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Sur quelques applications de la théorie de la descente

à l'étude du groupe de Brauer

M.-A. Knus et M. Ojanguren

1. Introduction

II est bien connu que le groupe de Brauer Br (K) d'un corps K est de torsion. On
montre en effet que pour toute algèbre centrale simple A de dimension n2 sur K9 la
classe [A] de A est annulée par n. Utilisant la cohomologie non-abélienne de Giraud,
Grothendieck a généralisé ce résultat au groupe de Brauer d'un schéma (voir [GB]
et [G, p. 343]). Dans la première partie de ce travail nous donnons une autre
démonstration pour le groupe de Brauer d'un anneau commutatif. Cette démonstration,
qui se réduit à un exercice de descente fidèlement plate, donne explicitement un iso-

morphisme A®--®AczEndR(Q), Q un iÊ-module fidèlement projectif. Même dans

le cas d'un corps, elle est différente et peut-être plus simple que les démonstrations
classiques.

Dans la deuxième partie, nous généralisons aux anneaux commutatifs les résultats

sur la /7-torsion du groupe de Brauer d'un corps de caractéristique p i=- 0.

Finalement nous montrons que le groupe de Brauer d'un anneau s'injecte dans

une limite inductive de groupes de cohomologie d'Amitsur. Utilisant alors des résultats

d'Amitsur et Rosenberg-Zelinsky, nous prouvons que pour une extension "ra-
dicielle" d'annaux l'application induite des groupes de Brauer est surjective. Ce résultat

est dû à Hochschild [H, p. 144] pour des extensions de corps.
Nous remercions les professeurs A. Frôlich et A. Rosenberg de leur aide pendant

la préparation de cette note.

2. La descente fidèlement plate

Soit R un anneau commutatif et soit S une i?-algèbre commutative. Nous noterons

toujours ® le produit tensoriel sur R, sauf évidence contraire. Si M et N sont des

i^-modules et si f:M-*N est un homomorphisme de i£-modules, Ms désignera le

S-module M® S et/s le S-homomorphisme/® ls: Ms -* Ns. Pour tout homomorphis-
mef:M1®~-®Mk-+Ni(g)'~®Nk,fi sera l'homomorphisme M1®---®*Sr®---®MJt-^
-^iV!®---®^'®-"®^ obtenu en tensorisant / avec l'identité de S en f-ième

position.
Pour tout S-module M, soient S®M et M®S les deux S® ^-modules obtenus à

partir de M par extension des scalaires. Tout S® S-homomorphisme g: M®5-> S®M
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induit

g1:S®M®S-+S®S®M
g2:M®S®S->S®S®M
g3:M®S®S-+S®M®S.

Si N est le i?-sous-module de M défini par N~ {meM | 1 ®m=g(m®\)}, notons
rj:N®S~* M l'homomorphisme de S-modules tel que rj(n®s) ns.

THÉORÈME 2.1. Si S est une R-algèbre fidèlement plate et si g est une donnée
de descente, c'est-à-dire tel que g2=g\g$> alors n est un isomorphisme et le diagramme

N®S®S^+M®S

S ® N ® S —? S ® M

où T(n®s®t) s®n®t, est commutatif. Cette propriété définit la paire (TV, rj) à un

isomorphisme près. Si, de plus, M est un S-module fidèlement projectif (c'est-à-dire
projectif, de type fini et fidèle), N l'est sur R.

Remarque 2.2. Si M est une S-algèbre et g un isomorphisme de 5®5-algèbres,
alors N est une i?-algèbre et r\ un isomorphisme de S-algèbres.

Une démonstration du théorème 2.1 peut être trouvée dans [SGA1, Exposé VIII]
ou dans [GD].

3. Les algèbres d'Azumaya

Soit A une i?-algèbre. Nous appelerons R-algèbre neutralisante pour A un triple
(S, P, g) où S est une i?-algèbre commutative fidèlement plate, P un S-module fidèlement

projectif et g un isomorphisme de S-algèbres G:A®S-+Ends(P). Nous dirons

que (S',P', g') est une extension de (S, P, g) si S' est une extension de S et P' —

=P®sSf=Ps>, g' gs>. Rappelons encore qu'une .R-algèbre S est étale si elle est de

présentation finie, plate et »S(x)RiS-projective pour la structure de S^S-algèbre induite

par la multiplication S®S-> S.

