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Infinité Matrices in Algebraic ^T-Theory and Topology

F. T. Farrell1) and J. B. Wagoner2)

A first step in the program of classifying finite dimensional paracompaçt manifolds
in the spirit of surgery theory is to develop an algebraic theory of infinité simple
homotopy types for finite dimensional, locally finite CW complexes. In [2] and [12]
the géométrie foundations of such a theory are discussed and in [12] some important
progress was made on the algebraic part. In [3] a complète, à priori algebraic description

of the torsion was given for the spécial case of a finite dimensional, locally finite
CW complex with finitely many stable ends. The présent paper together with [14,

Chap I, § 5] and [4] extend the methods of [3] to the gênerai case. In fact the algebraic
approach to finite simple types as expounded in [9] or [11] can be developed in a

completely similar way in the theory of infinité simple types using the concept of a

"locally finite" matrix. Locally finite algebraic objects seem to provide the right
setting for extending much of the theory of compact manifolds to open manifolds.
For example, see [14] for a very comprehensive treatment of surgery theory for open
manifolds. The locally finite matrix idea has also arisen in the work of Karoubi and

Villamayor on X-theory from the Fredholm operator viewpoint. For example, see

[6] and [7]. Other examples of its use can be found in [5], [15], and [16].
The présent paper is purely algebraic. The first section discusses locally finite

matrices. The second section defines the Kt type object in which the torsion of an
infinité simple type lies (more exactly, see 3.5). The third section gives the basic

exact séquence that allows one to make calculations in important spécial cases.

Finally in the fourth section we define a Kt (/ for any ring homomorphism/: R -> S
which extends the usual définition of the relative group of a surjection.

In [14] the algebraic part of the theory of infinité simple types is developed along
the Unes of [9] and in [4] we complète the séries by discussing the géométrie part;
for example, it is shown that a proper A-cobordism is a product iff its torsion vanishes.

§ 1. Locally Finite Matrices

In this paper ail modules will be considered right modules unless otherwise stated.

Let R be a ring with identity. In this paper KQ (R) will dénote the Grothendieck

group of the category of finitely generated, projective JR-modules; GL(R)
limn_>00 GL(n, R) will be the gênerai linear group; E (R)czGL(R) will be the group

x) Partially supportée by NSF Grant GP 29697
2) Partially supported by NSF Grant GP 29073
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of elementary matrices; and Kl(R) GL(R) mod[GL(R), GL(R)]. See [1] or [13]
for example. Recall also the following matrix identities.

i-H f) U-î) (i 0 (i " i) G î)(i "!)"¦"
(1.2)

1

L)
Let E and F be free JR-modules based on countable sets {ex} and {fp] respectively.

An jR-linear transformation h\E-*F is locally finite provided that for each/^ there
are at most finitely many ea such that/^ appears in h(eoc) with a non-zero coefficient.

If /*(O Z//s'r/?a> t^11 ^ *s locally finite iff the matrix (r/8a) is locally finite in the
sensé that each row and each column of (rP(K) has at most finitely many non-zero
terms. The ring of ail locally finite transformations (matrices) of E to itself will be

denoted by l(E; R) or lR(E). Note that /(£"; R) and /(£"; R) are isomorphic if
there is a bijection between the bases {e^} and {el}. Let mR(E)czlR(E) dénote the

two sided idéal of finite matrices; i.e., of those matrices which hâve at most finitely
many non-zero entries. Finally, let nR(E) or pt(E; R) dénote the quotient ring
lR{E)jmR{E). For economy we will let IR, mR, and //JR dénote lR(E)9 mR(E), and

fiR(E) when E is the "standard" jR-module based on {el9 e2, e3,...}. If AelR, let Â
dénote the corresponding élément in jjlR.

Let the i?-module M be based on {ma}. An i^-submodule Ne M is a neighborhood

of infinity iffm^eN for ail but finitely many indices a. Thus h:E-*Fk locally finite iff
for any neighborhood of infinity Lez F there is a neighborhood of infinity AczE
such that h(A)cL.

For any ring with identity R, let R* dénote the group of two sided units in R.

PROPOSITION 1.3. There is a surjective homomorphism

Remark. In (1.12) below we show that q induces an isomorphism Kt (fiR)^K0 (R).
Proof of (1.3). Let EnaE be the free iÊ-submodule based on {eu...,en}; let

En'mc:E be the free i£-submodule based on {en+u...,em}; let EnczE be the free
jR-submodule based on {en+u en+2,..}.

Step 1. Let aelR be a locally finite matrix which is invertible modulo mR. Then
there is an n>0 such that <x:En-*E is injective and Eja{En) is a finitely generated,

projective i£-module.

Assuming step 1 for the moment, hère is how to define q. IfP is finitely generated,

projective, let (P}eK0(R) be the class it détermines. Now let xe(^R)* and choose
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an ocelR with 6t x. Define

En)}-(Eny (1.4)

The argument showing that q is well defined and is a homomorphism mirrors the
Bass-Heller-Swan argument constructing a homomorphism Kt(R\_t, ^~1])->^o(^)-
See [13, p. 227]. Hence we just give the proof of

Step 1 (cont.). Since ôLe(fiR)* there are integers m,n9p with m<n such that
a | Em is injective and

First, E/a(Em) has projective dimension =1 because there is an exact séquence
oc

0^Em—>E-+EI<x(Em)-+0. Hence a(Em)/Ep is projective because there is an exact

séquence 0 -? a (Em)/Ep -> EjEp -> E/oc (eJ) -* 0 where EjEp ^ Ep is free (cf. [13, p. 102]).
Thus Ep/a (En) is projective and finitely generated because there is an exact séquence

0 -* EPI* (£„) -> a (£m)/a (En) -> a (£m)/£p -, 0

il

Em,n

Finally we see that Eloc(En)^Ep®Ep/a(En) is finitely generated and projective as

required. Note that if Eqaa{En) then a(En)/Eq is also finitely generated and
projective because there is an exact séquence

0 -> a (En)/Eq -+ E/Eq -* E/a (En) -> 0.

In fact, if n<q, we hâve,

<£/a (£,)> - <£w> <£"• ^> - <a (£„)/£,> (1.5)

2. It remains to show q is onto. Again the argument is like the one in [13].
However, we will need the idea later in § 3 so it is included hère for convenience.

Any élément of Ko (R) can be represented in the form <P> — <i£n>. Where P is finitely
generated projective and Rn is free on n generators. Choose an integer m so that there
is a finitely generated and projective module Q WithP®Q^Rm. The required ocelRis

E^ Rn®(Q 0 P)©(ô ©
la lo lid ïid ïid ïid

e*(p © q)©(p © G)©(pee)©
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Direct Sum Rings

Let R be an associative ring with identity. Then R is a sum-ring provided there

are éléments a0, a1, p0, PteR such that

+ p1cc1 1

Define the identity preserving ring homomorphism ® : R x R -? R by

r © s

for r, seR.
Strictly speaking a sum-ring is a ring with a particular choice of ax and j8r Let

i? and R' be sum-rings with respect to (a,, /?,} and {a|, /?[} respectively. A morphism
of sum-rings f:R-+R' is an identity preserving ring homomorphism / such that
f(ocl) oc[ and /(j8,) jS|. Suppose i? is a sum-ring with respect to at and pt and

f:R-*R' is an identity preserving ring homomorphism. Then Rf is a sum-ring with
respect to a',=/(a,) and P[=f(Pt) and/becomes a morphism.

