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On the Homology of Non-Connected Monoids
and Their Associated Groups

MICHAEL BARRATT and STEWART PRIDDY?)

§ 1. Introduction

It is well known that if X is a connected associative H-space of the homotopy type
of a CW-complex then X has the structure of an H-group, i.e., X~QBX. For X not
connected the result fails. However, one can still “adjoin’’ inverses to X and inquire
about the homology algebra of the resulting space and its relation to the homology al-
gebra of X.

Our purpose is to establish, under suitable hypotheses (see 3.5.1), the following
isomorphism of Hopf algebras over a field &:

H, (M; K) || k(noM) > H, (UM),; k) (1.1)

where M is a simplicial free monoid and (UM ), is the component of the identity of
the simplicial group UM generated by M (see 2.2). The action of the monoid algebra
k(noM) on Hy(M; k) is by translation of components.

As an immediate application we obtain a new proof that the natural map
BY¥ ,— (Q*S%), induces an isomorphism of Pontryagin algebras

HBY ., > H, (2°S%), (1.2)

where % , is the infinite symmetric group. Our original proof using Dyer-Lashof oper-
ations is given in [2]. This paper arose from our attempt to understand the general
phenomenon involved in (1.2).

The paper is organized as follows: In § 2 we give preliminary notions about the
Pontryagin algebra and the relationship of M and UM. The main theorem 3.5.1 is
formulated in § 3 and our application to B¥, and (Q*S%), is given in § 4. The
principal tool of the paper, the simplicial cobar spectral sequence of Bousfield and
Curtis, is developed in § 5. Sections 6 and 7 contain proofs.

§ 2. Preliminaries
We shall work in the category of simplicial sets with basepoint which (unless

otherwise noted) satisfy the extension condition of Kan. For the basic facts about this
category the reader is referred to May’s book [8].

1) Research supported in part by the N.S.F.
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Let |- | denote the geometric realization functor and recall that if M is a countable
simplicial monoid then |M| is a topological monoid. Likewise, if X is a topological
monoid and Sin(-) denotes the total singular complex functor then Sin(X) is a
simplicial monoid.

2.1. Homology and the Pontryagin Algebra

Let k be a commutative ring with unit and let k(-) denote the free k-module
functor. If X is a simplicial set then its homology groups with coefficients in k are
defined by H,(M; k)=n.k (X ). For brevity we shall simply write H, (X). If M is a
simplicial monoid then k(M) is also its monoid algebra. In this case H, (M) has a
(Pontryagin) algebra structure defined by

H,(M) ® H;(M) = 1 (M) ® n/k (M) S .. (k (M) ® k (M)
2L i k(M) = Hyy (M)

where E is the Eilenberg-Zilber map and m is the multiplication map of k(M ). In
references to the Hopf algebra structure of H, (M ), we assume & is a field.

2.2. The Universal Group UM

If M is any monoid then there is a universal group UM generated by M. Let FM
be the free group generated by the elements of M and let N be the normal subgroup
generated by xyz~! where x, y, zeM and xy=z in M. Let UM=FM|N and let
u: M — UM be the composite Mg FM-»UM. Then u is a natural transformation
and satisfies the following universal property: if M35 H is a homomorphism of
monoids and H is a group then there is a unique group homomorphism @: UM —» H
such that ¢ =¢u

UM
“J |s
M3H

2.3. The Relation Between M and UM

Let W be the classifying functor of MacLane [8]. We observe that W is defined
for simplicial monoids as well as simplicial groups. Note, however, that WM does
not satisfy the extension condition unless M is a simplicial group.
2.3.1. PROPOSITION: If M is a simplicial free monoid then

(Wu),: HWM 5 H,WUM

is an isomorphism.
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Proof: There are canonical first quadrant spectral sequences [10; p. 68]

E: = n,(Tors™ (K (k, 0), K (k, 0)) =, , k (WM))
E; = n,(Tors"™ (K (k, 0), K (k, 0)) = 7, .k (WUM))

Since M is free in each dimension so is UM and so Tor\™?. (k, k)~ Tork"™») (k, k)
and both are zero for g>1 [4]. Hence the spectral sequences agree and collapse
(E?*=E®). The result follows.

