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Enden von Râumen mit eigentlichen Transformationsgruppen

Herbert Abels

§1

1.1. Man kann sich das folgende Problem vorlegen: Man finde handliche Kri-
terien dafiir, ob auf einem gegebenen lokal kompakten topologischen Raum irgend
eine nicht kompakte lokal kompakte topologische Gruppe eigentlich operiert (Aile
topologischen Râume seien hausdorffsch). Ein einfaches notwendiges Kriterium
liefert der folgende

SATZ A. Voraussetzungen: X sei ein lokal kompakter topologischer Raum mit
der Eigenschaft Z: Jede kompakte Teilmenge von X ist in einer kompakten zusammen-
hàngenden Teilmenge enthalten.

G sei eine lokal kompakte, nicht kompakte topologische Gruppe.
G operiere eigentlich auf X.
Behauptungen: Dann hat X ein, zwei oder unendlich viele Enden. Falls G zusammen-

hàngend ist, hat X hôchstens zwei Enden.

Beweis s. 3.6. Zur Définition der Endenzahl s. 2.1.

Jeder lokal kompakte, lokal zusammenhângende und zusammenhângende Raum
hat die Eigenschaft Z.

Man erhàlt die folgenden Korollare. Fur diskrete Gruppen:

KOROLLAR. Wenn auf einem lokal kompakten Raum X mit der Eigenschaft Z
eine unendliche Gruppe eigentlich diskontinuierlich operiert, dann hat X ein, zwei oder

unendlich viele Enden.

WennX ein lokal zusammenhângender Oberlagerungsraum ist, dann operiert z.B.
die Gruppe der Decktransformationen eigentlich diskontinuierlich auf X.

Da die Liegruppe der differenzierbaren Isometrien einer zusammenhângenden Rie-
mannschen C°°-Mannigfaltigkeit X eigentlich operiert, erhâlt man das

KOROLLAR. Die Liegruppe Iso (X) der differenzierbaren Isometrien einer
zusammenhângenden Riemannschen C^-Mannigfaltigkeit X ist entweder kompakt oder X
hat ein, zwei oder unendlich viele Enden. Falls die Zusammenhangskomponente der 1

von Iso (X) nicht kompakt ist, hat X ein oder zwei Enden.

Fur Operationen von kompakten Gruppen kann die Endentheorie nichts Satz A
entsprechendes leisten. Wenn nâmlich Xém beliebiger lokal kompakter topologischer
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Raum ist und G eine kompakte zusammenhângende topologische Gruppe ist, dann

operiert G auf X x G und die Endenzahlen von X und X x G stimmen ûberein (vgl.
[4]).

1.2. Bisher ist anscheinend nur der Spezialfall von Satz A betrachtet worden,
daB der Bahnenraum X/G kompakt ist (s. [9, 6, 12 und 13]). Fur diesen Spezialfall
wurde der Satz A in [13] bewiesen unter der zusâtzlichen Voraussetzung, daB die

Gruppe G diskret ist oder G die Voraussetzung Z erfullt. Die ûbrigen erwâhnten
Arbeiten beschâftigen sich nur mit dem Fall diskreter Gruppen. Allerdings wird in
den erwâhnten Arbeiten fur den Fall, daB X/G kompakt ist, ein genaueres Résultat
erhalten: Der Endenraum (&(X) von XlâBt sich mit einem ,,Endenraum" der topo-
logischen Gruppe G identifizieren. Der Endenraum der topologischen Gruppe G

ist dabei i.a. nicht der Endenraum des G zugrundeliegenden topologischen Raumes

(s. [13]).
Falls X/G kompakt ist, hat G eine kompakte Menge von erzeugenden Elementen

[1 ; §1 Proposition 8]. Der Fall, daB G nicht kompakt erzeugt ist, wurde also bisher
anscheinend nicht behandelt.

1.3. Besondere Aufmerksamkeit ist dem Spezialfall gewidmet worden, daB

G=X ist und G vermôge Linkstranslationen auf sich operiert (s. [4, 5 und 13]),
also der Endenzahl einer zusammenhângenden lokal kompakten topologischen
Gruppe. Fur diesen Fall erhâlt man aus Satz A:

SATZ B. Eine zusammenhângende, lokal kompakte topologische Gruppe hat hôch-

stens zwei Enden.

Mit Hilfe der Lôsung des 5. Hilbertschen Problems zeigt man nâmlich, daB eine

solche Gruppe die Bedingung Z erfullt (s. 3.7). Man kann Satz B auch ohne Zuhilfe-
nahme der hochgradig nichttrivialen Lôsung des 5. Hilbertschen Problems beweisen,
indem man die Methoden des Paragraphen 3 geeignet abândert. Dasselbe gilt fur
Paragraph 4. Détails hierzu sollen anderswo verôffentlicht werden.

