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Le calcul des classes duales aux singularités

de Boardman d’ordre deux

F. RonGgaA

INTRODUCTION

Dans ce travail on établit un procédé pour calculer les classes de cohomologie
duales aux singularités d’ordre deux X"/ d’une application différentiable générique
f: V=W introduites par Thom [10], dont la définition a été précisée par Boardman
[1]. L’adhérence d’une telle singularité est une «collection de variétés», dont la classe
duale est un polynome dans les classes caractéristiques des fibrés T'(V) et T(W); ce
polyndme provient d’un polyndme universel (voir [4]), qu’il suffit de calculer dans
le cas complexe (voir [2]).

Les propos énoncés sont pour la plupart valables a la fois dans le cas réel et dans
le cas complexe; on spécifiera les éventuelles modifications a apporter dans chaque
cas. Par exemple, dans le cas réel on considérera la cohomologie modulo deux et les
classes de Stiefel-Whitney, alors que dans le cas complexe ce seront les classes de
Chern et la cohomologie entiére. Signalons que dans le cas complexe, lorsque W est
un espace numérique et V est telle qu’en chacun de ses points on peut définir les
coordonnées locales par des fonctions globales, on peut montrer que presque toute
application est générique pour les singularités envisagées.

Au chapitre I on contruit les «désingularisations» des singularités 2% et %/ et
on montre comment passer des singularités d’applications aux singularités de morphis-
mes de fibrés. Au §4 on montre que la classe duale a la singularité X"/ d’une applica-
tion générique f: V- W ne dépend que du fibré normal a f, qui est le fibré différence
F*(T(W))—T(V)eK (V). Cette classe s’obtient en remplagant ¢, par ¢;( f * (T(W))—
—~T(V)) dans un polyndme universel, qui ne dépend que de r=dim(W)—dim(V),
i et j, et qui sera noté g}, ;(c), ol ¢ désigne la classe de Chern totale du fibré canonique
7" sur la grassmannienne G, y des n-plans dans C"*" (n et N étant pris suffisamment
grands par rapport a la codimension de X"J). Soit P, ;:F; ;—»G, y le fibré associé
a y" de fibre les couples formés par un j-plan contenu dans un i-plan de la fibre de y”;
le résultat principal de ce travail est le théoréme (4.5) du chapitre I, qui exprime
g;, j(c) comme image par I’homomorphisme de Gysin associé & P; ; d’une classe
caractéristique d’un fibré sur F; ;.

Au chapitre II on établit quelques propositions d’algébre élémentaire qui per-
mettent de décrire le procédé de calcul; on applique ensuite ce procédé a quelques
cas particuliers.

L’idée de la désingularisation canonique pour I’ordre 1 est formulée par I. R. Por-
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teous dans [6]. Dans [7], le méme auteur a effectué quelques calculs dans des cas
particuliers, par une toute autre méthode.

Je prie le professeur A. Haefliger de trouver ici I’expression de ma profonde
gratitude pour m’avoir posé le probléme et aidé de ses conseils tout au long de mon
travail. Je remercie également les professeurs S. Lojasiewicz, A. Roy et C. Weber
pour les nombreuses conversations utiles que j’ai eues avec eux. C’est le professeur
A. Roy qui m’a fait découvrir les identités entre déterminants dont il est question au
chapitre I, §1.

Enfin, je remercie le «referee» de m’avoir permis, par des suggestions détaillées,
d’améliorer considérablement plusieurs passages.

Dans le cas réel on supposera toujours que les variétés et applications différen-
tiables sont de classe C .

I. DESINGULARISATION DE X' ET X%/

Fixons quelques notations. Soient £ =(E—>X) et #=(F—X) des fibrés vectoriels
réels (respectivement complexes). Si xe X, E, ou &, désignent la fibre au-dessus de x;
si Ac X, & | A désigne la restriction de £ & 4. HOM (&, n) désigne le fibré vectoriel
associ€ a ¢ et n de fibre les homomorphismes linéaires de E, dans F, (que I’on notera

Hom (E,, F,)). Cr)é désigne le r-iéme produit symétrique de £, qui est le quotient du
r-iéme produit tensoriel de ¢ par I’action du r-iéme groupe symétrique (voir [1], p.
399). Si £ est un sous-fibré de &, { O & désigne le sous-fibré de £ O € qui est 'image de
{® ¢ par le passage au quotient £ ® E—>EQE. Si n=rang (&) et k=rang({), nOk
désigne le rang de { O & (qui est d’ailleurs égal a (k/2)-(2n—k +1)).

1. Désingularisation de X

Soient ¢=(E—X) et n=(F—-X) des fibrés vectoriels réels (resp. complexes)
différentiables de rang respectivement 7 et p.
Posons:

S"(& 1) =HOM (&) @HOM (EQ & 1) @--@HOM (O &, 1).

On a une projection ©: S" (¢, n)— X, qui est un fibré vectoriel de fibre Hom (E,, F,) x

x Hom(E,OE,, F,)x -- x Hom(O E,, F,).

Soit Zi(¢, ) 'ensemble des ae HOM (&, 1) dont la dimension du noyau est égale
ai; 2'(¢ n), que Pon notera parfois simplement X, est un sous-fibré de HOM (¢, 1)
de fibre 2, = {¢eHom (E,, F,) | dim (ker («)) =i}.

Si { =(G—2Z) est un fibré vectoriel réel ou complexe et k un entier compris entre
zéro et n, on désigne par p: F, ({)—Z le fibré associé a { de fibre I'espace des k-plans



Le calcul des classes duales 17

dans G, (que ’on notera F, (G,)). Sur F,({) on définit un sous-fibré ¢, de rang k de
P*({) en considérant les couples (a, v), out @ est un k-plan dans G, et v est un vecteur
appartenant a a.

Soit 7 la projection de S* (¢, n) sur X. Soit & =n* (&) et notons par p,:F;(¢')—
—S* (&, n) le fibré en i-plans associé & ¢'. Un élément de F;(¢’) est un couple (g, «),
ouaeHom (E,, F,) et aest un i-plan de E,.

DEFINITION. (¢, n)=2£" désignera le sous-ensemble de F;(¢') formé des
couples (a, a) tels que « s’annule sur a.

Posons n’ =p7 (n*(n)); définissons la section ¥, : F; (¢)—»HOM (&}, n’) en associant
a (a, ®)eF;(&) la restriction de o & a. £¥ est en fait 'ensembre des zéros de cette
section.

Soit ker le sous-fibré de rang i de &’ | >* formé des couples (o, v)e X’ x E, tels que
o (v) =0. Soit im le sous-fibré de rang n—i de n* (1) | Z* formé des couples (a, v)e X} x
x F, tels que veim («). Soit enfin coker le fibré quotient de n* () | Z* par le sous-fibré
im. Remarquons que les fibres de ces fibrés au-dessus de a sont respectivement
ker (o), im () et coker (a).