A sum ring R is an infinité sum ring provided there is an identity preserving ring
homomorphism oo:R^R such that rÇ&r™ for any reR (cf. [7]).

EXAMPLE 1. IR is an infinité sum ring. To see this it will be convenient to
identity IR with the ring lR(E) of locally finite iÊ-linear transformations of the free,

right iÊ-module E with countable basis {e)} where \<,kj<oo. Partition the basis

{ekj} into two disjoint infinité subsets {^}=>40u^41. Let Pl:{ekJ}-+Al be any two
bijections (/=0 or 1). Let PtelR(E) dénote the corresponding locally finite matrix.
Define 0LtelR(E) for i'=0 or 1 by

if ekJeAi

0, otherwise

This gives a sum structure on lR (E) and hence on IR. The foliowing choice of sum
structure is convenient: choose po to be any bijection of {e]}, 1 ^kj<oo, onto {e\},
1 <&< oo. Let /?! (ek) ekJ+i. Let a0 and a! be as above. To make lR (E) into an infinité
sum-ring write E=®™=i E3 where E3 is the free submodule of E spanned by the

d. Let relR{E) and e)eE. Define

Then intuitively r00 is just the infinité direct sum of r laid out on the i^'s. We hâve
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^r™ because

\) rœ(ekl) for j=\ and

«jîo~o«l(eî) ra)(«;) if ;>1

EXAMPLE 2. The homomorphic image of a sum-ring is also a sum-ring. Hence

fiR is a sum-ring.
Other examples will be given in § 2.

An interesting fact about an infinité sum-ring F is that Kl(F) 0 for ail ieZ
(cf. [16]), where for j> 1 the Kx is that of Quillen [10] and for /< 1 the Kt is that of
Bass [1] or Karoubi [7]. In (1.13) below we give a simple argument showing that

LEMMA 1.6. Let Rbe a sum-ring. Then

(A) There is a ceR* such that for any a, beR

a© b c(b@a) c~l

(B) There is a deR* such that for any a9 b, ceR

(a © b) 0 c d (a © (b © c)) d'1.

Proof of 1.6. Choose c /?oai + /?iao w^h c~1==c and d=P0o
with J"1 =/?oao + $o$iaoai + ^iai- ^e comPutati°n *s kft as an exercise.

Let M(«, i?) dénote the ring of « x «-matrices with coefficients in the ring R. Let
^0:M(2n, R)^M(2n+1,R) be the (non-identity preserving) ring homomorphism
given by

A- IA

Let sx : GL (2", i?) -> GL (2n+*, i?) be the group homomorphism given by

PROPOSITION 1.7. Let F be a sum-ring with respect to at, fiv For each n^\
there are ring isomorphisms 9n:F'->M(2n, F) and <j)n:M(2n, F)-*F which are inverses

of one another. Hence there are induced group isomorphisms 0n:F*-+GL(2n, F) and
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4>n:GL(2n, F)-*F*. Furthermorejor each reF

6n+1(r®0) s0(en(r))

and for each geF*

Proof of 1.7. Let 2n dénote the set of ail fonction from {1,..., w}. Any élément

le2n is a séquence I={il9...,in} where ia 0 or 1. Let /' dénote the séquence {/„,..., /1}.

/ jSil-».-j8iB. Define en:F-+M(2\ F) by

for any aeF. Define (t>n:M(2\ F)-*Fby

<f>n ((mI, j)) =: Z Pr' mL J ' aJ
I, J e 2»

for any 2" x 2w-matrix (mIfJ) over F. The vérification that 0n and <t>n satisfy the de-
sired conditions is left to the reader.

COROLLARY 1.8. If F is a sum-ring, then

r* ei r* ©i

Thus the natural map < >:r*->iT1(r) is surjective and <a> </?> if there is some
h^O such that

/Vr'MrV*] (1.9)

Hère 5i:T*->r* is the map jc-»x®1. Note that since [F*, T*] is normal and © is

conjugate associative (cf. 1.6), condition (1.9) is équivalent to

(a-jS""1) © 1 e[r*, r*]. (1.10)

Let En{F) e;1{E{2n,F)\ Then ge[r*,r*] implies (g®l)®leE8(F) and

geEn(F) implies ge[r*, r*] for n>2 (cf. [9]). Hence for any two éléments a and p
in T*, <a> <£> in i^ (r) iff there is an n ^0 and a â: ^ 1 such that

^(a-r^e^Cr) (1.11)

The map g : (fiR)* -» ^To (^) satisfies q(x®1)=q(x) so in view of (1.8) there is an
induced map q : Kt (fiR) -> Ko (R).
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PROPOSITION 1.12 (cf. [7]). The homomorphism Q:K1{p.R)-*KQ(R) is iso-

morphism.
Proof of 1.12. q is surjective by (1.3). So suppose £«#» 0 where <a>eA

is représentée! by âe(fiR)* for some aelR. This implies that for some n, coker <x

Hence a can be chosen to lie in (IR)*. This implies <<$> 0 once we hâve

LEMMA 1.13. K1(ÎR) 0.

Proof of 1.13. It suffices by (1.8) to show that if ae(/i?)*, then <x0 le [(//*)*,
(/jR)*]. Consider IR as IR(E) where E is as in Example 1 above. Given any séquence

Au A29..- of éléments in IR we can form At®A2®A3®-- by letting At act on the
submodule Etc:E. Then

a® 1 a© 1 © 1 © 1 ©•••

(a©l©a"1©l©a©l©---)*(l©l©a©l©a~1©l©a©--).
But each of the two terms in the right hand side of the équation is a product of
commutators by (1.1) and (1.2).

One can actually show (cf. [5] or [16]) that Ki(fiR)^Ki_1 (R) for ail ieZ.

§ 2. Trees and Rings

In this section we first recall for convenience the categorical description given in
[14] of Kx of a "tree of rings". Then we give an équivalent but more concrète définition

which is needed for the basic exact séquence in the third section.

A topological tree is any connected, 1-dimensional, contractible, locally finite
complex T with a base vertex vQ such that if v ^ v0 is any vertex of T then there are

at least two 1-simplices branching off from v. Thus any tree has a countably infinité
number of vertices and edges. If v is a vertex of T, let \v\ =number of edges in the

arc Connecting v to v0. We call \v\ the "absolute value" of v. The set J of vertices of
Jean be partially ordered by setting v^w iff there is a séquence of vertices v uu...,
un w such that |w,|<|wf+1| and ut and ui+1 are the end points of an edge in T.