In [13] wurde Satz B unter der explizit gemachten Voraussetzung, daB die

Bedingung Z erfullt ist, bereits bewiesen. In [5 ] wurde der Satz B fur den Fall bewiesen,
daB das zweite Abzâhlbarkeitsaxiom gilt, allerdings wurde die Lokalkompaktheit
ersetzt durch die schwâchere Voraussetzung, daB G semikompakt ist, d.h. jeder Punkt
besitzt eine Umgebungsbasis aus Mengen mit kompaktem Rand.

1.4. Ein mit dem in 1.1 genannten Problem eng zusammenhângendes Problem ist
das folgende: Man finde handliche Kriterien dafur, ob auf einem gegebenen Raum X
eine gegebene nicht kompakte topologische Gruppe G eigentlich operiert. Fur den

Fall, daB X/G kompakt ist, liefern die Resultate, die in 1.2 zitiert wurden, gute Kri-
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tenen: Wenn G eigenthch auf Xopenert und X/G kompakt ist, sind - unter geeigneten
Voraussetzungen - (£(X) und ein ,,Endenraum" der topologischen Gruppe G homo-

omorph
Falls X/G nicht kompakt ist, ist dièse Aussage falsch, wie man leicht an Beispielen

bestàtigt. Allerdings gehort zu jeder eigentlichen Opération von G auf X unter den

Voraussetzungen von Satz A eine Kompaktifizierung (5 von G, so daB ô — G einem
abgeschlossenen G-stabilen Unterraum von (è(X) homoomorph ist (s. 4.2).

Im Falle, daB X genau zwei Enden hat, kann man genauere Aussagen machen :

SATZ C. Unter den Voraussetzungen von Satz A bestehe (&(X) aus genau zwei
Punkten. Dann besitzt G eine diskrete unendîich zykhsche Untergruppe H, so dafi XIH
kompakt ist.

Insbesondere ist dann G/H kompakt. Nach [13] (s 1.2) hat G als topologische
Gruppe in der Endentheone von Specker genau zwei Enden.

Fiir zusammenhângende lokal kompakte topologische Gruppen kann man noch
mehr als Satz C aussagen. Jede solche Gruppe mit zwei Enden ist direktes Produkt
der additiven Gruppe R mit einer kompakten zusammenhângenden Gruppe, falls G

dem zweiten Abzâhlbarkeitsaxiom genugt (s. [7 und 10]). Diesen Satz - ohne die

Abzâhlbarkeitsvoraussetzung - erhâlt man aus Satz C, wenn man der Beweisidee von
Freudenthal [7] folgt: Man zeigt nâmlich mit Hilfe von Satz C und 3.7 Lemma leicht,
daB jede zusammenhângende lokal kompakte topologische Gruppe mit genau zwei
Enden maximal fast-penodisch ist, und verwendet dann den Struktursatz fur
zusammenhângende maximal fast-penodische Gruppen.

Ich danke dem Referenten fur den Hmweis auf die Arbeit: ,,Ends of locally compact

groups and their coset spaces" von C. H. Houghton, die demnàchst im J. Aust.
Math Soc. erscheinen wird. Dort wird u.a. die Struktur der in Satz C auftretenden

Gruppen G genau bestimmt, also der Gruppen, die eine unendîich zykhsche

Untergruppe H mit kompaktem Faktorraum G/H besitzen.

1.5. Wir geben eine Ubersicht ùber den Inhalt der vorhegenden Arbeit. Die
Beweismethoden sind Verallgemeinerungen der klassischen Methoden der Enden-

theone, insbesondere von [9 und 6]. Im Paragraphen 2 wird die Définition der Enden-

kompaktifizierung X* eines lokal kompakten Raumes X refenert. Ferner wird ûber
den Zusammenhang zwischen der Endenzahl von X und gewissen Kohomologie-

gruppen von X benchtet (s. 2.4).
Es wird bewiesen (s. 2.3), daB sich jede stetige Transformationsgruppe auf X

zu einer stetigen Transformationsgruppe auf X+ fortsetzen lâBt. Daher wird in den

weiteren Paragraphen der Arbeit immer die folgende allgemeinere Situation vor-
ausgesetzt: Xsqi em lokal kompakter Raum, der dicht in einem kompakten Raum Y

liegt, so daB Y— X total unzusammenhângend ist. Ferner setzen wir voraus, daB eine
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lokal kompakte nicht kompakte topologische Gruppe G stetig auf Y operiert. Die
Opération sei so, daB X ein G-stabiler Unterraum ist und die induzierte Opération
von G auf X eigentlich ist. Im Paragraphen 3 werden im Wesentlichen die Sâtze A und
B bewiesen. Ober den Inhalt von Paragraph 4 wurde schon in 1.4 einiges gesagt.
Am SchluB erhâlt man in Satz D die vollkommene Entsprechung eines Satzes von
Freudenthal [6, Satz 6.16]. Der Satz von Freudenthal wurde fur den Endenraum
diskreter Gruppen formuliert. Der Satz D in 4.11 gilt fur die Menge der Grenzpunkte
der Transformationsgruppe (Définition der Grenzpunkte s. 4.7).

