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Le calcul des classes duales aux singularités

de Boardman d'ordre deux

F. RONGA

INTRODUCTION

Dans ce travail on établit un procédé pour calculer les classes de cohomologie
duales aux singularités d'ordre deux ïl>j d'une application différentiable générique

/: K-> W introduites par Thom [10], dont la définition a été précisée par Boardman
[1]. L'adhérence d'une telle singularité est une «collection de variétés», dont la classe

duale est un polynôme dans les classes caractéristiques des fibres T(V) et T(W); ce

polynôme provient d'un polynôme universel (voir [4]), qu'il suffit de calculer dans
le cas complexe (voir [2]).

Les propos énoncés sont pour la plupart valables à la fois dans le cas réel et dans
le cas complexe; on spécifiera les éventuelles modifications à apporter dans chaque
cas. Par exemple, dans le cas réel on considérera la cohomologie modulo deux et les

classes de Stiefel-Whitney, alors que dans le cas complexe ce seront les classes de

Chern et la cohomologie entière. Signalons que dans le cas complexe, lorsque W est

un espace numérique et V est telle qu'en chacun de ses points on peut définir les

coordonnées locales par des fonctions globales, on peut montrer que presque toute
application est générique pour les singularités envisagées.

Au chapitre I on contruit les «désingularisations» des singularités X1 et ïitj et

on montre comment passer des singularités d'applications aux singularités de morphis-
mes de fibres. Au §4 on montre que la classe duale à la singularité ïl'j d'une application

générique/: K-» W ne dépend que du fibre normal à/, qui est le fibre différence

/* (T{W))- T{V)eK(F). Cette classe s'obtient en remplaçant ct par ct (f*(T(W))-
— T(V)) dans un polynôme universel, qui ne dépend que de r=dim(W)—dim(F),
ï ety, et qui sera noté qru j (c), où c désigne la classe de Chern totale du fibre canonique
y" sur la grassmannienne Gn N des «-plans dans Cn+N (n et N étant pris suffisamment

grands par rapport à la codimension de IitJ). Soit Pij\Fij"^GnfN le fibre associé

à yn de fibre les couples formés par un y-plan contenu dans un /-plan de la fibre de yn;
le résultat principal de ce travail est le théorème (4.5) du chapitre I, qui exprime
qritj(c) comme image par Phomomorphisme de Gysin associé à PitJ d'une classe

caractéristique d'un fibre sur Ftj.
Au chapitre II on établit quelques propositions d'algèbre élémentaire qui

permettent de décrire le procédé de calcul; on applique ensuite ce procédé à quelques
cas particuliers.

L'idée de la désingularisation canonique pour l'ordre 1 est formulée par I. R. Por-
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teous dans [6]. Dans [7], le même auteur a effectué quelques calculs dans des cas

particuliers, par une toute autre méthode.
Je prie le professeur A. Haefliger de trouver ici l'expression de ma profonde

gratitude pour m'avoir posé le problème et aidé de ses conseils tout au long de mon
travail. Je remercie également les professeurs S. Lojasiewicz, A. Roy et C. Weber

pour les nombreuses conversations utiles que j'ai eues avec eux. C'est le professeur
A. Roy qui m'a fait découvrir les identités entre déterminants dont il est question au
chapitre II, §1.

Enfin, je remercie le «référée» de m'avoir permis, par des suggestions détaillées,
d'améliorer considérablement plusieurs passages.

Dans le cas réel on supposera toujours que les variétés et applications différen-
tiables sont de classe C00.

I. DESINGULARISATION DE P ET ïiJ

Fixons quelques notations. Soient Ç (E-*X) et ri (F-*X) des fibres vectoriels
réels (respectivement complexes). Si xeX, Ex ou Çx désignent la fibre au-dessus de x;
si AczX, Ç | A désigne la restriction de £ à A. HOM(<i;, rj) désigne le fibre vectoriel
associé à Ç et rj de fibre les homomorphismes linéaires de Ex dans Fx (que l'on notera

Hom^, Fx)). CX désigne le r-ième produit symétrique de <^, qui est le quotient du
r-ième produit tensoriel de £ par l'action du r-ième groupe symétrique (voir [1], p.
399). Si £ est un sous-fibré de ^, ÇO Ç désigne le sous-fibré de £O £ qui est l'image de

C®£ par le passage au quotient £®£-?<!;O£- Si w=rang(^) et fc=rang(£), nQk
désigne le rang de Ç O £ (qui est d'ailleurs égal à (k/2) • (2n- k +1

1. Désingularisation de ïl

Soient Ç (E-+X) et ri (F-+X) des fibres vectoriels réels (resp. complexes)
différentiables de rang respectivement n etp.

Posons:

On a une projection n:Sr(Ç, rç)-*^, qui est un fibre vectoriel de fibre Hom^, Fx) x

Soit I\^, r\) l'ensemble des aeHOM(^, rj) dont la dimension du noyau est égale

à i; !"'({, if), que l'on notera parfois simplement I\ est un sous-fibré de HOM(£, r\)
de fibre Ix {a.eYLom(Ex,Fx) \ dim(ker(a))=/}.

Si £ ((r-»Z) est un fibre vectoriel réel ou complexe et k un entier compris entre
zéro et «, on désigne par p:Fk(Ç)-+Z le fibre associé à C de fibre l'espace des fc-plans
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dans Gx (que l'on notera Fk(Gx)). Sur Fk(Ç) on définit un sous-fibré Çk de rang k de

p* en considérant les couples (a, v), où a est un fc-plan dans Gx et t; est un vecteur

appartenant à a.
Soit 7c la projection de S1^, rj) sur X. Soit Ç'=n*(Ç) et notons par /j^F* (£')-?

-^iS1 (£, rç) le fibre en /-plans associé à £'. Un élément de Ff (£') est un couple (a, a),
où aeHom (Ex9 Fx) et a est un /-plan de Ex.

DÉFINITION. ïi(Ç,n)=ïi désignera le sous-ensemble de F,({') formé des

couples (a, a) tels que a s'annule sur #.

Posons n' =p*1(n*{n))\ définissons la section ^ : Ff (£')-»HOM (£J, n') en associant
à (a, a)eFf(^) la restriction de a à a. I* est en fait l'ensembre des zéros de cette
section.

