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Eine Anwendung der K-Theorie in der Theorie der H-Réiume

FraNGoIs SIGRIST (Université de Neuchétel) und

ULRICH SUTER (Forschungsinstitut fiir Mathematik, ETH, Ziirich)

Einleitung

In der Theorie der H-Ridume ist die K-Theorie ein wichtiges Hilfsmittel, um
Nicht-Existenzfragen zu beantworten. So ist zum Beispiel der beriihmte Adams’sche
Satz [1] tiber die Nicht-Existenz von H-Raumstrukturen auf den Sphiren S”", n#1,
3 oder 7, von Adams und Atiyah [5] im Rahmen der K-Theorie auf einfache Weise
neu bewiesen worden. Wir befassen uns in der vorliegenden Arbeit mit einem gleich-
artigen Problem. Es handelt sich um die folgende Frage, deren Beantwortung fiir
die Klassifikation der H-Riume vom Rang 2 wesentlich ist: Welche S3-Prinzipal-
biindel iiber S’ sind H-Ridume?

Die Prinzipalbiindel mit Strukturgruppe S> und Basisraum S’ werden klassifiziert
durch Elemente aus 7 (S°)= Z, ,. Das Blakers-Massey-Element w ist ein Erzeugendes
von 715 (S?), und es sei E, der Totalraum des durch n- klassifizierten Biindels. Man
sieht leicht, dass es 7 verschiedene Homotopie-Typen von solchen Totalriumen gibt
[12], ndmlich E, E;, E,, E3, E,, Es und Eg. Es ist Eq=5°xS" und E, =Sp(2)
(siehe [12]), d.h. E, und E, sind H-Rdume. Hilton und Roitberg [12] haben gezeigt,
dass E5 eine Hopf-Multiplikation besitzt. Nach Stasheff [14] sind auch E; und E,
H-Riume. Zabrodsky hat dann in [17] bewiesen, dass E, und auch E4 keine H-Raum-
struktur zulassen. Der Beweis von Zabrodsky beniitzt hohere Kohomologieoperatio-
nen (dritter Ordnung). Anldsslich der H-Raum-Konferenz in Neuchitel (August
1970, siehe Springer Lecture Notes No. 196) wurde deshalb die Frage aufgeworfen,
ob nicht, analog wie im Falle der Sphéren, ein einfacherer Beweis mit Hilfe der K-
Theorie gefunden werden konne. Die vorliegende Arbeit beantwortet diese Frage
positiv.

Der Raum E, besitzt die folgende CW-Struktur [12]:

E,=(SuU,,e)ue'®
Wir zeigen:

SATZ A. Es sei X ein CW-Komplex der Form (S*u,,e’)ue'®, nweng(S3).
Falls X eine H-Raumstruktur zuldsst, so ist n£2 (mod4).



Eine Anwendung der K-Theorie in der Theorie der H-Rdume 37

Wie iiblich in der Theorie der H-Rdume beweisen wir diesen Satz, indem wir
zunichst aus der Existenz einer Hopf-Multiplikation in X =(S?u,,e’)ue!® auf die
Existenz eines CW-Komplexes Q, mit speziellen Eigenschaften schliessen. (In unserem
Fall ist Q, ein Teilkomplex der projektiven Ebene von X.) Satz A ist dann eine Kon-
sequenz von Satz B, der fiir sich selbst von Interesse ist.

SATZ B. Es sei Q, ein CW-Komplex, welcher den beiden folgenden Bedingungen
unterworfen ist:
(a) Der ganzzahlige Kohomologiering von Q, ist gegeben durch:

H*(Q,) = Z[x, y]/(x*, x*y, xy%, y*), xeH*(Q,), yeH*(Q,)

d.h. H*(Q,) ist eine geschnittene Polynomalgebra mit zwei Erzeugenden.

(b) Q, enthdlt als Teilkomplex den Komplex S*U,5,e®=2(S%u,,e”), der die
Erzeugenden x und y von H*(Q,) trigt, d.h. falls i:S*U,5,e® — Q, die Einbettung
ist, so erzeugt das Element i*(x) bzw. i*(y) die Gruppe H* (S* U ,5,e®) bzw.

HB(S*U 5,€°).
Die Bedingungen (a) und (b) implizieren: n#2(mod4).

Zum Beweis von Satz B geniigt weder die KU- noch die KO-Theorie. Wir brauchen
dazu den Funktor

L( )=KO( )@®KSP( )

Das Tensorprodukt von reellen und quaternionalen Vektorbiindeln definiert auf
L(X) eine Z,-graduierte Ringstruktur; die fiir Vektorbiindel definierten dusseren
Potenzen induzieren auf L(X) A-Operationen und somit auch y-Operationen. Mit
Hilfe der y-Operationen auf L(Q,) ldsst sich Satz B beweisen.

