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Sur quelques applications de la théorie de l1a descente

a I’étude du groupe de Brauer

M.-A. KNUS et M. OJANGUREN

1. Introduction

Il est bien connu que le groupe de Brauer Br(K) d’un corps K est de torsion. On
montre en effet que pour toute algébre centrale simple 4 de dimension »? sur X, la
classe [4] de A est annulée par n. Utilisant la cohomologie non-abélienne de Giraud,
Grothendieck a généralisé ce résultat au groupe de Brauer d’un schéma (voir [GB]
et [G, p. 343]). Dans la premicre partie de ce travail nous donnons une autre dé-
monstration pour le groupe de Brauer d’un anneau commutatif. Cette démonstration,
qui se réduit & un exercice de descente fidelement plate, donne explicitement un iso-
morphisme A®Q--®@A4~Endg (Q), QO un R-module fid¢lement projectif. Méme dans
le cas d’un corps, elle est différente et peut-étre plus simple que les démonstrations
classiques.

Dans la deuxiéme partie, nous généralisons aux anneaux commutatifs les résultats
sur la p-torsion du groupe de Brauer d’un corps de caractéristique p #0.

Finalement nous montrons que le groupe de Brauer d’un anneau s’injecte dans
une limite inductive de groupes de cohomologie d’Amitsur. Utilisant alors des résul-
tats d’Amitsur et Rosenberg-Zelinsky, nous prouvons que pour une extension ''ra-
dicielle” d’annaux I’application induite des groupes de Brauer est surjective. Ce résul-
tat est dii & Hochschild [H, p. 144] pour des extensions de corps.

Nous remercions les professeurs A. Frolich et A. Rosenberg de leur aide pendant
la préparation de cette note.

2. La descente fidélement plate

Soit R un anneau commutatif et soit S une R-algébre commutative. Nous noterons
toujours ® le produit tensoriel sur R, sauf évidence contraire. Si M et N sont des
R-modules et si f: M — N est un homomorphisme de R-modules, Mg désignera le
S-module M®S et fs le S-homomorphisme f®15: Mg — Ng. Pour tout homomorphis-
mef:M,® - QM,— N,®:-®N,, f; sera ’'homomorphisme M@ @SQ - Q M, —
—-»N,®-®S®---®N, obtenu en tensorisant f avec l’identit¢ de S en i-itme
position.

Pour tout S-module M, soient SQM et M® S les deux S®S-modules obtenus a
partir de M par extension des scalaires. Tout S® S-homomorphisme g: M@ S - SQM



Applications de la théorie de la descente a 1’étude du groupe de Brauer 533
induit

L MRISRS->SOSOM
g3 MR SRS->-SOIMRPS.

Si N est le R-sous-module de M défini par N={meM | |@m=g(m®1)}, notons
n:N®S — M I’homomorphisme de S-modules tel que 7 (n®s)=ns.

THEOREME 2.1. Si S est une R-algébre fidélement plate et si g est une donnée
de descente, c’est-a-dire tel que g, =g,85, alors n est un isomorphisme et le diagramme

n®1
NSS— M®S

| le
S®N®S—16-;S®M

out(nQs@t)=s@n®t, est commutatif. Cette propriété définit la paire (N, n) a un iso-
morphisme preés. Si, de plus, M est un S-module fidélement projectif (c’est-a-dire pro-
Jjectif, de type fini et fidéle), N l'est sur R.

Remarque 2.2. Si M est une S-algébre et g un isomorphisme de S® S-algebres,
alors N est une R-algebre et 1 un isomorphisme de S-algebres.

Une démonstration du théoréeme 2.1 peut étre trouvée dans [SGAI1, Exposé VIII]
ou dans [GD].

3. Les algébres d’Azumaya

Soit A une R-algébre. Nous appelerons R-algébre neutralisante pour A un triple
(S, P, o) ou S est une R-algebre commutative fidélement plate, P un S-module fidéle-
ment projectif et ¢ un isomorphisme de S-algébres 6: A® S — Endg(P). Nous dirons
que (S’, P, ¢') est une extension de (S, P, o) si S’ est une extension de S et P'=
=P®sS’'=Pg, 0’ =05. Rappelons encore qu’une R-algebre S est étale si elle est de
présentation finie, plate et S® g S-projective pour la structure de S® S-algebre induite
par la multiplication S®S — S.