Une R-algèbre d'Azumaya A est une i^-algèbre satisfaisant aux conditions équivalentes

suivantes:

1) A est centrale et séparable sur R.

2) A est un i?-module fidèlement projectif et l'application canonique q:A®A0-*
->EndR(A) (A0 est l'algèbre opposée) est un isomorphisme.

3) A est un JR-module projectif de type fini et A/mA est une itym-algèbre centrale

simple pour tout idéal maximal m de R.
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4) Tout point p de Spec (R) possède un voisinage ouvert Uf Spec (Rf), feR — p,
tel que Af possède une Rf-algèbre neutralisante (S(f), P(f), cr(f)) où S(f)
est libre de rang fini et séparable sur RfetP(f) est un 5(/)-module libre de rang
fini.

5) A possède une i£-algèbre neutralisante (S, P, a).
6) A possède une i?-algèbre neutralisante (S, P, a) où S est étale sur R.

Les équivalences I)o2) et 2)o3) se trouvent dans [AG], [GB] ou encore dans

[DI]. Auslander et Goldman montrent également dans [AG] que toute algèbre
centrale et séparable sur un anneau local possède une algèbre neutralisante libre de rang
fini et séparable. On montre alors facilement que 1)=>4). Pour voir que 4)=>6) on

peut prendre un recouvrement fini de Spec(i?) par des ouverts CZ—Spec^^)
i=l,..., k9 donnés par 4) et poser S=Yl S(ft), P=t\P(fi), ° Tl a(fi)- L'implication

6)=>5) est triviale. Démontrons finalement que 5)=>2). Par localisation il est

facile de vérifier 2) pour l'algèbre des endomorphismes d'un module fidèlement pro-
jectif. Par conséquent, As®sAs-^Ends(As) est un isomorphisme. Le i?-module A
est projectif de type fini car As l'est sur S et S est fidèlement plate. On a alors

Ends(^5)^Endi?(^4)®5 et g:A®A°-+EndR(A) est un isomorphisme.
Il suit de la condition 2) que le produit tensoriel A®B de deux jR-algèbres d'Azu-

maya A et B est une i£-algèbre d'Azumaya et que, pour toute jR-algèbre commutative
S, A®S est une S-algèbre d'Azumaya. On dit que A et B sont semblables si les

conditions équivalentes [AG, p. 381]

1) A®B°^EndR(P), P fidèlement projectif sur R.

2) A®EndR(P)~B®EndR(Q), P et Q fidèlement projectifs sur R
sont satisfaites. Le groupe de Brauer Br(i?) de R est l'ensemble des classes [^4] d'al-
gèbres semblables, muni du produit induit par ®. L'inverse de [A] est [A0] et on
démontre que [^4]=1 si et seulement si ^4^EndR(P) pour un jR-module fidèlement

projectif P.
Pour toute i^-algèbre neutralisante (Sy P, a) de A, soit q> l'isomorphisme de S®S-

algèbres défini par le diagramme commutatif

A® S® S > EndS(8>s (P ® S)

4 l* (*)
S ® A (g) S > EndS0S (S ® P)

où T(a<g>s(g)t)=s®a(g)t.
Nous dirons qu'une i^-algèbre neutralisante (5, P, a) est bonne si cp est intérieur,

c'est-à-dire induit par un isomorphisme de 5®5-modules f:P<g)S-+S(3)P:(p(x)
=f*lf~1 pour tout xeEnds®s(P®S).

Pour démontrer l'existence d'une bonne algèbre neutralisante nous nous servirons
du résultat suivant de M. Artin.
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THÉORÈME 3.1 (Artin). Soient R un anneau noethérien, R^S une R-algèbre
étale fidèlement plate, S(n) S®R'~®RS (n facteurs) et S(n)-*T une S{n)-algèbre
étale fidèlement plate. Il existe une S-algèbre étale fidèlement plate S-+S' telle que
l'application canonique Sin)->S'(n) se factorise à travers T:S(n)-*T->Sf(n\

Démonstration. C'est un cas particulier du théorème 4.1 de [A].