Die Arbeit ist wie folgt organisiert. In §1 stellen wir die wichtigsten Eigenschaften
des A-Rings L(X) zusammen. Im zweiten Abschnitt wird der CW-Komplex @, kon-
struiert. In §3 untersuchen wir den Ring L(S*u,y,€®) und seine y-Operationen. Die
Ergebnisse von §3 werden dann in §4 beniitzt, um L(Q,) samt y-Operationen zu
bestimmen. In §5 beweisen wir den Satz B.

Am Schluss der Arbeit gehen wir noch kurz auf eine andere Fragestellung ein.
Wir zeigen mit unserer Methode: Fiir ungerades n ist die Projektion n:E,— S keine
H-Abbildung, wie immer man auch die Hopf-Multiplikationen auf E, und S’ wdihlt.
(Damit beantworten wir teilweise eine der in [18] gestellten Fragen.)

§1. Der A-ring KO (X)®KSP(X)

Es sei Vectg (X) bzw. Vecty(X) das Monoid der Isomorphieklassen von reellen
bzw. quaternionalen Vektorbiindeln iiber einem zusammenhdngenden CW-Komplex
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X. Das Tensorprodukt von Vektorbiindeln induziert auf
Vecty (X) @ Vecty (X)

eine kommutative, Z,-graduierte Semiring-Struktur. (Ist ¥ ein reelles und sind
W, W' quaternionale Vektorbiindel, so ist ¥® W quaternional und WQ W’ reell;
siche Bott [7].) Eine Eins ist durch das reelle triviale Linienbiindel gegeben.

Sowohl fiir reelle, als auch fiir quaternionale Vektorbiindel sind dussere Potenzen
A¥, k=0, 1, 2,... definiert. Fiir ein quaternionales Biindel W ist das Vektorbiindel
A*(W) reell, falls k gerade ist und quaternional, falls & ungerade ist (vgl. [4, 3.63]). Es
gilt die Bezichung A*(V® V') = @%., A7 (V)®A* I (V'), V und V' reell oder ¥ und
V' quaternional. Man erhélt somit auf Vectg(X)® Vecty(X) eine Z,-graduierte
A-Semiring-Struktur. (Fiir ,,gemischte‘ Elemente ([V], [ W])e Vectg (X )® Vecty (X)
sei A* durch A*([V], [W])=Y%-0 /([¥],0)-A¥~7 (0, [W]) definiert).

Es sei nun

L(X) =KO(X)®KSP(X)

der Grothendieck’sche Ring von Vectg (X)@® Vecty (X). Esist L (X) ein kommutativer
Z,-graduierter A-Ring (siehe [13, 12/1]). Eine stetige Abbildung f:X = Y induziert
einen Ringhomomorphismus f':L(Y) - L(X).

Fiir einen CW-Komplex X mit Basispunkt, pt G X, definieren wir wie iiblich

o — e st
L(X)=KO(X)®KSP(X) =keri'
und erhalten eine natiirliche Zerlegung
p—
L(X)2L(pt)®L(X). (1.0)

In (1.0) identifizieren wir den Ring L (pt)~Z@Z mit dem Unterring von L (X), der
durch die trivialen Vektorbiindel bestimmt ist. Dieser Unterring wird additiv erzeugt
von der Eins und dem durch das triviale H-Linienbiindel reprédsentierten Element

¢eKSP (X). Es gilt die Relation
g =4eKO(X). (1.1)

Auf dem A-Ring L(X)=KO(X)®KSP(X) lassen sich wie iiblich Adams’sche
Operationen y*, k=0, 1, 2, ... definieren [13, 12/2]. Diese Operationen stimmen auf
KO (X) mit den reellen Adams’schen y* iiberein, und es ist y*(0, B)e KO (X) falls k
gerade ist und ¥*(0, B)eKSP(X) falls k ungerade ist. Die Operationen sind mit der
Zerlegung (1.0) vertraglich. Auf ¢ sind sie bestimmt durch

ko _ )2, kgerade
Vi(e) = {s, k ungerade..

(Man beachte, dass A2(¢)=1 und 1*(¢)=0, k>3.)

(1.2)
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Es sei KU (X) der Grothendieck-Ring der komplexen Vektorbiindel iiber X. Auf
LU (X) =KU(X) ® KU (X)
ldsst sich eine Z,-graduierte A-Ringstruktur definieren durch:
(o, B)-(a', B') = (" + BB, B’ + aB’)
A (2, 0) = (/Ikoc, 0)
#0.0 {055, & tnprate

Die daraus resultierenden y-Operationen stimmen selbstverstidndlich, bis auf die
Graduierung, mit den komplexen Adams’schen y/* iiberein. Speziell gilt also:

v (En) =y ()¢ (n)
UEo Ul (€) = Y () &, nelU(X). (1.3

Die kanonischen Homomorphismen (vgl. [4, 3.5] oder [7])