Soit % ={(a, x)eZ! | ker(z)=a}; c’est un ouvert dense de 3'. Considérons le
diagramme suivant

e <eFR(©)

lpl
e e St(gn)

(1.1) PROPOSITION.
@) P, (2)=2'(¢, n) )

(i) P, est transverse a la section nulle, de sorte que X' est une sous-variété de F;(¢').

(iii) La restriction de p, a 5 est un plongement d’image X', qui se trouve ainsi étre
une sous-variété de S* (¢, n7).

(iv) Le fibré tangent aux fibres de m|X':2'>X, qui est un sous-fibré de
n* (HOM (¢, n)) | 2%, coincide avec le noyau du morphisme surjectif ¢:n* (HOM(E,
1)) | Z'=HOM (ker, coker) qui associe & («, o’)en* (HOM (&, n)) | Z° la composition:

ker () = £, % n* (5), — coker ().
Ainsi HOM (ker, coker) peut étre considéré comme fibré normal a X' dans S* (&, 17).

Démonstration. (i) Si (a, «)el’, dim(ker(«))>i et aeX’. D’autre part, si aeZ’
la dimension du noyau de a est au moins i et il content un i-plan a; alors (a, )X’
et py (a, a)=a.

(ii) Introduisons des coordonnées au voisinage de (a, a)eF;(£'), ou aeHom

(E,, F,). Soit U un voisinage de x au-dessus duquel ¢ et n sont triviaux. Alors
p1 (1 (U)) s’identifie & Ux Hom (E,, F,) x F;(E,). Soit a un i-plan de E, et ' un
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(n—i)-plan complémentaire; soit V,={beF,(E,)|bna’=0}; en considérant tout
beV, comme graphe d’une application linéaire de a dans a’ on définit un homéo-
morphisme de Hom (g, a’) sur V, qui en fait une carte locale sur F;(E,). De plus, la
restriction de HOM (¢}, ') & UxHom (E,, F,)x V, s’identifie & Ux Hom(E,, F,) x
x Hom (@, a') x Hom (g, F,). Dans ces coordonnées, ¥, (x, «, b)=(x, a, b, a; +a,-b),
ou oy =0 | aeto,=a ] a'. Notons par ¥’ la composition de ¥, avec la projection sur
Hom (g, F,). Calculons la dérivée de ¥’ au point (a, ) dansla direction Hom (E,, F,) x
x Hom (a, a'): ¥’ est linéaire par rapport & « et affine par rapport 3 b; dés lors il
n’est pas difficile de voir que d¥,, ,(0, A, B)=A; +«,"B, ol A;=A | a. Il est évident
que cette dérivée est surjective.

Dans la démonstration des deux numéros suivants, (@, ) désigne un élément de
$%; ainsi a; =0 et a, est injective. Toutes les dérivées seront prises au point (a, a).

(iii)) Dans les mémes coordonnées, reprenons I’expression de la dérivée de ¥’;
de d¥’'(0, 0, B)=0 on déduit a,* B=0, d’ot B=0, puisque «, est injective. Or I'espace
tangent & 2 au point (a, ) coincide avec le noyau de d¥’; ce qui précéde prouve que
que p; | 2% est une immersion. De plus on peut définir ¢:3'>5 en associant a
aeZ’le couple (ker («), x)€Z%; on vérifie aussitdt que p, -0 =id. et que 6-p, | £} =id.;
on en déduit les propriétés voulues de p, | £%.

(iv) désignons par g, ’homomorphisme de Hom(E,, F,) dans Hom (ker (a),
coker («)) qu’on déduit de g. Dans les coordonnées introduites sous (ii), 'espace
tangent aux fibres de X* au point « est la projections dans Hom (E,, F,) de I’espace
vectoriel T={(4, B)eHom (E,, F,) x Hom (a, @’) | d¥'(0, 4, B)=0}. Or d¥’ (0, A4, B)
=0 entraine Im(4,)=Im(a,)=Im(a) et donc ¢,(4)=0. D’autre part, si ¢,(4)=0,
I’équation A4, +a,* B=0 définit univoquement B (rappelons que o, est injectif) et on
a (A4, B)eT. Ainsi ce dernier espace se projette isomorphiquement sur ker (g,). H

On appellera £ 1a désingularisation de Z*.

Soit ¢:&—n un morphisme de fibrés; on peut le considérer comme section
@:X-S' (& n).

(1.3) DEFINITION. On dira que le morphisme ¢ est X’-transverse si ’appli-
cation associée de X dans S'(&, n) est transverse 3 X'(£, 7). Posons Zi(¢)=
@1 (2 (&, n)); si @ est Z'-transverse, c’est une sous-variété de X.

On vérifie que si ¢ est Z*-transverse pour k>i, I’'adhérence de X*(¢) est égale 2

UZ*(9), k>i.
2. Désingularisation de X%/

Soient ¢=(E—X) et n=(F—X) des fibrés vectoriels réels (resp. complexes)
différentiables. Soit (a, f)eHom (E,, F,)x Hom(E,OE,, F,); par [linclusion
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Hom (E,QE,, F,)cHom(E,® E,, F,)~Hom (E,, Hom(E,, F,)) on déduit de B
une application linéaire de E, dans Hom (E,, F,), puis par restriction et passage au
quotient une application linéaire p*: ker ()—>Hom (ker («), coker ()).

DEFINITION. On pose Z"7(& n)={(x, B)eS*(¢&, n) | aeZi(& n) et dim(ker
(8%)=/)-

Zi(&, 1), que Pon notera parfois encore X7, est un sous-fibré de S (¢, n). Il est
vide & moins que max {0, n—p} <j<i<n.

Comme L. Lander me I’a fait remarquer, 'adhérence de X%/ contient mais ne
coincide pas avec | J 2%}, k>1i, 1>}, contrairement & ce que je prétends dans [8].

Soient k et / des entiers tels que 0</<k<n et soit F, ;(E,) I'espace des couples
(@, b) formés par le /-plan b contenu dans le k-plan a contenu dans E,. On notera par
p:F, (&)— X le fibré associé a & de fibre F; ,(E,). En considérant les triples (a, b, v),
ol (a, b)eF, ,(E,) et v est un vecteur de E, contenu dans b, on définit un fibré ¢,
de rang / sur F, (&), sous-fibré de p* (£). Définissons g: Fy (&) F, (€) par g (a, b)=a;
c’est une fibration localement triviale de fibre F,(a). &, est un sous-fibré de g* (&;).