We shall now show that if M is connected and free then M, UM, and Q B|M|
have the “same’ homotopy type.

2.3.2. THEOREM: If M is a connected simplicial free monoid then
u:M->UM

is a homotopy equivalence.

The proof is given in § 6.

We now turn to the relation between |UM| and QB|M| where B is the Dold-
Lashof classifying space functor for associative H-spaces [6].

2.3.3. LEMMA: If H is a countable simplicial group, then |\WH)| is naturally
homotopy equivalent to B|H|.

Proof: Since |H|— E|H|— B|H| is a principal fibration it follows that Sin|H|—
— Sin E|H|— Sin B|H| is a simplicial principal fibration. Now using the five lemma
and the classification theorem for simplicial principal bundles [8] we have

4 Sin B|H| > n, W Sin |H|

and since the natural homomorphism H — Sin|H| of simplicial groups is a homotopy
equivalence, 7w, SinB|H |—z> neWH. Hence SinB|H|~WH, and thus |WH|x~
~ |Sin B|H||~B|H|.

2.3.4. PROPOSITION: If M is a countable connected simplicial free monoid then
QB|M|~|UM| by an H-map.

Proof: By 2.3.2, M~UM, hence B|{UM|~B|M|. Thus QB|M|~QB|UM|~
~Q|WUM| by 2.3.3. Now Q|WUM|~|GWUM|~|UM| by H-maps, hence the
result.

§ 3. The Main Theorem

3.1. Basic Assumptions
Throughout this section we shall assume that M is a countable simplicial free
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monoid (free in each dimension) satisfying the extension condition. The components
oM of M are also a monoid, which we assume to be free.

3.2. Action of m,

Let ¢: M — K(nyM,0) be the natural projection. Since myM is free there is a
monomorphism (cross section) i: K(n,M, 0) > M such that ¢ .i=id. In this way n,M
acts (uniquely up to homotopy) by multiplication on the right and left of M. We shall
be concerned with the right action on homology. The homology ring H, (M )=
=H, (M; k) (see 2.1) is thus a right module over the monoid algebra & (7, M ). We shall
say that H, (M) splits if H,(M)=H, (M) [| k(oM )®k (n,M ) as a Hopf algebra.

One easily verifies that 7, UM =Un,M and so n,UM is a free group and H, UM
is a right k£ (moUM )-module. Let (UM), be the component of the identity then

(UM)o 5 UM 5 K (n,UM, 0)

is a fibration and (UM ), is sometimes called the universal cover. Since UM = (UM ), x
x K(noUM, 0) as a simplicial set it follows that H UM =H, (UM ),®k(n,UM) as
a k-module.

3.3. The Induced Map
If the action of 7, UM on UM is homotopy commutative then H, UM = H,, (UM),
®k (noUM) as a Hopf algebra. If in addition H,M splits then the map
HM - H,UM = H, (UM), ® k(n,UM)=25 H, (UM),
induces a map of Hopf algebras

vy Hy (M) [] k (noM) > H, (UM), (3.3.1)

3.4. Strongly Homotopy Commutative Action
We shall say that the action of n,UM on UM is strongly homotopy commutative
(shc) if the composite map
1 x]i] |m]

|UM| x |K (n,UM, 0)| =5 |UM| x |[UM| = |UM|

is strongly homotopy multiplicative (shm) in the sense of Sugawara [14]. Recall that
a shm map f:X— Y of associative H-spaces is a family of maps f": X"*! xI"— Y,
n=0,1,2,... such that f° =f and

f"(an Lt ] xna tl, ey tn)
=fn'-1(x0’ ceey xi"‘lxi’ ceoy xn, tl, ceey ii,..., tn) if ti=0

= finl(xo, ooy Xi— 15 Bpyenes ti—l)fn-i(xi’ voos Xy Lip 1500y t,,) if ;=1.