¢:KO(X)->KU(X), c":KSP(X)—KU(X)
r:KU(X)-»KO(X), ¢:KU(X)—KSP(X)

induzieren die folgenden natiirlichen Abbildungen

a=c®c:L(X)->LU(X)
b=r®q:LUX)->L(X)

Es ist a ein A-Ringhomomorphismus, d.h. insbesondere:
a ist mit den y-Operationen vertréglich. 1.4)

Im allgemeinen ist & nur ein Gruppenhomomorphismus (siche aber [11, §12]). Aus
bea=2 (vgl. [4, 3.6]) folgt mit (1.4) und (1.3): Falls L (X') keine Torsion besitzt, so ist
a injektiv; fiir die y-Operationen auf L (X) gilt dann

Wk (Em) =¥ (&) y* (n)
‘//kol/’l(é)zwk-l(é) f’ nEL(X)' (15)

1.6. Bemerkung. Die Beziehungen (1.5) sind allgemein giiltig, d.h. auch wenn L (X')
Torsion besitzt. Der Beweis von Adams [2] fiir KU(X) und KO(X) ldsst sich auf
L(X) iibertragen.

Die natiirliche Transformation a kann oft dazu beniitzt werden, um den Ring L (X)
samt iy-Operationen zu bestimmen. Wir tun dies z.B. fiir die Sphére S*. (Im folgenden
identifizieren wir Elemente ae KO (X) bzw. feKSP (X') mit ihren Bildern («, 0) bzw.

(0, B) in L(X).)
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1.7. HILFSSATZ. Der Rzng L(S"') KO(S4)(-BKSP(S4) ZOZ wird additiv

erzeugt durch ein Element yeKSP (S*) und das Element £veKO (S*). Es ist v2=0.
Die y-Operationen sind gegeben durch (1.2) und

kZ
5 ev, k gerade

v () =

k*v,  kungerade.

Beweis. Es seien vReI’(?)'(S”'), vceﬁJ(S‘*) und v =z eKSP (S*) die kanonischen
Erzeugenden; d.h. als stabile Vektorbiindelklassen werden vg, v und vg durch das
entsprechende zum Hopf-Biindel S7 — S* assoziierte Vektorbiindel reprisentiert. Es
ist ¢(vg)=2v¢ [7, 3.15] und ¢’ (vg) =v¢ [7, 3.14]. Somit erhilt man

a(vg) =(0,v¢), a(ve)=(2vc0).
Mit a(e)=(0, 2) folgt nun
a(vg) = (0,2)-(0, v¢) = a(e) a(va) = a(evm)

d.h. vg=¢vy, denn a ist injektiv.
Fiir die y-Operationen berechnet man mit (1.4), falls k gerade ist:

ao ¥ (va) = U (0, ve) = (¥* (v), 0) = (K¥ve, 0) = a (f;— )

also
k2
Y (vg) = — 5 v

Analog wird der Fall £ ungerade behandelt, und 1.7 ist somit bewiesen.
[siiiiannnd lanad et
Nach Bott [7] gibt es einen Isomorphismus B:KSP (X)=~KO*(X)=KO(5* A X).
(Es sei XA Y das ,,smashed* Produkt von X und Y.) Mit Hilfe von Bott’s Beweis in
[7] priift man leicht nach, dass B einen natiirlichen Ring-Homomorphismus

L(X) =KO(X) @ KSP(X) = KO°(X) ® KO* (X) =« KO*(X) (1.9)

bewirkt. Zur Bestimmung der Ringstruktur von L(X) kann somit die KO-Theorie
herangezogen werden.

Die Geriist-Filtrierung ptc X°c..-c X/c...c X'=X von X induziert Filtrierun-
gen von L(X) und KO° (X)®KO*(X), welche mit dem Isomorphismus (1.7) ver-
traglich sind. Man erhidlt somit einen Isomorphismus der assoziierten graduierten
Ringe,

GL(X) ~ 6 (KO’ (X) ® KO*(X)). (1.10)
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Der folgende Hilfssatz gibt die Beziehung zwischen den y/-Operationen auf ESP (X)
p—
und den reellen y-Operationen auf KO (S* A X).

1.11 HILFSSATZ. Es sei L(X) torsionsfrei. Dann sind die beiden folgenden Dia-
gramme kommutativ:

k gerade k ungerade
e x  — e -
KSP (X) —KO(5* A X) KSP (X) — KO (S* A X)
lllk/ Bott Bott
I’(—() ( X) Yk K2k wk
(k2/2) e\,____,

e & o~
KSP (X)—-»KO (S* A X) KSP (X) —KO (S* A X)

Bemerkung. Der obige Hilfssatz gilt auch wenn L (X') Torsion besitzt. Wir setzen hier
lediglich Torsionsfreiheit voraus, um (1.5) anwenden zu konnen (siche Bemerkung 1.6).
Beweis des Hilfssatzes: Esseien p, : S* x X — S‘*, Py St x XX, f:S*xX>S*AX

die kanonischen Projektionen, und es sei veKSP (S *)=~Z das Erzeugende (siehe 1.7).
Wir betrachten

. o— 1=

L(X)—L(8* x X)~L(S* A X),
dabei sei ¢ definiert durch

pr—
@) =p1(v)ps(£), EeL(X).
pa—

Nach Bott [7, Th. 1] ist ¢ ein Isomorphismus von L(X) auf das Bild der Injektion

£, mit anderen Worten: B=(f")"tc o T (X) ;FE(S“ A X) ist der Bott’sche Isomor-
phismus.