§2

2.1. Aile auftretenden topologischen Râume seien hausdorffsch. Eine Kompak-
tifizierung F eines topologischen Raumes JSfist ein kompakter topologischer Raum Y
der X als dichte Teilmenge enthâlt. Die Endenkompaktifizierung (oder Freudenthal-

kompaktifizierung) X+ eines lokal kompakten topologischen Raumes X ist durch die
beiden folgenden âquivalenten Bedingungen definiert:

a) R: X+ —Xist total unzusammenhângend und fur jede Kompaktifizierung Y
von X, fur die Y— X total unzusammenhângend ist, gibt es (genau) eine Fortsetzung
der identischen Abbildung von X zu einer stetigen Abbildung/ :X+ -? Y.

b) R ist total unzusammenhângend und R zerlegt X+ lokal nicht, d.h. zu keiner
Umgebung F eines Punktes yeR in X+ gibt es eine Zerlegung von VnXin zwei dis-

junkte offene Teilmengen Uï9 U2, so daB yeÛinÛ2.
Zum Beweis der Âquivalenz sei bemerkt, daB R abgeschlossen in X+ ist (s. 3.1).

Ein kompakter Raum R ist aber dann und nur dann total unzusammenhângend, wenn
er 0-dimensional im Sinne von Menger ist (s. etwa [15]). Die Âquivalenz von a) und b)
folgt dann aus [11], Theorem 3.3 (vgl. auch [5, 7. Abschnitt]).

DaB zu jedem lokal kompakten Raum X eine Kompaktifizierung X+ mit der

Eigenschaft a) existiert, folgert man leicht aus dem Satz von Tychonov und der Tat-
sache, daB das Produkt von total unzusammenhângenden Râumen total unzusammenhângend

ist.
Der Raum (£(X): X+ ~ JfheiBt Endenraum von X, die Anzahl seiner Elemente

heiBt Endenzahl e(X) von X, falls dièse endlich ist, sonst setzt man e(X) oo. Offen-
bar ist e(X) genau dann gleich null, wenn X kompakt ist.

2.2. Mit Hilfe der Eigenschaft b) kann man leicht Beispiele von Endenkompak-
tifizierungen angeben: Aus einer kompakten zusammenhângenden Mannigfaltigkeit
Y mit oder ohne Rand der Dimension n > 1 entferne man k Punkte (oder eine

konvergente Punktfolge einschlieBlich Limespunkt); dann erhâlt man einen lokal
kompakten Raum X, dessen Endenkompaktifizierung gleich Y ist. So erhâlt
man:
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e(Rn) e(Sn- lPunkt) 1 fur n>\
e(Rx S"~1) e(S'î-2Punkte) 2 fur /i > 1,

e(R) e({xeR; 0 < x < 1}) 2,

weil {xeR; 0<x<l} + {xeR; O^x^l}; die Eigenschaft b) priift man nâmlich
leicht nach.

Fur allgemeinere Konstruktionen von diesem Typ s. [11, Proposition 3.12].

2.3. Wegen Bedingung a) setzt sich jeder Homôomorphismus von Zzu einem Ho-
môomorphismus von X+ fort. Jede Opération einer Gruppe auf X induziert daher
eine Opération auf X +

SATZ. Wenn die topologische Gruppe G stetig auf dem lokal kompakten Raum X
operiert, dann ist die induzierte Opération auf der Endenkompaktifizierung X+ eben-

falls stetig, falls X zusammenhàngend ist.
Beweis. Wir miïssen zeigen, da8 fur geG, yeX+ — X, F eine Umgebung von y

in X+ die Menge {(h9 z)eGxX+ ; h-zeV) eine Umgebung von (g,g~~iy) ist. Da
die Linkstranslationen Lg:G->G mit Lg(x) gx Homôomorphismen von G sind,
dùrfen wir g=l annehmen. Es gibt offene Umgebungen V und V von y in X+,
deren Rânderin Zliegen (s. 3.2) und so daB F'cF'cF gilt. Die Menge M : {geG;
gdV'cV,g~1ôVc:CV7} ist eine offene Umgebung von 1 in (/, da dV\ dVkompakt
<=X sind und die Opération von G auf X stetig ist. Wir zeigen, daB MV cz V ist.