Une R-algébre d’Azumaya A est une R-algebre satisfaisant aux conditions équiva-
lentes suivantes:

1) A est centrale et séparable sur R.

2) A est un R-module fidélement projectif et Papplication canonique ¢: A® A° —
— Endg (A4) (A° est ’algebre opposée) est un isomorphisme.

3) A est un R-module projectif de type fini et A/mA est une R/m-algébre centrale
simple pour tout idéal maximal m de R.



534 M.-A.KNUS et M.OJANGUREN

4) Tout point p de Spec(R) posséde un voisinage ouvert U ,=Spec(R,), feR—p,
tel que A, posséde une R, -algébre neutralisante (S(f), P(f), a(f)) ou S(f)
est libre de rang fini et séparable sur R, et P(f) est un S( f )-module libre de rang
fini.

5) A posséde une R-algebre neutralisante (S, P, o).

6) A posséde une R-algébre neutralisante (S, P, g) ou S est étale sur R.

Les équivalences 1)<>2) et 2)<>3) se trouvent dans [AG], [GB] ou encore dans
[DI]. Auslander et Goldman montrent également dans [AG] que toute algébre cen-
trale et séparable sur un anneau local posséde une algébre neutralisante libre de rang
fini et séparable. On montre alors facilement que 1)=-4). Pour voir que 4)=-6) on
peut prendre un recouvrement fini de Spec(R) par des ouverts U,=Spec(R;,)
i=1,..., k, donnés par 4) et poser S=[] S(f)), P=[] P(f:), o=]] o (f;). L’implica-
tion 6)=>5) est triviale. Démontrons finalement que 5)=>2). Par localisation il est
facile de vérifier 2) pour ’algebre des endomorphismes d’un module fidélement pro-
jectif. Par conséquent, A;®sAg — Endg(4s) est un isomorphisme. Le R-module A4
est projectif de type fini car Ag ’est sur S et S est fidelement plate. On a alors
Endg(A45)~Endz (4)®S et 0: A® A° > Endg (4) est un isomorphisme.

Il suit de la condition 2) que le produit tensoriel A® B de deux R-algébres d’Azu-
maya A et B est une R-algebre d’Azumaya et que, pour toute R-algebre commutative
S, A® S est une S-algébre d’Azumaya. On dit que A4 et B sont semblables si les con-
ditions équivalentes [AG, p. 381]

1) A® B°~Endg (P), P fidélement projectif sur R.

2) AQEndg (P)~BR®Endg(Q), P et Q fidélement projectifs sur R
sont satisfaites. Le groupe de Brauer Br(R) de R est I’ensemble des classes [4] d’al-
gébres semblables, muni du produit induit par ®. L’inverse de [4] est [4°] et on
démontre que [A]=1 si et seulement si 4~Endg(P) pour un R-module fid¢lement
projectif P.

Pour toute R-algébre neutralisante (S, P, ¢) de A4, soit ¢ I'isomorphisme de S® S-
algébres défini par le diagramme commutatif

A®S®S 2L Endges (P ® S)

<) e (%)
S®A®S.T®a) Ends®s(S®P)

ol 71(a®s®1)=sQaRt.

Nous dirons qu’une R-algébre neutralisante (S, P, o) est bonne si ¢ est intérieur,
c’est-a-dire induit par un isomorphisme de S®S-modules f:PR®S— SQP:¢(x)=
=fx/f ! pour tout xeEndges(P®S).

Pour démontrer I’existence d’une bonne algébre neutralisante nous nous servirons
du résultat suivant de M. Artin.
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THEOREME 3.1 (Artin). Soient R un anneau noethérien, R — S une R-algébre
étale fidélement plate, S™=S®yz---®@rS (n facteurs) et S™ - T une S™-algébre
étale fidelement plate. Il existe une S-algébre étale fidélement plate S— S’ telle que
Uapplication canonique S — S'™ se factorise a travers T:S™ - T — §'™,

Démonstration. C’est un cas particulier du théoréme 4.1 de [A].