Es sei nun k gerade, und es seien f ¢KSP (X), yeKO (S* A X) zwei Elemente, so
dass f'(y)=¢(B), d.h. y=B(B). Man berechnet mit Hilfe von (1.5), (1.7) und der

Natiirlichkeit von y*:
2

SYE() =¥ (e (B)) = ¥*[p} (v)p3 (B)] = % epy (v) pav* (B)
k> k?
=pi (V)| =& (B) ) =0 =" (B)),
also ist <2 ) <2 )

v (B(B) =B ("3 ay* (ﬂ)) -

Der Fall k£ ungerade ist analog und 1.11 somit bewiesen.
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§2. Konstruktion von Q,

Es sei w das Blakers-Massey Erzeugende von mg(S3)=~Z,,, und es sei E,,
n=0,1,2,..., 11, der Totalraum des durch »n-w klassifizierten S3-Prinzipalbiindels
iiber S7. (Das Element w ist durch E; =Sp(2) charakterisiert). Nach [12, Prop. 2.1]
kann E, mit der Zellenstruktur (S*u,,e’)ue'® versehen werden.

Wir betrachten nun allgemein einen CW-Komplex der Form

X =(S’U,,e)ue'®, nweng(S?),

(d.h. die anheftende Abbildung von e!° ist beliebig) und nehmen an, dass X eine
Hopf-Multiplikation

mXxX-X

besitze. Es sei PX die durch diese Multiplikation bestimmte projektive Ebene [8]. Wir
identifizieren den Raum PX mit dem Abbildungskegel der Hopfkonstruktion H (m)
von m (siehe [15]),

x+xI0sx e, =pPx (2.0)

(Es sei X* X der ,,join* von X mit sich selbst, und X sei die reduzierte Suspension.)
Der ganzzahlige Kohomologiering von PX kann nach [8] zerlegt werden in

H*(PX)=A®S,
wobei A ein Unterring der Form
A=Z[x y]/(x3 x*y, xy* y?), xeH*(PX), yeH®(PX) 2.1)

ist, d.h. A ist eine geschnittene Polynomalgebra mit zwei Erzeugenden. Mit der exak-
ten Kohomologiefolge von f(siehe (2.0)) ergibt sich iiberdies [8]

4
A= @ H¥(PX); (2.2)
r=0

(d.h. S enthilt keine Flemente in den Dimensionen 0, 4, 8, 12 und 16).

Leider ldsst sich der Ring KO*(PX) und damit L (PX) nicht ohne weiteres be-
rechnen; das Vorhandensein von S erschwert die Bestimmung der Differentiale in der
Atiyah-Hirzebruch-Spektralreihe der KO-Theorie. Wir konstruieren deshalb einen
CW-Komplex, dessen ganzzahliger Kohomologiering mit A identisch ist.

Es sei Z,=S3u,,e’. Im Blick auf (2.0) bewirkt die Einbettung j:Z,G X ein
Diagramm
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>z,
AN

LN

Z Az s=Hm 0% o & .C, =0,
lj*j=k = lz (2.3)
x»x " ,yx I',c,=px,

dabei sei C,=Q, der Abbildungskegel von g, / die induzierte Abbildung und g, f; die
kanonischen Inklusionen. Die Abbildung i=g; °Z; bettet den CW-Komplex
3Z,=X(Su,,e")=S8S*U,;5,e® als Teilkomplex in Q, ein (wir nehmen an, dass H(m)
zelluldr sei). Q, ist der von uns gesuchte CW-Komplex.

2.4. SATZ. Falls der CW-Komplex (S® U, e’ )ue'® eine Hopf-Multiplikation be-
sitzt, so gibt es einen CW-Komplex Q,, der den beiden folgenden Bedingungen unter-
worfen ist:

(a) Der ganzzahlige Kohomologiering von Q, ist gegeben durch:

H*(Q,) = Z[x, y]/(x*, x*y, xy* »*);  xeH*(Q,), yeH*(Q,).

(b) Q, besitzt 3Z,=S*uU,;,e® als Teilkomplex. Ist i:2Z,s Q, die Einbettung, so
erzeugt das Element i*(x) bzw. i*(y) die Gruppe H*(2Z,)=Z bzw. H®(2Z,)xZ.
Beweis. Wir zeigen (a) und (b) fiir den vorhin konstruierten CW-Komplex @Q,=C,
mit Teilkomplex XZ,. Aus (2.3) erhalten wir einen Homomorphismus der exakten
Kohomologiefolge von f in diejenige von g.
I S*
s H Y (ZX)> H ™Y (X *X) > H (C))» H (EX) > H (X xX) >

= k* I = k*
* *

g g
o H Y (ZEX)>H ™Y (Z,xZ,)> H (C,) > H (£X) > H" (Z,*Z,) > .