Such maps induce maps of the classifying spaces BX — BY ([14, Lemma 2.2]).
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3.5. Main Theorem
We shall give sufficient conditions for the map v,: H M //k (noM )~ H, (UM), of
(3.3.1) to be an isomorphism. We remind the reader of our basic assumptions (3.1).

3.5.1. THEOREM: Let k be a field. If H M splits and the action of nyUM on UM
is strongly homoiopy commutative then

vy HM |/ k(moM) > Hy (UM),

is an isomorphism of Hopf algebras.

The proof is given in § 7. The strong homotopy commutativity of the action of
noUM is to insure the convergence of the cobar spectral sequence (see Remark 5.3.1)
for UM.

3.6. The Case nyM=Z"

In this case 7, UM = Z. Denote the components of M by M,, M;, M,, ... and denote
the elements of 1, M by p® =1, p', p?,.... We are assuming that a cross section i: noM —
— M has been chosen (see 3.2) and so we shall also use p° =1, p*, p?, ... to denote their
images in M. Let M, =lim M, be the direct limit of

xp xp xp xp xp
Mo “)Ml —>ere—> Mi—}M'I'l e b

where xp denotes right multiplication by p. There is a simplicial map p~*: M, » (UM ),
given by p~® =lim (xp~?)

Moi’_’,Mlx_”,...’_‘_’;]V[iif,...Mw
\&_1 /p—i
(UM)o

We shall also use p to denote the corresponding element in k (n,M )< H M.

3.6.1. LEMMA: If noM=Z" and k(noM) is normal in H.M then HM, =
=H,M|lk(noM) and so H M,, has the structure of a Hopf algebra, whose coalgebra
structure agrees with its natural coalgebra structure.

Proof: Since ngM=Z"* the (unit) augmentation ideal Zk (m,M) is a free k(n, M )-
module with basis consisting of the single element 1—p. Thus, since k(n,M) is
normal, H M|/k(noM)=H,M[H,M-(1—p) which is precisely the definition of
lim H M;=H, lim M;=H,M,,.

3.6.2. THEOREM: Suppose M satisfies the hypotheses of 3.5.1. If naM=2Z"*
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then H M, has the structure of a Hopf algebra and

px “:H*M,, > H, (UM),
is an isomorphism of Hopf algebras.

Proof: In view of 3.5.1 and 3.6.1, it suffices to show that p, © agrees with v, of
3.3.1. Now 1®¢:H,(UM),®k(n,UM)—H,(UM), may be decomposed as
Y 2w P Y 2w [Hye (UM )o®p] > Hy (UM ),. Hence (1®¢)otty=(Y.2, pl)ou, and
SO vy =p, ~.

We say that a simplicial set H is an H-space object if its geometric realization |H |
is an H-space. If WUM is an H-space object then n,UM =n, WUM is abelian and
therefore if 7y, M is a free monoid then n,UM is both free and abelian, i.e., iy UM =Z
and npM=2Z",

3.6.3. THEOREM: Let k be a field. Suppose WUM is an H-space object and that
multiplication by p in H,M is monic and commutative then

Py ©: Hy M, 5 H, (UM),

is an isomorphism of Hopf algebras.

Proof: Since |WUM| is an H-space and |WUM|~B|UM]| (2.3.3) it follows that
B|UM| is also an H-space. Hence by a theorem of Sugawara [14, Th. 43], |[UM | x |UM|
— |UM(| is strongly homotopy multiplicative and thus by restriction |UM| xn,UM —
|UM| is shm and so the action of 7, UM is shc. The hypothesis on multiplication by p
easily implies that H, M splits. The result now follows from 3.6.2.