Soit ker le sous-fibré de rang /de £' | Z* formé des couples (a, v)eZlxxEx tels que
a(v) =0. Soit im le sous-fibré de rang n — i de tt* (rç) 111 formé des couples (a, v)elx x
x 1^ tels que t;eim(a). Soit enfin coker le fibre quotient de 71* (rj) \ I1 par le sous-fibré
im. Remarquons que les fibres de ces fibres au-dessus de a sont respectivement
ker (a), im (a) et coker (a).

Soit ïlo {(a, a)eïl | ker(a)=a}; c'est un ouvert dense de ï\ Considérons le

diagramme suivant

(1.1) PROPOSITION.

(ii) Wx est transverse à la section nulle, de sorte que I1 est une sous-variété de Ft

(iii) La restriction de px à ïlo est un plongement d'image Zl, qui se trouve ainsi être

une sous-variété de S1 (£, rj).
(iv) Le fibre tangent aux fibres de n | Zl\!l-*X> qui est un sous-fibré de

7T* (HOM (£, n)) | Zl, coïncide avec le noyau du morphisme surjectif Q:n*(HOM(Ç,
n)) 11"1'-*HOM (ker, coker) qui associe à (a, a')en*(HOM(Ç, n)) \ Zl la composition:

ker (a) c £ ¦£ rc* (rj)a -* coker (a).

Ainsi HOM (ker, coker) peut être considéré comme fibre normal à Zl dans S1 (Ç, t\).
Démonstration, (i) Si (a, a)eï\ dim(ker (a))^ / et <xeï\ D'autre part, si aeT*

la dimension du noyau de a est au moins / et il content un /-plan a; alors (a, a)eïl
et/?! (a, a)=a.

(ii) Introduisons des coordonnées au voisinage de (a, a)eFf(^), où aeHom
(Ex, Fx). Soit U un voisinage de x au-dessus duquel £, et n sont triviaux. Alors
PÏ1 (^~x (U)) s'identifie à Ux Hom(^, Fx) xFt(Ex). Soit a un /-plan de Ex et a' un
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(n —/)-plan complémentaire; soit Va {beFi(Ex) | bna'=0}; en considérant tout
beVa comme graphe d'une application linéaire de a dans ar on définit un homéo-
morphisme de Hom (a, a') sur Va qui en fait une carte locale sur Ft(Ex). De plus, la
restriction de HOM(£, rj') à UxHom(Ea9 Fx)x Va s'identifie k UxHom^, Fx)x
x Hom (a, a') x Hom (a, Fx). Dans ces coordonnées, xFl (x, a, b) (x, a, b, at +a2 • 6),
où a1 =a | a et a2 =a | a'. Notons par W la composition de Wx avec la projection sur
Hom (a, Fx). Calculons la dérivée de W au point {a, a) dans la direction Hom (Ex9 Fx) x
x Hom (a, a'): V est linéaire par rapport à a et affine par rapport à b; dès lors il
n'est pas difficile de voir que dWata(0, A, B)=A1 +a2-B, où A1 =A \ a. Il est évident

que cette dérivée est surjective.
Dans la démonstration des deux numéros suivants, (a, a) désigne un élément de

ïlo; ainsi ax=0 et a2 est injective. Toutes les dérivées seront prises au point (a, a).

(iii) Dans les mêmes coordonnées, reprenons l'expression de la dérivée de W;
de dW'(0, Q,B)=0 on déduit a2-B=0, d'où B=0, puisque a2 est injective. Or l'espace

tangent à ïlo au point (a, a) coïncide avec le noyau de dW ; ce qui précède prouve que

que Pi | ïlo est une immersion. De plus on peut définir ail^ï], en associant à

aeZ* le couple (ker(a), cc)eïlo; on vérifie aussitôt que/?!-(7= id. et que a-px | ïlo=ià.\
on en déduit les propriétés voulues de/?! | ïlo.

(iv) désignons par Qa l'homomorphisme de Hom (Ex, Fx) dans Hom(ker(a),
coker(a)) qu'on déduit de q. Dans les coordonnées introduites sous (ii), l'espace

tangent aux fibres de I1 au point a est la projections dans Hom^, Fx) de l'espace
vectoriel T= {(A, B)eUom (Ex, Fx) x Hom (a, a') \ dT (0, A, B) =0}. Or dW (0, A, B)
=0entraîne Im(^41)c:Im(a2)=Im(a) et donc ga(A)=0. D'autre part, si Qa(A)=0,
l'équation A1+oc2'B=0 définit univoquement B (rappelons que a2 est injectif) et on
a (A, B)eT. Ainsi ce dernier espace se projette isomorphiquement sur ker(^a). ||

On appellera tl la désingularisation de SK

Soit (p:Ç-+ti un morphisme de fibres; on peut le considérer comme section

(1.3) DÉFINITION. On dira que le morphisme cp est 2"l-transverse si l'application

associée de X dans S1^,^) est transverse à 2"*(£, if). Posons Sl(cp)
q>~x (I1 (^, rj));si(p est IMransverse, c'est une sous-variété de X.

On vérifie que si q> est 2*-transverse pour k^i, l'adhérence de Il{(p) est égale à

2. Désingularisation de IiJ

Soient i;-{E-*X) et r\={F—X) des fibres vectoriels réels (resp. complexes)
différentiables. Soit (a, f})eïïom{Ex, Fx)xHom(ExOEx, Fx); par l'inclusion
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Hom(ExOEx>Fx)^Hom(Ex®Ex,Fx)~Hom(Ex,llom(EX9Fx)) on déduit de p
une application linéaire de Ex dans Hom (Ex, Fx), puis par restriction et passage au
quotient une application linéaire p* : ker (a)-*Hom (ker (a), coker (a)).

DÉFINITION. On pose ZiJ(Ç, */) {(a, P)eS2(Ç9 rj) | ael'fé, rj) et dim(ker
(P*))=J}.

IitJ'(Ç9 t]), que Ton notera parfois encore IitJ, est un sous-fibré de S2(Ç9 rj). Il est

vide à moins que max {0, n —p} <j< /< n.

Comme L. Lander me l'a fait remarquer, l'adhérence de IiJ contient mais ne
coïncide pas avec (J Ik} \k^ /, l^j, contrairement à ce que je prétends dans [8].