Der Homomorphismus k* ist vollstindig bekannt, und man beweist leicht mit Hilfe
des Fiinfer-Lemmas, dass

4 4 : 4 7 %
® H S(Cf)g ® H S(Cg)=H (Cg)

s=1 s=1
Mit (2.2) erhdlt man dann einen Ringisomorphismus
I*|4: A= H*(Cy),

und es folgt (a) unseres Satzes aus (2.1).
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Es bleibt zu zeigen, dass die Elemente i * (x) und i * ( ) die entsprechenden Kohomo-
logiegruppen von 2Z, erzeugen; dies folgt aus der exakten Sequenz von gund i=g; o X;.
Somit ist 2.4 bewiesen.

§3. Die y-Operationen auf L(S*uU,;,e®)

In diesem Abschnitt soll der L-Ring samt y-Operationen fiir £Z,=S*u,;,,€®

Unso € s
nZwen,(S*), bestimmt werden. Diese Ergebnisse werden dann in §4 beniitzt, um

Information iiber die y-Operationen auf L(Q,) zu erhalten.

Bemerkung. Wir verzichten auf eine allgemeine Betrachtung der y-Operationen
auf L(S?7Ue*™); im Sinne von [3] wiirde dies ein Studium der quaternionalen e-In-
variante ey nach sich ziehen. Die reelle e-Invariante ey und ey sind durch Hilfs-
satz 1.11 miteinander verkniipft.

. j r . .
Die Kofaserung S*G S*u,;, e—S® induziert exakte Sequenzen

T a8y P o (ol gy B o et
0—>KO(S )—>KO (§* U,z e )—>KO(S )—0
(3.1)
0- SP(SS)——>KSP(S4 Upzo € 8)—+KSP(S4)—>0

Der Ring L(S*U,;,€%)=KO(S*U,;5,e®)DKSP(S*U,;,€®) ist also torsionsfrei, und
es lassen sich in ihm spezielle Erzeugende auszeichnen.

3.2 SATZ. Es sei ve’I_(_SP (S* U,5,€®) ein Element, das under j' auf ein Erzeugendes
pr— —
yon KSP (S*) abgebildet wird, und es sei ue KO (S* U,,5,,€%)das p'-Bild eines Erzeugenden

von KO (S®). Dann gilt:
(1) v, &v, u, eu bilden eine Basis der freien abelschen Gruppe L(S *Upso€’) (€ ist

das vom trivialen H-Linienbiindel reprdsentierte Element; p, sveKO (S*U,z,€%) und
v, eucKSP (S*U,5,€%)).
(ii) vi=vu=p*=0

k? k2 (k* -1
et q(n): —(-6—-) p, k gerade
(iii) lpk (V) = 5 k2 (kZ _ 1)
k*v + q(n)'T eu, kungerade,

dabei ist q(n) eine ganze Zahl der Form: q(n)=n-m+12l, m teilerfremd zu 12.
@(iv) ¥*(u)=k*p
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e e et fr— (!
Beweis. Es seien vgeKO(S*), vgeKSP(S*), ugeKO(S®) und puyeKSP(S?) er-
zeugende Elemente. In L(S*) gilt nach (1.6):

Vg =+ évg 3.3)
Analog wie im Beweis von (1.6) zeigt man
pg =+ eug 34

(Wir identifizieren die Elemente «e KO (X)) bzw. feKSP (X') mit ihren Bildern («, 0)
bzw. (0, B) in L(X)). Sei veKSP (S*U,;5,€®) ein Element mit j'(v)=vy. Aus (3.2),
(3.3) und (3.4) folgt nun, dass die Elemente

v, ev, u=p'(us), en=p'(eur)

eine Basis von L(S*u,5,e®) bilden. Die Aussage (ii) ergibt sich, weil $* U,;,e® =2Z,
eine Suspension ist.

Es bleibt zu zeigen, dass die y-Operationen durch (iii) und (iv) gegeben sind. Dazu
po—

betrachten wir die KO-Theorie der Kofaserungen
S8G S8u,e? L8, gem (SY)=nixZ,,

p—
In KO(S®u,e'?)=Z@Z konnen wir wiederum Erzeugende ¢ und 5 so wihlen, dass
p—
¢ von j' auf ein Erzeugendes von KO (S®) abgebildet wird und 5 das p'-Bild eines Er-
pu—
zeugenden von KO (§'?) ist. Fiir die y-Operationen gilt nach Adams [3]:

YR (&) = k*E 4+ A(a) k* (K* — 1)1,

dabei ist A («) eine von k unabhéngige rationale Zahl; 1 () (mod 1) ist die sogenannte
eg-Invariante von « [3, §5]. Der Homomorphismus

er: 711 (S%) > Q/Z
ar>A () (mod1)

ist injektiv (siehe [3, 7.17]), und nach Toda [16, (5.5)] hat das Element X *wen,, (§®)=
~Z,, die Ordnung 12. Es ergibt sich somit:

A(nZ’w) = n-;n—z +1; m,leZ und m teilerfremd zu 12.
Wir setzen

g(n) =n-m+ 121
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pa—
und erhalten fiir die -Operationen auf KO (S® u,;s,, €'?)