3.6.4. COROLLARY. Let k=Z. Assume HM, and H,(UM), are finitely
generated and that the other hypotheses of 3.6.3 hold. Then p,* is an isomorphism
of algebras.

Proof: Let M,- .. be the mapping cone of p~®: M, — (UM ), and use the universal
coefficient theorem and 3.6.3 to show that H,M,-.=0.

§ 4. Application: Q*S® and the Infinite Symmetric Group

Let &, be the symmetric group of order n!, i.e., all permutations of {1, 2,..., n}. If
we consider the elements of ¥, as n xn permutation matrices then a group homo-
morphism

gyn X 'Spm -‘:’ eSpn+m

is defined by juxtaposition of matrices:

wn(t )



On the Homology of Non-Connected Monoids 7
for Ae &, Be #,,. The composite
L L, X .5’1—’3 w1

gives a monomorphism &, -, ;. Using this map, the infinite symmetric &, is
defined by

& =lim &,

Note that &, is just the group of those infinite permutation matrices acting on {1, 2,
3,...} which permute finite many integers.

We now recall Barratt’s I construction [1]. For any simplicial set X, Barratt has
given a simplicial free group I'X which is group homotopy equivalent to G®X* X. Thus
TS ~Q°S*®. Explicitly I'S®=UI'*S°® where

r‘s®=*vyy w#,
nz1
and where W, is short for WK(&,, 0). For convenience we shall denote the basepoint
of W<, by p" and set p®= *. The map

WSy X WLy = W(Fy % L) WS o

defines an associative multiplication and if we let * be the unit then I'*S° is a count-
able simplicial free monoid.

Clearly n,I'*S°=Z"*={p° p*, p?,...} and so M=I"*S§° falls under the province
of § 3.6. Observe that

(I'*S°), = lim WS, = Ws,,.

The following theorem gives our application. Topologically, it says that even though
B¥ , is not an H-space (n,B¥ =, is not abelian), H,BY¥ , nevertheless has a
ring structure and that moreover it is isomorphic as a ring to H, (Q*S®), via an
isomorphism induced by a map BZ,— (2°S®). Observe that B is an Eilen-
berg MacLane space K(, 1).

4.1. THEOREM: Let the coefficient ring k be a field or the integers. Then
Py S H WS, > H, (I'S°),

is an isomorphism of Hopf algebras.
Proof: First consider the case of k a field. Recall the homomorphism of Steenrod
[13; p. 53] for coefficients in any group:

x: WS, —» H™ ' (SP" (5"
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given by a— (—1)""V/2(3 Y*/a, where n is even.i,, generates H"(SP™(S")) and
SP™(S") is the m-fold symmetric product of S”. If i<n then x is an isomorphism
[9; Th. 6.7]. It follows that

HWSy—> H WS iy (1)

is injective and for * < (n+1)/2 bijective for coefficients in any group.
Thus multiplication by pin H,I'* S ® is monic. We also claim that such multiplication
by p is commutative. The diagram

Fox P> P xS,
N
eSpn+1

does not commute. However, if ¢ : &, ;= <%,+,; denotes conjugation by the cyclic
permutation (1,2, ..., n+1) then copot=pu. Now conjugation by an element of a
group induces a map homotopic to the identity on the classifying space [12]; hence
We~id: W11 = W41 and so W(pot)~ Wy and hence the claim.

To complete the proof of the theorem observe that |WI'S°|~B|I'S°|~BQ*S* ~
~Q*3®(S') and so WI'S® is an H-space object, thus the hypotheses of Theorem
3.6.3 are satisfied and the result follows.

Let k=Z. From (1) we have that H W%, is finitely generated. The result now
follows from Corollary 3.6.4 since H, (I'S°®), is also finitely generated.

§ 5. The Cobar Spectral Sequence

In this section we describe and expand upon the cobar spectral sequence of Bous-
field and Curtis [3; § 10], which will be used to prove the main Theorem 3.5.1. Let &
be a commutative ring and let H, (-) denote homology with coefficients in k (see 2.1).

