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Algebraic Torsion for Infinite Simple Homotopy Types

F. T. FARRELL!) and J. B. WAGONER 2)

This paper is the last of a series dealing with the problem of giving an algebraic
description of the torsion invariant for proper A-cobordisms using the concept of a
locally finite infinite matrix. The other two papers are [1] and [6]. The reader should
also consult [5]. The main results of this paper are (3.1) and (4.1) which describe the
group of proper simple types on a strongly locally finite CW-complex as a K;-type
group Wh(n). The exact sequence (3.6) of [1] allows Wh(x) to be computed in a
number of cases.

§ 1. Infinite simple types

In this section we give a definition of infinite simple homotopy type equivalen
to the one in [5] but in a form more convenient for our purposes.

Let € denote the category of strongly locally finite, countable, CW-complexes and
proper homotopy classes of continuous maps. Recall from [2] that a CW-complex is
strongly locally finite provided it is the union of a countable, locally finite collection
of finite subcomplexes. Let ¥+ =% denote the full subcategory whose objects are
finite dimensional. A proper expansion K /'L in the category % is an inclusion K<L
where L=Ku (|Ui=; L;) and each L; is a finite subcomplex such that

a) (Li—K)n(L;—K)=0 for i#j

b) L; collapses to K;=KnNL,.

A proper contraction L\ K is the homotopy inverse of a proper expansion K 7"L. A
proper map f:X— Y is a proper simple homotopy equivalence (in %) iff there is a
sequence of proper expansions and contractions X=X, = X; > X, =X, - X,=Y
whose composition is properly homotopic to f. If f is a morphism in €™, then it is a
proper simple equivalence (in €*) provided each map X;— X;,, is a morphism in
%*. In particular each proper expansion K /'L in €* must satisfy the condition

c) there is an integer n such that dim(L;— K)<n for all i.

Now given the notion of proper simple equivalence in € we have as in [5] the
group & (X) of proper simple homotopy types of an object X of #. An element of
& (X) is represented by a proper homotopy equivalence f: X — Y and two such maps
fo:X—> Y, and f;: X — Y, are considered the same iff there is a simple equivalence
5:Y,— Y, in € such that so f, is properly homotopic to f;. Similarly one has the

1) Partially supported by NSF Grant GP-29697
2) Partially supported by NSF Grant GP-29073



Algebraic Torsion for Infinite Simple Homotopy Types 503

group of proper simple types & (X)) for any object X in €*. If X is an object of
€™ there is a natural map & (X)— & (X) which we show to be an isomorphism in
4.2).

Throughout this paper any CW-complex will always be assumed to be strongly
locally finite. We need this in order to say as in [2] that any proper map can be
properly deformed to a cellular map — the starting point for the algebraic theory of
simple types describing & (X) as a functor of 7, X and the system of fundamental
groups of neighborhoods of infinity. If one works in the category of all locally finite,
countable CW-complexes, then #(X) may be non-zero even though X is simply
connected and simply connected at infinity. For example, let K=e® Uel U--- where
e" is attached to e" ! by collapsing de” to a point in the interior of e"~!. The property
of being strongly locally finite is preserved under proper simple equivalence. Hence,
if K’ is any subdivision of K which is strongly locally finite, then K and K’ are not
simply equivalent although they ought to be. This minor technical point could be
remedied if one knew that any locally finite CW-complex had a strongly locally finite
subdivision. We get around the difficulty by working only with strongly locally finite
CW-complexes. In passing we remark that (xx) of [5] is false if the category of all
locally finite, countable CW-complexes is used. One must stay with strongly locally
finite complexes.

Suppose L=K U {€}} U, {€]"'}. Suppose the attaching map g; of some (n+1)-
cell e}* ! misses all the n-cells except, say, €} and suppose g ; takes the top hemisphere
of 6e'}“ homeomorphically onto ¢’} and takes the bottom hemisphere into L. Thus

the pair €jue}” ' forms an elementary expansion. We shall say that ¢} cancels ;.