V(O =k +q (n)-k~——--——~(k12_ 2

Das Diagramm

0> KSP(S®) - KSP(S*U,,e®) — KSP(SY) —0
=|B o =|B
0—+KO(S4 S‘*)—»KO(S“A(S4 Upso € 8))—>K0(S4 $%-0

— | —_ — |
0> KO(S') — KO(S*u,s,e®) — KO(S®) -0

(3.5)

ist kommutativ, und es folgt, dass (3.5) insbesondere fiir ¢ =B(v), 1= (eu) richtig ist.

Mit (1.10), (3.5) und (1.1) berechnet man nun, falls & gerade ist:

B ("7 o <v)) =y B0) = kB0 +a(m “E =D b

k*(k* - 1) su)

=B| k*
( v+ q(n) ™

d.h.

2012
ey* (v) = 2k%v + q(n) e —1) eu

6
und durch Multiplikation mit & erhidlt man

,/,k(v)__ev+q(n)"__£f‘__:_1_2

Der Fall k ungerade wird analog behandelt.

Nach [2, 5.2] ist y*(ug) =k*ug, und es folgt Y*(u) =k*u. Damit ist Satz 3.2 be-

wiesen.

§4. Bestimmung des Ringes L(Q,) und seiner y/-Operationen

Es sei 0, der in §2 konstruierte CW-Komplex mit Teilkomplex 2Z,=S*uU,,€®.

Nach Satz 2.4 gilt fiir die ganzzahlige Kohomologie:
() H*(Qn)=Z[x, y)/(x°, x*y, xp%, y°); xe H*(Q,), ye H*(Q,).

(b) Der Teilkomplex Z,< Q, trigt die Erzeugenden x und y von H*(Q,), d.h.
das Element i*(x) bzw. i*(p) erzeugt die Gruppe H*(2Z,)=~Z bzw. H®(2Z,)=Z.

Die L-Theorie von Q, ist im folgenden Satz beschrieben.
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4.1. SATZ. Der Ring L(Q,) ist torsionsfrei und es gibt inihm Elemente « eKSP (Qn)s

p—)
peKO(Q,) mit den Eigenschaften:

(i) Es ist L(Q,)=L(pt)QZ[a, B]/(e®, a?B, af?, B*); insbesondere bilden die
Elemente e, B, o2, eaf, B* bzw. o, eB, ea*, af, eB?* eine Basis der freien abelschen Grup-

pe KO(Q,) bzw. KSP(Q,).

k? k% (k* -1
> ex + q(n) m(——6~—~) B + s,0* + tieaf + u B>,  k gerade
(ll) d/k (a) = k2 (k2 _ 1)
k%o + q (n) = B + siea® + taf + u.ef*, k ungerade,

dabei sind sy, t,, u,eZ und q(n) ist eine ganze Zahl der Form: q(n)=n-m+121, m
teilerfremd zu 12.

(iii) ¥*(B) = k*B + veaf + wB%, v, WieZ.

Beweis. Nach (1.9) gibt es einen Ringisomorphismus L(Q,)=~KO°(Q,)®K0*(Q,),
und wir betrachten deshalb die Atiyah-Hirzebruch-Spektralreihe [6] von Q, fiir die
KO-Theorie. Weil H* (Q,) torsionsfrei ist, erhdlt man fiir den E,-Term:

E,(Q,) = H*(Q,) ® KO* (pt).

Aus der besonderen Struktur von H*(Q,) und der Derivationseigenschaft der Differ-
entiale [10] folgt leicht, dass die Spektralreihe zusammenbricht. (Est ist d,(x®1)=
d,(y®1)=0, n>2, und trivialerweise gilt d,(1®¢)=0, £eKO*(pt).) Somit ist

E2(Q,) = H(Q,) ® KO*(pt), reZ, selg,
und als Ring ist
E, (Q.) = H*(Q,) ® KO* (pt).

