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Homological Methods and the Third Dimension Subgroup

by F. BACHMANN and L. GRUNENFELDER 1)

In this paper we use a certain commutative diagram to derive some well-known and
some new results in group theory. Our approach is homological in the sense that we
make use of various exact sequences arising in homology of groups.

Let us recall some notation (see [1]): Associated to the lower central series
{G, ] G,=G} of a group G is the Lie-ring LG whose underlying abelian group is
given by

® Gi/Giyy-

iz1

The bracket operation on LG is induced by the commutator in G. There is a natural
surjection of graded rings

ULG 55 o1ZG,

where ULG denotes the universal envelope of LG and grZG is given as follows:
Let JG be the augmentation ideal in ZG ; then grZG is the graded ring associated to the
JG-adic filtration of ZG.

Our map ¢ is induced by the Lie-algebra map
LGS grzG

which in degreen is defined by the inclusion of G, into the nth dimension subgroup
D,(G)={xeG | x—1eJG"}.

In the present investigation we consider ¢ in degree 2. Let U,LG and Q,(G)
=JG"/JG"*! be the nth components in ULG and grZG respectively. Our main results
are:

THEOREM 1. For any group G there is a commutative diagram (of abelian

1) We thank Prof. B. Eckmann for having given us the opportunity to work at the Forschungs-
institut fiir Mathemathik, ETH.
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groups) with exact rows

0- G,/G; l_G’ Q> (G) 5 Q, (Gab) -0

” T oG T PG ab
0- GZ/GS J—) UzLG - U2 (Gab) —-0.

Here, j; is the canonical map from LG to ULG, p is the obvious projection, and
Gab = G/Gz.

COROLLARY 1. D3(G)=Gj; for any group G.
COROLLARY 2. U,LG%5Q,(G) is bijective for any group G.
THEOREM II. If G is finitely generated the sequence
0— G,/G; I‘G* Q. (G) 5 Q2(Gp)—0

is split exact.

§ 1. Diagrams

1. LEMMA. For any group G and all n>=2 there are exact sequences of abelian
groups

(A,): H, (G, Z) = H,(G[Gy, Z) 5> G,/Gpyy — 0
(B,): H,(G,Z)~ H(G,JG|JG") > Q,(G)—~0
(C,): 0= G,/G,+, 3 U, (LG) > U,(L(G/G,)) ~ 0

Moreover, (C,) is split exact in the following two cases:
(a) n=2 and G finitely generated
(b) n>2 and G arbitrary.

Proof. (A,) forms a part of the *“S-term-sequence’ associated to the group epi-
morphism G—»G/G, (see e.g. [6]).

(B,) forms a part of the homology sequence corresponding to the G-module
sequence

0-JG"->JG—-JG[JG"—>0.
We used the identification H, (G, JG)~H, (G, Z).
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To prove (C,) we remark that we have an exact sequence of abelian groups
0-R-LG-L(G/G,)-0,

where R=®;>, G;/G;,,. The kernel V of the algebra morphism
ULG — UL(G/G,)

is then given by the two-sided ideal in ULG generated by j; (R). As we are working
over Z, j; is an injective map ([2]). Therefore the nth component of ¥V coincides with
G,/G, .- The splitting of (C,) will be proved in section 6.

2. By naturality the sequence (B,) yields the following commutative diagram
(with o, bijective and a5 surjective):

HZ(Ga Z) - H1(G, 0, (G)) - Qz(G) -0
@ | x| e |
H, (Gupy Z) > Hy (G @1 (Go)) = Q2 (Gup) = O

By a result of Stammbach ([6]), y is a monomorphism. Hence, by applying the ker-
coker-sequence and (4,), we obtain an isomorphism

0:Kero; = G,/G5.

3. Consider now the square

Ker a; = K »iQZ(G)
il v lea
G2/G3'J—>U2LG

G

where « is the kernel map. We will prove (see section 5) that (*) commutes. It follows
K0~ = @gjg = i1 G4/G3 = Q,(G).