The vertex v0 is the smallest élément of /. Any countably infinité, partially ordered
set arising as above will be called a tree. If / is a tree with smallest élément 0eJ and

J'cz/ is a cofinal subset containing 0, then /' is also a tree with 0 as the smallest
élément. Any tree / can be considered as a category whose objects are the éléments

of / and whose morphisms consist of a single morphism from j to i whenever /</
A tree of rings (over J) is a covariant functor from J to the category of rings with

identity and identity preserving ring homomorphisms. Thus any tree of rings R is a

collection {Ri9 y^} where jij'.Rj-^Ri is a ring homomorphism for i<y.
A tree of sets is a covariant functor from / to the category of sets and inclusion

maps which associâtes to each jeJ a countable set Cj such that
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a) if |i| \j| and i^j, then j
b) for each n^O the set C0-{Jll] n Ct îs finite
c) for each ceC0 there îs an n such that c$ U|i| n Cv

If each of the sets C3 is countably infinité, then we hâve a tree of infinité sets. In this
case condition (c) is not really needed.

Let R {RJ9 ytJ} be a tree of rings over «/. A module M over R consists of a
collection {MJ9 htJ} where Mj is a i?y-module and whenever /<y, htJ; MJ-*Ml is an
additive map satisfying

(i) hlJ(r-ni) ylJ(r)'hlJ(m)
(h) AIJoA<|k AIJkfor i^j^k.

If Af {M,, /tJ} and M' {M/, /^} are two modules over R a morphism F:M^>M'
is a collection F={fj} of jR,-homomorphisms /, : M3 -> M/ such that whenever /<y
we hâve h'lJ°fJ=fl°hlJ. Morphisms can be added and composed by adding and
composing the //s.

Let a:/-»-7V+ be a function from Jto the non-negative integers such that |/| <a(/)
and oc(i)^oc(j) whenever /</ This induces a "shift functor" from the category of
modules over the tree of rings R to îtself as follows: Form Mct {M?,h"J} from
M={Ml,hlJ} by letting M^®k{Mk®R) where i^k and |fc|=a(i). To get %/.
M*-*M? when i^j, let /e/ satisfy |/|=a(y). Then there is a unique k^l with
|it|=a(/). The map hkl:Mt-+Mk induces a map htkl:Ml®RJ-*Mk®Rl and /£,:
©^(Mj®^)-* ®k(Mk®Rt) is obtained by summing up the hkl.

If F:M->N is a morphism, let Fa:Ma-^^a be given by Fa={/ta} where/a
©fc(A®W)'[©fc(^rfc®^l)]->[®fe(^®^i)]. Now let p:J-+N+ be another

"shift map" such that a</?; that is, a(/)^/?(z) for ail ieJ. For each / with /</ and
|/| j8(i) there is a unique /' such that /'^/ and |/'| a(/). Therefore we hâve a map
Ml®Rl-+Mv®Rl. Thèse sum together to produce a map

This in turn gives a morphism 7rai5 : Mp -» Ma of modules over the tree of rings i?.

Now if/:Ma->TVis a morphism and a^/? there is the composition fonap:Mp-+
->M*-+N.

A germ [/]:M-^7V consists of an équivalence class of morphisms /:Ma->iV,
each/ being defined on some Ma, where/:Ma -> A^ and g:M^ -> A^ are équivalent iff
there is a shift map y:J-+N+ such that a<y and P^y andfonay=fonpy as

morphisms from M7 to Af. Addition and composition of morphisms induces addition
and composition of germs.

The category JtR with modules over the tree of rings R as objects and germs as

morphisms is an abelian category. See [14] for full détails. The category JtR has a

"direct sum" opération where M®N={Mj®Nj}.
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Let C= {Cj} be a tree of sets and R {Rp ytj) be a tree of rings. The free module

F[C\ R~\ generated by C over R is given by {Fj9 htj} where F is the free Rj module
generated by Cj (if Cj is empty set Fj — 0) and hij:Fj-+Fi is induced by the inclusion

CjdCi. A module MtJtK is said to be locally finitely generated provided there is

an epimorphism F[C\ R~\-*M for some tree of sets C. Let ^R^^R dénote the full
subcategory of locally finitely generated projectives. Then 0>R is an admissible, semi-

simple subcategory of JKR in the sensé of [1, p. 388] and one can define

KtW^K^&z). (2.0)

An alternate but équivalent définition of Kx (R) which we discuss in the remainder
of this section goes as follows : the tree / has associated to it a natural tree of infinité
sets E={Ej} where Ej {îeJ | i^j}. Let F(R) dénote the ring of endomorphisms of
F[E; R"]. The addition in F(R) is the addition of germs and the multiplication is

composition of germs. Then we can set

(2.0')

There isa natural map Ki^r(R))-^K1(^R) which is an isomorphism. The argument

showing this is entirely similar to the argument in [1, p. 353]; one uses (1.8)
together with (2.4) below or Lemma 6 of [14, Chap. I, § 5].

Now let R be a tree ring and let C be a tree of infinité sets over /. Consider a

collection A {Ak}, keJ, which satisfies

1) Ak=(akpq) is a locally finite matrix with (p, q)eC0 x Co such that there are at
most finitely many pairs (p, q)$Ckx Ck with akpq^=0, and

2) foreachA:e«/, Ak=Ah®Rk+'-+Aln<g)Rk + fLmte matrix where Ii9...9 ln are the
éléments of /with |/,| |fc| + l and fc^/j. Hère A®Rk^{ykl{dM)) for /=/l5..., /„.

Two such collections A {Ak} and B={Bk} are équivalent iSA°=B° and Ak Bk

+ finite matrix whenever k>0. A germ is an équivalence class of such collections. If
and [£] are two germs represented by A {Ak} and B={Bk}9 define

and

It is easy to check that the addition and multiplication of germs is well defined and
that this définition of germs of F[C\ K\ to itself agrées with the previous one. Let
F(C; R) dénote this ring of germs.