5.1. Filtration by Powers of the Augmentation Ideal

For any monoid M we suppose that the monoid algebra k(M) is given the unit
augmentation ¢:K(M)—k defined by e(m)=1 for me M. Then k(M) is a Hopf
algebra. Filter k(M) by powers of the augmentation ideal JM =kere

k(M)=IM°>IM! 5 IM* 5...5 IM? > IM"*! 5.... (5.1.1)

The associated graded algebra Y, , En k(M)=Y, ,(IMP?[IMP?*!),, is also a
Hopf algebra.

5.1.2. LEMMA: Let T(+) denote the tensor algebra functor and let
h:T (IM/IM?) - E°k (M)
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be the natural homomorphism of Hopf algebras extending the identity on IM|IM?. If
M is a free monoid on the set {x,} then IM[IM? is a free k-module with basis {x,—1}
and h is an isomorphism.

5.1.3. Before proving the lemma we note that if M is free (on {x,}) then it can also
be given the zero augmentation &:k (M) — k defined by &(m)=0 for m#1 in M and
g(1)=1. Let IM=ker& and consider the isomorphism of augmented algebras

0:(k (M), &)~ (k (M), 3

defined by setting ¢ (m)=m—1 for m#1 in M and ¢ (1)=1. Since IM (resp. IM) is
afree k (M )-module on {x,—1} (resp. {x,}, (see [4, p. 192]), it follows that ¢:IM — IM
is an isomorphism. Hence IM? ~IM? for p>0, and if E°% (M)=) IM?/IM?*! then

E°p:E°(M)> E°% (M). Finally as bigraded algebras E% (M)~T {x,}.

5.1.4. Proof of 5.1.2: Since IM/IM?* ~IM/IM?=~ {x,} it follows that IM/IM? is a
free k-module on {x,—1}. That 4 is an isomorphism is now obvious since

T (IM/IM?) 5 E°k (M)
T(p)| = E0p| ~

T{x,} = T (IM/IM?) 5 E°k (M)

commutes.
If M is a simplical monoid then the filtration (5.11) of k (M) induces a filtration of
the Pontryagin algebra H M =n,k (M)

HM = F°H, > F'H, >---> FPH, > FF*'H, > (5.1.5)
given by FPH,=Im {n, JM?—>n,k(M)}. Let E°H M =F"H,[F"*'H,.

Since H, M is an augmented k-algebra it is also filtered by powers of its augmenta-

HM=IH)>IH}!>---o IH > [H ' (5.1.6)
5.1.7. LEMMA: If k is a field then FPH,=IH}, for p>0.

Proof: Clearly F*H,=1IH,. Now the p-fold multiplication map IH,®--®IH, —
— IH, factors (see (2.1))

Tam

[H, ® @ IH, = 1, JM @@ m, M~ 1, (IM @ ® IM) =5 n IM = IH,

where E is the p-fold Eilenberg-Zilber map. Since £ is a field £ is an isomorphism by
Kunneth and the result follows.
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5.2. The Spectral Sequence for Simplicial Monoids
Suppose M is a simplicial monoid. Let {E"(M)} denote the spectral sequence
associated with the homotopy exact couple induced by 5.1.1. Then

E;,qM = np+q(E1?, K (M))
d':E;,,qM = E i -1 M

p

and E*M=E°H,M, the graded algebra associated with 5.1.5.

5.2.1. LEMMA: Suppose M is a free simplicial monoid and n,M is free. Then
{E"M} converges to E°H M.

Proof: We shall show that (M), Im{n I/M?*" - n, IMP?}=0. Suppose n,M is the
free monoid on {x,} and let /M denote the augmentation ideal of k(M) with the
zero augmentation (see 5.1.3.)