PROPOSITION 3.2. Toute R-algèbre d'Azumaya possède une bonne algèbre
neutralisante (S,P, a). Si l'isomorphisme f:P®S-+ S®P qui induit cp est une donnée de

descente, c'est-à-dire si f2—fifz, on a [A\ \. Inversement, si [A\ \ et si (S,P, a)
est une algèbre neutralisante pour A, il existe une bonne algèbre neutralisante pour A

(S\ P\ a'), extension de (S, P, a), telle que (p' (pS'®sf s°iï induit par une donnée de

descente g:Pr®S'-+ S'®P\
Démonstration. Supposons d'abord R noethérien. Soit (S, P, a) une algèbre

neutralisante étale pour A. L'isomorphisme (p est induit par un isomorphisme/:P® S-->

-+(S®P)®S(2)I de S^-modules, où / est un *S(2)-module inversible; de plus (p est

intérieur si et seulement si /est libre [RZ1, Lemma 9]. Soit Tune S(2)-algèbre étale

fidèlement plate telle que I®S(2)T~T. On peut par exemple choisir pour T un produit

fini de localisés f\T= î S/V tels que ^/, s°it S/fMibre pour tout i et que les

éléments /i,...,/m de Si2) engendrent 5(2). Si Sf est la S(2)-algèbre du théorème 3.1,

/®s(2>S"(2)-S"(2) et (S', S'®SP, lS'®scr) est une bonne algèbre neutralisante. Pour
R arbitraire, il suffit d'observer que A est de la forme Ao®RoR où i?0 est un sous-

anneau noethérien (en fait de type fini sur Z) de R et Ao une i?0-algèbre d'Azumaya.
On construit alors une bonne algèbre neutralisante pour Ao et en tensorisant avec R,

on obtient la bonne algèbre neutralisante pour A.
Supposons que (p soit induit par un isomorphisme/ tel que /2=/i/3. D'après le

théorème 2.1, il existe un i?-module fidèlement projectif Q et un isomorphisme de

5-modules rj:Q®S-*P tel que le diagramme

Q®S®S >P®S
xi |/

S®Q®S > S®P

commute. Il s'ensuit que le diagramme correspondant

EndR (Q) ® S ® S -^ Ends®s (P ® S)

S ® End (Q) ® S -^ EndS(8)S (S ® P)

où q est la conjugaison par rj, commute aussi. L'unicité de la descente appliquée aux
paires (A, a) et (EndR(Q), q) entraîne que A~EnàR(Q).
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Soient maintenant A End^ (Q), Q fidèlement projectif, et (S, P, a) une algèbre
neutralisante pour A. Comme dans la première partie de la démonstration, on
construit une extension fidèlement plate S' de S telle que g' a®sls>:EndR(Q)®S' ->

-+Ends,{P®sS') soit induit par un S'-isomorphisme h:Q®S'->P'=P®sSf.
Définissons / par la condition que le diagramme

g® S'® S' >P'®S'
ri if

Sf ®Q®Sr-^+S' ®P'

commute. On a évidemment /2=/i/3 et/induit <p'.

Remarque 3.3. Si cp est induit par une donnée de descente /et qu'on pose Q

{xeP | 1®x=/(x®1)}, alors l'isomorphisme A-*EndR(Q) est la restriction à A
de l'isomorphisme a:A®S-^Ends(P).

Remarque 3.4. Si A est une algèbre centrale simple de dimension finie sur un
corps K, cp est intérieur pour toute extension finie S de K qui neutralise A, par exemple

pour un sous-anneau commutatif maximal de A. En effet S®S est semi-local.