Soient k et / des entiers tels que 0^1^k^n et soit Fk t(Ex) l'espace des couples
(a, b) formés par le /-plan b contenu dans le fc-plan a contenu dans Ex. On notera par
p:Fk j(£)-*jne fibre associé à £ de fibre Fkl(Ex). En considérant les triples (a, b, v),
où (a, b)eFkl(Ex) et v est un vecteur de Ex contenu dans b, on définit un fibre Çt

de rang / sur Fk> t (£), sous-fibré de p* (£). Définissons g: Fkt t (Ç)-+Fk (£) par g (a, b)=a;
c'est une fibration localement triviale de fibre F^a). Çt est un sous-fibré de g*(Çk).

Soient n la projection de S2({, rç) sur Jf, £'=7r*({), p2:Fifj(Ç')-^S2(Ç,ri) et

g:Fij(Ç')-+Fi(Ç') les analogues pour Ç des fibrations introduites plus haut. Un
élément de Fitj(^) est un quadruple (a, b, oc, p),oixoceHom(EX9 Fx),peîiom(ExOEx,
Fx) et b est unj-plan dans le /-plan a de Ex.

On peut refaire les constructions du § 1 au-dessus de S2 (£, rj). Désignons encore

parpt : Ft (^/)->5f2 (£, ?/) le fibre en /-plans associé à ^ et posons :

r {(a, p)eS2{^ ri) | dim(ker(a)) i}

Considérons g"1(Ii) {(^ *, a, P)eFitJ(Ç') \ acker(a)}; il suit de (1.1) que
c'est une sous-variété de Fitj (£').

Reprenons dans un diagramme ces différents espaces :

PI

Soit Z'u (pi(Ç')/g*(id)®(t'jqg*{t't)) et soit r,'=(n-p2)*(r,). Définissons

W2:g-1(ïi)->llOM(Ç'UJ,ti')\g-1(ïl) en associant à (a,b,x,P) le couple (à, jg),
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où âeHom (EJa, Fx) se déduit de oc, vu que celui-ci s'annule sur a, et /JeHom (b O a, Fx)
est la restriction de /?.

(2.1) PROPOSITION. Considéré comme morphisme du fibre {u Ig"1^1') dans

lefibre rj' | g"1 (£'), !F2 est Zk-transversepour toutk (voirdéf. \3).
Démonstration. Soit f=(a, b, a, P)eg~1(ïi) et x n(oc,p). Les restrictions de

£î et rç' à l'espace vectoriel K= {(a, b, A, B)eg~1(ïi) | n(A9 B) =x} sont triviales, de

fibre respectivement (EJa)@(bÇ)a) et Fx. La restriction de ÎF2 à F composée avec la
projection sur la fibre Hom(Ex/a®bOa; Fx) est linéaire et surjective. L'affirmation
en résulte. ||

DÉFINITION. Rappelons que iÇ)j désigne la dimension du produit symétrique
d'un espace vectoriel de dimension i par un sous-espace de dimension j. On pose :

ïi*i=liO3{V2). Autrement dit, ïiJ {(a, b, <x, fi) \ dim(ker(a; P))>iÇ)j}.

(2.2) PROPOSITION, (i) ïl;j =pl 1{Ii^)nïUi est un ouvert dense de la
variété IiOj (W2), donc aussi de ï**j.

(iï) la restriction de p2 à 1^j est unplongement d'image Il*J\ Ainsi, p2 étantfermée,

Démonstration. Reprenons dans un diagramme les différents espaces qui apparaissent:

II suffit de faire la démonstration dans le cas où X est un point; dans ce cas E
et Fsont des espaces vectoriels.

(i) Montrons l'égalité !!;' {(*, *, <*> P) \ tf=ker(a), è=ker(jg*)}. Si (a, b, a, £)e
eÏqJ9 ker(a)=a et dim(ker(a, P))^iOjl a est alors injective et dim(ker(a, j3)) est

égale à la dimension du noyau de la composée: aOb-£+F->F/Im(<x), qui doit donc
être nulle. Il s'en suit que /?*:ker(a)->Hom(ker(a), coker(a)) s'annulle sur b; comme
dim(ker(/?*)) =7, on doit avoir 6 =ker(/?*). Réciproquement, si a=ker(a), a est

injective et dim(ker(a, jS)) est égale à la dimension du noyau de la composée de /î

avec la projection F-+F/Im (a). Cette composée est zéro puisque j8* s'annulle sur b.

Ainsi (a, b, a, P)eZiOJÇF2); déplus, (a, p)eZ*'J.
Monstrons que ïl;J est ouvert dans IiOj(W2): sif=(a, b9 a, P)eïî(;J9 pour tout

(a\ b\ a', /?') dans un voisinage de/dans ï1*3 on aura dim(ker (<*'))</, et puisque
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tf'czker(a'), on aura a'=ker(a'). De même, dim (ker (/?'*)) <y pour fi' assez proche
de fi; or a' étant injectif, la composée de /J' avec la projection F->F/lm((x') est nulle,
d'où Z>'=ker (£'*).

Montrons que ïl;j est dense dans EiOj(W2); soit fe b, a, fi)eZiOj(W2) et

A:=ker(a, j§), sous-espace de dimension iOj de (E/a)®(bÇ)a). Etant donné que
bÇ)a & même dimension que ^, il existe un automorphisme A de (Eja)®(bOà)
aussi proche qu'on veut de l'identité, tel que A'1 (K)n(E/a) 0. Le composé
(a, ft)'Asç met sous la forme (S, T), où S:E/a-+FQt T.bQa-^F. Soit a' la composée

E^E/a^+Fet fi" l'homomorphisme de EÇ) E-+F qui coïncide avec Tsur bQa et avec

fi sur un supplémentaire à bÇ)a dans EOE. Puisque ker (a', ^ff)=A~i(K),
l'intersection de cet espace avec E/a est zéro ; on en déduit que b c ker ((fi")*) ; aussi près que
l'on veut de fi" il existe fi' tel que &=ker ((£')*) et ker (a', p')r\(E/a)=0. Dans tout
voisinage de (a, fi) on trouve un tel (a', /?'), pour lequel (a, b, a', fif)eïlô J.