Let M, denote the component of M corresponding to xen M. If zeIM? then
z=z; +z;,+ +2z;, where z; ek (M, j). Now let g=p be an integer such that each
x;;is a product of less than g elements of {x,}. Then if z is a cycle [z]¢Im{n, JM?—
— n, IM P} since IM* contains only elements of k (M, ) where x is a product of at least
g elements of {x,}. Hence ", Im{n JM?*" > n, M}~ N, Im{n JMP?*" > n, IM?}
=0.

For M connected we can apply the connectivity results of Curtis [5; Remark 4.10]
and argue in the manner of Quillen [11; Theorem 3.7] to obtain

5.2.2. LEMMA: If M is a connected simplicial free monoid then IM? is p—1
connected and {E"M} converges strongly to E°H, M.

5.3. The Spectral Sequence for Simplicial Groups

If F is a simplicial group then it is also a simplicial monoid and so the spectral
sequence of 5.2 is defined. The question of convergence, however, is apparently more
delicate and we have been unable to prove a result for F similar to Lemma 5.2.1.

5.3.1. Remark: The hypothesis of the main Theorem 3.5.1 requiring the action
of n,UM on UM to be strongly homotopy commutative is necessary precisely because
we don’t know if {E" (F)} converges for a non-connected simplicial free group F. This
hypothesis (in the presence of 3.1) forces the existence of a simplicial group homo-
morphism UM — (UM ), x K(noUM, 0) which is also a weak equivalence. We can
then use the following result of Bousfield and Curtis [3; Th. 10.2]:

5.3.2. LEMMA: If Fis a connected simplicial free group then IF? is p— 1 connected
and {E"(F)} converges strongly to E°H,, (F).
If F is free then the natural map GWF— F is a group homotopy equivalence.
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Furthermore, since F/[F, F]~IF|/IF* we have
E, F=(®"HWF),p+, (5.3.3)

for k a field.
Finally the spectral sequences for M and UM agree.

5.3.4. LEMMA: If M is a simplicial free monoid then
Eu:EM ~E'UM for 0<r

Proof: It suffices to prove the result for r=0. By 5.1.2 E°M =T (IM/IM?) and by
[3; Lemma 10.1] E°UM=T(IUM/IUM?). However IM/IM?*=Tor*™ (k, k)~
~Tor*™ (k, k)=IUM[(IUM)? [4; p. 192] and hence the result.

5.4. Remark

It should be noted (see [3, 10.3]) that the cobar spectral sequence (at least in the
connected case) is closely related to Adams’ cobar construction and the Eilenberg-
Moore spectral sequence.

§ 6. Proof of Theorem 2.3.2

6.1. LEMMA : If M is a connected simplicial free monoid then
u: Hy (M) S H, (UM)
is an isomorphism of Hopf algebras.

Proof: Since M is connected the spectral sequences

E'(M)= E°H, (M)
lElu lEOu,..

E'(UM)=E°H,(UM)
of § 5 are strongly convergent by 5.2.2 and 5.3.2. Now Elu:E'(M)>E'(UM) by

5.3.4 and the result follows.
6.2. Proof of Theorem 2.3.2

Since u: M — UM is a map of connected simplicial monoids the result follows
from 6.1 by a simplicial “H-space’’ version of the Whitehead theorem.

§ 7. Proof of the Main Theorem 3.5.1

Throughout this section we shall assume the hypotheses of 3.5.1. Thus k is a field
and H, (-) denotes homology with coefficients in k.
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7.1. LEMMA: There is a homomorphism of simplicial groups
l,b: UM - (UM)O X K(noUM, 0)

which is a weak homotopy equivalence.

7.2. LEMMA: The map u: M — UM induces an isomorphism
Eu,:E°HM > E°H,UM

of the graded algebras associated with filtration (5.1.6) by powers of the augmentation
ideal.