PROPOSITION 3.2. Toute R-algébre d’Azumaya posséde une bonne algébre neu-
tralisante (S, P, ¢). Si I'isomorphisme f:P®S— SQP qui induit ¢ est une donnée de
descente, c’est-d-dire si f,=f f3, on a [A]=1. Inversément, si [A]=1 et si (S, P, 6)
est une algébre neutralisante pour A, il existe une bonne algébre neutralisante pour A
(S’, P’, ¢'), extension de (S, P, ¢), telle que ¢'=@g.g5. soit induit par une donnée de
descente g:P'®S’' - S'®P’.

Démonstration. Supposons d’abord R noethérien. Soit (S, P, ¢) une algébre neu-
tralisante étale pour 4. L’isomorphisme ¢ est induit par un isomorphisme f:P®.S —
- (S®P)Rsw I de S ®-modules, ou I est un S?-module inversible; de plus ¢ est
intérieur si et seulement si I est libre [RZ1, Lemma 9]. Soit 7 une S ¥-algébre étale
fidelement plate telle que I®g) T~T. On peut par exemple choisir pour 7" un pro-
duit fini de localisés J]7=; S;7’ tels que I, soit S;*-libre pour tout i et que les élé-
ments f,..., f,, de S® engendrent S, Si S’ est la S@-algebre du théoréme 3.1,
IQsS' PSP et (S, S'®s P, 15.®50) est une bonne algébre neutralisante. Pour
R arbitraire, il suffit d’observer que A est de la forme 4,®4, R ol R, est un sous-
anneau noethérien (en fait de type fini sur Z) de R et 4, une R,-algebre d’Azumaya.
On construit alors une bonne algébre neutralisante pour A, et en tensorisant avec R,
on obtient la bonne algébre neutralisante pour A.

Supposons que ¢ soit induit par un isomorphisme f tel que f,=f; f5. D’apres le
théoréme 2.1, il existe un R-module fidélement projectif Q et un isomorphisme de
S-modules 7: Q®S — P tel que le diagramme

09S®SLP®S
d W
SORXS— S®P
1®n

commute. Il s’ensuit que le diagramme correspondant

Endg (Q) ® S ® S 225 Endges (P ® S)
il Lo
S®End(Q)®S a2 Endses (S ® P)

ol g est la conjugaison par 5, commute aussi. L’unicité de la descente appliquée aux
paires (4, o) et (Endg (Q), ¢) entraine que 4 ~Endg (Q).
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Soient maintenant 4=Endg(Q), Q fidélement projectif, et (S, P, ¢) une algébre
neutralisante pour A. Comme dans la premiére partie de la démonstration, on con-
struit une extension fidélement plate S’ de S telle que ¢’ =0®415 :Endgz (Q)®S' —
— Endg. (P®sS’) soit induit par un S’-isomorphisme h:Q®S’' - P’ =P®sS’. Dé-
finissons f par la condition que le diagramme

h®1
Q®S,®S,—“"—)P’®S’
I L
S1®Q®Slmsl®Pl

commute. On a évidemment f, = f, f; et f induit ¢’.

Remarque 3.3. Si ¢ est induit par une donnée de descente f et qu'on pose Q=
={xeP | 1®@x=f(x®1)}, alors 'isomorphisme 4 — Endg (Q) est la restriction a 4
de I’isomorphisme ¢: A®S — Endg(P).

Remarque 3.4. Si A est une algébre centrale simple de dimension finie sur un
corps K, ¢ est intérieur pour toute extension finie S de K qui neutralise 4, par exemple
pour un sous-anneau commutatif maximal de 4. En effet S®.S est semi-local.

4. La torsion du groupe de Brauer

THEOREME 4.1. Pour toute R-algébre d’Azumaya de rang constant n, on a
[A]"=1.