(ii) Décrivons des coordonnées locales sur Ft}J(E). Soit (a, b)eFîtj(E) et soit b'

un (/—y)-plan complémentaire à 6 dans a et a' un (rc —/)-plan complémentaire à a

danslï. Soit A tlwa la projection parallèle à a'. Soit Fflb {(o-, T)eFitj(E) | crrW=0,
1(t)oZ?/=0}. Si (<r, T)eFfl)b, on peut considérer cr comme graphe d'une application
linéaire de a dans a! ; de même X (t) sera le graphe d'un application linéaire de b dans V.
On définit ainsi un homéomorphisme de Hom(<z, tf')xHom(6, b') sur Fa>&, qui en

fait une carte locale sur Fitj(E).
Les restrictions à VOt b de £} et g* (£J) sont triviales.
Vérifions que la restriction de g à T lo'J est une immersion dans ïlo. Soit/= (a, b, a, j8) e

eï1^', où(xeHom(E, F)et fieHom(EO E, F); on a que a=ker (a) et que è=ker (j8*).
En utilisant les coordonnées introduites auparavant, il y a un voisinage de / dans

^"1(fi) qui s'identifie à IlxHom(b, b'). En coordonnées, la restriction de W2 à ce

voisinage est une application à valeurs dans P x Hom(a', F) x Hom(bOa, F). Soit

T' la composition de cette application avec la projection sur Hom(ftO^, F);
W(a, t, a, fi) est l'application bilinéaire de bxa dans F qui à (w, v)ebxa associe

/?(m + t(w), v)=fi(u, v)+fi(x(u)9 v). Le deuxième facteur de la somme est linéaire

par rapport à t; il est dès lors facile de voir que dWf(0, T, 0, 0) est l'application
bilinéaire qui à (w, v)ebxa associe fi(T(u\ v). Si fi(T(u)9 v)=09 Vweè, Vt;ea, alors

r(w)ciker(/?*), Vweô; vu que ker(/?*)=£, ceci entraîne que T=0. Ainsi ker(rfgy)n
n ker (dWf)=0 et g | j;J est une immersion, dont il est clair que l'image est contenue
dans Zq. D'autre partp2 =p\'g etp1 \ ïlo est une immersion; il s'en suit quep2 \ %oS

est une immersion.
Définissons g : IitJ^ï £J en posant :

On vérifie que a est continue, que p2 • <r =id. et que v(p2\t © 0—id- On en déduit les

propriétés voulues de/?2 | ^o "/- ||
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3. Passage des singularités d'applications aux singularités de morphismes de fibres

Soient V et W des variétés différentiables (resp. analytiques complexes) et soit

f:V-*W une application différentiable (resp. analytique). Posons Zi(f) {xeV\
dim(kQr(dfx)) i}.SoiQntT(V)'=pï(T(V))etT(wy =Pw(T(W))9 oupv: Vx W-+V
et pw:VxW-±W sont les projections canoniques. On a que Ii(f) (df)~1
(£'(7XF)', r(fF)')), où la dérivée est considérée comme application df: V->

-+HOM(T(V)',T(W)').
Soit xell(f); en coordonnées locales,/est une application d'un ouvert U de

l'espace vectoriel E dans l'espace vectoriel F; la deuxième dérivée de / au point x
peut être considérée comme application linéaire d2fx: E-+Hom(E. F). On en déduit

par passage au quotient une application linéaire d2fx:E-+Hom(kçr(dfx), coker (dfx))9

qui est en fait indépendante des coordonnées choisies. Ainsi on en déduit un mor-
phisme de fibres d2f:T(V) | If(/)->HOM(ker(<//); coker(#)) (c'est la «dérivée

intrinsèque de Porteous»; voir [1], §7).

(3.1) PROPOSITION (cf. [1], lemme 1A3). Supposons df:V-+HOM(T(V)\
T( W)f) transverse àIl(T( V)', T(W)f). On a alors une suite exacte défibrés :

0-+T(r(f))-+T(V) | If(/)^HOM(ker(d/), coker (df)) -> 0.

Démonstration. Vu que ^fest transverse à I\ cela suit de (1.1), (iv). ||

Si on suppose que df est Z'-transverse, Il(f) est une sous-variété de V. On peut
alors poser :

IH (/) {xell(f) | dim(ker(d(f | ?(/))*)) j}.
On va montrer comment IiiJ(f) s'obtient comme image réciproque de Zl'j(T(V)';

Une gerbe sur la variété M (voir [5], chap. 4, §3-4) est une application différentiable

e:T(M)-+M (dans le cas différentiable comme dans le cas analytique
complexe), qui vérifie:

(i) e restreinte à la section nulle est l'identité ;

(ii) pour tout xeM, il existe un voisinage Ux de l'origine dans T(M)X, tel que
e | Ux est un difféomorphisme sur son image.

Supposons que les variétés F et W (resp. différentiables ou analytiques complexes)
soient munies de «gerbes» ev:T(V)-*Vet ew:T(W)-*W. Soit/: F-» Wune application

différentiable (resp. analytique complexe). Soient xe V,y=f(x), Uy un voisinage
de zéro dans T(W)y tel que ew \ Uy soit un difféomorphisme sur son image et Ux un
voisinage analogue pour x, tel que de plus f(e(Ux)) soit contenu dans Uy. La
composition f' (ew | Uy)'1-f(ev | Ux):Ux-+Vy est bien définie. Ux et Uy étant des

ouverts d'espaces vectoriels, on peut considérer la fc-ième dérivée de/' en 0,dkfQ,
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comme élément de Hom(OT(V)xi T(W)y). En posant Sr{f\x)={dlf^9...9 d%) on
définit une application Sr(f): V->Sr(T{V)\ T{W)')9 dont on vérifie qu'elle est
différentiable.

Soit/r(F, W) l'espace des jets d'ordre r d'applications de Fdans W;siseJr(V9 W)
est le jet au point xe F de/: V-+ W9 on peut lui associer Sr(f)(x)€Sr(T(V)f9 T{W)').
On vérifie que l'on définit ainsi un difféomorphisme entre Jr(V9 W) et Sr(T(V)\
T(W)f). Il découle de la proposition suivante que par ce difféomorphisme les sous-
variétés I1-! de Jr{ V, JF) définies dans U]etlesi;l'''(r(F)', T(W)') se correspondent.

