigen. Dies folgt aus der Tatsache, dass fi und a2 in KO(Qn)

denselben Filtrationsgrad haben. (Weil KO(gn) keine Torsion besitzt, sind sowohl

das Komplexifizieren c:KO(Qn)-*KU(Qn), als auch der Chern'sche Charakter

ch:KU(Qn)->H*(Qn; Q) injektiv. Mit [2, 5.1 (vi)] berechnet man nun:

ch°\j/k<>c (j8) k4chs [c (j8)] + hôhere Terme

ch°c°\j/k(jS) k4chB [c(j3)] + mkch8 [c(a2)] + hôhere Terme

d.h. es ist mk=0, denn chs(c(a2)^Q [6, 2.5 (i)]). Satz 4.1 ist somit bewiesen.
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§5. Beweis von Satz B

Es soll nun der m der Einleitung formulierte Satz B mit Hilfe des Ringes L (Qn)
und semer i/r-Operationen bewiesen werden Die L-Theone emes CW-Komplexes Qny

welcher den Bedmgungen (a) und (b) von Satz B genugt ist durch Satz 4 1 gegeben.
Mit (1.2) und (4 1) erhalten wir fur die Elemente e, a, P aus

il/2 (a) 2soc + 2q (n)p + s2a2 + t2mp + uj2,

\//3 (a) 9a + 6q (n)ep + s3eoc2 + t3aP + u3sp2

Es gilt allgemein ^2(^) {2 -2/12 (Ç) [13, 12 (2 6)], d h fur den Koeffizienten w2 von
P2

w2 1 (mod2) (5 1)

Wir werden îm folgenden die Relation \j/2 ° i//3 \j/3 ° \J/2 ausnutzen (siehe (1.5)) und
berechnen dazu

xl/2oil/3(P) 24-34/? + (34i?2 + 26t>3W + (34w2 + 26q (n)v3 + 28w3))S2

^3 o ^ (p) 24-34^ + (24t;3 + 36v2)eocP + (2w3 + 2335^ (n)»2 + 38w2) j82

Durch Vergleich der Koeffizienten von ea/? bzw jS
2 erhalten wir die beiden Gleichungen

2v3 =33v2, 30w3 + 23^(n)i;3 10-34w2 + 35q(n)v2

und damit

3w3 =34w2 + ^(n)^3

Mit (5.1) und der Tatsache, dass q(n) n (mod2) (siehe 4.1 (n)) folgt daraus

w3 1 + n-i?3(mod2) (5 2)

Fur das Elément a berechnen wir*

\l/2o\l/3(oc) 18ea + 210q(n)p + Aoc2

+ (32m2 + 22-3<? (n)w2 + 23^f (n)2^3 + 25q (n)t3 + 29u3)p2

xj,2 o xj/2 (a) 18ea + 210^r (n)P + Col2 + Dea^S

+ (23u3 + 2q (n) w3 + 23 • 33^ (n)2^2 + 23 • 35q (n) t2 + 38w2) p2

dabei sind die Koeffizienten A, B, C, D gewisse Ausdrucke, die uns îm folgenden
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nicht interessieren werden. Wir vergleichen die Koeffizienten von p2 modulo 8 und
erhalten:

22 • 3q (n) w2 2q (n) w3 + (38 - 32) u2 ss 2q (n) w3 (mod 8),

denn 38-32=0 (mod 8). Es ist also:

6q (n) vv2 q (n) vv3 (mod 4),

und damit, weil q(n) n oder 3w (mod4) (siehe 4.1 (ii)):

nw3 2nw2 (mod 4)

Aus (5.1) folgt:

n«w3s2n (mod 4). (5.3)

Die Kongruenzen (5.2) und (5.3),

w3 + n-i?3 l (mod2)
n - w3 2n (mod 4),

implizieren nun n^=2 (mod 4), und Satz B ist somit bewiesen.

Appendix

In diesem Abschnitt wenden wir uns kurz der Frage zu: Fur welche n(n=£2 (mod4))
gibt es auf En und S1 Hopf-Multiplikationen, sodass die Bûndelprojektion niEn^S1
eine if-Abbildung ist?

Wir erhalten das folgende négative Ergebnis:

SATZ. Die Projektion n:En-+ S1 istfur ungerades n keine H-Abbildung, wie immer

mon auch die H-Raumstrukturen auf En und S1 wàhlt.
Beweis. Wir nehmen an, dass n\En-*Sn eine if-Abbildung sei (fur gewisse Multi-

plikationen auf En und S1) und erhalten das folgende homotopie-kommutative Dia-

gramm (Bezeichnungen wie in § 2):

y \z,.z.-.r£,
I I" I-

S1 * S1 -> IS1 > PS1

Die Komposition In °Ij fàlltmit der Projektionp der Kofaserung S4 q; IZn
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zusammen. Nach Browder-Thomas [8] ist H* (PS1; Z) Z[z]/(z3); dabei ist

zeH8(PS\ Z) und A*(z) erzeugt die Gruppe H8(S8; Z)^Z. Es folgt:

KO(P5r7)^Z[y]/(y3), wobei h[(y) ein Erzeugendes von KO(S8) ist.

Mit il°(rl(y):=ploh[(y) schliesst man nun (siehe Beweis von Satz 4.1):

<r! (y) ± P + aoc2 + bsap + cjS2eKO (Qn), a, b, ceZ ; (6.2)

dabei sind a und /? die in § 4 definierten Erzeugenden von L ((?„). Wir kônnen y so

wâhlen, dass das Vorzeichen von /? in (6.2) positiv wird.
Es ist \j/3 (y) 34y +d- y2, deZ, und wir berechnen mit (6.2) und den in § 5 zusam-

mengestellten Formeln fur \j/3(a) und ij/3(p):

a1 o il/3 (y) 34P + 34aa2 + 34ftsajS + (34 + d)f
ij/3o(Tl(y) 34P + 34aa2 H- (i?3 + 2233^(n)a + 36fe)eaj8 + ^2

(A ist ein Ausdruck der uns im folgenden nicht interessiert). Aus \J/3 °al =al°\l/3 folgt
durch Vergleich der Koeffizienten von

d.h. es ist

t;3 0 (mod2). (6.3)

Wir betrachten nun die Kongruenzen (5.2) und (5.3),

W3 + n • v3 1 (mod 2)

n • vv3 2n (mod 4).

Falls « ungerade ist, erhâlt man damit

i?3 1 (mod 2).

Zu dieser letzteren Tatsache steht (6.3) im Widerspruch, und unser Satz ist bewiesen.

Bemerkung. Die Frage, ob die Projektion n:E4^S1 eine i/-Àbbildung ist, bleibt
mit unserer Méthode unbeantwortet.
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