Fur geM ist

d(gV n CV) c (dgV n CV) u (gV' n dV) 0.

Da ^zusammenhàngend, ist auch X+ zusammenhàngend. Folglich hat jede Teilmenge

von Z+, auBer 0 und X + einen nicht-leeren Rand. Daher ist gV nCV leer, da

+, also gV'a F fur aile geM, q.e.d.

2.4. Ein Zusammenhang zwischen der Endenzahl eines topologischen Raumes und
Funktoren der algebraischen Topologie wird durch die folgenden Resultate gege-
ben.

X sei ein lokal kompakter parakompakter topologischer Raum. Es sei A ein kom-
mutativer Ring mit 1, der als Koeffizientenring aller folgenden Kohomologien ver-
wendet wird. H(X) sei die Cech-Kohomologie von X, HC{X) die Cech-Kohomologie

von Zmit kompaktem Trâger und H^X) der direkte Limes des induktiven Systems

der Kohomologien H(F)9 wo F das inverse System aller abgeschlossenen Teilmengen

von X mit relativ kompaktem Komplement durchlâuft.
Dann gelten die folgenden Sâtze (s. [8]): Es existiert ein exaktes Dreieck
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wo a durch die Inklusionen F c X induziert wird. Wenn Xzusâtzlich zusammenhân-
gend ist (in [8] wird die - ûberflùssige - zusâtzliche Voraussetzung gemacht, daB X
lokal zusammenhângend ist), so ist H^pf) kanonisch isomorph zu H°(X+— X).
Es folgt: Fur endliches &(X) ist U^(X)^A(S(X\ Wenn A ein Kôrper ist, so gilt
dimAH£(X) e(X), falls e(X) endlich ist, und e(X) ist dann und nur dann unend-

lich, wenn dim.AH%(X) unendlich ist. Man erhâlt als Folgerung, daB dim^jfiT^pf)
unabhângig vom Kôrper A ist, falls man unendliche Kardinalzahlen nicht unter-
scheidet.

Ganz analoge Aussagen wie fur die Cech-Kohomologie gelten fur die singulâre
Koholomogie (s. [12, vgl. auch 3]) und fur die Alexander-Spanier-Kohomologie
(s. [14]) unter geeigneten Voraussetzungen fur X.

§3

3.1. Der lokal kompakte Raum X liège dicht in dem Hausdorff-Raum Y. Dann ist
R: Y— X abgeschlossen in Y.

Denn X ist als lokal kompakter Raum lokal abgeschlossen in F, also Durch-
schnitt einer offenen und einer abgeschlossenen Teilmenge von Y. Das Komplement
R ist daher Vereinigung einer offenen und einer abgeschlossenen Menge. Da aber R

nirgends dicht in Y liegt, ist der offene Anteil leer.

3.2. Wenn R aufierdem total unzusammenhângend und Y kompakt ist, besitzt jeder
Punkt yeY eine Umgebungsbasis von Mengen V mit dVcX.

Fur Punkte yeX ist das nach 3.1 trivial. R ist als kompakter total-unzusam-
menhângender Raum O-dimensional (s. etwa [15]). Zu jeder offenen Umgebung U
(in der Topologie von Y) eines Punktes yeR gibt es daher offen-abgeschlossene

Teilmengen (in der Topologie von R) A, R — A von R, so daB AaU. Dièse Mengen
sind nach 3.1. auch in der Topologie von Y abgeschlossen. Da Y als kompakter
Raum normal ist, gibt es offene disjunkte Umgebungen F von A und W von (R — A)
kjCU. Daher ist VcU undV nR=A=V nR, also dVnR Q.

3.3. Nun operiere die nicht kompakte lokal kompakte topologische Gruppe G

stetig auf Y, fûhre X in sich iiber und operiere eigentlich auf X. Die Transformation
(p:GxX-^X, (g, x)-+(p(g9 x)= :g-x heiBt dabei eigentlich, wenn fur jede kompakte
Teilmenge K von X die Menge {geG; g-KnK^0} (relativ) kompakt ist. (Nâheres
ûber eigentliche Transformationsgruppen s. [2, Chap. 3 §4]).
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Wenn g ein Filter auf G ist, der keinen Hâufungspunkt besitzt und iTeine kompakte
Teilmenge von X ist, so hat die Filterbasis ^{K)= {A-K; Ae$} einen Hâufungspunkt

in dem kompakten Raum Y. Kein Hâufungspunkt von i$(K) liegt in X. Wâre
nâmlich U eine kompakte Menge in X, so daB AK n £7^0 fur aile Ae^9 so hâtte
jedes ElémentA e gPunkte mit der MengeP {geG; g-K r\U^0} Punkte gemeinsam.
Da P aber kompakt ist, weil G eigentlich auf X operiert, hâtte 3r dann einen
Hâufungspunkt i

3.4. Wir machen die zusâtzliche Voraussetzung Z fur X:
Z : Jede kompakte Teilmenge von X ist in einer kompakten zusammenhângenden

Teilmenge von X enthalten.