§ 2. Definition of torsion in €

In this section we briefly recall the definition of torsion for a proper homotopy
equivalence in €*. For details and terminology see [1] and [6, Chap. I, § 5].

Let X be a non-compact, connected, strongly locally finite CW-complex and let
t:T— X be a tree for X. This means that 7 is a locally finite, contractible, one di-
mensional simplicial complex with a base vertex 0e7 such that if veT is a vertex
different from O then at least two 1-cells branch off from v. Furthermore, ¢#:7T— X is
required to be a cellular map which is properly i-connected in the sense that
t*:H°(X)—> H°(T) and t*: H2;(X)— H24(T) are isomorphisms.

The obstruction group Wh(X; t), which is defined in [6, Chap. I, § 5] to capture
the torsion of a proper homotopy equivalence f: W— X in €%, is an abelian group
which depends only on #n; X and the inverse system of fundamental groups of neigh-
borhoods of infinity in X. Up to isomorphism Wh(X’; ¢) is also independent of the
choice of tree 1:T— X. The group Wh(X; ¢) can be computed as follows:

First some generalities. Let #:7— X be any tree for X. The set J of vertices of T’
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can be partially ordered by letting #< v iff the arc from v to the base vertex 0 passes
through u. Let |v| denote the number of 1-simplices in the arc from v to 0. Let T,=T
denote the smallest subcomplex containing all vertices w of T with v<w. Let J'=J
be a cofinal subset (containing the vertex 0) obtained as follows: choose an increasing
sequence 0 =ny,<n, <---. Then let jeJ’ iff there is some n, with | j|=n,. Associated
to J' is a tree T’ obtained by inserting a 1-simplex between vertices u and v of J’
whenever u < v and there is no vertex w of J’ with u<w<v. The natural map 7' —» T
is properly }-connected and the composition 7" — T — X is a tree for X.

Now start with the original tree ¢:7— X. Then there is a tree ¢':7’ — X derived
from ¢:T— X by the above process and there is a collection {X,} of infinite, con-
nected subcomplexes of X (one subcomplex X, for each vertex u of T”) satisfying the
following conditions (cf. [6, Chap. I, § 5]):

a) Xo=X, X, X, when u<v, and ¢'(T,)c X,

b) X,nX,=0if |u|=|v| and u#v

c) for each n>0, X—_J, ;= X, is contained in some finite subcomplex of X

d) given any finite subcomplex K of X, there is some n>0 such that

Kn (Ulv]=n Xv) =0.

Now for each vertex u of 7" let n,=mn, (X,, t'(u)). If u<v define the homomor-
phism y,,:7,— 7, to be “conjugation” by the path ¢'(«,,) = X, where a,,=T, is the
arc from u to v. The collection n={=,, 7,,} is a tree of groups over the set J' of
vertices of T". Let Z[n]={Z[r,], y..,} denote the associated tree of group rings. Let
Wh(n) be as defined in [1] and [6, Chap. I, § 5]. Then there is an isomorphism

Wh (7)) = Wh(X; 1)

See [6, Chap. I, § 5]. The point of using Wh(X; ¢) as the obstruction group rather
than one of its “representatives” Wh(n) is to make the torsion well defined and
independent of various choices such as the X, above. However in proving certain
things one often uses a convenient choice of a Wh(=). Also, there is the basic algebraic
exact sequence (see (4.3) below) which relates Wh(rn) with the Wh(=,) and K, ()
and allows one to compute Wh(n) in a number of cases.