(3.2) PROPOSITION. Supposons que f: V-> W soit telle que df est transverse à

Zi(T(V)\T(W)').AlorsZi>J(f)=S2(f)-1(Zi>J(T(V)\T(Wy)).
Démonstration, dim (ker (d(f | !'(/)))) ==/ si et seulement si dim (ker (dfx) n

nT(r(f))x)=j, ce qui revient à dire, d'après (3.1), que dim (ker (d2f \ ker(^)))=j.
Indépendamment des gerbes choisies, ceci équivaut à dire que S2(f)eZi>J(T(V)'9
T(W)'); pour voir cela, reprenons les notations du §2: on pose ot=dfx9 P=d2fx; on
a que rf2/| ||

4. Les classes duales à Zl et ïiJ

La proposition suivante m'a été suggérée par le «référée»; elle est essentiellement
contenue dans [1].

(4.1) PROPOSITION. lx et ïx'j sont des sous-ensembles algébriques respectivement

de Hom (Ex9 Fx) et S2 (Ex9 Fx).

Démonstration. Si Ex et Fx sont munis de bases, (xeîx si et seulement si tous les

mineurs d'ordre n—p+i de la matrice de a s'annulent, ce qui montre que Zx est

algébrique.
Reprenons les notations des paragraphes 1 et 2 de [1], avec F=RW et W=RP. Soit

Mie sous-ensemble algébrique de J2 (Rn9 Rp) défini par:

M {seJ2 (Rn, Rp) | tkrs (501,) > U tkrs (2R,) > j}

On a: Mr\Z\MnZi+1=MnZi (JZi'l9 l^j. On vérifie que ce dernier ensemble est

contenu dans l'adhérence de ZitJ; il s'en suit que l'adhérence de MnZ^MnZ**1 est

égale à Zitj. Or l'adhérence de MnïI'\Mnïl>+1 est un ensemble algébrique, car c'est

la réunion des composantes irréductibles de Mnï1 qui ne sont pas contenues dans

Mnïi+1. ||

Dans le cas complexe, supposons que Xest orienté; on déduit alors de (4.1) et de

([2], théorème 3.2 et proposition 2.7) que !'(£, rj) et ZiJ(Ç9 rj) portent des classes

fondamentales en homologie entière à supports les fermés.
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Dans le cas réel, il suit de (4.1) et de ([2], th. 3.7) que !'(£, rj) et XiJ(Ç, r\) portent
des classes fondamentales en homologie à coefficients modulo deux et à supports les
fermés.

Dans le cas d'une application/: F-* W, respectivement différentiable ou analytique
complexe, pour s'assurer de l'existence de la classe fondamentale de £'(/) ou
ïiJ (/), il suffit de supposer que S1 (/) ou S2 (/ sont transverses à une stratification
vérifiant la condition «i» de Whitney de Zl{T(V)\ T(W)') ou ïl>J(T(V)'9 T(W)').
Si tel est le cas, l'existence d'une classe fondamentale suit de ([2], prop. 2.15) et de

propriétés élémentaires des ensembles stratifiés. Une stratification de S1 vérifiant la
condition «b» est donnée par les X*, k^i; l'existence d'une stratification de ïiJ suit

par example de ([11], th. 8.5).
On appellera classe duale à X* ou Sifj la classe de la cohomologie de S2(Ç, rj) (à

supports les fermés, ce qui donne la cohomologie ordinaire, et à coefficients entiers ou
modulo deux selon les cas) obtenue en appliquant l'isomorphisme de dualité de Poin-
caré à l'image de la classe fondamentale dans l'homologie de S2(Ç, rj). Par l'isomorphisme

induit en cohomologie par la projection de S2 (f, n) sur X on pourra
considérer ces classes duales comme éléments de la cohomologie de X.

On sait, d'après un théorème de Thom (voir [4], exposé 8), que la classe duale à

l'ensemble singulier d'un type donné d'une application différentiable (resp. analytique
complexe)/: V-*W9 générique pour la singularité envisagée, est obtenue en évaluant

un polynôme universel sur les classes caractéristiques des fibres T(V) et/*(r(PF)).
On va montrer l'existence de ce polynôme dans le cas particulier de S1 et ïi>j et le

fait que dans ces cas il ne dépend que des classes caractéristiques du fibre différence

T(V)-f*(T(W)).

(4.2) LEMME. Soient Z {E->X\ rf=(F-*X), {' (E'-*X') et rj' (F'->X') des

fibres vectoriels différentiables. Soient q>:£->£' et 0:rj-+ri' des morphismes différentia-
bles stricts (c'est-à-dire dont la restriction à chaque fibre est un isomorphisme) se

projetant sur une même application/'. X-+X'. Alorspar l'application induite/* : H* (X')->
-+H* (X) les classes duales à S1 et ïifj se correspondent.

Démonstration. On déduit de <p et <9 de manière naturelle un morphisme strict
W:Sr(Ç, rj)-+Sr(Ç', rj') qui se projette sur/. Il est immédiat de vérifier que W est

transverse à !'(?, rj') et à Z'-'tf', ij') et que f"1 ($'(£', *'))=£'(& fj), V-l{ZUi(Ç9
rj'))=zEitJ(Ç,ri), de même que pour les adhérences. Le résultat suit alors de ([2],
prop. 2.15). I

Soient £, n et Ç des fibres vectoriels différentiables complexes de même base X.
k k

On déduit de la projection £©*/-»<!; une projection Afe:O(^©C)-*Ô^- Soit J\y\^>
l'inclusion et définissons sf:Sr(Ç9 rj)-+Sr(Ç®Ç, rj® C) par: ^(^,...,0^.)
lç, /•a2>A2,...,/"O/A,.). Cette définition d'inspiré du fait que si (al5..., ar)

est le jet à l'origine d'une application /:EX-*FX9 le jet à l'origine de l'application
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«suspendue» /©lGx:Ex®Gx->Fx®Gx, où Gx est la fibre de Ç au-dessus de x,
est précisément sr (aa,..., ar).

(4.3) LEMME.
0) (s1y1(r(ç®t;,ri®o)=r(ç,rj), (^^'''(«©^©O)^'^)-

// en est de mêmepour les adhérences.