Ein lokal kompakter topologischer Raum X hat die Eigenschaft Z dann und nur
dann, wenn X zusammenhângend ist und jeder Punkt eine kompakte zusammen-
hângende Umgebung besitzt. Insbesondere ist die Voraussetzung Z erfullt, wenn X
lokal zusammenhângend und zusammenhângend ist. (Zist wegen 3.1 lokal kompakt).

g sei wieder ein Filter auf G ohne Hâufungspunkt. Faits $(x) fur einen Punkt
xeX gegen yeR konvergiert, so konvergiert ^(K) fur jede kompakte Menge KczX
gegen y.

Zum Beweis dûrfen wir annehmen, daB K kompakt zusammenhângend ist und x
enthâlt. Sei F eine Umgebung von y mit dVcX;dV ist kompakt, weil F kompakt
ist. Es gibt eine Menge Be^ mit BK nôV=0; denn sonst hàtte ^(K) einen

Hâufungspunkt in der kompakten Menge dV. Da 3?(x) gegen y konvergiert, gibt es eine

Menge Ae^ mit A-xcV. Fiir geC: An Bcft gilt dann g-xeV und gK r\dV= 0.

Da K zusammenhângend ist und x enthâlt, folgt daraus gKc V, also CKaV.

3.5. Mit den bisherigen Voraussetzungen und den Bezeichnungen von 3.4 gilt:
Es gibt in Y hôchstens einen von y verschiedenen Fixpunkt von G.

Beweis. Es seien zl9 z2 zwei verschiedene und von y verschiedene Fixpunkte von
G in Y. Ferner seien Vl9 V2 und U disjunkte Umgebungen in Y der Punkte zl9 z2

und y9 deren Rânder in Zliegen. Wenn A eine in der Relativtopologie von Y— U= : Q

offen-abgeschlossene Menge ist, dann liegt ihr Rand - in der Topologie von Y - in
der kompakten Menge dQ dU und ist nicht leer, wenn A nicht leer ist, da F
zusammenhângend ist. VergrôBern wir Q um eine kompakte zusammenhângende Menge
KczX, die ôQ enthâlt, so ist Q : Q u K zusammenhângend und U':=Y—Q'czU
eine Umgebung von y mit dU'aX. Wir dûrfen also von Anfang an annehmen, daB

Y — U zusammenhângend ist.
Nach 3.4 gibt es nun ein Elément geG mit g(dViudV2)<=:U. Daher hat die

zusammenhângende Menge Q mit gVt den Fixpunkt gz^Zi gemeinsam und Q triflft
gôVi nicht, also ist Qczg- Vi9 i l, 2. Folglich haben g-Vi und g-V2 gemeinsame
Punkte und daher auch Vx und V2, im Widerspruch zur Voraussetzung.
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3.6. SATZ. Voraussetzungen: Y sei ein kompakter Raum, X sei ein lokal kom-

pakter dichter Unterraum. Der Rest R:=Y — X sei total unzusammenhângend. Auf
Y operiere die lokal kompakte nicht kompakte topologische Gruppe G stetig, X sei
ein Gstabiler Unterraum auf dem die Opération eigentlich ist. Schliefilich erfulle X die

Bedingung Z: Jede kompakte Teilmenge von X ist in einer kompakten zusammenhàngen-
den Teilmenge von X enthalten.

Behauptung: R besteht aus hôchstens zwei oder unendlich vielen Punkten. Fails
G zusammenhàngend ist, besteht R aus hôchstens zwei Punkten.

Beweis. Betrachten wir einen Filter g' auf G, der keinen Hâufungspunkt hat,
z.B. bestehe §' aus den Komplementen relativ kompakter Mengen. Wegen 3.3 hat
5'(x) fur jedes xeX einen Hâufungspunkt yeR. Es gibt daher einen feineren Filter
g => 5'> so daB 5(x) gegen y konvergiert. Damit ist 3.5 anwendbar.