We will briefly indicate how to define the torsion

(L, K)eWh(n) =~ Wh(L;t)

of aninclusion K — L where Kis a proper deformation retract of L and dim (L — K) < co.
Here n={m,, 7,,} is the tree of groups corresponding to any choice of a tree ¢": 7" —» L
derived from ¢:T— L as above and any choice of a system {L,} satisfying (a) through
(d) with respect to ¢’: T’ — L. The definition of 7 (L, K) given below is in the spirit of
[4]. Using the general machinery of [6, Chap. I, § 5] and [1] it is not hard to see that
this approach to torsion for infinite simple types is equivalent to the one worked out
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in [6, Chap. I, § 5] which follows the lines of [3]. The argument showing the equiva-
lence is entirely similar to the one in the compact case.

For any CW-complex X, let X denote the universal covering space p: X — X.
If YcX,let Y=p~ (7).

By condition (a) above ¢’ (u)eL, for every vertex u of T'. Select a fixed lifting
deL, of t'(u). If v is a vertex of 7' and u<v, let v'eL, be the lifting of ¢'(v)eL,
obtained as the end point of the lifting of the path ¢ («,,) to a path in L, starting at 7.
Here a,, denotes the arc from u to v in T,. If v is a vertex of 7" with u< v there is a
unique map L,— L, covering the inclusion L,— L, such that deL, goes to v'eL,.
Furthermore, if #<v<w the map L, — L, is the composition L, —» L, — L,.

The next choice we make is to select a locally finite collection A of paths (o)
from the barycenters of cells ¢ of L to the images ¢'(x (o)) of vertices u(c) of T”
such that if =L, then a(s)cL,. If 6L, the path a (o) determines a path f,(a)
from o to ¢'(u) in L,: first follow a (o) to ¢'(u (o)) and then follow ¢’ (a,, ,(,,) to ¢’ ().
Here a, ., is the arc in T’ from u(a) to u.

If X is any CW-complex, let X" denote the n-skeleton of X.

Now define the based Z [r]-module C, (L, K) as follows:

C. (L, K) = {C, (L, K).}

where for each vertex u of 7’

C,(L, K), = H,(L;, L,”" u (L} 0 K))

The “bar” is taken with respect to the universal cover L,— L,. The Z [r,]-module
C,(L, K), is free with one basis element for each n-cell of L,— K. The basis element
corresponding to an n-cell ¢ of L,— K is given by the lifting of & to L, determined
by the path (o). If u< v the map L, — L, determines a homomorphism C, (L, K),—
- C,(L, K), and in fact we have an injection

Cn (L’ K)u ®Z[1|:.,] Z [nu] - Cn (L7 K)ll

whose image is the free submodule generated by the n-cells of L,— K which lie in
L,—K. The boundary operators &,:C,(L, K),— C,_,(L, K), are compatible with
the maps C,(L, K),— C,(L, K), and therefore define a morphism of Z [z ]-modules

0,:C,(L,K)-> C,_; (L, K)
which satisfies d,_, d,=0. This gives a chain complex
(C*’ a*) = {Cn (L’ K)9 an}

of based Z [n]-modules. In fact, if S"={S}} is the tree of sets over J' where Sy
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consists of the n-cells of L,— K, then C,(L, K) is the free Z [n]-module generated
by S”. Since dim(L—K)<oco at most finitely many of the chain groups C,(L, K)
are not zero.

Let r:LxI— L be a proper deformation retraction of L down into K. We can
assume r is cellular by [2, Th. 1.7]. For each vertex u of 7’ choose a cofinite sub-
complex N, of L, (i.e., L,— N, has only finitely many cells) such that

i) No=L, and N,o N, whenever u<v

ii) r (N, x1I)<L,.