(ii) s1 et s2 sont transverses respectivement à !*(£ © Ç, rç © 0 ^ ZiJ(Ç © Ç, rç © Q.
Démonstration, (i) Les deux premières égalités se vérifient immédiatement. Pour

les adhérences, remarquons d'abord que si aeHom^, Fx), ker(a)=ker(a® lç), où
on identifie Ex à son image dans Ex ® Gx9 Gx étant la fibre de C au-sessus de x. Or
(a© lç)eî*(£©Ç, n®Ç) si et seulement si dim(ker(a© lç))^/, ce qui équivaut à

dire que dim(ker(a))^/, ou encore que aeT1^, rj). Si s2(oc, P)eïiJ{^®^, rj®Ç),
d'après la proposition (2.2) (ii), il existe un y-plan b contenu dans le /-plan a contenu
dans EX®GX tels que #cker(oc© lc) et la dimension du noyau de (a© lç, J-fi-k2)\
:((Ex®Gx)la)®bOa-+Ex®Gx soit au moins iÇ)j. Or, puisque ker(a©lç)
ker(a), on a que b<=acEx; ainsi ker(a© lc, /•^•A2)=ker(a, j§) et il suit de (2.2) (ii)

(ii) s1 est linéaire le long des fibres et coïncide avec sa dérivée dans cette direction.
La proposition (1.1) (iv) donne l'expression du fibre normal à P; la transversalité
à I1 est alors conséquence du fait que ker (a) ker (a © lç), coker (a) coker (a © lç).

Reprenons les notations du §2 et considérons le diagramme:

hom (£, J9 ï) -hom{(£ © Ou, (n e 0')

V r i

où / et / sont les inclusions évidentes. Remarquons que la restriction de (£00*,,/
à Fitj(Ç') s'identifie à Çtj(B C- On déduit de la première partie de la démonstration

que / est transverse à EtOj((i®Qltj9 (n®Ç)'); d'après la proposition (2.2), *F2 et
W2 sont transverses respectivement à SiOj(Çij9 rj') et ZiOJ((t@Oi.j> (rJ®CÏ)' La
transversalité de s2 à Iu j s'en déduit facilement. |

Supposons dorénavant que l'on se trouve dans le cas complexe (donc X orienté;
mais voir remarque (4.6)). Le cas réel s'en déduit par ([2], th. 6.2) ou se traite de

manière analogue en remplaçant partout les entiers par les entiers modulo deux et
les classes de Chern par les classes de Stiefel-Whitney.

(4.4) THÉORÈME. // existe des polynômes à coefficients entiers qï(c) et qrUj{c),
où c (c1,..., ck9...) tels que les classes duales à P(Ç, n) et Si>J(Ç, n) soient respec-
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tivement égales à q^c^-rj)) et qrhJ(c(Ç-ri)),où r=rang (r\)~ rang (Ç) et ck(Ç-rj)
désigne la k-ième classe de Chern dufibre différence.

Démonstration. Soit GnN la grassmannienne des «-plans dans Cn+N; soit yn (ou
encore y) le fibre canonique sur GnN et soit Op le fibre trivial de rang p. Les classes

duales à ïl(y, Op) et ïl'J(y, Op)9 considérées comme éléments de la cohomologie de

GnN, sont des polynômes dans les classes de Chern de y; pour n et N assez grands,
ces polynômes ne dépendent que de r=p — n et on peut les noter respectivement
q\ (c) et qrlt j (c), où c (cj (y),.. ck (y),.. Soit { un fibre sur X tel que t] ® C ^ Op et

f:X-+GnN une application classifiante pour £ ® C, qu'on peut supposer différentiable;
on déduit de ce qui précède et des lemmes (4.2) et (4.3) que les classes duales à

Sl(Ç9 rj)etïliJ(Ç, rf) sont données respectivement par:

f*(qï(c)) q;(c (/*(?))) q\{c {i 0 0) «î(c (« - »»)) et

/•(«^(«))=«;,(«« -»»))• II

Reprenons les constructions des §1 et 2. Soit Pl:Fl(Ç)-+X le fibre en /-plans
associé à £; soit PltJ:FltJ(Ç)-*X le fibre associé à Ç de fibre les couples formés par
un /-plan contenu dans un j-plan de la fibre de £. On déduit de Ç un fibre de rang i
sur Ft(t;), noté Çi9 et un fibre de rang j sur FIJ(^), noté tzy On a une fibration
g'-Ft,j (6^Ft (0 de fibre GJt t _y Posons :

Remarquons que les fibres tangents aux fibres de Px et PltJ sont munis d'une structure
complexe et sont donc orientés. Il s'en suit que les homomorphismes de Gysin
associés

et (PhJ)t:H*(FhJ(0)^H*(X)

sont définis (voir [3], section D). Dans ce qui suit, on notera encore rj pour P*(rj) ou

(4.5) THÉORÈME.

(i) q\{c (« - (P,), (X (HOM«„
(ii) «^(c({ - i,)) (^.^.(«ÎO^ctf,,, - f»))-z(HOM(g*(«, f,)))

oùs=r + i—iOjet x désigne la classe d'Euler.
Démonstration, (i) Considérons le diagramme commutatif suivant:

où on reprend les notations du § 1 ; Fx (n) se définit de manière naturelle. D'après la
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proposition (1.1), ïl est l'ensemble des zéros de la section Wt du fibre HOM(^, rj); sa

classe duale vaut donc % (HOM (Ç'l9 y)). Il suit de (1.1) et de ([2], prop. 2.5) que l'image
par l'application induite en homologie par jpx | ïl de la classe fondamentale de ïl est

égale à la classe fondamentale de I\ II s'en suit que {p^)\ appliqué à la classe duale
à ïl donne la classe duale à 2\ La formule finale résulte du diagramme commutatif
précédent.

(11) Considérons le diagramme commutatif suivant :

J\ u u

u u

où l'on reprend les notations du §2; / désigne l'inclusion. La classe duale à g"1 (ï1)
dans Fl9j(Ç) est égale à g*(x(HOM«;,iy)))=x(HOM(^*«;)^))); d'après (i), la
classe duale à S*''dansg" HÎO est égale à^II en résulte que la classe duale à ïltJ dans FltJ(£') est égale à qsltJ{c(Ç!ltJ — rj))'
•x(HOM(g*(^), rj)). Il suit de (2.2) et de ([2], prop. 2.5) que l'application induite
en homologie par/?2 | EltJ envoie la classe fondamentale de ïltJ sur la classe
fondamentale de IltJ. Il s'en suit que {p2)\ envoie la classe duale à ïliJ sur la classe duale à

I1 'J. La formule finale résulte du diagramme commutatif suivant :

A")

(4.6) Remarque. Les considérations qui précèdent subsistent même si, dans le cas

complexe, on ne suppose pas que X est orienté. En effet, £'(£, t]) et ïi>J(Ç, rj) possèdent

en tous les cas des classes fondamentales à coefficients dans le faisceau des entiers

«tordus»; par dualité de Poincaré on obtient des éléments de la cohomologie à

coefficients entiers de S2(Ç, tj). Leur expression est encore donnée par (4.5); cela se

voit soit en modifiant convenablement la proposition 2.5 de [2], soit en se ramenant

au cas universel.