Soient 7 la projection de S*(¢,n) sur X, & =n*(§), py:F; ;(&)>S*(&,n) et
g:F; ;(&')—>F;(&') les analogues pour & des fibrations introduites plus haut. Un
élément de F; ;(£’) est un quadruple (g, b, «, p), otaeHom (E,, F,), feHom (E, O E,,
F,) et b est un j-plan dans le i-plan a de E,.

On peut refaire les constructions du §1 au-dessus de S? (¢, n). Désignons encore
par p;: F;(¢')—>S% (&, n) le fibré en i-plans associé a &’ et posons:

2= {(a, B)eS? (& n) | dim(ker («)) = i}
2'={(a, 0, B)eF,(¢) | a = ker(a)}
2 ={(a, o, B)eF,(¢')| a =ker ()}

Considérons g™ * (£")={(a, b, a, B)eF; ;(&') | acker(a)}; il suit de (1.1) que
C’est une sous-variété de F; ;(&').
Reprenons dans un diagramme ces différents espaces:

F,;(¢)=g7" (%)
AN

£\ o
P2 F(¢)o 2o %,
P1/
|
S? (&n)> Sio

Soit. &)= (p3(€)/g* (E))(EO8*(E)) et soit n'=(n-ps)* (r). Définissons
¥,:g *(Z)>HOM(&}, j, ') | g *(£) en associant & (4, b, «, B) le couple (4, f),
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ol §eHom (E,/a, F,) se déduit de a, vu que celui-cis’annule sur a, et fe Hom (b O a, F,,)
est la restriction de S.

(2.1) PROPOSITION. Considéré comme morphisme du fibré &, ;| g~* (E) dans
lefibrén' | g~* (27), ¥, est Z*-transverse pour tout k (voir déf. 1.3).

Démonstration. Soit f=(a, b, a, f)eg™*(5") et x=n(x, B). Les restrictions de
&; et n’ & Iespace vectoriel V'={(a, b, 4, B)eg™*(5") | n(4, B)=x} sont triviales, de
fibre respectivement (E,/a)® (b a) et F,. La restriction de ¥, & ¥ composée avec la
projection sur la fibre Hom (E,/a® b a; F,) est linéaire et surjective. L’affirmation
en résulte. [|

DEFINITION. Rappelons que i(Oj désigne la dimension du produit symétrique
d’un espace vectoriel de dimension i par un sous-espace de dimension j. On pose:
2hi=510J(,). Autrement dit, £/ ={(a, b, «, B) | dim (ker (&; §)) =i O/}

(2.2) PROPOSITION. (i) %7 =p, 1 (Z%9)nE%I est un ouvert dense de la
variété £'CJ (¥,), donc aussi de £/,

(i) la restriction de p, a £%7 est un plongement d’image 3. Ainsi, p, étant fermée,
p2 (2"1) =ii’j.

Démonstration. Reprenons dans un diagramme les différents espaces qui apparais-
sent:

S 20 (P,) c IO (W,) =5 c g7 (§) = F (¢)
\\ \
~o N\

~ \ 2
\\\ \ y
~ \

~ . A VI
\Zl,_) e E;,J - SZ(';::’")

Il suffit de faire la démonstration dans le cas ou X est un point; dans ce cas E
et Fsont des espaces vectoriels.

(i) Montrons Iégalité £/ ={(a, b, o, B) | a=ker (a), b=Kker (8*)}. Si (a, b, «, B)e
eZhJ, ker (o) =a et dim (ker (& B))=iQj; & est alors injective et dim (ker (4, B)) est
égale A la dimension du noyau de la composée: aO b2F— F/Im (), qui doit donc
étre nulle. Il s’en suit que f*:ker («)—Hom (ker («), coker («)) s’annulle sur b; comme
dim (ker (B*))=j, on doit avoir b=ker(8*). Réciproquement, si a=Xker(a), & est
injective et dim (ker (&, f)) est égale & la dimension du noyau de la composée de B
avec la projection F— F/Im (). Cette composée est zéro puisque f* s’annulle sur b.
Ainsi (a, b, «, )eZ'CI(¥,); de plus, (¢, B)eZ™/.

Monstrons que 2%/ est ouvert dans X*©CJ(¥,): si f=(a, b, a, f)e '}, pour tout
(a’, b, o, B') dans un voisinage de f dans £%7 on aura dim (ker («’))<i, et puisque
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a’' cker ('), on aura a’ =ker(a'). De méme, dim (ker (8'*))<j pour B’ assez proche
de B; or o’ étant injectif, la composée de B’ avec la projection F— F/Im (') est nulle,
d’ot b’ =ker (f'*).

Montrons que 2%’ est dense dans X'O/(¥,); soit (a, b, a, f)eZ'CI(¥,) et
K=Xker(d, ), sous-espace de dimension iQj de (E/a)@® (bQa). Etant donné que
bQOa a méme dimension que K, il existe un automorphisme 4 de (E/a)® (bOa)
aussi proche qu'on veut de lidentité, tel que A4~ ! (K)n(E/a)=0. Le composé
(& B)- A se met sous la forme (S, T), out S: E/a—F et T:b O a—F. Soit o’ la composée
E—E|a3sF et ” ’homomorphisme de EQ E— F qui coincide avec T sur b a et avec
B sur un supplémentaire & 5O a dans EQ E. Puisque ker (&', f”)=4"1(K), linter-
section de cet espace avec E/a est zéro; on en déduit que b =ker ((8”)*); aussi prés que
I'on veut de B” il existe B’ tel que b=ker((')*) et ker (&', B’) N (E/a)=0. Dans tout
voisinage de («, ) on trouve un tel (&', B’), pour lequel (a, b, «’, ')’

(ii) Décrivons des coordonnées locales sur F; ;(E). Soit (a, b)eF; ;(E) et soit b’
un (i—j)-plan complémentaire & b dans a et ¢’ un (n—i)-plan complémentaire a a
dans E. Soit A: E—a la projection paralléle & a’. Soit ¥, , ={(, 1)eF, ;(E) | 6 na' =0,
A(r)nb’'=0}. Si (o, )€V, ;, on peut considérer ¢ comme graphe d’une application
linéaire de @ dans a’; de méme A () sera le graphe d’un application linéaire de bdans b'.
On définit ainsi un homéomorphisme de Hom (a, a’) x Hom (b, &) sur V, ,, qui en
fait une carte locale sur F; ;(E).

Les restrictions a V, , de &} et g*(&;) sont triviales.