The map r:N,xI— L, has a unique lifting r,: N, x I— L, such that r, restricted to
N, x0 is the inclusion and such that whenever u< v there is a commutative diagram

]V,,XIT*EU

l fd
NuXI‘;*Lu

<

Let C,(L, K),<C,(L, K), be the free Z [n]-submodule generated by the n-cells of
L,—K belonging to N,—K and let i,:C,(L, K),— C,(L, K), denote the inclusion
map. The maps r,: N, x I - L, induce coboundary operators

dZ: én (La K)u — Cn+ 1 (La K)u

compatible with the morphisms C,(L, K),— C,(L, K), and C,(L, K),- C,(L, K),
such that for each vertex u of T’

id, for u=0

u d" d"‘l 5": . .
n+1°0y T dy 00, {iu+ﬁmtematrlx, for u>0

Here 0%:C,(L, K),— C,_,(L, K), is the restriction of 0% Thus the collection
d"={d}} defines a germ d":C,(L, K)— C,.,(L, K) such that on the germ level we
have

8 s od"+d" o0, =id. (%)

This shows that (C,, d,) is an acyclic complex of based modules over the tree of
rings Z [n] and as in [6, Chap. I, § 5] we can define the torsion to be

7(L, K) = 1(Cy, 04)€ Wh(7) 2.1)

Now here is the way to define 7(L, K) in the spirit of [4]: By replacing d" with
d"0d,,°d" (if necessary) we can assume that d"*1od"=0. Let C,,= @<, C,; and
Coaa=®o<k Cax+1- The formula (*) implies that 0., +d*':C,, — Coq is an iso-
morphism on the germ level whose inverse is 0,49 +d°%%: C 44— C.,. Let the trees of
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sets S., and S, 44 be defined as the disjoint unions of trees of sets

S,,= II S* and S,,= II §**!

0=k 02k

Then C,, is the free Z [r]-module generated by S., and C_y, is the free Z [7]-module
generated by S,qq. Let J' denote the standard tree of sets {J,} determined by the
partially ordered set J' of vertices of 7”; that is J,={v | ueJ’ and u<<v}. Let F[J'; x]
denote the free Z [r]-module generated by the tree of sets J'. As in [1, Prop. 2.2]
choose proper bijections 4:S,, I J' —»J" and g:S U J' »J. Let H:C.,®
@F[J';n]->F[J';n] and G:C,og®F[J';n]—> F[J';n] be the induced germ
isomorphisms. Then Go(d.,+d**)eH ™! is an invertible germ taking F[J'; n] to
itself and we have

t(L,K) =<Go(d,, + d*°)cH™'yeWh(n). (2.2)

The torsion t(L, K) is independent of the choice of the liftings # of the vertices
t'(u) and also of the choice of base paths A.

In [6, Chap I, § 5] the torsion is shown to be invariant under subdivision and to
be additive in the following sense: Let M = L« K where M is a proper deformation
retract of L and L is a proper deformation retract of K. Let ¢t: T— L be a tree for L.
Then

(K, M)=1(K, L)+ iyt (L, M) (2.3)

where iy : Wh(L; ) > Wh(K; iot)is the isomorphism induced by the inclusioni: L g K

Now let f: X — Y be a proper homotopy equivalence in the category €™ and let
t:T— Y be a tree. Deform f properly to a proper cellular map fand as in [6, Chap I,
§ 5] define

t(f) =ret (M3, X)eWh(Y; 1) (2.4)

where r: M — Y is the standard deformation retraction. If i: K 5 L is an inclusion and
K is a deformation retraction of L then 7 (i)=7(L, K). This is Lemma 20 of Chap I.
of [6]. By Lemma 21 of Chap I of [6] the torsion 7( f ) doesn’t depend on the choice
of cellular “approximation” f. Furthermore the following additivity property holds
(Lemma 22 of Chap I of [6]): Let f: X— Y and g: Y — X be proper homotopy equiv-
alences. Let t:T— Y be a tree. Then

1(gof)=1(g) + g+t (f) (2.5)

where g induces the isomorphism g,:Wh(Y;t)—> Wh(Z; got).
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LEMMA 2.5. Suppose f:X— Y is a simple equivalence in the category €*. Then
©(f)=0.