Hère is an alternate description of F(C; R). Let n(Ct; Rt) be the ring of locally
finite matrices operating on the free i*rmodule based on Ct modulo the idéal of finite



Infinité Matrices m Algebraic X-Theory and Topology 483

matrices Wheneveri^jtheinclusion CJtiClandtheringhomomorphismytJ Rj-*RV
induce a ring homomorphism

via the correspondence (cipq)^>'(ylJ(apq)) For each non-negative integer n let

\i\=n

whenever k^l, there îs an îdentity preserving ring homomorphism

obtamed by summing up the maps ntJ where \i\=k and \j\=l Define

Then F(C, R) îs the pull back of the diagram

l
l(C0,R0)

Let /' c: / be a cofinal subset of / contaming the smallest élément 0 and suppose
that there îs a séquence of positive integers 0 ao<a1<a2< such that y e/' îff
| j | (xk for some k ^ 0 Let C and R be the correspondmg trees denved from C and
R If A {Ak} satisfies (1) and (2) so does A' {Ak}keJ

The correspondence A-+A' induces a ring homomorphism

PROPOSITION 2 1 (j> is an isomorphism

Proof Exercise Similar to proof that inverse limits are not changed by taking
cofinal subsets

Actually, the ring T(C, R) only dépends up to isomorphism only on the tree of
rings R Corollary 2 3 below shows that for any two trees of infinité sets C and D
over / the rings F(C, R) and F(D, R) are isomorphic in a very natural way

A function/ Co -> Do is /?ro>/?erprovided that for eachye/ there are at most finitely
many éléments veCj such thsLtf(v)^Dj

PROPOSITION 2 2 Let C={Cj} and D {Dj} be trees of infinité sets over J
There is a byection h C0-*D0 such that both h and h ~ *

areproper
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Proof of 2.2. Associated to the tree Jis the "standard" treeof sets E={Ej} where

Ej {i | ieJ and j^i}. To prove (2.2) it is sufficient to show that for any tree of
infinité sets C there is a bijection h:C0-+E0 such that h and h~* are proper.

For any tree of sets C define, for each non-negative integer n and each ye/ with
\j\=n, the set (?,as

ôj Cj - U c.

where |/| n +1 andy ^ i.

By condition (b) above C3 is finite. Let Cn {J\j\^n £y Note that

wherey*!,..., j\ e J are the vertices with absolute value n +1. Also Co [Jn Cn

We shall construct the required bijection h:C0-+ EQby first defining a séquence of
injections hn : Cn -» £0 sucn that

(a) An+1 | Cn hn; ((3) A(C»)id£-; (y) h{C3

Step 1. Construction ofan h satisfying (a) through (y).
We can assume that each C} is non-empty by the following argument: Using the

fact that each C7 is countably infinité choose a collection {yy}jeJ of distinct éléments

jj of Cu such that y^Cj for eachy'e/. Define forjeJ

Then Dk contains Dt properly whenever k < l and D {/),} is a tree of infinité sets with
each Dj non-empty. Furthermore the identity maps Co ->Do and Z>0 ~* Q are proper:
so to prove (2.2) we can, if necessary, replace C by D to insure that ^^0. Now let
Scz Eo be any finite subset. We say S is full in E3 provided there is some n > \j\ so that

SnEj {i\ ieEj and |i| <n). If 5 is full in Ep then ^ is full mEl whenevery</ and
S n Ex ^ 0. Note that E3 {j } for eachy'e /.

Now let ho:C°-> Eo be any injection with ho(C°) full in Eo. Suppose that hn:Cn^ Eo

is defined for n > 0 and satisfies (a), ((3), and (y). Recall that Cn+i CnvCJlv-~vCJk
as above. Define hn + l:Cn+1^E0 by letting hn+1\Cn hn and Aw + 1

| Cp for p=7i,
,_/fc be any injection of Cp into Ep-hn(Cn) such that hn+1(CnuCp) is full in £p.

This séquence of hn's satisfies (a) through (y).
Now define the injection h:C0-+E0 by letting h | Cn hn. Condition ((3) implies

h is a surjection and condition (y) implies that hfë^czEj for eachjeJ.

Step 2. It remains to show that h~1:E0^C0 is proper. We show that for any
jeJ there are at most finitely many éléments veC0 such that v$C3 but h(v)eEj.
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Suppose to the contrary that there infinitely many such v's; say, vu v29 v3,....
Condition (b) above implies there is some vn andjavertex^eJ with vneCp and |/>|>|y|.
Since vn$Cj there is a vertex ieJ with |/| |j|, i#y, and/?^/. Condition (a) above

says that EinEj 0; bat ^(C^cJ?. so h(vn)$Ej. This is a contradiction. Hence
h'1 is proper. This complètes the proof of (2.2).

Now let C and D be trees of infinité sets over,/and let/ziCq-^Do be as in (2.2).
The bijections h and h'1 induce isomorphisms on the germ level [A]:F[C; R\-+F
[_D\K] and \h~~l~\:F\_D\K\-*F\C\FL\. The germs [A] and [A"1] are inverses of
one another. Thus we hâve

COROLLARY 2.3. If C and D are trees of infinité sets over J, then F[C; R] and

F[Z); R] are isomorphic. Hence F(C; R) andF(D; R) are isomorphic.
A useful useful spécial case of (2.3) is the following: we say two trees of infinité

sets C={C^ and D {Da} are équivalent iff Co Do and, for a>0, both Ca-CanDa
and Da — Car\D0L are finite sets. If C and D are équivalent, then the identity map
id: Co -> Do and its inverse are proper bijections; so (2.3) applies and we hâve F(C; R)

F(D;R).
If [A ] is a germ in F(C; R) there is a représentative A {Ak} of [A ] and a tree of

infinité sets D {Dk} équivalent to C with Ck^Dk for ail heJ and such that for any
keJ

akpq 0 for (p9q)tDkxDk (1')

and for any k and / in /with fc < /

akpq Skl(alpq) for (p,q)eDlxDl. (2')

Any such représentative ^4 of the germ[y4] will be called a matrix. Note that the
matrix A {Ak} is a morphism (not just a germ) oîF\_D; R~] to itself.

IfJ is a tree and R is a tree of rings over J we let

where E is the standard tree of sets obtained from /. The need for considering various

"présentations" F(C; R) of F(R) for différent trees of infinité sets C arises in topolog-
ical applications.

EXAMPLE 1. R is the inverse séquence \R0<r-R1^-Ri_1<^-Ri< Any
élément of F(R) is represented by a séquence (M0, M1, M2,...) of locally finite matrices

M!X={rritiJ) where m^eR^, 0</,y < oo, such that

M* M*+i®Ra + finite matrix.
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EXAMPLE 2. Same as above but where the fa are isomorphisms for, say,
Any élément of F(R) is représentée! by a pair of locally finite matrices (M, N) such

that M=N®R0 + fimte matrix. Hère M has entnes in Ro and N has entnes in Rk.
In particular if /: A -> B is a ring homomorphism we shall dénote the ring F of the

/ ià là
System B<—A<—A< by yf. In this case y/can be described as the pullback of the

diagram

yf > liA
l l
IB > 11B

EXAMPLE 3. The tree R has two ends:

-+£_ -> R-a+1-+ "'^R.^Ro^J -a

Suppose fa and/_a are isomorphisms for a^k. Then any élément of F(R) is represent-
ed by a triple (M~*, M0, Mfc) of locally finite matrices Ma {malJ) over R* where

a= -/r, 0, fcand —co<ij<oo such that

(b) mf,=0 if/<Oorj<0
(c) Mo M"k®J?o + Mk®i?o + finite matrix.

EXAMPLE 4. AU the ring maps ôtJ : i?7 -> i^t are isomorphisms. r(7?) is the ring
of ail locally finite matrices M=(mlJ) over Ro (where i,jeJ) such that for each ieJ
there are at most finitely manyj^E, such that mJl ^0.