Fiir den zum filtrierten Ring KO°(Q,)®KO*(Q,) (Geriistfiltrierung) assoziierten
graduierten Ring ergibt sich daher

6 (KO°(Q,) @ KO*(Q,)) = H*(0,) ® (KO° (pr) © KO* (1))

(Man beachte, dass H*(Q,) nur in den Dimensionen 4m von null verschieden ist.)
Auf Grund von (1.10) ist dann

GL(Q,) = (Z[x, y]I(x*, x*y, xy*, ¥*)) ® (KO°(pt) ® KO* (pt)), 4.2)

und es folgt insbesondere, dass L(Q,) keine Torsion besitzt.
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I
Wir wihlen nun ein Element aeKSP(Q,)cL(Q,) bzw. ﬁeﬁ?)(Q,,)cL(Qn),
welches x®1e®L(Q,) bzw. y®1e®L(Q,) reprisentiert. (Wir fassen x®1, y®1

iiber (4.2) als Elemente von GL(Q,) auf.) Das Element ¢cKSP (Q,)=L(Q,) repréisen-
tiert 1Q¢'e®L(Q,), wobei & ein geeignet gewihltes Erzeugendes von KO*(pt)=Z
ist. Man sieht nun leicht, dass a, Be, a’e, af, B2e bzw. ag, B, a?, afe, B> eine Basis der

r— lonnd
freien abelschen Gruppe KSP(Q,) bzw. KO (Q, ) bilden; denn die durch (4.3) gegebene
Multiplikation auf ® (KO°(Q,)®KO*(Q,))= 6L (Q,) stimmt iiberein mit derjenigen,
die durch das Produkt in L(Q,) auf GL (Q,) induziert wird [10] (d.h. as, o, ...€L(Q,)
reprisentieren die Elemente x®g¢’, x2®1 .€®L(Q,)). Der nghomomorphlsmus
a:L(Q,)—-»LU(Q,) ist injektiv und in LU (Q,) verschwinden Produkte mit drei

Faktoren (es ist KU*(Q,)®Q=H*(Q,; Q) =Q[x, y1/(x*, x*y, y*x, y*)); somit er-
hilt man o =a?f=aB?>=p43=0, und (i) von 4.1 ist bewiesen.
Wir betrachten nun das Diagramm

S4 é; S4 Unso es_i’Qn
ll’
S8
Man schliesst ohne Schwierigkeit (z.B. mit dem Spektra]reihen-Homomorphismus
{E (1):E.(Q,) = E,(S* U,z0€®)}), dass das Element j'°i'(x) ein Erzeugendes von

KSP (S8*) ist, und dass i'(8)=p' (uy) fiir ein Erzeugendes ug von KO (S®). D.h. die
Elemente i' («) und i'(B) erfiillen die Voraussetzungen von Satz 3.2. Wir erhalten nun
die y-Operationen auf « mit y*oi'=i'oy* 3.1 (ii) und i'(«®)=i'(aB)=i'(B?)=0.
(Es ist $* U,z e® eine Suspension).

Es bleibt die Aussage (iii) von 4.1 zu beweisen. Auf Grund der obigen Betrachtun-
gen und 3.2 (iii) ist es klar, dass

Y (B) = k*B + m® + vigaf + w B2  my, v, wieZ.

Wir haben m, =0 zu zeigen. Dies folgt aus der Tatsache, dass § und «? in KO(Q,)
denselben Filtrationsgrad haben. (Weil I’(?)(Q,,) keine Torsion besitzt, sind sowohl
das Komplexifizieren c:If(d()(Q,,)—d’(_lJI (Q,), als auch der Chern’sche Charakter
ch:ﬁ)(Q,,)-—» H*(Q,; Q) injektiv. Mit [2, 5.1 (vi)] berechnet man nun:

choy*oc(B) = k*chg[c(B)] + hohere Terme
checoy® (B) = k*chg[c(B)] + michg[c(¢?)] + hohere Terme

d.h. es ist m, =0, denn chg(c(x?)#0 [6, 2.5 (i)]). Satz 4.1 ist somit bewiesen.
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§5. Beweis von Satz B

Es soll nun der in der Einleitung formulierte Satz B mit Hilfe des Ringes L(Q,)
und seiner y-Operationen bewiesen werden. Die L-Theorie eines CW-Komplexes Q,,
welcher den Bedingungen (a) und (b) von Satz B geniigt ist durch Satz 4.1 gegeben.

Mit (1.2) und (4.1) erhalten wir fiir die Elemente &, «, f aus L(Q,):

Y (e) =2

Y2 (B) =2*B + veaf + wyp>

W2 (o) =260 + 2q (n) B + 520" + tyeaf + uf?,
() =¢

Y3 (B) = 3*B + vieaf + wyp?