Proof. The additivity property of torsion reduces the argument to showing that
7(L, K)=0 where K /L is an expansion in €*. Write L=Ku (|5 { L;) where L; is
a finite subcomplex which collapses to K;=Kn L; and dim(L;— K)<n for all i. Each
L; can be collapsed to K; by performing elementary collapses in order of decreasing
dimension. The additivity property again reduces the problem to showing that
t(L, K) =0 whenever each K; /'L; is a sequence of elementary expansions of dimen-
sion k. However the torsion certainly vanishes in this case because 0,,+d' =
0x: G (L, K)»C,,_, (L, K)is a blocked germ [ 1, §2 ] with each block being a product
of elementary matrices.

Now let X be an object of € and let #:T— X be a tree for X. Let [ f]le £ (X)
be represented by a proper homotopy equivalence f: X — Y. Choose a proper homo-
topy inverse g: Y — X of f and as in [6, Chap. I, § 5] let

7 (f) =1(g)e Wh(X; ¢t). (2.6)
Then (2.4) and (2.5) imply that (2.6) gives a well defined homomorphism
7. ST (X)> Wh(X; 1)

and we show in the next section that this is an isomorphism.

§ 3. ¢+ is an isomorphism
In this section we prove

THEOREM 3.1. Let X be an object of € and let t:T— Y be a tree for X. Then
T (X) > Wh(X; 1)

is an isomorphism.

First we prove that t* is injective.

Let f: X — Y be a cellular proper homotopy equivalence and let M, be the mapping
cylinder of f.

LEMMA 3.2. There is an inclusion X c M with X a proper deformation retract of M
such that the pair (M, X) is simply equivalent rel X in €* to the pair (M, X) and such
that M — X has cells in only two dimensions.

The proof of this is a straight forward generalization to the proper category of the
argument for Lemma 3 of [7]. In fact, M can be chosen to have cells only in dimen-
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sions n+1 and n where n>max(dim X, dim Y). Thus M can be constructed to have
cells only in dimensions 2k and 2k —1 where 2k — 1 > max (dim X, dim Y).

Now suppose f:X — Y represents an element of #* (X) on which t* vanishes.
Replace M, by M as above. Choose t": T’ — X and {X,} as in § 2. Choose a collection
{M,} satisfying (a) through (d) of §2 as follows: Let

M,=X,0{(2k—1)-cells of M whose attaching maps lie in X,}. Then set

M,= M, U {2k-cells of M whose attaching maps lie in M,}. Assume that 2k >4
and let t={r,, ,,} be the tree of groups where n,=m,(M,, t,,)~n,(X,, t' (u)). Since
¥ (f)=0 we know that t=1(M, X)eWh (n)=~Wh(M; t) also vanishes. The torsion
7 is represented by the germ

0= 03: Co (M, X) = Cyy—1 (M, X).

Since =0 we know by Lemma 2.7 of [1] that after stabilization of d to (0 1)@ --®1
it is possible to find blocked germs A=) o<, 4*and B=) (<, B, of C,, (M, X) to
itself such that

[(@®1)®-®1]-A-B=P

where P:C,, (M, X)— Cy,_, (M, X) is a n-permutation germ. We also know that
each of the square matrices 4* and B" is a product of elementary matrices over Z[x,].
Since P is a m-permutation germ it has a matrix representative { P,} where P,:C,, X
(M, X),—» Cyi-1(M, X), satisfies P,(basis element)= +g-(basis element) where
gem,. The stabilization of d to (0@ 1)@ ---P1 is achieved geometrically by stabilizing
M; that is, we replace M by Mu{el* "' ueZ*} where each pair eZ*"'Ue?* is an
elementary expansion attached to the vertex ¢'(u)eX. To simplify notation we shall
still denote the stabilized 0 and the stabilized M by 0 and M. Let S={S,} denote the
tree of sets over J' where S, =2k-cells of M,— X. Since A is blocked we can (as in §2
of [1]) replace the tree S={S,} by an equivalent tree of sets D={D,} with D,c S,
and we can amalgamate 4 so that D,=D,— )<, D, is a finite set which 1s the
support of 4*; thatis, 4" is an invertible Z[r,]-homomorphism from F,=F[D,; n,]
to itself.