Therefore we have
THEOREM 1. For any group G there is a commutative diagram with exact rows

0-G,/G; lj 0, (G) -0, (Gab) -0

“ ?G T T PGab
0— Gz/G3j—G’ U,LG > U,(Gp)—0

COROLLARY 1. D;(G)=G, for any group G.



Homological Methods and the third Dimension Subgroup 529

COROLLARY 2. U,LGS Q,(G) is bijective for any group G.

Indeed, Corollary 1 is an immediate consequence of the injectivity of i;. (See [3],
[5] for other proofs of this fact). For the proof of Corollary 2 we observe that ¢, is
bijective ([4]) and apply the five lemma.

4. We turn now to the splitting property of the exact sequences in Theorem 1.
For finite groups, Sandling ([5]) established this fact using the Jennings-Hall-basis of
the abelian group JG*. The isomorphism of Corollary 2 shows that now it is enough
to have a splitting map

s:U,LG - G,/G3.

Such a map exists by lemma 1. Hence we have shown
THEOREM 11. If G is finitely generated the sequence
0—G,/Gs i 02(G)~ Q,(Gp) >0

is split exact.

§ 2. Proofs

5. To establish the commutativity of the diagram () we have to compute the
homomorphism d: K =3 G,/G5 explicitely. If S is the kernel of the canonical surjection
ZG—ZG,, i.e. S is the ideal {xy— yx | x, yeG) in ZG, then

K=5S+JGJG>.

We use the inhomogeneous bar solution B(G,,) to compute 0. It is clear from he
ker-coker-sequence, that

0 (xy — yx) = Bz,
where Z is the element of H,(G,;, Z) represented by the 2-cycle
z=1® (x| 7]~ [7|%])

in Z®g,, B,. The morphism B:H,(G,, Z)— G,/G5 in the sequence (4,) is the
composition

o1 02
H,(Gu, Z) > H, (Ggpy JGp) 2 L ®g,, (G2)ap 3 G,/Gs,

where 0, and 0, are the connecting morphisms in the homology sequences of the short



530 F.BACHMANN AND L.GRUNENFELDER
exact sequences
JGab > ZGab —» Z and (GZ)ab > ZGab ®G‘]G d JGab

respectively. For the computation of Z we remark that 0,7 is represented by the
I-cycle

Z=EF-1)r]-0-1)&[x]

in JG,,®¢,, B, and 0,07 is represented by the 0-cycle

z' =[x, y]

in (G,),.- For the typical element xy— yx of K we therefore get
d(xy — yx) =Bz =[x, y].

It is now immediate that the diagram (*) commutes.

6. It remains to show the splitting of the sequence (C,). Assume G finitely gener-
ated. G/G,=G,,, being finitely generated, is a finite direct sum of cyclic groups.
Let %,,..., X, be the generators of its cyclic components. The commutator identity

[x", ¥ =[x, »1 [[x, 1, x" "1 [x" 7%, 5]
in G shows that there is a homomorphism
0:(Gp @ G) @ G2/G3 — G,[G3,
well defined by

. x;, x:], if i<j
a(xi®xj)={[ 0,], if i>j

on G,,®G,, and by the identity on G,/G;. As
o(%®@%; — %@ % — [x;, x;]) =0

it factors through U,LG. The induced homomorphism
s:U,LG - G,/G;

is clearly left inverse to j;:G,/G; — U,LG.
A different proof of Theorem IT has been givenin a forthcoming paper by G. Losey.

To complete the proof of the lemma in section 1 we assume now G arbitrary and
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n>2. It is easy to see that

n—1

L(G/Gn) = @ Gi/Gi41-
i=1

Consider the following commutative square (where 7 is the tensor algebra functor and
all arrows are the obvious projections):

T (LG) > T (L(G/G,))

r | ; ! q
U (LG) - U(L(G/G,))

The above presentation of L(G/G,) shows that o has a splitting ¢. Clearly we have
o (Kerq) = Kerp.
Hence o lifts to a splitting of B.
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