H. LE CALCUL DE tf(c) ET qrhJ(c)

1. Une dualité entre certains déterminants

Soit A un anneau commutatif avec unité ; soit N un entier positif et / une suite de k
entiers de la forme: Kï1</2<"*<4^^ On désignera par V la suite complémen-
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taire dans l'ensemble des entiers de 1 à N. On notera par sg(/, /') la signature de la

permutation (1, 2,..., N)^(iu i2,..., ik9 i'l9...9 i^k).
Soit M=(mStt), s l,...9 N, t l,...,N une matrice à coefficients dans A. Si

i désigne une suite 1 < it • • • ik < N ety une suite 1 < j"t < • • • <jk < N, Mt
t j désigne le mineur

correspondant, c'est-à-dire le déterminant de la kx ^-matrice (mst), sei, tej.
Rappelons que M est inversible si et seulement si dét (M) est une unité de A.

La proposition suivante est un simple exercice d'algèbre. On trouve une
démonstration dans le livre de H. Weber, Lehrbuch der Algebra (Strasbourg, 1898), pages
113-114.

(1.1) PROPOSITION. Supposons que la NxN-matrice M soit inversible; alors

on a:

Mitj (- l)S8(f'r)+sg0'/)-dét(M)-(M-1)J.%r.

Soit A=Z[cl,...,cn~] l'anneau des polynômes à n variables, notées cl9...9cn à

coefficients entiers. Posons c0 1 et ck =0 si k est négatif ou supérieur à n. Définissons
des polynômes ckeA par les équations:

/!=0
; co l et ck 0 si /e<0.

Considérons la (N+1 x (N+1 matrice triangulaire suivante :

M (mS)t), où ms>f cs_,, s9t=l9...,N + l.

On a : dét (M) 1. On vérifie que :

Soient « (wl5..., uk) et v (vu..., vk) deux suites d'entiers positifs (non nécessairement

croissantes) et soit N=Yjhun + vh- Notons par Qu,v(ci9..., cn) (ou simplement
Qu, v (cï) Ie mineur Mi$j de M correspondant aux suites :

i (u± + 1,..., ut + vl9 «! + u2 + t>! + 1,..., u1 + u2 + vt + v2,...,

Mi +•••+ uk + vt H h vk-t + l,...,iV)
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(1.2) PROPOSITION (cf. [6], lemme 0.6). On a l'égalité:

Qu,v(ci'-cn)= (- l)e'8«/,M(ëi,...,Cjv)> où

e M1'D1 + (M1 + M2)-D2+-+£t(hh, vf (vk,vk^l9...,vi) et

Démonstration. On vérifie que QV'tU'(cl9...9 cN)et {M~1)y>v sont les déterminants
de matrices qui s'obtiennent l'une à partir de l'autre par une symétrie par rapport à

l'anti-diagonale et donc coïncident; on vérifie encore que sg(y,j") l5 sg(z, /')=£.
L'égalité résulte alors de (1.1). |[

Associons à (u, v) une nouvelle suite s définie ainsi :

s1=ul9 s2 ul9...,sVi Mi

sVl + i Wi +u2,...,sVl+V2 u1 + u2

En fait, QU)V(c) ne dépend que de s9 et on le notera dorénavant Qs(c). Pour toute
suite croissante d'entiers positifs ou nuls Qs (c) est défini ; c'est le déterminant :

Cs2+lCs2

Remarquons que si s' (0,..., 0, sl9 s2,...), alors Qs, Qs.

(1.3) PROPOSITION. Les Qs(cl9..., cn) forment une base du Z-module libre

Z[clf...,cJ.
Démonstration. Soit ^ (^1, s2,->., sN) une suite croissante d'entiers strictement

positifs et posons: cs=cSl-cS2...cSN. Les cs et 1 forment une base de Z[cl5..., cn~].

Posons:

N \N < N' ou N N' et il existe k < N tel que

^i — Si9 Jfc — Jfc, Sk+1<.Sk+i

(ordre lexicographique). Ceci permet d'ordonner l'ensemble des cs et l'ensemble des

Qs(c). En développant le déterminant, on voit que Q8(c)=ca+multiples entiers de

monômes strictement inférieurs. Ainsi la matrice infinie qui exprime les Qs(c) en
fonction des cs est triangulaire avec des « 1 » dans la diagonale. On en déduit l'assertion.
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2. Le calcul de Fhomomorphisme de Gysin associé à une fibration en A>plans provenant
d'un fibre vectoriel

Soit t; (E-+X) un fibre vectoriel complexe de rang n à base paracompacte et soit

p:Fk(Ç)-+X le fibre en &-plans associé; soit Çk le fibre de rang k sur Fk(Ç) qu'on
déduit de £.

(2.1) PROPOSITION. En cohomologie à coefficients entiers Vhomorphisme de

H*(X)-algebras <p:H*(X)lyl9...9y^H*(Fk(i)) défini par cp(a'yn)=p*(a)u
u ch (Çk) induit un isomorphisme:

où Jk est l'idéal engendré par les polynômes Yn-k+l9...9 Yn, qui sont solutions du système

d'équations:

j

Dans le cas où X est un point, on trouve une démonstration de cette proposition
dans ([9], prop. page 69); cette démonstration se généralise sans autre au cas où X
n'est plus un point.

L'isomorphisme de (2.1) permet d'identifier ch(Çk) et la classe modulo Jk de yh9

que l'on notera encore par yh.
Posons encore Yh=ch (p* (£)/&).
Supposons que Ç soit différentiable. La fibre du fibre en &-plans associé/? : Fk (Ç)-+X

est la variété complexe Gkn^k. Le fibre tangent aux fibres de p est donc orienté et

Phomomorphisme de Gysin pl:Hi(Fk(i))->Hi~2kin~k) (X) en cohomologie à
coefficients entiers est bien défini (voir [3], section D).