Falls G zusammenhàngend ist, operiert G trivial auf dem total unzusammenhân-

gendem Raum R ; denn die Bahn eines jeden Punktes yeR unter G ist eine zusam-
menhângende Teilmenge von R und daher gleich {y}. Wegen 3.5 gibt es dann hôchstens

zwei Punkte in R.

Nun sei G nicht zusammenhàngend. Wenn R nur aus endlich vielen Punkten
besteht, dann induziert die Opération von G auf R einen stetigen Homomorphismus
von G in die endliche diskrete Permutationsgruppe von R. Der Kern dièses

Homomorphismus ist ein offen-abgeschlossener Normalteiler G' von G, der aile
Voraussetzungen des Satzes erfullt. G' lâBt aile Punkte yeR fix. Daher besteht R nach 3.5

aus hôchstens zwei Punkten.

Bemerkung. In [9] hat H. Hopf fur den Fall, daB X/G kompakt ist und unter
weiteren Voraussetzungen bewiesen, daB die Mâchtigkeit von (£(X) entweder kleiner
oder gleich zwei oder mindestens gleich der des Kontinuums ist. Das ist im Falle,
daB X/G nicht kompakt ist, nicht mehr richtig. Als Beispiel betrachte man X=

C-Z,G Z,Y X+ \ -Punkt-Kompaktifizierung von C. Die Opération von Z
auf F sei die Fortsetzung der Translationen x-+x + n,neZ. Aile Voraussetzungen

von 3.6 sind erfullt, aber Y— Xist abzâhlbar. Der Grund fur dièse Abnormitât liegt
darin, daB die Punkte von Z ,,kiinstlich" aus Y entfernt worden sind. Betrachtet man

nur die Menge der Grenzpunkte (s. 4.7) der Transformation, so gilt der Satz von
Hopf wieder (s. 4.11, Satz D, Behauptung 4).

3.7. LEMMA. Jede lokal kompakte zusammenhângende topologische Gruppe

erfullt die Bedingung Z.

KOROLLAR. Wenn Y eine Kompaktifizierung der lokal kompakten zusammen-

hângenden topologischen Gruppe G ist, so dafi R:=Y— G total unzusammenhângend

ist, dann besteht R aus hôchstens zwei Punkten.
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Beweis des Lemmas. Nach der Lôsung des 5. Hilbertschen Problems [16] besitzt

jede lokal kompakte zusammenhângende topologische Gruppe G einen kompakten
Normalteiler K, so daB G/K eine Liegruppe ist. Die Zusammenhangskomponente Ko
der 1 in K ist ein kompakter Normalteiler in G. Wir werden zeigen, daB G/Ko eine

Liegruppe ist. Daraus folgt die Behauptung des Lemmas offenbar.
Nach Ûbergang von G zu G/Ko bleibt also zu zeigen: G sei eine lokal kompakte

zusammenhângende topologische Gruppe, K sei ein kompakter total unzusammen-
hângender Normalteiler von G, so daB G/K eine Liegruppe ist. Dann ist G selbst eine

Liegruppe. Zunâchst ist K zentral in G; denn das Bild der stetigen Abbildung
G-*K mit g-* g'X-g'1 ist fur jedes xeK zusammenhângend, also gleich einem

Punkt, nâmlich x. Nun durchlaufe L die Umgebungsbasis von 1 in K aller offenen

kompakten Untergruppen L von K. Dann ist G/L-+ G/K ein lokaler Isomorphismus
und daher Uberlagerungsgruppe. Folglich ist K/L isomorph zu einer endlichen Un-
tergruppe der ersten Homotopiegruppe n der Liegruppe G/K, die bekanntlich eine

endlich erzeugte abelsche Gruppe ist. Also ist K/L isomorph zu einer Untergruppe der

Torsionsgruppe von n, die endlich ist. Die Ordnung von K/L ist daher beschrânkt und

folglich ist K diskret.

§4

4.1. f: J¥-+Xsei eine eigentliche stetige und surjektive Abbildung zwischen zwei

lokal kompakten topologischen Râumen und X liège dicht in einem kompakten
Raum Y. Dann kann man - grob gesprochen - den Restraum R: Y— X&nW ankle-
ben, d.h. es gibt einen kompakten topologischen Raum W^-, in dem W dicht liegt und
eine stetige Abbildung/: ffîf-> Y, so daB/| W=fundf\ Wf— Wtin Homôomorphis-
mus auf R ist. Man definiere einfach ffif:=WvR,fdurch/ | W=f, f\R idR und
nehme als offene Mengen in JVf aile Mengen der Form <^u/~1(F), wo U offen
cz W und V offen c Y. Mit dieser Topologie ist Wf ein kompakter Raum. Sei nâmlich

{Uiuf~1(Vi);ieI} eine offene Oberdeckung von Wf, dann bilden die Mengen

{V{r\R\ iel} eine offene Uberdeckung von R, der als abgeschlossener (s. 3.1) Unter-
raumvon 7kompaktist. Alsoûberdeckenendlichviele Vj9 etwa V1,..., Vn9 bereits R.