Démonstration. Puisque A4 est de rang constant n?, il existe une bonne algébre
neutralisante (S, P, o) telle que P=S", et donc que ¢ dans le diagramme (*) soit
induit par un automorphisme f:(S®S)"— (S®S)". On a évidemment ¢,=@,¢;.
D’autre part ¢; est induit par f;, i=1, 2, 3. L’automorphisme f, ' f, f; appartient
donc au centre de M,(S®S®S) et on peut écrire uf, = f; f; ou u est une unité de
S®S®S. Notons AM=A®---®4 et fP=f® --Qf (n facteurs). Soit det(f) le
déterminant de f et soit A=f ™ (det f)"*:p"" @S — SQRP ™. Le déterminant com-
mute avec l’extension des scalaires, par conséquent k,=f" (det f;)~!. Puisque
(uf,)) ™ =u" f5 et det(uf,)=u"det(f,), on a hy=hhs, d’ou le résultat d’aprés la
proposition 3.2, car 4 induit aussi ¢ ™.

COROLLAIRE 4.2. Pour tout anneau commutatif R, Br(R) est un groupe de
torsion.

Démonstration. Soit [A]eBr(R). Il suffit de décomposer R en un produit []f-; R;
fini tel que A®R; soit de rang constant sur R;. Ceci est possible car A est un R-
module projectif de type fini.

Remarque 4.3. Si ’on tient compte de la remarque 3.3, la démonstration du théo-
réme 4.1 donne explicitement un isomorphisme A®---® A — Endg (Q).
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Remarque 4.4. Si on veut éviter I’emploi du théoreme d’Artin et donner ainsi une
démonstration tout a fait élémentaire de ce résultat, il suffit d’observer que, méme
si ¢ n’est pas intérieur, il existe toujours un monomorphisme f: (S®S)" - (S®.S)"
tel que ¢ (o) f=fa pour tout aeM,(S®S) et que det(f) ne divise pas zéro dans
S®S. On vérifie alors aisément par localisation que A= f ™ (det f)~! induit un iso-
morphisme PRS- SQP™ et satisfait 4 la condition de descente.

5. Sur la p-torsion

THEOREME 5.1. Soit p un nombre premier, m un entier positif, R un anneau
commutatif de caractéristique p et K une R-algébre fidélement plate, telle que K?" = R.
Si [A®K]=1 dans Br (K), alors [A]*" =1 dans Br(R).

Démonstration. Si [A®K ]=1 il existe une algébre neutralisante de la forme
(K, P, o). Elle est nécessairement bonne: en effet, 'isomorphisme ¢ défini par le
diagramme

c®1
A® K ® K—— Endgex (P ® K)

7| e
K®A® K- Endex (K@ P)

est induit par f:PQK~(K®P)®xx I [RZ1, Lemma 9], I un K ®-module inversible.
On voit, en tensorisant le diagramme par la K®-algebre u: K@ - K, u(a®b)=ab,
que @@k 1 est 'identité. Comme le noyau de u est nilpotent, 4 induit un mono-
morphisme Pic(K®)— Pic(K). Par conséquent I~ K et ¢ est induit par un iso-
morphisme P® K - K® P que nous noterons encore f. En tensorisant p™ fois sur K ¥
le diagramme ci-dessus, on obtient un diagramme

a(pmI®1

AP Q@ K ® K————Endgex (PP ® K)
rl l¢(p)
K@ A" ® K ———>Endxex (K ® P"™)

ot ™ est induit par f®™. Comme f, f, 'fy=ue(K®)*, £ (fFm) 1P =
=uP" e R*. Mais ¢®™ est aussi induit par g=u"?"f "™ et g,g, 'g;=1. Il suit alors
de la proposition 3.2 que A"™ est une R-algébre triviale.

Supposons maintenant que R soit un anneau intégre de corps de fractions Q. Soit
RY?™ 1e sous-anneau de Q7" formé des racines p™-iémes des éléments de R.

LEMME 5.2. Pour toute R-algébre étale S, l'application n:SQRYP" - S définie
par n(a®b)=a? b*" est un isomorphisme d’anneaux.