(2.2) PROPOSITION (cf. [6], Prop. (0, 3)).

si s1=s2=-~ sk n-k

Démonstration. Soit aeGkn-k et soit a' un sous-espace de Cn complémentaire
à a. Définissons une section (pa:Gkn^k^HOM(a, yk), où yk est l'orthogonal à yk

dans Cw, en associant à beGktU-k la restriction à a de la projection de Cn sur V
parallèle à b. cpa s'annule exactement au point a et on vérifie qu'elle est transverse à la
section nulle. La classe d'Euler de HOM(a, yk) est la classe duale aux zéros de <pa;

puisque cet ensemble se réduit à un point, sa classe duale sera la classe fondamentale

en cohomologie de Gkn^k. Elle vaut c*_k.

Dans le cas où s1 -~=sk=n—k9 ce qui précède montre que la restriction de
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Y*.* à chaque fibre donne la classe fondamentale en cohomologie, et donc/?, Y*_fc) 1.

S'il existe un h tel que sh>n—k9 YSh — 0.

Si, pour tout h,sh^n — k, et si on n'est pas dans le cas où sk—n — k pour tout A,

le degré de Y5l... YSfc est strictement inférieur à 2k(n—k) et le résultat suit du fait que
px abaisse les degrés de 2k (n — k) unités. |

Posons xh ch(Ç).

(2.3) PROPOSITION.

Pi (PSi -ySk) ^ ••• xs>k, où s'h sh-n + k

Démonstration. On déduit de la suite exacte de fibres:

les identités :

de là on déduit que ySi..-ySh (p*(xs>l'~xS'k))- Y^+termes ne contenant pas Ynfc_k

résultat suit alors de (2.2) et de la formula Pi(p*(x)-y)=x-pl(y) (voir [3], section

D>- II

(2.4) COROLLAIRE. Soit s (su...9sk) une suite croissante d'entiers positifs.

Les propositions des §1 et 2 permettent de calculer /?,. En effet, il suffit de savoir
calculer px sur les expressions de la forme ^ri...^rw, où rh^k. La proposition (1.3)

permet d'exprimer ce monôme comme combinaison linéaire de déterminants de la forme

Qs(y), où s (su...,sN) est une suite croissante d'entiers au plus égaux à k9 sans

quoi Qs(y)=0. D'après (1.2), ce déterminant est égal à Qt(y), où t (tu...,tk)
s'obtient d'une manière bien déterminée à partir de s; on vérifie qu'en passant de s

ht,sh^k entraîne que t est bien une suite d'au plus k éléments.

Par exemple, calculons qï(c) (cf. [6], prop. 1.3). Soit Pi:Fi(y)^Gtt)N le fibre en

/-plans associé à y et yt le fibre de rang i sur Ft (y) qu'on déduit de y.

n + r

i, on+r)) (-
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D'après (1.2), ceci est égal à

I.

En utilisant (4.4) et (4.5) du chapitre I et (2.4) du chapitre II il vient:

' 'Wv)
D'après 1.2, ceci est encore égal à.

r+ i

^ (y) •

3. Les classes de Chern du produit symétrique

Pour calculer qritj(c)9 on doit calculer en cours de route les classes de Chern du

produit symétrique d'un fibre £ par un sous-fibré rç.

(3.1) PROPOSITION. Supposons que ^=r\®t\t; posonsformellement:

n n (1 + 0)- Alors:

n n
l
n

g=l,
h=k +l,..

Démonstration. Soit p1:F1-^Xlc fibre en drapeau associé à rj; soit p2:F2-^F1 le

fibre en drapeau associé hp*(rj) et soit p=p2'Pi:F2-*X. On a des isomorphismes:

où les ^ sont des fibres de rang 1. Posons c(C») 1 +^»; la formule énoncée résulte

alors aussitôt de l'isomorphisme naturel suivant:
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Par exemple, si { est de rang 2, c({O{) l +3c1(£)+4c2(£)+2c1 (£)2 +

4. Quelques calculs

Considérons la fibration :

On pose xh=ch(y), Xh=xh; yh=ch(yt)eH2h(Ft(y)); zk ch(yj)eH2h(FttJ(y)). On
écrira encore y pour P*(y) ou P*j(y), xh pour P*(xh) ou P*j(xh) et yh pour s* (>»»).

Danscecas,P1=P1>1;g=id.;j=r;v1O?i=7i®7i;

«î(c(?i,i)) cr+l(yu0 cr+1 ((y/700(yi ® yi))

(- 2)h-y\

h=0 h=Q

Dans ce cas, les résultats du §2 s'appliquent trivialement et donnent: (PJ, (yl)-
— l)h-Xh_n+1. Ainsi il vient:

r
r y2 Y^ r\h y y"

+ 2zx (x2 - y2) + y±y2 + x3

(c(^2,0) c2 (y2, i)2 - ci (?2, i)-c3 (y2, i)
4z2 (xi - x2 + j2) + 2zx (x1x2 - ^i};2 - x3) 4- K,

où Â'est une expression ne contenant pas zu sur laquelle donc (P2,i)i s'annule.
Rappelons que (P2,i)i=(Pi)i'g\ (voir [3], sectionD).

+ 2zt (Xlx2 -yxy2-
ici g est une fibration en droites et g{ se calcule comme sous (i). Il vient :

î - x2) - 2yn2 (x2x± -
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or yiyh2 Qs(yi, y2)> avec $ (1,2,..., 2); d'après (1,2), Qs(yliy2) QA

h + l
t (h,h + \). Ainsi, d'après (2, 4):

h-n + 2

il suit encore de (1.2) que

x2

-X2

-*3

Xi 1

X2 Xi

Xi 1

X$ X2

- x2

Xi
x3

1

1

x2

d'où finalement

«2°, i=2-

2X^X1

z3 x2
A5 A4

+ 4X2-
Z2 X,
A4 A3

+ 2- Xj 1

x3 x2
•
x2 1

X3 X2

3 + 2-X22X3

Danscecas,P2>2=P2;g=id.;/Oj=3,s=-2

9s2 (c (y2,2)) - c3 (y2 O y2 © y/72) -
9l\ (P2)i (- 2x2y1-/2-1 - 3x^5

en procédant comme sous (ii), il vient:

Q2 2 Xi — A^ ' X2 — 4-ATj ' X2 -f- 3aj

(iv) ql\
Dans ce cas, on trouve ^2/1 =2^ • (^i2—Z2).

+ x3
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