4. La torsion du groupe de Brauer

THÉORÈME 4.1. Pour toute R-algèbre d'Azumaya de rang constant n2, on a

Démonstration. Puisque A est de rang constant n2, il existe une bonne algèbre
neutralisante (S, P, a) telle que P Sn, et donc que cp dans le diagramme (*) soit
induit par un automorphisme f:(S®S)n-> (S®S)n. On a évidemment <p2 (Pi^3-
D'autre part cpt est induit par /„ i=l, 2, 3. L'automorphisme /2~x fx f3 appartient
donc au centre de Mn(S®S®S) et on peut écrire w/2=/i/3 où u est une unité de

S®S®S. Notons ^(w) ^®---®^ et f(n)=f®--®f (n facteurs). Soit det(/) le

déterminant de/et soit h=f{n) (dQtf)~i:p(n)®S-^S®P(n). Le déterminant
commute avec l'extension des scalaires, par conséquent ht=ffn) (det/,)"1. Puisque
(uf2yn) unf£n) et det(w/2) wMdet(/2), on a h2 h1h3, d'où le résultat d'après la

proposition 3.2, car h induit aussi (p{n).

COROLLAIRE 4.2. Pour tout anneau commutatif R, Br(/?) est un groupe de

torsion.
Démonstration. Soit \A~]el&r(R). Il suffit de décomposer R en un produit nf=i ^

fini tel que A®Rt soit de rang constant sur Rv Ceci est possible car A est un R-
module projectif de type fini.

Remarque 4.3. Si l'on tient compte de la remarque 3.3, la démonstration du théorème

4.1 donne explicitement un isomorphisme A®'~®A^EndR(Q).
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Remarque 4.4. Si on veut éviter l'emploi du théorème d'Artin et donner ainsi une
démonstration tout à fait élémentaire de ce résultat, il suffit d'observer que, même
si (p n'est pas intérieur, il existe toujours un monomorphisme/:(5'®»S')"->(5'®»Sr)rt
tel que <p(a)/=/a pour tout aeMn(S®S) et que det(/) ne divise pas zéro dans

S® S. On vérifie alors aisément par localisation que h=f<<n) (det/)"1 induit un iso-

morphisme P{n)®S-* S®P(n) et satisfait à la condition de descente.

5. Sur la /?-torsion

THÉORÈME 5.1. Soit p un nombre premier, m un entier positif, R un anneau

commutatif de caractéristique p et K une R-algèbre fidèlement plate, telle que KpmcR.
Si [A®K~\ 1 dans Br(K), alors \_A']pm 1 dans Br(R).

Démonstration. Si [^4®7$f] l il existe une algèbre neutralisante de la forme

(K,P,a). Elle est nécessairement bonne: en effet, l'isomorphisme ç défini par le

diagramme

A ® K ® K —^ End^x (P ® K)

K ® A ® K > End^K (K ® P)
1 ®<T1 ®<T

est induit par f:P®K~(K®P)®K(2)I [RZ1, Lemma 9], /un ^(2)-module inversible.
On voit, en tensorisant le diagramme par la ^T(2)-algèbre fi:K(2)->K, fi(a®b) ab,

que (p®K(D lK est l'identité. Comme le noyau de /n est nilpotent, \x induit un mono-
morphisme Pic(^(2))->Pic(J^). Par conséquent I~K(2) et q> est induit par un iso-

morphisme P®K-> K®P que nous noterons encore/. En tensorisant pm fois sur AT(2)

le diagramme ci-dessus, on obtient un diagramme

A(p }®K® K >EndK(g)K(P(p } ® K)

K ® A'pm) ® K-^^ EndX0X (K ® Pipm))

où (p(pm) est induit par /(pm). Comme /1/2"1/3 wg(^(3))*, flpm) (/2(pm))~73(pm)
wpWei?*. Mais (p(pm) est aussi induit par g u~pmf(pm) et gig21g3 1- H suit alors

de la proposition 3.2 que Aipm) est une i^-algèbre triviale.
Supposons maintenant que R soit un anneau intègre de corps de fractions Q. Soit

Rllpm le sous-anneau de Q1/pm formé des racines /?m-ièmes des éléments de R.