Die Menge A=Wf-{J%if~1(Vj)=f-i(C]JVj) ist als /-Urbild einer

kompakten Teilmenge von X kompakt in W und lâBt sich daher von endlich vielen
der Ui ûberdecken. Die ûbrigen Eigenschaften von Ws und / priift man leicht
nach.

Wf ist durch die angegebenen Bedingungen bis auf Homôomorphie eindeutig be-

stimmt. Genauer gesagt: Gegeben ein kompakter Raum J?mit einem dichten Unter-
raum V und Abbildungen wie in dem folgenden kommutativen Prisma von Abbil-
dungen, dann ist V-*WS ein Homôomorphismus. Das Zeichen „ ^ " bedeutet dabei

einen Homôomorphismus.
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Denn V— V-+ Wf—W ist ein Homôomorphismus. Die stetige bijektive Abbildung
V-*Wf zwischen kompakten Râumen ist dann ein Homôomorphismus.

Die Topologie von Wf hat die folgenden Eigenschaften : Wenn g ein Filter auf
Wf ist, so dafi /(30 gegen eine Punkt ans R konvergiert, dann konvergiert 5 gegen
den entsprechenden Punkt von ffif— W.

4.2. Nun seien die Voraussetzungen von 3.6 erfûllt. Es sei also eine Opération
(Py'.Gx F-> Ygegeben, deren Einschrânkung auf X wir mit cp:GxX-+Xbezeichnen.
Dann gibt es eine Kompaktifizierung ô von G und eine Fortsetzung 0 von cp zu einer

stetigen Abbildung 0:ôxX-+Y,so dafi 0 | (ô — G) x {x} ein Homôomorphismus auf
Gx—G'X ist. Der Querstrich bedeutet dabei die abgeschlossene Huile in Y. Durch
dièse Eigenschaften ist ô bis auf Homôomorphismus eindeutig bestimmt.

Zum Beweis betrachten wir die stetige eigentliche surjektive Abbildung <pXo : G -*
-+Gx0 fur ein xoeX und konstruieren nach 4.1 G: ô(Px =GvR0, wo Ro:

G'xo — Gxo und definieren @\GxX=q>, 0 | Ro x X= Projektion auf die erste

Komponente.
Wir zeigen die Stetigkeit von 0. Es sei

5 {fco1 (V)nG cp^1 (V nX); V Umgebung von y eR0 in Y}

Dann konvergiert %(&)= {FK; Fe$} fur jede kompakte Menge KczX gegen y
(s. 3.4.). Zu jeder Umgebung W von y in Y existiert also eine Umgebung Fvon y in Y
mit VnRoczWund ^(Fnljlc W, also

0(0^ (V) xK) 0(((?>;/ (Fnl)u(FnRO)) x K)
ç*"1 (VnX)-Ku (VnR0) c W.

Also ist 0 stetig. Da ô kompakt ist und G als dichte Teilmenge erhâlt, ist 0 (ô x {x})
(Fx fur aile xeX. Andererseits ist 0(Gx{x}) G-x und Ro 0(Rox {x})
Gx — Gx9 also ist 0\Rox{x} ein Homôomorphismus auf Gx—Gx. Die

Eindeutigkeitsaussage folgt aus 4.1.

Wir identifizieren von nun an

Ô- G JR0 GTx-Gx fur aile xeX.
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Die Abbildung 0X: 6-> Finit Qx(g) Q(g, x) ist fur aile xeZdie in 4.1. konstruierte
Fortsetzung von q>x:G->G*x mit (px(g)=g• x.

Aus der Konstruktion der Topologie von ô folgern wir nun, daB sich die Rechts-
und Linkstranslationen von G auf sich zu stetigen Operationen von G auf ô fortsetzen
lassen. Dazu definieren wir

L:G x Ô-+Ô durch

g-h fur heG, und

g, h) (pY(g, h) fur heÔ -G R0,

und weiter

A:GxÔ-+Ô durch

Ê(g,h) h-g'1 fur heG, und

R(g,h) h fur heÔ-G.