LEMMA 2.4. 77*é? r% T(/^) w a sum-ring.
Proof. If 0=1(7,} and D {Dj} are trees of infinité sets over /, define the sum

of CandD,wntten C II D9 to be the collection {C, II Z^} where Cy II D3 dénotes

the disjoint union of C, and Dy In viewof (2.3) it suffices to show that F(E° II E1, R)
is a sum-ring where E° and £'1 are two copies of the standard tree E. If X is any set

and R a ring let F(X, R) be the free iS-module generated by X. Now for i=0 or 1 let
Pt\E° U El->El be a proper bijection as in (2.2). For each keJ let /?f dénote the

corresponding locally finite Rk-transformation from F(EJ? II El, Rk) to itself; fi)
is only determined up to a finite matrix for k>0. For i=0 or 1 and keJ, define the

locally finite /^-transformation a* ofi^0 U Ekx, Rk) to itself by

0 for etElk.

Each a* is well determined modulo a finite matrix. The germs al {a*} and jS,=

{#} make F(E° IIE1;!*) into a sum ring.
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Now let Cbe a tree of infinité sets. The collection of finite sets {Cj} defined in the

proof of (2.2) will be called the block décomposition of C. Each Cj is a block.
A germ [_A\ in F(C ; R) is blockedprovided there is a tree of infinité sets D équivalent

to C and a matrix représentative A {Aa} of \_A"] which is "blocked" with respect
to D ; that is, for each aeJ,A* (aapq) where

a*M 0 if (p,q)t\Jôfxôt.

A germ may be blocked in many différent ways. To illustrate this définition consider

a germ [,4] in F(E; R) where R is the tree of rings in Example 1. A blocking of the

germ[y4] consists essentially of a séquence 0 n0 <nl<--- of integers and a séquence
M* (rrixpq) of (na+1-na)x(na+1-na) square matrices where n!X<,p,q<n(l+1 and

rri*pqeRa. The blocked représentative A — {A*} is defined by

A" M* + M"'1®,

schematically we hâve

Ma+2

M0

M1

M2

In gênerai suppose A {Aa} is blocked with respect to D. For ae/let M<x(À)={apq)
where(/?, q)eÔaxÔa. We shall write

A YJM"(A) (2.5)
a

to indicate that ^4a=£a^ M*(A)®Rfi for each aeJ. We call J5a the support of
Ma(,4).

If ^4 =£a Ma(^l) is blocked with respect to the tree of infinité sets D we can block
A in a new way by the opération of amalgamation: Choose a séquence of integers
0 no<n1<n2< •" with /< wf. Form the tree of sets Dr {D'a} by letting

K U ^ where w|a, < |j8|

Note that D' and D are équivalent. For oceJ let Mp(A)®Ra where
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n\*\ ^ \P\ <n\a\ + i- Then A £a A/^) with respect to D' and we say the représentation

Yjh Ml(A) is obtained by "amalgamation" from £a M*{Â).

LEMMA 2.6. Let [^4]er(C; R) be any germ. Then [A~\ has a représentative of
the form X+Y where X={X"} and Y={Y*} are blocked (with respect to possibly
différent trees of infinité sets équivalent to C).

Proof of 2.6. We discuss the spécial case where /={1, 2....} is the tree with one
end. The gênerai case when J has many ends is left to the reader. Choose a séquence
1 =n1=n2<n3<n4< ••• of integers and define the square BtczJxJ by Bt {(p9 q)

| ni^P> q<ni+i}' This choice can be made so that [v4] has a représentative A {A*}
satisfying

(a) a*pq 0 if (p9q)t\jBt

(b) if a ^ /?, then apq ôaf} «) whenever (p, q)e U Bt.

Let M" (aapq) for (p, q)eBa. The required X= {X*}a>1 and Y={Y"}a>1 are defined as

and Y" M 2a ® jR2a

Thus [>4] is represented by X+ F=(X«M2a-1)+(^ailf2a). Schematically we hâve

Bt
1

1

1

^2

1

B5

l

1

L 1.

B,

B3

Bs B6!
I ^
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LEMMA2.7. Let F F(C;R) and let G be a germ in En(F)czF* for n^l.
Then G has a représentative of theform X- Y where X and Y are blocked matrices and
can be written in theform X=^a M*(X) and Y=Y<* M*(Y) where for each oceJ both

M*(X) and Ma( Y) areproducts ofelementary matrices over Ra.

Proof We shall only deal with the following spécial case which contains the essential
idea in (2.7): /={1, 2, 3...} ordered by increasing magnitude and C=£=standard
tree of sets for /. We shall show that any élément in Et(F)czr* satisfies (2.7). The
notation etj{y) will refer to an elementary matrix in E (2, F) and also to the élément in
T* it corresponds to under <\>i : GL(29 T) -? T*.

Let K— {kt} and L — {/J be two copies of the tree J. Then / is équivalent to KII L
where kteK is identified with 2i— 1 eJ and lteL is identified with 2ieJ. Hence T*
r(KU L;R).

Step 1. Consider the élément e12(X)eE(2, F). Use (2.6) to write 1 X+Y where

X=Yji M21'1 and 7=^.M2i. Then ei2(X) el2(X)'e12(Y) and both el2(X) and

e12(Y) are blocked as éléments of F*: To see this let Bt and nt be as in (2.6). As an
élément of F*9 ^12(X)is represented by the collection of matrices {A*} where

ro o
r

o J i.

0

0

0 1

1

1

1

1

0

r

i

0 ^

M2a+1®i?a

0

a J

Hère / dénotes the inclusions F(Ka\ Ra)cF(K; Ra) and F(La; Ra)czF(L; Ra). Hence

eu(X) Si^a^a where A^a is the 2. {nla+1-n2a.1) x2. («2a+i-«2a-i) elementary
matrix which looks like

M2a-1

The proof that ei2( Y) is blocked is similar. Also the above argument can be copied

to show e2l(X) is the product of two blocked matrices.

Step 2. The first step shows that any élément QeE^F) is the product Q-P^P2
•... • Pn of blocked germs where P|=£i<« %
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To prove (2.7) ît remains to show this product can be reduced to one of length two.
This is done by amalgamation. Choose a séquence I=r1<r2< •••<!•„ so that the

support of A] is contained in the support of A\ + x for 1 ^ i < n -1 where A] M1(Pl)
+ -~ + Mn(Pl)®R1. Then choose a séquence s1>s2>~->sn^l such that the
support of B} contains the support ofBj+1 for l^i^n-l where Bl=Mri + 1(Pt)+>~ +
Mri+Si(Pl)®R1 continue m this way to get two collections of matrices A' and
B* Ua< oo and 1<ï <«, where each A* and B* has entnes in jRa such that the
supports of the A* and B* fit together in the followmg way:

A\

A1
3

•«

1
3

1

A2

B\

—Ë*—

—1 ^-i

1

(2.8)

Let X=Y,^M\X) and 7=^1<aMa(7) where Ma(Z)=^ï^a2-.. -AaH and

Jîï -^ Ban. Then g Z- Tas required.