Vérifions que la restriction de ga £'% 7/ est une immersion dans 2%, Soitf=(a, b, «, B)€
efb’ onaeHom (E, F)et feHom(EQE, F); on a que a =ker () et que b =ker (8*).
En utilisant les coordonnées introduites auparavant, il y a un voisinage de f dans
g~ 1 (&%) qui s’identifie 2 2 x Hom (b, b’). En coordonnées, la restriction de ¥, a ce
voisinage est une application 4 valeurs dans X' x Hom(a’, F) x Hom (b Qa, F). Soit
¥’ la composition de cette application avec la projection sur Hom(bQa, F);
¥’ (a, 7, «, B) est Papplication bilinéaire de bxa dans F qui & (u, v)eb xa associe
B(u+1(u), v)=B(u, v)+B(t(u), v). Le deuxiéme facteur de la somme est linéaire
par rapport a t; il est dés lors facile de voir que d¥(0, T, 0, 0) est I'application
bilinéaire qui & (u, v)eb x a associe B(T'(u), v). Si B(T(u), v)=0, Vueb, Yvea, alors
T (u) cker (B*), Yueb; vu que ker(B*)=b, ceci entraine que 7'=0. Ainsi ker(dg,)n
nker(d¥};)=0et g | £%7 est une immersion, dont il est clair que I'image est contenue
dans 5. Dautre part p,=p, g et p; | £ est une immersion; il s’en suit que p, | £%’
est une immersion.

Définissons 6: 2"/ —%% 7 en posant:

o(, B) = (ker (&), ker (B*), o, B)..

On vérifie que o est continue, que p, o =id. et que o+ (p, | £%’)=id. On en déduit les
propriétés voulues de p, | £57. |
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3. Passage des singularités d’applications aux singularités de morphismes de fibrés

Soient V et W des variétés différentiables (resp. analytiques complexes) et soit
f:V—W une application différentiable (resp. analytique). Posons Zi(f)={xeV |
dim (ker (df,))=i}. Soient T(V) =py (T(V)) et T(W) =py, (T(W)), oipy: Vx WV
et py:Vx W—W sont les projections canoniques. On a que Zi(f)=(df)”!
(ZH(T(VY,T(W))), ot la dérivée est considérée comme application df:V—
~HOM(T(VY, T(WY).

Soit xeZ'(f); en coordonnées locales, f est une application d’un ouvert U de
I’espace vectoriel £ dans I’espace vectoriel F; la deuxiéme dérivée de f au point x
peut étre considérée comme application linéaire d*f,: E-»Hom (E, F). On en déduit
par passage au quotient une application linéaire df,: E—Hom (ker (df,), coker (df;)),
qui est en fait indépendante des coordonnées choisies. Ainsi on en déduit un mor-
phisme de fibrés d2/:T(V) | Z'(f)—HOM (ker (df ); coker (df ) (c’est la «dérivée
intrinséque de Porteous»; voir [1], § 7).

(3.1) PROPOSITION (cf. [1], lemme 7.13). Supposons df:V—HOM (T(vy,
T(WY)transverse aZ (T(V), T(W)'). On a alors une suite exacte de fibrés:

0->T(Z(f)->T V)| zi(f)-‘i'z—’i HOM (ker (df), coker (df))— 0.

Démonstration. Vu que df est transverse a X', cela suit de (1.1), (iv). ”
Si on suppose que df est Z*-transverse, 2'( /) est une sous-variété de V. On peut
alors poser:

Z(f) = {xeZ'(f) | dim(ker (d (f | Z'()).) =J} -

On va montrer comment X"/ ( f) s’obtient comme image réciproque de X (T(V)’;
T(WY).

Une gerbe sur la variété M (voir [5], chap. 4, §3-4) est une application différen-
tiable e:T(M)— M (dans le cas différentiable comme dans le cas analytique com-
plexe), qui vérifie:

(i) erestreinte a la section nulle est I'identité;

(ii) pour tout xeM, il existe un voisinage U, de lorigine dans T'(M),, tel que
e | U, est un difféomorphisme sur son image.

Supposons que les variétés V et W (resp. différentiables ou analytiques complexes)
soient munies de «gerbes» ey :T(V)—V et ey : T(W)— W. Soit f: V- W une applica-
tion différentiable (resp. analytique complexe). Soient xe ¥, y =f (x), U, un voisinage
de zéro dans T (W), tel que ey | U, soit un difféomorphisme sur son image et U, un
voisinage analogue pour x, tel que de plus f (e(U,)) soit contenu dans U,. La com-
position f'=(ey | U,) " f*(ey | U,):U,~V, est bien définie. U, et U, étant des
ouverts d’espaces vectoriels, on peut considérer la k-iéme dérivée de f’ en 0, d'/g,



Le calcul des classes duales 23

comme élément de Hom (O T(¥),, T( W),). En posant S"(f ) =(d"£s, ..., d;) on
définit une application S"(f):V->S"(T(V),T(WY)'), dont on vérifie quelle est
différentiable.

Soit J*(V, W)I'espace des jets d’ordre r d’applications de ¥ dans W;siseJ" (V, W)
est le jet au point xe ¥ de f: V— W, on peut lui associer S"( f ), eS"(T(V), T(W)).
On vérifie que ’on définit ainsi un difféomorphisme entre J"(V, W) et S"(T(V),
T(W)'). 1l découle de la proposition suivante que par ce difféomorphisme les sous-
variétés 2"/ de J*(V, W) définies dans |1] etles 2/ (T(V')', T(W)') se correspondent.

(3.2) PROPOSITION. Supposons que f:V—W soit telle que df est transverse a
F(T(VY, T(W)). Alors X" (f)=S*(f) "1 @ I(T(VY, T(W))).

Démonstration. dim (ker(d(f|Z'(f))))=j si et seulement si dim(ker(df,)n
NT(Z'(f)).)=J, ce qui revient a dire, d’aprés (3.1), que dim (ker (d2f | ker(df,))) =j.
Indépendamment des gerbes choisies, ceci équivaut a dire que S2(f)eZ"/(T(V),
T(WY)'); pour voir cela, reprenons les notations du §2: on pose a=df,, B=d?*f,; on

aque dzfl ker (dfx) =pB*. “
4. Les classes duales a X% et 2%/

La proposition suivante m’a été suggérée par le «referee»; elle est essentiellement
contenue dans [1].

(4.1) PROPOSITION. I} et £/ sont des sous-ensembles algébriques respective-
ment de Hom (E,, F,) et S* (E,, F,).

Démonstration. Si E, et F, sont munis de bases, aeZ’ si et seulement si tous les
mineurs d’ordre n—p+i de la matrice de a s’annulent, ce qui montre que Z. est
algébrique.