LEMME 5.2. Pour toute R-algèbre étale S, l'application n:S®R1/pm->S définie

par n(a®b) apmbpm est un isomorphisme d'anneaux.

Démonstration. Si Test l'image de n on a SpmczTcS. On sait d'autre part que S

est séparable sur T car S est séparable sur R et TzdR. S est donc un 5'®r*S'-module
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projectif et l'égalité T=S suit du corollaire 21.1.6 de [EGA]. Pour démontrer l'in-
jectivité, il suffit de démontrer que S®R1/pm ne contient pas d'éléments /7-nilpotents.
Mais S®R1/pm est une i?1/pm-algèbre étale et on sait qu'une algèbre étale sur un
anneau réduit est aussi un anneau réduit. [R, VII, 2, Prop. 1].

LEMME 5.3. Soit S une R-algèbre étale et soient f et g: M'-> N deux isomorphis-
mes de S® Rllpm-modules projectifs de type fini, tels que f(pW) g(pm). Alors f=g.

Démonstration. Par localisation, on peut supposer que M et N sont libres de type
fini. Un calcul explicite montre alors que f e-g où eeS®R1/pm est tel que n(e)= 1.

Il faut que e= 1 d'après le lemme 5.2.

THÉORÈME 5.4. Si {A]pm=\, alors [A®R1/pm'] l.
Démonstration. Soit (S, P, ex) une bonne algèbre neutralisante pour A, telle que

S soit étale sur R. L'isomorphisme dans le diagramme (*) est donc induit par un
isomorphisme/:P(x)S->S®P. Quitte à remplacer S par une extension S\ on peut

supposer, d'après la proposition 3.2, que cp(pm) est induit par un isomorphisme de

descente g:Pipm)®S-+S®P(pm\ car \_Aym= 1. On peut écrire g=ufipm) où u est une
unité de S®S. D'après le lemme 5.2 appliqué à S®S il existe veS®S®R1/pm tel que
vpm u. L'isomorphisme h vf:P®S®Ri/pm -+S®P® R1/pm induit <pR1/pm et h(pm) =g
est une donnée de descente. Il suit du lemme 5.3, appliqué à h2 et hJiZ9 que h est

aussi une donnée de descente.

COROLLAIRE 5.5. Le groupe de Brauer d'un anneau intègre parfait de

caractéristique p est sans p-torsion.

COROLLAIRE 5.6. Si [>4]pm=l, A possède une algèbre neutralisante libre et

finie sur R.

Démonstration. Si A®R1/pm est une i*1/pm-algèbre triviale, il existe une sous-iÊ-

algèbre de type fini S=R[a1,..., an~\c:R1/prn telle que la S-algèbre A®S soit triviale.
Soient tl9...9 tn des indéterminées et S' la iÊ-algèbre libre R[tu..., tn~\jl où / est

l'idéal engendré par les éléments tfm — apm. Puisque le noyau de l'homomorphisme
Sf -*S défini par ti\-^ai est nilpotent, l'application correspondante Br(S/)->Br(S)
est injective [RS] et A®Sf est une S'-algèbre triviale.

6. La cohomologie d'Amitsur

Pour toute i?-algèbre commutative S, soit S* le groupe des unités de S. Rappelons

que le complexe multiplicatif d'Amitsur C(S/R) est la suite de groupes

1 -> S* ^ (S ® S)* ^ (S ® S ® S)* ^...
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où An(x) Yl x(i~1)i
+ 1

et xt s'obtient à partir de x en introduisant 1 en /-ième position.
On vérifie immédiatement que An+1An 0. La cohomologie d'Amitsur est alors
définie par Hn(S/R) ker An+illmAn. Posons Hw(i?) limHw(S/i?), la limite étant prise
sur les i?-algèbres fidèlement plates S. Une construction précise de telles limites in-
ductives se trouve dans [CR, p. 68] ou dans [D].