Recall the following: Suppose L=K U " where f: 5"~ ' — K is the attaching map.
If f is deformed by a homotopy H:S" ! xI—»Ktoamapg:S" ' > Lthen L'=Ku, ¢"
has the same simple type as L. Let W=Kuy(e"xI) where H:S" ' xI—> K is the
attaching map. Then L ~ W\ L' is the simple equivalence from L to L'. Also recall
that if K, » K, —---— K,_, = K, is a sequence of elementary expansions and/or con-
tractions then there is a complex W containing K, and K, such that K, W\ K,
and dim W< max (dim K;).

Now write each matrix 4* as a product of elementary matrices of the form e;;(4):
F,— F, where = +g for gen,. For each u use this product to perform a sequence
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of deformations of the attaching maps of the 2k-cells in D, over one another as in the
“handle addition’ lemma of [7, Lemma 4]. At any step in the process the attaching
map of a cell e?* in D, is deformed with support contained in M,, U (other 2k-cells in
D,). This procedure changes M by a proper simple equivalence in ¢* to a complex
M’ such the boundary map 0":Cy (M', X)—> Cy—1(M’, X) 18 just the germa- 4.
Repeat the process using a block decomposition of the germ B to get a complex M”
such that 0":C,,(M", X)— Cy,_(M", X) is just 8- A- B=P. Since P is a n-permuta-
tion germ the attaching maps of the 2k-cells can be deformed in a locally finite way so
that each 2k-cell cancels just one (2k — 1)-cell and misses all the others. This says M "
is properly simply equivalent in €* to a complex which collapses to X. We conclude
that t*: %% (X)—> Wh(X; t) is injective.

It is easy to show that ™ is surjective: Let ¢':7'— X and {X,} be as in §2 and let
A:F[J'; n]— F[J'; ] be an invertible germ. For each vertex u of T’ attach a 4-cell
e% to X by collapsing de? to the point ¢’ (u). Now attach S-cells e, in a locally finite
way using the germ 4. This gives a complex M which has X as a proper deformation
retract by [2, Th. 3.1] or [5, Prop IV]. Also 1(X— M )=[4A]eWh(n)=Wh(X;¢t).
This completes the proof that t* is an isomorphism.

§ 4. Torsion in the category ¢

Although the methods of §2 don’t directly define the torsion of a proper homotopy
equivalence f: X — Y in the category ¥ it is possible to prove

THEOREM 4.1. Let X be an object of € and let t :T— X be a tree. There is an
isomorphism

#(X) = Wh(X;1).
A consequence of (3.1) and (4.1) is
COROLLARY 4.2. If Xisanobjectof €, then ™ (X)— & (X) is anisomorphism.

Proof of (4.1). Lett’:T'— X and {X,} beasin §2. Letn={r,, y,,} be the associated
tree of groups. Recall the exact sequence (3.6) of [1]:

[1 Wh(z,) 'S [T Wh(n,) 5> Wh(n) > [T Ro(m) = ] &o(m) 4.3)
O0<u (\EST] O<u o<u

Let
Wh (n) = Coker [ [] Wh(m,)'> [] Wh(m,)]

O<u O0<u
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Let

Ry(my =Ker [T Ko (r)'S TT Ko (m,)]

0<u O<u

Then there is the exact sequence

0— Wh(n) - Wh(n)—> K, (n) -0 (4.4)
In [5] the following exact sequence is constructed:

0— Wh(n) - & (X)- K, (n) -0 (4.5)