Reprenons les notations des paragraphes 1 et 2 de [1], avec ¥=R" et W=R?. Soit
M le sous-ensemble algébrique de J? (R", R?) défini par:

M = {seJ*(R", R?) | tkr,(M,) > i, tkr,(M,) > j}

Ona:MnI\MnZtt=MnZi=JZ"!, I>j. On vérifie que ce dernier ensemble est
contenu dans ’adhérence de X¥/; il s’en suit que I’adhérence de M N Z\M A Zi*1 est
égale a Z%J. Or I'adhérence de M N Z\M N Z**! est un ensemble algébrique, car c’est
la réunion des composantes irréductibles de M N Z* qui ne sont pas contenues dans
MAZit, |

Dans le cas complexe, supposons que X est orienté; on déduit alors de (4.1) et de
([2], théoréme 3.2 et proposition 2.7) que Z*(&, n) et %7 (&, n) portent des classes
fondamentales en homologie entiére & supports les fermés.
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Dans le cas réel, il suit de (4.1) et de ([2], th. 3.7) que (&, n) et £*7 (&, n) portent
des classes fondamentales en homologie a coefficients modulo deux et & supports les
fermés.

Dans le cas d’une application f: V— W, respectivement différentiable ou analytique
complexe, pour s’assurer de I’existence de la classe fondamentale de 2(f) ou
Z4I(f), il suffit de supposer que S* (f) ou S2(f ) sont transverses a une stratification
vérifiant la condition «b» de Whitney de Z*(T(V), T(W)') ou Z"/(T(V), T(W)').
Si tel est le cas, 1’existence d’une classe fondamentale suit de ([2], prop. 2.15) et de
propriétés élémentaires des ensembles stratifiés. Une stratification de X’ vérifiant la
condition «b» est donnée par les 2¥, k>1i; I’existence d’une stratification de 2%/ suit
par example de ([11], th. 8.5).

On appellera classe duale & X’ ou %/ Ia classe de la cohomologie de S2(¢, 1) (2
supports les fermés, ce qui donne la cohomologie ordinaire, et a coefficients entiers ou
modulo deux selon les cas) obtenue en appliquant I’isomorphisme de dualité de Poin-
caré a I'image de la classe fondamentale dans I’homologie de S2 (¢, 17). Par I'isomor-
phisme induit en cohomologie par la projection de S?(&, n) sur X on pourra con-
sidérer ces classes duales comme éléments de la cohomologie de X.

On sait, d’apres un théoréme de Thom (voir [4], exposé 8), que la classe duale a
I’ensemble singulier d’un type donné d’une application différentiable (resp. analytique
complexe) f/: V- W, générique pour la singularité envisagée, est obtenue en évaluant
un polynéme universel sur les classes caractéristiques des fibrés T'(V) et f*(T(W)).
On va montrer I’existence de ce polyndme dans le cas particulier de X% et T/ et le
fait que dans ces cas il ne dépend que des classes caractéristiques du fibré différence

T(V)—/*(T(W)).

(4.2) LEMME. Soient ¢ =(E-X),n=(F-X), ¢ =(E'-»X") et n'=(F'->X") des
fibrés vectoriels différentiables. Soient ¢:E—E& et @ :n—n' des morphismes différentia-
bles stricts (c’est-a-dire dont la restriction a chaque fibre est un isomorphisme) se
projetant sur une méme applicationf:X— X'. Alors par 'application induitef*: H* (X')—
— H*(X) les classes duales a £ et £*J se correspondent.

Démonstration. On déduit de ¢ et @ de manicre naturelle un morphisme strict
Y:S"(&n)—>S" (&, n") qui se projette sur f. Il est immédiat de vérifier que ¥ est
transverse & 2! (¢, n') et 2 249 (&, n') et que Y1 (ZH(E, ') =2 (&, n), WL (2 (€,
n'))=2%I (& n), de méme que pour les adhérences. Le résultat suit alors de ([2],
prop. 2.15). ”

Soient &, nn et { des fibrés vectoriels différentiables complexes de méme base X.
On déduit de la projection £ @ n—¢& une projection Ak:Ck)(f@ C)—+(k)§. Soit J:n—
—n @ { linclusion et définissons s":S" (&, 7)=>S"(ED L, n D) par: s"(ay,..., &)=

=(0t; @1y, Joty* Ay,..., J-0,* 4,). Cette définition d’inspire du fait que si (ay,..., «,)
est le jet 3 lorigine d’une application f:E,—F,, le jet a 1’origine de I’application
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«suspendue» f@1s E,®G,—»F,®G,, ou G, est la fibre de { au-dessus de x,
est précisément s” (o, ..., o,).

(4.3) LEMME.

D HTCEERLn@))=2'Cn), (P)TIEV(EDL @) =2 (& ).
1l en est de méme pour les adhérences.

(i) s et s* sont transverses respectivement d Z'(E® {,n® ) et T (ED L@ Q).

Démonstration. (i) Les deux premicres égalités se vérifient immédiatement. Pour
les adhérences, remarquons d’abord que si xeHom (E,, F,), ker («) =ker (@ 1;), ol
on identifie £, 4 son image dans £, @ G,, G, étant la fibre de { au-sessus de x. Or
(x@1)eZ(ED L, nDY) si et seulement si dim (ker(ax® 1,))=i, ce qui équivaut 3
dire que dim (ker(«))>i, ou encore que aeZ'(&, n). Si s*(x, B)eZ/(ED L @),
d’apres la proposition (2.2) (ii), il existe un j-plan b contenu dans le i-plan a contenu
dans E, @ G, tels que acker(a® 1;) et la dimension du noyau de (¢ @ 1., J- - 4,):
(((E;® G)/a)®bOa—E, @G, soit au moins iQj. Or, puisque ker(a@1,)=
ker (2), on a que beac E,; ainsi ker (a@® 1, J- B+ 4,) =ker (&, ff) et il suit de (2.2) (ii)
que (2, B)eZ (¢, 1).

(ii) s* est linéaire le long des fibres et coincide avec sa dérivée dans cette direction.
La proposition (1.1) (iv) donne I’expression du fibré normal & X*; la transversalité
a X' est alors conséquence du fait que ker (o) =ker (x @ 1), coker () =coker (2 @ 1,).

Reprenons les notations du §2 et considérons le diagramme:

J

HOM (&, ;. 1) ~HOM((( @), 5 (@ L))
¥, 'T;z
Z?Z’j(qlz) =g (%) = F ;&) — L(E@l))=¢™ &) DZTi’j
= p2 , P2 i .
344 e sEn—20-s¢etien o I

ol I et J sont les inclusions évidentes. Remarquons que la restriction de ((O{);, ;
a F; ;(&') s’identifie a &; ;@ {’. On déduit de la premicre partie de la démonstration
que J est transverse & 'O ((¢@ (), ;, (n® ()'); d’aprés la proposition (2.2), ¥, et
¥, sont transverses respectivement 3 X'C7 (&, . n') et IOV (@), ;, (1D L)). La
transversalité de s2 4 2/ s’en déduit facilement.

Supposons dorénavant que I’on se trouve dans le cas complexe (donc X orienté;
mais voir remarque (4.6)). Le cas réel s’en déduit par ([2], th. 6.2) ou se traite de
maniére analogue en remplagant partout les entiers par les entiers modulo deux et
les classes de Chern par les classes de Stiefel-Whitney.