7.3. Proof of 3.5.1: By the splitting of H,M and the homotopy commutativity of
the action of n,UM we have

HM ~ HM || k(noM) ® k (n,M)
H, UM~ H, (UM), ® k(n,UM)

as augmented algebras. Thus u,: H. M — H, UM becomes

s ®k(rou)

HM || k(noM) ® k (eM) =25 5 (UM), ® k (n,UM)

where iy : H M|k (noM)— Hy, (UM ) ® k (noM) is the restriction of u, to H M|/
k(noM)®1 and k(mou):k(noM)—k(naUM) is obtained by applying the monoid
ring functor k() to the inclusion nou: oM — 7o UM.

Also

E°HM ~ E° (HeM [ k(M) ® Eo(k (meM))

E°H, UM ~ E°(H, (UM),) ® E°(k (n,UM))
and so we claim E°i,=E®,:E°(HM/[k(rnoM))— E°H, (UM ),. This is the key
step: to prove it we observe that if [m] e H;M, where M, is the component of M
corresponding to x € oM then i, ([m])=[m-sox"1]® [x]eH;(UM ),® k (n,UM),
however [1]—[x]eIK(n,UM ) and hence the claim.

Thus

E°u, = E%, ® E°k (nou):E°(H M [/ k(noM)) ® E°k (n,M)
5 E°H, (UM), ® E%k (n,UM)
which is an isomorphism by 7.2. Now since n,UM = Urn,M =free group, we have
E°k (miu): E°k (toM) > E°k (noUM)

by 5.3.4 and thus E°, is an isomorphism. To complete the proof observe that the
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filtrations of H,M/[k(noM) and H,(UM), are complete (actually finite in each

dimension by connectedness) and so v,:H M//k(n,M )—iH*(UM )o is also an iso-
morphism.

Proof of 7.1: Let UM’ denote the simplicial group (UM ), x K(n,UM, 0). Apply-
ing the geometric realization functor to the multiplication map

m:UM' - UM

we obtain (by hypotheses of 3.5.1) a shm map of countable CW-groups, |m|:|UM’| -
— |UM|. Hence by Sugawara [14; Lemma 2.2] there is a map of fibre spaces

|UM| - E|UM| - B|UM|

1 im T Tim|
|[UM'| - E|JlUM’'| - B|JUM'|

Since |m| is a homotopy equivalence so is |#|. By 2.3.3, | WH| is naturally homo-
topy equivalent to B|H| for any countable simplicial group H. Hence there is a
homotopy equivalence ¢: WUM'— WUM and a group homotopy equivalence
Gp:GWUM' - GWUM. Let 0:GWUM — GWUM' be a group homotopy inverse of
Go and let y: UM — UM’ be the composite

UM 5 GWUM S GRUM 2T
where 7 is a group homotopy inverse of the adjoint map adj(lsyu): GWUM - UM.

Since each of %, ¢, and adj(15y,,,) is a group homomorphism and a weak equivalence
s0 is Y.

Proof of 7.2: The maps M— oM (UM), x K(noaUM, 0) induce maps of the co-

bar spectral sequences

E' (M) = E°H M @)
lElu lEou,.

E'(UM) = E°H,UM )
JEW LEO.

E'((UM), x K (1,UM, 0))= E°H,((UM), x K (7oUM, 0)) ©))

where the convergence of (2) is unknown. The convergence of (1) follows from 5.2.1.
Since E" ((UM)o x K(noUM, 0))~ E" (UM )o®@E" (K(mo,UM,0 )) as differential algebras
and since E°(K(noUM, 0))~ E* (K(n,UM, 0)) the convergence of (3) follows from
5.3.2. Now E'(M)SE'(UM) by 5.3.4 and E*(UM)>E' (UM), x K(n, UM, 0))
by 7.1 and 5.3.3. Hence by the convergence of (1) and (3) E° (Yu), is an isomorphism.
But E%, is an isomorphism by 7.1 and so E°u, is also an isomorphism.
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Added in proof: J. P. May points out that the assumption of countability can be
omitted here and thus in the rest of the paper by restricting the range of 1-1 to the
category of compactly generated spaces.
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