Hence to prove (4.1) it suffices by the “S-lemma’ to construct a homomorphism
Wh(n)— & (X) which induces a map from the sequence (4.4) to the sequence (4.5).
This was essentially done in the proof of (3.1): Take an invertible germ A: F[J'; n]—
— F[J'; 7] and construct a complex M (A) containing X as a proper deformation
retract by attaching one 4-cell e} to the vertex ¢’ (u)e X and then attaching the S-cells
e> in a locally finite way using the germ 4. The argument of §3 proving the injectivity
of ¥ shows that M (4) is simply equivalent to M (A4-E) whenever E is a blocked
germ E=) E* such that each E* is a product of elementary matrices over Z[=,].
Stabilization of 4 to A®1 only changes M(A) by adding elementary expansions.
Hence the proper simple type of M (A4) doesn’t change when A is varied by the defining
relations of Wh(z) and we get the required homomorphism Wh(n) - £ (X).

§ 5. The proper s-cobordism theorem

Now that & * (X) and & (X) have been described in algebraic terms the proper
s-cobordism theorem of [5] can be reformulated.

Recall that a smooth, piecewise linear or topological cobordism W" from M~ to
M’ is a proper h-cobordism provided the inclusions M_ Wand M, c W are proper
homotopy equivalences. Suppose M _, M ,, W are all non-compact and let #: 7T — M _
be a tree.

THEOREM 5.1. Let n>6. There is a well defined torsion element t(W; M_,
M )eWh(M_; t) which vanishes iff (W; M_, M) is isomorphic to (M_ %[0, 1];
M_x0, Mx1). Every element of Wh(M_; t) can be realized as the torsion of some
proper h-cobordism on M _.

This is just the statement of the combined theorems (3.1) and (4.2) above together
with Theorem III of [5]. Alternatively, for a direct proof that elements of Wh(M_; ¢)
classify proper h-cobordisms on M _ one can mimic the argument in the compact
case using the methods of §3 in the setting of handlebody theory.
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Here are some examples. Compare with [5].

a) Suppose M _ is simply connected and simply connected at infinity. Then it is
possible to choose a tree #': 7' — M _ and a collection {(M_),} such that each (M_),
is simply connected. Thus n={=,, y,,} is a tree of trivial groups and (4.3) shows that
Wh(n)=Wh(M_; t) vanishes. Hence any proper s-cobordism on such an M is trivial.

b) Suppose M _ has just one stable end ¢ with fundamental group =& such that
n.&—> ;M _ is an isomorphism. Then (3.10) of [1] implies that Wh(M _; ¢)=0 and
hence any proper h-cobordism on M _ is trivial. In particular, for any non-compact
M _, any proper h-cobordism on M _ x R? is trivial.

There are algebraic product and duality formulae similar to the ones in the compact
case. Compare with [5].

Let (W; M_, M) be a proper h-cobordism and let N be a compact manifold.
Let¢t:T— M_ be a tree.

Product formula (see Lemma 23 of [6]).
T(WxN;M_xN,M, xN)=y(N)-izt(W; M_,M,)

where x(N) is the Euler class of N and i,:Wh(M_;¢)>Wh(M_xN;t) is the
induced homomorphism.

Remark. By constrast to the above suppose (W"; M_, M . ) is a proper h-cobord-
ism (compact or non-compact) and let N be a non-compact manifold. If n>=6 then
the proper A-cobordism (W x N; M_ x N, M, x N) is trivial.

The torsion of a proper A-cobordism (W; M _, M , ) can be computed in Wh (W t)
where there is a conjugation —:Wh(W;¢)— Wh(W;t) defined as follows: choose
t":T'— W and {W,} as in §2. For each vertex u of 7" there is the orientation homo-
morphism w,:n,— Z,={+1, —1}. If u<v, then w,=w,oy,,. Define the conjugation
—:w—mn to be the collection of compatible conjugations -—:7m,— m, where g
=w,(g) g~ ! for gen,. The conjugation on = induces one on Wh(n)=Wh(W;t) by
taking any invertible germA: F[J'; n] - F[J'; n] to A=conjugate transpose of A.

Duality formula (see [6, Chap I, §5])

t(W; M, M_)=(—1"1T(W; M_,M,).
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