(4.4) THEOREME. I/ existe des polynomes a coefficients entiers g;(c) et ¢} ;(c),
oit c=(cy,..., Cx,...) tels que les classes duales & (&, n) et £ (&, 1) soient respec-
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tivement égales a qi(c(£—n)) et g} ;(c(é—n)).onr r=rang(n)—rang(¢) et ¢, (E—1n)
désigne la k-iéme classe de Chern du fibré différence.

Démonstration. Soit G, y la grassmannienne des n-plans dans C**¥; soit y" (ou
encore y) le fibré canonique sur G, y et soit OF le fibré trivial de rang p. Les classes
duales & Z'(y, OP) et 2/ (y, OF), considérées comme éléments de la cohomologie de
G,,n, sont des polyndmes dans les classes de Chern de y; pour n et NV assez grands,
ces polyndmes ne dépendent que de r=p—n et on peut les noter respectivement
gi(c) et g j(c), ot c=(c1 (), ---» €, (¥),...). Soit { un fibré sur X tel que n @ {~O” et
f:X—G, yune application classifiante pour £ @ {, qu’on peut supposer différentiable;
on déduit de ce qui précéde et des lemmes (4.2) et (4.3) que les classes duales a
Zi(& n)et I (&, n) sont données respectivement par:

FHai(©)=ai(c(f*M)=di(c(¢®L))=4qi(c({=1n)) et
g5 (0) =di(cC-m). |
Reprenons les constructions des §1 et 2. Soit P,:F;(£)—X le fibré en i-plans
associé a &; soit P; ;:F; ;(£)—X le fibré associé a ¢ de fibre les couples formés par
un j-plan contenu dans un i-plan de la fibre de £&. On déduit de £ un fibré de rang i

sur F;(£), noté &, et un fibré de rang j sur F; ;(£), noté ;. On a une fibration
g:F, ;(&)—F;(¢)defibre G; ; _;. Posons:

& =(PY(9)g* (&)@ (508" (&))-

Remarquons que les fibrés tangents aux fibres de P; et P; ; sont munis d’une structure
complexe et sont donc orientés. Il s’en suit que les homomorphismes de Gysin as-
sociés

(P)i:H*(Fi(8))~» H*(X) et (P, ;):H*(F,;(8)~H"(X)

sont définis (voir [3], section D). Dans ce qui suit, on notera encore  pour P;* (1) ou
P:j (n).

(4.5) THEOREME.
(D gi(c(€ —n)) = (B),(x(HOM (&, n))
(ii) g} ;(c (€ =)= (B, (45O, (c(&,; — m) x (HOM(g* (&), n)))

ous=r+i—iQjet y désigne la classe d’Euler.
Démonstration. (i) Considérons le diagramme commutatif suivant:

F,(&)—5"(&n)

IFim 1=
F({)—"— X

ol on reprend les notations du §1; F;(rn) se définit de maniére naturelle. D’aprés la
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proposition (1.1), £ est ’ensemble des zéros de la section ¥, du fibré HOM (&}, 17); sa
classe duale vaut donc y (HOM (&;, 17)). 1l suit de (1.1) et de ([2], prop. 2.5) que 'image
par I'application induite en homologie par p, | £ de la classe fondamentale de £ est
égale 2 la classe fondamentale de Z°. Il s’en suit que (p,), appliqué a la classe duale
a £ donne la classe duale a 2. La formule finale résulte du diagramme commutatif
précédent.

(i) Considérons le diagramme commutatif suivant:

F,;()——F()——S*(&n)

1 U U

-1 (Z:) _____ _)Si _______ __)El
\ U
$hi = FOJ(P,) e Zhi

ou I’on reprend les notations du §2; J désigne I'inclusion. La classe duale a g~ * (&)
dans F; ;(&') est égale & g*(x (HOM(E], n))) =x (HOM (g* (&), ))); d’aprés (i), la
classe dualea £/ dans g~ ! (E¥)estégaled gj 5 ; (c (J* (&}, ;—m)) =T* (¢} ; (¢ (&, ;—m)).
Il en résulte que la classe duale & £"/ dans F; ;(&') est égale a ¢} ;(c (& ;—n))
-x(HOM (g* (&), n)). 11 suit de (2.2) et de ([2], prop. 2.5) que I’application induite
en homologie par p, | £/ envoie la classe fondamentale de £/ sur la classe fonda-
mentale de 2%/, Il s’en suit que (p,), envoie la classe duale 4 £/ sur la classe duale a
X% J, La formule finale résulte du diagramme commutatif suivant:

F,;(n)—">5 (5, 0"")
LFi, (=) I=

F,;(3)5G, y. u

(4.6) Remarque. Les considérations qui précédent subsistent méme si, dans le cas
complexe, on ne suppose pas que X est orienté. En effet, £ (&, n) et 7 (&, n) possé-
dent en tous les cas des classes fondamentales a coefficients dans le faisceau des entiers
«tordus»; par dualité de Poincaré on obtient des éléments de la cohomologie &
coefficients entiers de S2(&, n). Leur expression est encore donnée par (4.5); cela se
voit soit en modifiant convenablement la proposition 2.5 de [2], soit en se ramenant
au cas universel.

II. LE CALCUL DE gj(c) ET g; ;(c)
1. Une dualité entre certains déterminants

Soit 4 un anneau commutatif avec unité; soit N un entier positif et i une suite de £
entiers de la forme: 1<i; <i,<---<i{<N. On désignera par i’ la suite complémen-
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taire dans 1’ensemble des entiers de 1 & N. On notera par sg(i, i') la signature de la
permutation (1, 2,..., N)—>(iy, iz .ces G 15 ev5 IN—i)-

Soit M=(m, ,), s=1,..., N, t=1,..., N une matrice a coefficients dans A. Si
i désigne une suite 1 <i;--+j, < Netjune suite 1 <j; <--- <j; <N, M; ; désigne le mineur
correspondant, c’est-a-dire le déterminant de la k x k-matrice (m;, ,), s€i, tej. Rap-
pelons que M est inversible si et seulement si dét (M ) est une unité de 4.

La proposition suivante est un simple exercice d’algébre. On trouve une démon-
stration dans le livre de H. Weber, Lehrbuch der Algebra (Strasbourg, 1898), pages
113-114.

(1.1) PROPOSITION. Supposons que la N x N-matrice M soit inversible; alors
ona:

M, = (= 1)56D%%0: . gt (M)-(M™1);. ;.