Démonstration. Si T est 'image de w on a S =T<S. On sait d’autre part que S
est séparable sur 7 car S est séparable sur R et 7> R. S est donc un S® ;S-module
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projectif et I’égalité T=S suit du corollaire 21.1.6 de [EGA]. Pour démontrer I'in-
jectivité, il suffit de démontrer que S® R/P" ne contient pas d’éléments p-nilpotents.
Mais SQR'/?" est une R'/?"-algébre étale et on sait qu'une algebre étale sur un
anneau réduit est aussi un anneau réduit. [R, VII, 2, Prop. 1].

LEMME 5.3. Soit S une R-algébre étale et soient f et g: M — N deux isomorphis-
mes de SQ® RP"-modules projectifs de type fini, tels que f ®) =g, Alors f=g.

Démonstration. Par localisation, on peut supposer que M et N sont libres de type
fini. Un calcul explicite montre alors que f=e-g ol ee SQ R'/?" est tel que n(e)=1.
Il faut que e=1 d’apres le lemme 5.2.

THEOREME 5.4. Si[A]""=1, alors [AQR""]=1.

Démonstration. Soit (S, P, 6) une bonne algébre neutralisante pour 4, telle que
S soit étale sur R. L’isomorphisme dans le diagramme (*) est donc induit par un
isomorphisme f:P®S— S®P. Quitte & remplacer S par une extension S’, on peut
supposer, d’aprés la proposition 3.2, que @®™ est induit par un isomorphisme de
descente g: PP ®S — S®PP™, car [A]?"=1. On peut écrire g=uf ®™ ou u est une
unité de S®S. D’apres le lemme 5.2 appliqué a S® S il existe ve SQ S®R?P™ tel que
v?" =y, L’isomorphisme 4= vf : PQS®R?" - S® P ® RY?" induit ¢g1/pm et A7) =g
est une donnée de descente. Il suit du lemme 5.3, appliqué a h, et h h;, que h est
aussi une donnée de descente.

COROLLAIRE 5.5. Le groupe de Brauer d’'un anneau intégre parfait de carac-
téristique p est sans p-torsion.

COROLLAIRE 5.6. Si [A]""=1, A posséde une algébre neutralisante libre et
finie sur R.

Démonstration. Si AQRYP" est une RY?"-algébre triviale, il existe une sous-R-
algébre de type fini S=R[ay,..., a,] = RY?" telle que la S-algébre 4® S soit triviale.
Soient t4,..., t, des indéterminées et S’ la R-algébre libre R[t,,...,t,]/I ou I est
’idéal engendré par les éléments ¢ —af" . Puisque le noyau de ’homomorphisme
S’ — S défini par t;>a; est nilpotent, ’application correspondante Br(S’)— Br(S)
est injective [RS] et A® S’ est une S’'-algebre triviale.

6. La cohomologie d’ Amitsur

Pour toute R-algébre commutative .S, soit S* le groupe des unités de S. Rappelons
que le complexe multiplicatif d’Amitsur C(S/R) est la suite de groupes

15>5* 4 (5@S)*3(5es®s)*S...
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ot 4, (x)=]] x{~"""" et x, s’obtient & partir de x en introduisant 1 en i-i¢me position.
On vérifie immédiatement que 4,,,4,=0. La cohomologie d’Amitsur est alors dé-
finie par H"(S/R)=ker4,,,/Im4,. Posons H" (R)=1imH" (S/R), la limite étant prise
sur les R-algébres fidélement plates S. Une construction précise de telles limites in-
ductives se trouve dans [CR, p. 68] ou dans [D].