§ 3. The Basic Exact Séquence

Let {AJ9 ytJ} be a tree of abehan groups over J and let OeJ dénote the smallest
élément. Define the shift homomorphism

s: n ^ - ru,
j>0 j>0

by S{{a3}) {bj} where forj ^ 0

Let /: PI j>0>4J~>]^[J>0^4Jbe the inclusion map.
Now let R { Rj} be a tree of rings over /.

THEOREM 3.1. There is afive term exact séquence

n M/g-- n Mig^JM*)-^ n *<>(*,)-- n *»(*,).
j>0 j>0 j>0 j>0

The existence of such a séquence was suggested to us by Theorems I, II and IF
of [12]. The purpose of this section is to define A and d and to show exactness of
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(3.1). There is a similar séquence (see 3.6) involving the functors "Wh" and "ÂV
when the tree R is a tree of group rings.

First we define d: Let r F(S; R) where S is the standard tree of sets {Sj}
associated to the tree /. Let |\4]e.T* be an invertible germ represented by the collection

A {AJ) where AJefi(Sj; Rj)* fory>0. Each AJ détermines by (1.3) an élément

g(AJ)eK0(Rj) and we set

Then
induced homomorphism

and

(3.2)

so by (1.8) there is an

Next we define A : This is done by defining a homomorphism

A: [] GL(Rj) -> Kt(R)

which by [1, Cor. 1.10, p. 353] vanishes on \\ [GL(^),
Let A {Aa}e fljzo GL{R}). Choose a function <x\J-+N, where N={\, 2, 3,...},

such that AjeGL(ap Rj). Form the tree of infinité sets S(qc) — {S(oc)j} where ^(a)^

cj xN consists of those pairs (i,k) where J^i and l^k ^ocr Consider AtçGLx
(a,, JR,) as having support §(a)j {(j\ 1),..., (j, a7)}. Then ^o^j -4j is an invertible

germ in F(S(oc); R)* blocked by S (a). Choose any proper bijection h:S((x)0-yS0
as in (2.2) and set

(3.3)

where "< >" dénotes the class in Kt(R) determined by the invertible germ
; R)*. Seethefollowingdiagram:

a0

N Ao

J

J
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Note that Aa(A) is independent of the choice of bijection h:S (<x)0->S0; because

any two such choices détermine éléments of F (S; i?)* which are conjugate. If
A {A j} and B {Bj} are in \\o < j GL (Rj) and a : / -> N is a function such that both

Aj and Bj are in GLfa; Rj) for ail j eJ, then clearly Aa(A'B) Aa(A)'Aa(B).
Hence to show that (3.3) gives a well defined homomorphism it suffices to show that

iîAjeGL(aj9 Rj) for ail y and /?:/-? JVis a function with ok.j<Pj for ail j then Aa(A)
AP(A) in K1(R). Let A' {Aj} dénote A considered as an élément of Yio<j GLx

(PpRj). Let XA Y.o<jAjer(S(a);R)* and ^ £0«j4er(S (/»);*)*• Note
that S (P) S (a) II 5 (fi —oc). Suppose F (S; R) has been made into a sum ring via
the décomposition S KII L where X and L are two copies of S and let a0, a1? /?0,

P1eF(S;R) be as in the proof of (2.4). Choose proper bijections f :S (<x)-+K and

g:S(p-a)-*L. This gives a bijection/U g:5 (a) U S(£-a)->£II L. Let h:S(ot)
->S be the proper bijection a0-/. Then h-XA'h~1@\ {f^l g)'XAr {f1 II g"1)
in r(»S; jR)*. Hence /z-Z^-A"1©! is conjugate to

This says Aa(A)==AP(A) in ^(i^). q.e.d.
To prove (3.1) we must first show that the séquence is a zero-sequence:
(a) Jo(/-s) 0.

Let A {Aj}eYlj>oGL(aij9 Rj) represent an élément xeY\J>0K1(Rj). Then
A (x)—A (S (x)) is represented by the blocked germ

if 0 (Ak®RJ®Aï1®RJei))

This can be written as a product of commutators using (1.1) and (1.2).

(b) doA=0.
Let A {Aj}eH04jGL(<xj9 Rj). Then ^y>0 Aj€F(S (oc); R)* is a germ such

that %k*jAj®Rk is invertible in lRk. Hence e(fX*< jr^j®^fe]) 0.This says do A =0.
(c) (/-S)o3=0.
For each élément [yi]er* represented by A {^4a} we hâve (/— S)od=0 because

of condition (2) in § 2. In view of (1.8) this implies (/-S)°d 0 on Kx (R).
Now we show that (3.1) is exact. For simplicity we assume /= {0, 1, 2, 3,...} is

the tree with one end. The gênerai case is left to the reader.

Exactness at Y[j>o Ko (Rj)
Let A:={<i)i>~<jR^>}i>o be an élément killed by I-S. For convergence set

Po=0 and wo=0. Then for j>0 we hâve
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In particular there are positive integers rrij such that

Pj ® Ru/+1 © R?J^(PJ + 1<8>Rj)® RjJ© R?J.

Choose finitely generated projective modulus Q'3 over R3 such that P3®Qj is free

over Rr Let QJ QJ@RJnj. Then

Pj © Qj © #"J + 1 s fl? © 6, © (P, + 1 ® Rj)

In particular the module on the right hand side of the équation is free over R3.
Define the germ [A~\ where A {AJ} by letting

ss JO jid
*,)] © [Rn/+l © (fiJ + 1 ® Rj)© (P

id[

Note that fory 0 the matnx A0 is in IRO because Po O jRS°. For y>0 the matrix
A3 is only mvertible modulo a finite matrix. It is clear that Q{AJ)~<KPjy — (R"/}.

Exactness at KX{R)

Let E={ej} dénote the standard tree associated to /. For 0</?, q^oo let
E (p> #) {ej | P ^] <(l} and let F(p,q; R') dénote the free module generated over
a ring by R' by the set E (p9 q).

To show exactness it suffices to show that for any germ [^]er* with ô[Â] 0

there is a blocked matrix B=IBle[T*, JT*] such that [B-A'] has a blocked représentative

YjjMj where M3 is an invertible square matrix over Rr
So let d[Â]=0. Then using (1.5) we find a séquence of integers0 ^.!= mo<no

<m1<n1<m2<n2< •• and a représentative A {aJ} of [^4] such that the following
conditions hold:

(1) For O<j,ocJ is defined on F(nj_u oo; Rj), oc1 aJ®Rt on F(nj.u co; Rt)
when 0^i<j, aL3{F{n^l9 oo; Rj))=> F (mpoo, RJ, and aJ (F(nJ9 ao, Rj))c: F (m J9

oo ;^).
(2) Let Q0=F(m0, rn^, Ro) and for j>0 let Q^aJ(F(nJ9 co; Rj))nF(mJ9 mJ+1;

Rj). Then for 7 >0, Q3 is free and is isomorphic to F(np mJ + l; Rj).
(3) Forj>0 let Pj oLJ(F(nj^u n}\ Rj))nF(mj9 mJ+1; Rj). Then P3 is free and

is isomorphic to F(mp n}\ R})
(4) i7K,m7+1;^J)=PJ©ôJ and for ;>0, <*J(F(nJ9nJ+1; RJ))=QJ@(PJ+1®

®Rj). See the diagram below.