Y3 (2) =9a + 6q (n)ef + sye0” + tyaB + usef’

Es gilt allgemein 2 (£)=&% —242(&) [13, 12 (2.6)], d.h. fiir den Koeffizienten w, von
p*:
w, =1 (mod?2) (5.1)

Wir werden im folgenden die Relation y? oy =y o2 ausniitzen (siehe (1.5)) und
berechnen dazu:

Y2 oy® B) = 24348 + (34U2 + 26”3)8“ﬁ + (34W2 + 2% (n)v; + 28W3) p*
Y2 ot (B) = 2*-3*B + (2%05 + 3%,)eaf + (2w; + 2°3°q (n) v, + 3%w,) B2

Durch Vergleich der Koeffizienten von exf bzw. 2 erhalten wir die beiden Gleichungen
205 =3%,, 30w, + 23q (n)v; =10:3*w, + 3¢ (n)v,

und damit
3wy =3%*w, + q(n)v;

Mit (5.1) und der Tatsache, dass g (n)=n (mod2) (siehe 4.1 (ii)) folgt daraus
ws =1+ n-v; (mod?2) (5.2)
Fiir das Element o berechnen wir:

Y2 oy () = 18ea + 210q (n) B + Ao® + Beaf
+ (3%uy + 2%:3q (M) w, + 2%q (n)*s; + 2°q ()15 + 2°u;) B2
Y2 oy? () = 18¢a + 210g (n) B + Co® + Deafp
+ (2%us + 29 (n)ws + 23-3%q (n)%s, + 2°-3%q (n) 1, + 3%u,) B°

dabei sind die Koeffizienten 4, B, C, D gewisse Ausdriicke, die uns im folgenden
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nicht interessieren werden. Wir vergleichen die Koeffizienten von 2 modulo 8 und
erhalten:

22:3q(n)w, =2q (n)ws + (3% — 3%)u, = 2q (n) w; (mod 8),
denn 3% —32=0 (mod8). Es ist also:
6g(n)w, =q(n)w; (mod4),
und damit, weil g(n)=n oder 3n (mod4) (siehe 4.1 (ii)):
nw; = 2nw, (mod4)
Aus (5.1) folgt:
n'wy;=2n (mod4). (5.3)
Die Kongruenzen (5.2) und (5.3),

wy+nvy;=1 (mod2)
n'wy =2n (mod4),

implizieren nun n#2 (mod4), und Satz B ist somit bewiesen.
Appendix

In diesem Abschnitt wenden wir uns kurz der Frage zu: Fiir welche n (n#2 (mod4))
gibt es auf E, und S’ Hopf-Multiplikationen, sodass die Biindelprojektion n: E, — S’
eine H-Abbildung ist?

Wir erhalten das folgende negative Ergebnis:

SATZ. Die Projektion n:E,— S’ ist fiir ungerades n keine H-Abbildung, wie immer
man auch die H-Raumstrukturen auf E, und S wahlt.

Beweis. Wir nehmen an, dass n: E, - S’ eine H-Abbildung sei (fiir gewisse Multi-
plikationen auf E, und S7) und erhalten das folgende homotopie-kommutative Dia-
gramm (Bezeichnungen wie in § 2):

3Z,
RN
Z,xZ,—JE, LN} (6.1)
| =

S %87 - 287 » PS7

Die Komposition Zz ° Zjfillt mit der Projektion p der Kofaserung S* 5 27, 5 S =287
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zusammen. Nach Browder-Thomas [8] ist H*(PS7;Z)=Z[z]/(z*); dabei ist
ze H®(PS7, Z) und h} (z) erzeugt die Gruppe H®(S®; Z)~Z. Es folgt:

p—
KO (PS")=Z[y]/(7?), wobei k] (y) ein Erzeugendes von KO (S?®) ist.
Mit i‘ea'(y)=p'oh}(y) schliesst man nun (siche Beweis von Satz 4.1):

pu—
d(y)=+B+ ax’® + beaf + cf*eKO (@,), a,b,ceZ; (6.2)

dabei sind o und f die in § 4 definierten Erzeugenden von L(Q,). Wir kdnnen 7 so
wihlen, dass das Vorzeichen von f in (6.2) positiv wird.

Es ist Y (y) =3*y +d-y2, deZ, und wir berechnen mit (6.2) und den in § 5 zusam-
mengestellten Formeln fiir ¢ («) und ¢> (8):

ooy’ (y) = 3*8 + 3*an? + 3*beaf + (34 + d)ﬁ2
¥2o0'(y) = 3*B + 3%aa’® + (v; + 223%q(n) a + 3°b)exf + AB

(A ist ein Ausdruck der uns im folgenden nicht interessiert). Aus 3 oo’ =g' 3 folgt
durch Vergleich der Koeffizienten von eaff:

vy +223%g(n)a+(3°-3*)b =0
d.h. es ist
v3=0 (mod2). (6.3)

Wir betrachten nun die Kongruenzen (5.2) und (5.3),

w3+ nwvy=1 (mod2)
n-wy;=2n (mod4).

Falls n ungerade ist, erhdlt man damit
v3=1 (mod2).

Zu dieser letzteren Tatsache steht (6.3) im Widerspruch, und unser Satz ist bewiesen.
Bemerkung. Die Frage, ob die Projektion n: E, — S’ eine H-Abbildung ist, bleibt
mit unserer Methode unbeantwortet.
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