A toute R-algébre d’Azumaya A4, on peut associer un 2-cocycle. En effet, soit
(S, P, 6) une bonne algébre neutralisante pour 4. L’isomorphisme ¢ : Endges (P®S)—
— Endges(S®P) construit a Iaide de 0: 4®S— Endg(P) est donc induit par un
S® S-isomorphisme f:P®S - S®P. Puisque ¢,=,@s, I'élément u(o, f)=f, fi fs
appartient au centre de Endggsgs (P®S®.S), donc a (SRS®S)*. A I'aide des rela-
tions (f);=(f;-1): pour i<j et (f;);=(fi)i+1, on vérifie que A4;(u(o, f))=1, c’est-
a-dire que u (o, f) est un 2-cocycle de C(S/R). La classe de u(o, f) dans H?(S/R)
ne dépend pas du choix de I'isomorphisme f qui induit ¢, car si g est un deuxieme
isomorphisme induisant ¢ on a g= vf pour un ve (S®S)* et par conséquent u (o, g)=
=u(o, f) 4,(v). Notons 0(c) 'image de u (o, f ) dans H?(R).

LEMME 6.1. Si[A]=1, alors 0(c)=1.

Démonstration. 11 est clair que si S’ est une extension de S et 6'=0®g 15, On a
6(c)=0(0"). Si [A]=1, d’apres la proposition 3.2 il existe une extension S’ de S
telle que @' =@®glg est induit par une donnée de descente g. En ce cas, on a
u(o’, g)=1 et partant 0(s)=0(s")=1.

LEMME 6.2. Soient (S, P, ) une bonne algébre neutralisante pour A et P=
=Homg(P, S) le dual de P. Notons par & le dual de tout homomorphisme o de modules.

Soit °: A°®S — Endg (P) l'isomorphisme défini par ° (x)=;—(x). Alors (S, P, 6°) est
une bonne algébre neutralisante pour A° et 0(c°)=0(c)"".

Démonstration. On vérifie facilement que si 'isomorphisme ¢:Endggs(P®S)—
—Endges(S®P), défini par o est induit par f:P®S— S®P, I'isomorphisme
¢°:Endges (P®S) > Endges (S®P) défini par ¢° est induit par f~1:PRS— S®P.
On trouve u(a°, f"Y)=u(o, f)~1, d’ou le résultat énoncé.

LEMME 6.3. Soient (S, P, ¢) et (T, Q, t) des bonnes algébres neutralisantes pour
A et B respectivement. Alors (S®T, PQQ, 6®71) est une bonne algébre neutralisante
pour AQB et 0(c®1)=0(0) 0(7).

Démonstration. Si I'isomorphisme Endggs(P®S)— Endges(S®P) défini par o
est induit par f et 'isomorphisme End; g1 (Q®7T)— End; e (T®Q) défini par 7 est
induit par g, 'isomorphisme défini par c®t est induit par f ®g et u(c®7, f ®g)=
=u(o, f)Qu(t, g)=u(c®@1ly, f®ly) u(1s®7, 15®g). Il en suit que O(c®1)
=0(c®17)0(15®1)=0(0) 6(7).
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COROLLAIRE 6.4. Pour toute algébre A, 0(c) est indépendant du choix de la
bonne algébre neutralisante.

Démonstration. Soient (S, P, o) et (T, Q, t) deux bonnes algébres neutralisantes
pour A. D’apres les lemmes 6.3 et 6.2, 6 (c®1°)=0(c) 0 (7)™ et d’aprés le lemme 6.1,
en tenant compte de [A®A°]=1, 0(c®1°)=1, d’ou le résultat.

THEOREME 6.5. La correspondance A 0(a) induit un monomorphisme naturel
6:Br(R)— H?(R).

Démonstration. Le lemme 6.3, le corollaire 6.4 et le lemme 6.1 montrent que
I’application 0 est bien définie et qu’elle est un homomorphisme de groupes. Il reste
a démontrer qu’elle est injective. Si 0(o)=1, il existe une extension fidélement plate
S’ de S telle que u(og., fs.)=4,(v) pour une unité v de S'®S’. On vérifie immédiate-
ment que fg. v~ ! satisfait 4 la condition de descente et il suit alors de la proposition
3.2 que [4]=1.

7. Extensions radicielles

Dans tout ce paragraphe, R dénotera un anneau commutatif de caractéristique
p, p étant un nombre premier.
Le lemme qui suit est implicite dans la démonstration du théoréme 2.1 de [RS].