Now by using [1, Cor. 1.10, p. 353] and rechoosing the m3 and n3 (if necessary)
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it is possible to find isomorphisms

hj:Pj ~* F(mp nj> Rj)

and

whenevery >0 such that

hJ®gJ:F(mJ,mJ + 1;RJ) -+F(mJ9mJ + 1;Rj)

is of theform \up t?J where Uj and v3 are in GL(m]Jtl — mi\ Rj). Let go ideGLx
(m1-m0; Ro), and ho 0. Let B= {BJ} where BJ= £,o (hk®gk)®Rr Note that £
is blocked with respect tothetree {E(mJ9 oo)} and in fact B= [u, v] where u YjO^j vj
and v J]o<j vj- The germ [L-^4] is blocked with the respect to tree of infinité sets

{E (rij, oo)} where n'0 0 and rij n3 fory >0. q e.d.

0 n0 ml nx m2 n2 m3

6o ^i Ôi Pi Qi P*

Exactness at flj^o ^i (^j)
Stepl. Let G0^G!<—G^* be an inverse System of abelian groups and let

flJ:GJ-+Gl be the composition GJ^GJ^l-^ >Gr An amalgamation of a

{ajjeflo^j Gj is a séquence /?= {^j}erio<7 Gj obtained from a by choosing a

séquenceofintegers 0 «0<«i<«2<•** anc*lettmg/?, £, fJt(xt) wherenj^i<nJ + 1.

LEMMA 3.4. 77*e élément a= {ay}e flo^j ^j ^^ /w ^ image of I—S if some

amalgamation fi {/?,} o/ a /to m f/ze /mag^ o/ /— 5.

Proof Suppose there is an élément X= {I;}e[]o<j Gj such that X-S(X) p
where j9 is obtained from a as above. Then

and /^X.-SpO + O for j>0.
Fory>l define Yj-Xj + ^i fjii^i) where y'</</!/ Then ^=-5(7^ and ay

Step IL Now let G= n^ j ^i (^) and G!+ Ilo<7 Ki (Rj)- We show exactness

by taking an élément in G which is killed by A and finding some amalgamation of
it which pulls back to G+.
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Let zgG be in kerA and let z= {A}} where AjeGL(np Rj) for j^0. Then A (z) is

représentée by the blocked germ[>4] where A ^jJ^0AJ and the support of Aj is

E(Pj,PJ + l) where Po 0 and PJ n0 + -~+nJ-.l for./>0. To say that A(z) 0

implies that some stabilization [(.4©1)©---©1] lies in [r*, T*]. Now (,4®1)®---® 1

is a blocked matrix of the form ]T ^ where ^ is some large square matrix conjugate
to Aj in GL{Rj). Hence {^} also represents z so we may as well assume that the

matrix A J^0^jAj is itself in [r*, r*] and, in fact, that it is in En(r) for some n.

are blocked and the square matrices M-7^) and MJ(Y) are products of elementary
matrices over RJt

Use amalgamation as in (2.7) to write A IA'p X= IX] and Y=IY'} as shown

schematically by the following diagram:

Af0 A\ A'2 Af3
i 1 1 1 h
n0 ni n2 n3

Aq Aj A2 A3 A4 A5 A5

m0 ml m2 m3 m4

The integers mt and nx are intertwined séquences 0 mo no<m1<n1<m2<-
Let B=YJj^o Bj ^e ^e blocked matrix defined by

and fory>0

Note that Bj Aj when considered as éléments of Kt(Rj). Also, the séquence {Bj}
considered as an élément of G is an amalgamation of the original élément zeG in the

sensé of Step I.
Let

where

Ko id eGLfat- m0, Ro)
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wehave [5] [K~] in F*.
The support of Bj is E (njinj+l) and the support of Kj is E(m^ mj+i). For

short set cnj E{nj, nj+1) and Kj E(mj, mj+1). The matrices A and ^ overlap as in
the following diagram:

The solid squares are the (Xj x ocj and the dashed squares are the Kj x Kj. Each square

ajXXj is the union of two diagonal squares (cCjX0Cj)n(KjXKj) and (oCjXocj)n

n(Kj-l xkj.j) and two off diagonal rectangles (<XjnKj+1)x (ocjnKj) and (ccjnKj)

Recall that Bj=Yj^kBj(S)Rk and similarly for KJ. Since B° K°, each of the

square matrices Bj®R0 and Kj®R0 has zéro entries in the oif diagonal rectangles.
Since Bj Kj + finite matrix wheny > 0 we see that for each suchy the square matrices

Bt®Rj and Kt(g)Rj are zéro in the off diagonal rectangles for / large enough. By
amalgamating the B/s and the K/s again and absorbing (when necessary) the KJus
into the new blocks of the amalgamated i?/s we can assume that B=Y,o^j &

(j satisfy the following properties:
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(a) each Bj and K3 has zéro entries in the off diagonal rectangles.
(b) Ko id, and for j > 0 and / ^7, Kl Bl in the squares (a, x at) n (k1 x Kt) and

Kl®Rl_1 Bl_l in the square (az_x xaj.Jn^XK,).
Now for y>0 let yj Kj restricted to (aJ_1xocJ_1)ni(KJXKJ) and x] — BJ re-

stricted to (a7 x a7) n (/Cj x k:7). Then

so both >>, and x} are square invertible matrices over Rr Since i£y. is a product of
elementary matrices, y}= — x5 when considered as éléments of Kx(Rj). Since

yJ+1®R

we hâve ^^Xj + jj+^iîj in ATt(i?y). Let pjB^iRj) be the élément of determined

by Br Then

j?0 -s(xi) in X,(R0)

and

^ ^-^(xJ + 1) in Xi^)
for 7 >0. This says that the élément P {P}) lies in the image of/— S. But fieG is an
amalgamation of the original élément ze G, so z is also in the image of /— S by Step I.
This complètes the proof of (3.1).

Let G {Gj, ytJ} be a tree of groups over /. The group ring of G, written Z [G],
is the tree of rings over / given by the collection {Z [GJ, ytJ} where the ring homo-

morphism ytJ : Z [GJ -> Z [Gt] is the one induced by ytJ : G3 -> Gr Let Zj dénote the

tree of rings {Zp ytj} over /where Zj Z and y^ id for ail /, y eJ. There is a natural
"morphism" i:Zj-+Z [G] of rings over / given by Z3 -* Z [GJ], similarly we hâve a

morphism e: Z [G] -> Zj given by the évaluation maps Z [G7] -> Zy Thèse morphisms
of trees of rings induce homomorphisms /# :Kt (Zj) -> ^ (Z [G]) and e+ :K1 (Z [G])
-ïK^Zj) such that e*o^ id:K1(ZJ)->Kl(Zj). Let £X(Z [G]) coker (^(Zj)
->^(Z[G])). Then Kt(Z [G]) ^1(ZJ)0^1(Z [G]).