Y

Soit A=Z]c,,..., ¢,] 'anneau des polynémes a n variables, notées cy,..., ¢, a
coefficients entiers. Posons ¢, =1 et ¢, =0 si k est négatif ou supérieur a n. Définissons
des polynbémes ¢, € A par les équations:

Y e G-n=0, k=1,.,N; é=1 et ¢=0 si k<O.
h=0

Considérons la (N +1) x (N + 1) matrice triangulaire suivante:
M=(m,,), oo my,=cy, St=1,..., N+1.
Ona: dét(M)=1. On vérifie que:
M=), sit=1,.,N+1.

Soient u=(u,,..., ;) et v=(vy,..., v;) deux suites d’entiers positifs (non nécessaire-
ment croissantes) et soit N=) , u,+uv,. Notons par @, ,(c;,..., ¢,) (ou simplement
0Q..,(c))le mineur M; ; de M correspondant aux suites:

i=(u +1,.,u+o,u +u,+o+ 1,0, u +uy +0; +0,,..,

Uy [2P)

Uyt U+ 0 o+ 0y +1,.., N)

Uy
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(1.2) PROPOSITION (cf. [6], lemme 0.6). On a I’égalité:

Quo(Cyec)=(—=1)Qp (... &), ol

e=uy vy + (g +u) v+ 4+ Q up) v, V= (Vg Vk—r>..r 1) et

u, = (uk, uk_l, caey ul).

Démonstration. On vérifie que Q- (¢y, ..., €y) et (M ~1);. ;» sont les déterminants
de matrices qui s’obtiennent 1’une a partir de l'autre par une symétrie par rapport a
P'anti-diagonale et donc coincident; on vérifie encore que sg(j,j')=1, sg(i, i')=e.
L égalité résulte alors de (1.1). ||

Associons a (u, v) une nouvelle suite s définie ainsi:

S1=Uq, s2=u1,...,Svl=u1

Sv1+1 = Uy + Uzs ooy Sul+vz = Uy + Uz

Spptotveoyt1 = UL T Ups ooy Sy gy, = Ug 00+ Uy

En fait, Q, ,(c) ne dépend que de s, et on le notera dorénavant Q,(c). Pour toute
suite croissante d’entiers positifs ou nuls Q; (c) est défini; c’est le déterminant:

Cslcs‘_.l -

Coy+1Csye -+ -+

cSul ooty

Remarquons quesis’=(0,..., 0, 5y, 55, ...), alors Q. = Q.

(1.3) PROPOSITION. Les Qq(cy,..., ¢,) forment une base du Z-module libre
Zcy,..., ¢4

Démonstration. Soit s=(sy, 5,,..., Sy) une suite croissante d’entiers strictement
positifs et posons: ¢;=c¢;,  c,...Cs,. Les ¢, et 1 forment une base de Z[cy,..., ¢,].
Posons:

N <N’ ou N=N’ etilexiste k <N tel que

’ 4
S1s ey SN) < (Sp5 0005 Sy )<= ' 4 4
( 2o ) ( ) §1 = 815003 S = Sk»  Skr1 <S4t

(ordre lexicographique). Ceci permet d’ordonner I’ensemble des ¢, et ’'ensemble des
Q;(c). En développant le déterminant, on voit que Q,(c)=c,+multiples entiers de
mondmes strictement inférieurs. Ainsi la matrice infinie qui exprime les Q,(c) en
fonction des ¢, est triangulaire avec des «1» dans la diagonale. On en déduit I’asser-
tion. "
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2. Le calcul de Phomomorphisme de Gysin associé a une fibration en k-plans provenant
d’un fibré vectoriel

Soit £ =(E—X) un fibré vectoriel complexe de rang » & base paracompacte et soit
P F (&)X le fibré en k-plans associé; soit &, le fibré de rang k sur F,(£) qu'on
déduit de &.

(2.1) PROPOSITION. En cohomologie a coefficients entiers I’homorphisme de
H*(X)-algebras ¢:H*(X) [y1,..., ] > H*(F,(§)) défini par ¢(a-y,)=p*(a)u
v ¢, (&) induit un isomorphisme:

H*(X) [y1s syl = H*(F (€)),

ou J, est l'idéal engendré par les polynomes Y, _y .1, ..., Y,, qui sont solutions du systéme
d’équations:

J
hZo WwYin=c;(), j=1..,n.

Dans le cas ou X est un point, on trouve une démonstration de cette proposition
dans ([9], prop. page 69); cette démonstration se généralise sans autre au cas ou X
n’est plus un point.

L’isomorphisme de (2.1) permet d’identifier ¢,(&;) et la classe modulo J, de y,
que I’on notera encore par y,.

Posons encore Y, =c, (p* (¢)/&,).

Supposons que ¢ soit différentiable. La fibre du fibré en k-plans associé p: F, ()X
est la variété complexe G, ,-;. Le fibré tangent aux fibres de p est donc orienté et
’homomorphisme de Gysin p,: H'(F,(£))—»>H'~?*"~® (X) en cohomologie & co-
efficients entiers est bien défini (voir [3], section D).

(2.2) PROPOSITION (cf. [6], Prop. (0, 3)).

1, si sy=8==5=n—k
n(Yy . Y) = {0, sinon.

Démonstration. Soit a€G, ,—; et soit @’ un sous-espace de C" complémentaire
a a. Définissons une section ¢,:G; ,—x—~HOM(a, y;), ol y; est I'orthogonal & y*
dans C", en associant & beG, ,-, la restriction & a de la projection de C" sur b’
paralléle a b. ¢, s’annule exactement au point a et on vérifie qu’elle est transverse a la
section nulle. La classe d’Euler de HOM (a, y;) est la classe duale aux zéros de ¢,;
puisque cet ensemble se réduit & un point, sa classe duale sera la classe fondamentale
en cohomologie de Gy, Elle vaut ¢;_,.

Dans le cas ol s, =:--=s,=n—k, ce qui précéde montre que la restriction de
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Y;_, & chaque fibre donne la classe fondamentale en cohomologie, et doncp, (Y¥_,) =1.
S’il existe un A tel que s, >n—k, Y, =0.

Si, pour tout 4, 5,<n—k, et si on n’est pas dans le cas ol s, =n—k pour tout A,
le degré de Y;,... Y, est strictement inférieur a 2k (n—k) et le résultat suit du fait que
p, abaisse les degrés de 2k (n— k) unités. |

Posons x, =c, (£).