LEMME 7.1. Soit A une K-algébre d’Azumaya, p:S’'— S un homomorphisme
surjectif de K-algébres a noyau nilpotent et (S, P, o) une algébre neutralisante pour A.
Alors, si S’ est fidélement plate sur K, il existe une algébre neutralisante (S', P', ¢")
quireleve (S, P, ), c’est-d-dire telle que P=P' ®g Set 6 =0'Qg. 15. Si, de plus, (S, P, o)
est bonne, (S', P', ") l'est aussi.

Démonstration. Posons, pour simplifier, B=A®gS et B =A®;S’. L’isomorphis-
me o définit une structure de B-module sur P et d’apres la dualité de Morita [B, IT 3.5],
P est méme un B-module fidélement projectif. Or, le noyau de u étant nilpotent et B’
finie sur S’, le noyaude 1 ,®u: B’ — Best aussi nilpotent. Il existe donc [B, II 2.12] un
B’-modulefidélement projectif P’ telque P= B® g. P'=P®g S'.Sic’: B’ > Endg. (P’ )est
I’homomorphismede S’-algébres défini parla structure de B’-module sur P’, ¢’ releve et
est par conséquent un isomorphisme [B, I1 2.12]. Puisque B’ est fideélement projectif sur
S’, P’ est un S’-module fidélement projectif et (S, P’, ¢”) est une algebre neutralisante.

On vérifie comme dans la démonstration du théoréme 5.1 que (S’, P’, 0”) est
bonne si (S, P, ¢) est bonne.

THEOREME 7.2. Pour toute extension RcK telle que KPR et que K soit
projectif de type fini comme R-module, I’homomorphisme Br (R)—Br(K) est surjectif.
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Démonstration. Soit A une K-algebre d’Azumaya et soit (S, g, P) une bonne
K-algebre neutralisante pour A. Notons S’ la K-algébre K®zS ol K opére sur le
premier facteur et soit u: S’ — S I’homomorphisme de K-algebres défini par la multi-
plication dans S. Le noyau de pu est nilpotent car le noyau de la multiplication
K® K — K est nilpotent et est de type fini en tant que 1® K-module. D’aprés le lemme
7.1, il existe une bonne algébre neutralisante (S’, P’, ¢’) qui releve (S, P, o). Soit
f:P'®xS’ = S'®xP’ unisomorphisme qui induit le ¢ défini par ¢’ et u=f, 'f,f; le
cocycle associé. D’aprés Rosenberg et Zelinski [RZ2, Prop. 4.1 et Lemma 4.2] on a
une suite exacte

H2(S R) > H2(S'/K) - H*(K/R)

ou « est induit par S—S'=KQ®S, s> 1Q®s. D’apres Amitsur [AM, Lemma 8],
H? (K/R)=0 et a est donc surjectif). On peut alors écrire u=(1®uy) 4,(v) ou
ve(S'®gS’)* et ol uy est un 2-cocycle de S/R. A l'applicationg= fo 1:P' @S’ - S'®
®x P’ est associé le 2-cocycle g; 'g,83=1Quye (KR rS® SRS )* = (S’ @ xS’ ® xS')*.
Notons Q le module P’ considéré comme S-module seulement et 2: Q@S —> SR Q
le S® g S-isomorphisme donné par g (on oublie I’action de K!). Le S-module Q est
fidélement projectif car K est fidelement projectif sur R. Si y est la conjugaison par A,
on ay; "W,Wy=1 car h; 'hhy=u, est un élément du centre de Endggses(QRS®S).
C’est donc une donnée de descente qui définit une R-algebre d’Azumaya A,=
={xeEnds(Q) | ¥ (x®1)=1®x}. Puisqu’a K® A4, est associé le 2-cocycle 1 ®u,, on
a [K®A,]=[A4] d’apres le théoréme 6.5. D’ou le résultat.

1) Le lemme d’Amitsur ne concerne que le cas m = 1, mais il n’est pas difficile de s’y ramener.
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