Let ±GczF(Z [G])* be the subgroup of diagonal germs with group entries; that
is, a germ D {DJ} {(dJpq)} lies in ±G iff for eachyeJ, dJPfq 0 for z?^^ and

dJPtp=±gp where gpeGr
Now define the Whitehead group of G as

Wh (G) Rx (Z [G]) mod < ± G> (3.5)

where (±G}czRl(Z [G]) is the subgroup generated by the éléments of ±G
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Arguing in a similar way to the proof of (3.1) one can dérive the following exact

séquence which is of interest in the theory of algebraic torsion for infinité simple
homotopy types discussed in [4] and [14].

THEOREM 3.6. There is afive term exact séquence

n wh(c,)-- n wmg^wmg)- n *o(g,)-- n ^(Gj).
0<j O^j 0<j O^j

Hère Wh(Gj) is the ordinary Whitehead group of Gj and Ko (Gj) is the reduced group
K0(Gj) coker(K0(Z)->K0(Z[Gj'])). Hère are some examples of the séquences
(3.1) and (3.6).

EXAMPLE 1. Suppose the tree of rings R is the inverse System BA^A^f id id

< Then F(R) yf as in Example 2 of § 2 and the basic séquence (3.1) reduces to
the séquence

Kt (A) -> Kt (B) - Kt (yf) -> Ko (A) -» Ko (B). (3.7)

Now "classically" there is the exact séquence of Bass

Kx (A) -+ Kt (B) -> Ko (f) -> Ko (A) -, Ko (B) (3.8)

as described in [1].
There is a natural isomorphism of séquences

)K0(A)->K0(B). (3.9)

We indicate how to construct the isomorphism 9:Kx(yf )->K0(f) and leave it to
the reader to check as an exercise that everything is well defined, etc. Recall that
Ko (f is "ÀV' of the category of triples (P, a, Q) where P and Q are finitely generated,

projective yl-modules and a: P®jB-^ Q®B is a iMinear isomorphism.
Let ^4°° dénote the free ^4-module based on {eu e2, e3,...}, let AnaAco dénote the

free submodule based on {en+1, en+2,...}, and let A^A"0 be the free module based on

{*!,..., en). Similarly for 500, Bn, and Bn. Now let (p, ât)eyf where fielB, aelA rep-
resents âteftA, and a®^=/? + finite matric. As in § 1 choose an integer n so large that
Acola(An) is finitely generated, projective over A. Also choose n so large that

\
n p\ Bn. Then let

ol)) (A™IAnJ9A«>lx(Att)) in Ko(f)
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where

jB: (A00/A") ® B -> (4°7a (AJ) ® 5

is jus t the map induced by /?:

(AccIAn) ®B B^/B" -, £°°/a (An) ® 5 (,47a (v4j) ® £.

If G is the tree of groups G0*-G1<r-G2 < and Z [G0]<-~Z [GJ^-Z [G2] <

f id id f id

is the associated tree of rings, the exact séquence (3.6) reduces to

Wh (G,) -, Wh (Go) -, Wh (G) -, £0 (GO -> ^0 (Go) (3.10)

Define Wh(/) J^0(/)/<±g> where <±g> is the subgroup generated by triples of
the form (Z [GJ, ±g, Z [Gx]) for geG0. There is an exact séquence

Wh (GO -> Wh(G0) - Wh(/) -, ^o(G0 -, K0(G0). (3.11)

As in (3.8) there is an isomorphism Wh (G) -> Wh (/ which produces an isomorphism
between the séquences (3.10) and (3.11).

Example 2. Let R be the inverse System with two stable ends

Then(3.1) reduces to

Kx (A) ® Kx (B) -> Kx (C) - K± (R) -, Xo (A) 0 Ko (5) -> Xo (C).

Remark. Let i£={i^-, yfj} be a tree of rings over J and let J'cJ be a cofinal
subset containing the smallest élément 0e/ as in (2.1). We get a tree of rings
R' {R'J9 y[j} by just restricting the indices i and j to be in /'. Then the isomorphism
(2.1) induces an isomorphism

Kx{R)-^K1(Rf). (3.12)

Furthermore, if R Z [G] and R' Z [G'] are trees of group rings, then there is an
isomorphism

Wh(G)-^Wh(G'). (3.13)

Thus, while the exact séquences (3.1) and (3.6) are différent for R and R\ the middle
term stays the same.
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§4. A Définition of K^f)
As an interesting sideline to the main emphasis of this paper we note that the eaxct

séquence

K± (A) -* Kt (B) -> Ko (/) -> Ko (A) -> Ko (B)

of any ring homomorphism f:A^>B can be extended to an exact séquence

K2 (A) -> K2 (B) -> Kx (/) -> Xx (A) -> Xx (B) (4.1)

Hère the K2 is the one defined by Milnor in [8] and, by définition, we take

(4.2)

When f:A->B is a surjection K2(yf) is naturally isomorphic to the relative ATi(/)
defined by Bass [1] and the séquence (4.1) is naturally isomorphic to the usual one as

constructed in [8]. In fact, in [16] and [5] the exactness of (4.1) is established and it is

shown that the séquence can be extended indéfinitely to the left using the higher K^s
of Quillen [10]. Since [16] and [5] supersede our original argument we simply
indicate hère the proof of

PROPOSITION 4.3. For any surjection f:A-*B there is a natural isomorphism

To define the homomorphism 6, let zeK2(yf) be represented by the word

II xi*j»(ba9 aa)e^t (yf) where baelB and aaefiA. Choose a lifting a'aelA of aaejuA
such that / (aa) ba. This can be done because / is a surjection. Now the matrix
Mz Y[eiiKj9(a'a)eGL(IA) actually lies in the subgroup GL(mA) of GL(IA) E (IA)
because fj ei<xJgc(aa)~id in E (fiA), which is isomorphic to E (IA) modGL(mA).
See [16]. Furthermore, since f\ eiocjoe(b<x) id in GL(IB) and / (a'a) ba, the matrix
Mz lies in the kernel of GL(mA)-^GL(mB). Hence we can define

Hère we are using the natural isomorphism GL(A)^GL(mA). See [16].
The argument showing 9 is well defined is essentially is a combination of the

arguments of Lemma 6.1 of [8] and Lemma 1.2 of [16]. One now checks that there is

a transformation of exact séquences.

»K2(yf)
K2 (A) -> K2 (B)( le )*! (A) -> Kt (B).

Hence the "five-lemma" says 6 is an isomorphism.
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