A toute jR-algèbre d'Azumaya A, on peut associer un 2-cocycle. En effet, soit
(S9 P, g) une bonne algèbre neutralisante pour A. L'isomorphisme cp : Ends@s (P®S)->
-+EndS(B>s(S®P) construit à l'aide de G:A®S-+Ends(P) est donc induit par un
S®S-isomorphisme f:P®S-+ S®P. Puisque (p2 9i<P3, l'élément u(a9f)=ff1flf3
appartient au centre de Ends®s<s>s(P®S®S)9 donc à (S®S®S)*. A l'aide des

relations (fi)j (fj_l)i pour i<j et (/*),= (/f)i+i, on vérifie que A3(u(<jJ))=\, c'est-

à-dire que u(a,f) est un 2-cocycle de C(S/R). La classe de u{p9f) dans H2 (S/R)
ne dépend pas du choix de l'isomorphisme / qui induit cp9 car si g est un deuxième

isomorphisme induisant cp on a g= vfpour un ve(S®S)* et par conséquent u(g9 g)
u(a,f)A2(v). Notons 6 (g) l'image de u(a,f) dans H2(R).

LEMME 6.1. Si [A~\ l, alors 0(<t)=1.
Démonstration. Il est clair que si 5" est une extension de S et g' (7®sIs>, on a

0(g) 0(g'). Si [/4] 1, d'après la proposition 3.2 il existe une extension S' de S

telle que cpf (p®sls, est induit par une donnée de descente g. En ce cas, on a

u(g', g) 1 et partant 6 (a) 0 {a') 1.

LEMME 6.2. Soient (S,P9<r) une bonne algèbre neutralisante pour A et P

— Homs (P, S) le dual de P. Notons par a le dual de tout homomorphisme a de modules.

Soit ao\A°®S-*Enàs(P) Visomorphisme défini par g°(x) g(x). Alors (S, P, g0) est

une bonne algèbre neutralisante pour A0 et 6(g0) 6(g)'1.
Démonstration. On vérifie facilement que si l'isomorphisme (p:Ends<S)S(P®S)-+

->EndS0S(5f®P), défini par g est induit par f:P®S-+S®P9 l'isomorphisme
(p°:EndS(S)S(P®S)-+EndSIS)S(S®P) défini par g0 est induit par f'1:?®S -+S®P.

On trouve w((t°,/"1) m((t,/)~1, d'où le résultat énoncé.

LEMME 6.3. Soient (S, P, g) et (T9 Q9 t) des bonnes algèbres neutralisantes pour
A et B respectivement. Alors (S®T9 P®Q9 g®%) est une bonne algèbre neutralisante

pour A®B et 0(g®t) O(g) 0(t).
Démonstration. Si l'isomorphisme Ends<s>s(P®S)-+Ends<S)S(S®P) défini par g

est induit par/et l'isomorphisme Endr(g)r(g®7T)->EndT<g)T(r®g) défini par t est

induit par g9 l'isomorphisme défini par g®x est induit par/®g et w(ct®t,/ ®g)
u{G9f)®u{x9g) u{G®\T9f®\T)u(\s®x9\s®g). Il en suit que 6{g®x)

0(a) 0(t).
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COROLLAIRE 6.4. Pour toute algèbre A, 6 (g) est indépendant du choix de la
bonne algèbre neutralisante.

Démonstration. Soient {S, P, g) et (r, Q, t) deux bonnes algèbres neutralisantes

pour A. D'après les lemmes 6.3 et 6.2, 9(g®t°) 9(g) ^(t)"1 et d'après le lemme 6.1,

en tenant compte de [^4®v4°] 1, 0(cr®To)=l, d'où le résultat.

THÉORÈME 6.5. La correspondance Ai->Q(g) induit un monomorphisme naturel
6:Br(R)-+H2(R).

Démonstration. Le lemme 6.3, le corollaire 6.4 et le lemme 6.1 montrent que
l'application 6 est bien définie et qu'elle est un homomorphisme de groupes. Il reste
à démontrer qu'elle est injective. Si 6 (a) 1, il existe une extension fidèlement plate
S' de S telle que u(os>, fs,) A2(v) pour une unité v de Sf®S'. On vérifie immédiatement

que/S/ v'1 satisfait à la condition de descente et il suit alors de la proposition
3.2 que

7. Extensions radicielles

Dans tout ce paragraphe, R dénotera un anneau commutatif de caractéristique
p9 p étant un nombre premier.