(2.3) PROPOSITION.

p,(y"sx...y'sk)=.i's'1...xsrk, Ol‘l S;,,=Sh"‘n+k
Démonstration. On déduit de la suite exacte de fibrés:

0 &= p* (&)= p* (£)/&~0

les identités:

h
j}h= Zop*().cg)'Yh—g, h=1,...,n——k;
g=

de 12 on déduit que ji,...J,, =(p* (£, %y, ) Ya—i+termes ne contenant pas Yy_,
résultat suit alors de (2.2) et de la formula p, (p* (x)-y)=x-p,(») (voir [3], section
D). |

(2.4) COROLLAIRE. Soit s=(sy,..., S) une suite croissante d’entiers positifs.
Ona:p,(Q,(5))=0,, (X), oit s=s,—n+k. “

Les propositions des §1 et 2 permettent de calculer p,. En effet, il suffit de savoir
calculer p, sur les expressions de la forme y,,...y,,, ou r,<k. La proposition (1.3)
permet d’exprimer ce mondme comme combinaison linéaire de déterminants de la forme
0O,(»), ot s=(sy,..., Sy) est une suite croissante d’entiers au plus égaux 3 k, sans
quoi Q,(y)=0. D’aprés (1.2), ce déterminant est égal a Q,(y), ou t=(t,..., ;)
s’obtient d’une maniére bien déterminée a partir de s; on vérifie qu’en passant de s
a t, s, <k entraine que ¢ est bien une suite d’au plus & éléments.

Par exemple, calculons g¢;(c) (cf. [6], prop. 1.3). Soit P;:F;(y)—G, y le fibré en
i-plans associé & y et y; le fibré de rang i sur F;(y) qu’on déduit de y.

n+r
(%) - Ci-1 (7:?- .
X(HOM ('}’i, 0n+r)) — (_ 1)i(n+r)_ci (7i)n+'= (__ 1)n+r. Ci+} ()’i.) 3
()
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D’aprés (1.2), ceciest égal a
c-n+r(‘Yi) : .5n+r—1 (yl) <
c-n+r-l:1 (‘Yi.) 3
' ('-'n+r (Yt)
En utilisant (4.4) et (4.5) du chapitre I et (2.4) du chapitre 111l vient:
Crrit (V) - Graimr ()
r n+r ér i . . . .
gi (c) = (P;*)x (X(HOM(% o"* ))) =" :+1 (Y) - -t
. . Er+i ('}’)
D’apres 1.2, ceci est encore égal & .
r+i
() - 'Ci-1 ()’)
i+ [Gi-1 () -
(-1) -
ce(v)

3. Les classes de Chern du produit symétrique

Pour calculer g;, ;(c), on doit calculer en cours de route les classes de Chern du
produit symétrique d’un fibré £ par un sous-fibré 7.

(3.1) PROPOSITION. Supposons que £ =n @n’; posons formellement:
cm)= JI @Q+t); c)= T[] (@+t). Alors:
i=1,..,k

j=k+1,...,n
c(no'&f)=( IT (1+t,-+t,-))~( 11 (1+tg+t,,)>.
1<isj<k hg==kl+.1..,k”

Démonstration. Soit p,:F,—X le fibré en drapeau associé a n; soit p,:F,—F; le
fibré en drapeau associé a pT (1) et soit p=p,-p,;:F,—X. On a des isomorphismes:

IO I I RIS

PY() 21 @D,

ol les {; sont des fibrés de rang 1. Posons c¢({;)=1+¢;; la formule énoncée résulte
alors aussitdt de I'isomorphisme naturel suivant:

p"‘(nOé)z( ® (C,-@C,-))@( e (C,,@C,,)). I

1<isj<k wees
h=k+1,...,n



Le calcul des classes duales 33

Par exemple, si & est de rang 2, c(EQ&)=1+3c; (&)+4c,y(E)+2¢,(6)*+
+4dc (&) c2 (8).

4. Quelques calculs

Considérons la fibration:
P;
Pi,j:Fi,j(?) 5 F; (7) - Gn,N

On pose x,=¢;(7), Xp=%; yu=ca(y)eH*"(Fi(7)); zv=cs(v;)e H**(F; ;()). On
écrira encore y pour P;"(y) ou P*;(y), x, pour P (x,) ou P*;(x,) et y, pour g*(»,).
() q;,1
Danscecas, Py =P; ;;g=id.;5=r;y,Oy,=7:® 71;
X(HOM (,},1, 0n+r)) — (__ 1)n+r,yri+r

q1(c(1,1)) = G+1 (11, 1) = Gs1((/71) ® (71 ® 11))
() =Xp+ Xpo1'y1s  G(1 ®y1)=(—2)")

r+1 r

qi = hZO (- z)h'XrH—h'}"{ + hZO (=2 X, ¥t

Dans ce cas, les résultats du §2 s’appliquent trivialement et donnent: (P,), (%)=
=(—1)" X,_,+. Ainsiil vient:

r
qu, 1= Xr2+1 + hZO 2h'Xr—h'Xr+h+2

(i) 43,1
c(y2,1) =14 % +22z; +x, — y2 +22yx4
+ 2z, (X3 — y2) + Y1V2 + X3 — %19,

qg(c ()’2,1)) =€y (72, 1)2 —C (7’2, 1)'03 (}’z, 1)
=4z (x} — x, + y2) + 221 (1% — Y1y, — x3) + K,

ou K est une expression ne contenant pas zy, sur laquelle donc (P, ,), s’annule. Rap-
pelons que (P, ;),=(Py)," g (voir [3], section D).

23,1 = (P (V2 (2 (423 (x3 — x5 + ¥3) + 22 (%1% — 12 — X3)))) 5
ici g est une fibration en droites et g, se calcule comme sous (i). Il vient:

‘1(2), 1= (P1)x (— 2)’1)’3“ — 4y, (xf - xz) -2y (x2x1 - xs))
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or y,y3=0,(y;, y,), avec S=(l’,21""2); daprés  (1,2), O.(y1, y2)=0.(p)

A+l
t=(h, h+1). Ainsi, d’aprés (2, 4):
X, - X -
P cohY — [Ah-n+2 hontt)
( 1)' (yl y2) Xh-—n+4 Xh-—n+3
il suit encore de (1.2) que
2 @ 11X 1
*1 xz__xz x| | X, Xy
e — == X1 1 - X1 1 .
ok 3_x:«s Xy X X’
d’ou finalement
X; X X, X X, 1| X, 1
0 A3 A2 A2 A&y St A2
21=2y x|y x| T ¥x, x|, x,

=2X, X7 +2X,-X? —4X, X, X, — 2- X} X, X5 + 2- X2 X,
— 2X2'X5 + 2’X3'X4 .
(ii) ¢2,2
Danscecas, P, ,=P,;g=id.;iQj=3,5s=—2
2(HOM (g*(y,), 0"*")) = y5~*
252 (c(v2,2)) == ¢3 (32072 D Y/y2) = — 2X291 — 3%1y5 + V1V2 + X3
d2,2 = (Po) (= 2x201°y2 ' = 3%1)2 + yuys + %335 1)
en procédant comme sous (ii), il vient:

g:5=X; — X)X, —4X2-X, +3X,- X7 + X, X,.
(iv) q;,l1

Dans ce cas, on trouve g; ; =2X, - (X7 - X,).
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