Le lemme qui suit est implicite dans la démonstration du théorème 2.1 de [RS].

LEMME 7.1. Soit A une K-algèbre d'Azumaya, n:S'-*S un homomorphisme

surjectif de K-algèbres à noyau nilpotent et (S, P, a) une algèbre neutralisante pour A.
Alors, si Sf est fidèlement plate sur K, il existe une algèbre neutralisante (Sr, P\ a')
qui relève (S,P9 g), c'est-à-dire telle que P=Pr®s, S et g g' ®s, ls. Si, déplus, (S,P, g)
est bonne, (S\ Pf, g') l'est aussi.

Démonstration. Posons, pour simplifier, B=A®KS et B' A®KS'. L'isomorphis-
me g définit une structure de ^-module sur P et d'après la dualité de Morita [B, II 3.5],
P est même un i?-module fidèlement projectif. Or, le noyau de fi étant nilpotent et B'
finie sur Sf, le noyau de lA®fi :Bf -*B est aussi nilpotent. Il existe donc [B, II 2.12] un

l'homomorphisme de S '-algèbres défini par la structure de ^'-module sur/*', g' relève cet
est par conséquent un isomorphisme [B, II 2.12]. Puisque B' est fidèlement projectif sur

S\Pf est un S'-module fidèlement projectif et (S\ P\ g') est une algèbre neutralisante.
On vérifie comme dans la démonstration du théorème 5.1 que (S\ Pf, g') est

bonne si (S, P, g) est bonne.

THÉORÈME 7.2. Pour toute extension RczK telle que Kpmc:R et que K soit

projectifde typefini comme R-module, l'homomorphisme Br(R)-*Br(K) est surjectif.
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Démonstration Soit A une Â-algèbre d'Azumaya et soit (S,cr,P) une bonne
AT-algèbre neutralisante pour A Notons Sf la jK-algèbre K®RS où K opère sur le

premier facteur et soit ji S'-? S rhomomorphisme de jK-algèbres défini par la
multiplication dans S Le noyau de pi est mlpotent car le noyau de la multiplication
K®K^> K est mlpotent et est de type fini en tant que 1 (g)^-module D'après le lemme
7 1, il existe une bonne algèbre neutralisante (S',Pf, g') qui relevé (S, P, a) Soit

/ P'®rS' "~* S'®kP' un isomorphisme qui induit le (p défini par a et w=/2~1/1/3 le

cocycle associé D'après Rosenberg et Zelinski [RZ2, Prop 4 1 et Lemma 4 2] on a

une suite exacte

H2 (S R) A H2 (S'/K) -> H3 (K/R)

ou a est induit par S-+S' K(g)S9 s->l®s D'après Amitsur [AM, Lemma 8],
H3(KIR) 0 et a est donc surjectif) On peut alors écrire w (l®wo) A2(v) ou
ve(S'®KS )* et ou w0 est un 2-cocycle de S/i? A l'applicationg=fv~1 Pr®KS'-+Sf®
®KP est associe le 2-cocycle gl 1g1g3 1 ®uoe (K®RS®RS®RS)* (5"®KS'®KS')*
Notons Q le module Pf considéré comme *S-module seulement et h.Q®RS->S®RQ
le 5®lî5f-isomorphisme donné par g (on oublie l'action de K*) Le 5-module Q est

fidèlement projectif car K est fidèlement projectif sur R Su// est la conjugaison par h,

on a ^2" Vi^3 l car ^l21hih3 u0 est un élément du centre de EndS(g)S(g)S(g®5'®tS')

C'est donc une donnée de descente qui définit une R-algebre d'Azumaya Ao

{reEnds(Q) | \l/(x®\)=l®x} Puisqu'a K®A0 est associe le 2-cocycle l®wo> on

a [i^®^l0] [^t] d'après le théorème 6 5 D'où le résultat

1 Le lemme d'Amitsur ne concerne que le cas m 1, mais il n'est pas difficile de s'y ramener
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