Dann gilt

und

Wir haben die Stetigkeit von £und A zu zeigen. Sei 3r ein Filter auf G, der gegen
geG konvergiert, sei g' ein Filter auf 6, der gegen heô konvergiert und sei xeX.
Wir miissen zeigen, daB L(FxFf), bzw. Ê(FxF'), Feg, Feg' gegen £(g, A)

bzw. Â(g,h) konvergieren. Wir brauchen nur den Fall heô —G zu betrachten. Da
'e^r gegen $x(h) h konvergiert, konvergiert <fix o £(F xF') Q(Fx0x (Ff

eg' gegen (joy(g, >>). Nach Définition der Topologie von 6 konvergiert
daher L(FxF'), Fe$9 Ffe^f gegen L(g, h). Fiir $ gelten analoge tîberlegungen:
q>x(F-l),Feg konvergiert gegen ^(g"1), und QxoÊ(FxF') 0(F' xç^F'1)),
Feff, F'e$' konvergiert gegen $(h, <px(g~1)) h. Also konvergiert Ê(FxF')
gegen h R(g,h).

Statt £(g, /*) schreiben wir oft einfach g-h, ebenso fur È(g, h) einfacher h-g'1.
Wir haben jetzt zwei stetige Fortsetzungen von cp : G x X-+ X, nâmlich cpY:Gx Y-+

-> Y. Eine stetige Fortsetzung auf ôx Y-* F ist im allgemeinen nicht môglich. Man
nehme zu Beispiel G=X=R, Y— Kompaktifizierung von R durch die zwei Punkte

+ oo, — oo. G operiere auf 7durch <pY(g, y)=:g+y, wobeig+oo +oo,^ + (— oo)
— oo. In diesem Fall ist ô= Y. Eine stetige Fortsetzung von cp auf YxY kann es

nichtgeben, denn cp(n, — n) 0und (p(n, — 2n)= — w-> — oo, aberw-^ oo, — cn->~oo
fiir c>0, neN. Wir werden indessen zeigen, daB abgesehen von diesem Sonderfall,
daB die Randpunkte zueinander invers sind, eine stetige Fortsetzung môglich ist.
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4.3. Zwei Punkte yl9 y2 aus Ro heiBen invers, wenn es einen Filter g auf G gibt,
der gegen yx konvergiert und so daB der Filter g"1 : {F'1 ; Feg} gegen y2 konver-
giert. Daher ist y2 genau dann zu yt invers, wenn y2 Hâufungspunkt von (U (yx | G) ~1

ist, wo U(^i) | (?={[/nG; £/Umgebung von j^ in ô} ist.
Die Menge /= {(j1? y2)eRoxRo;yuy2 sind invers} ist daher abgeschlossen in

RoxRo; denn fur (yi,y2)$I gibt es offene Umgebungen JJi von >>f in ô, so daB

(C/i n G)"1 n C/2 0 ist und jedes Elément von U1 x £/2 liegt folglich nicht in /. Wenn

yuy2 invers sind, dann sind auch g-yx und y2'g~î=y2 invers. Die Menge der zu
einem Punkt yeR0 inversen Punkte bezeichnen wir mit y'1. Dièse Menge ist
abgeschlossen und G-stabil gegeniiber Linkstranslationen.

Wenn (yi, y2)el ist, dann gilt fur jedes Paar von Umgebungen U1 von yx in (5 und
U2 von y2 in j>, daB (p((UinG)x(U2n X)) X ist. Es existiert also sicher keine stetige
Fortsetzung von cp auf/. Zum Beweis betrachte man die stetige Abbildung 0X: ô -> Y.

Dann gibt es zu jedem Paar von Umgebungen Ul vony1 in G und V2: 0~1(U2) von
y2 in G zueinander inverse Elemente g und g~1 aus G, so daB (p (g, ç^(g"1))=^-g"x • x

x in ^(((/i n(/)x (£/2nJ)) liegt.

^.¥. Wir machen die Voraussetzungen von 3.6 und ùbernehmen die bisherigen
Bezeichnungen. Wenn Vx eine Umgebung eines Punktes yeR0 in Y ist, dann gibt es zu
jeder Menge AczY mit ôAczX eine Umgebung V2 von y in 6, so dafifur aile geV2r\G
gilt:

gA c Vt oder gA z> CVX.

Zunâchst dûrfen wir nâmlich annehmen, daB CVX zusammenhângend ist (vgl.
Beweis von 3.5.). Wegen der Stetigkeit von 0 :<S x X-* Y und weil OAczX kompakt ist,
gibt es dann eine Umgebung V2 von y in ô, so daB 0 V2 x ôA c Vx. Fur jedes
Elément geGnV2 golt daher g.dAczV1 und hieraus folgt die Behauptung, weil CVt
zusammenhângend ist.

4.5. 5 sei ein Filter aufG, der gegen yieR0 konvergiert. Falls y2 ein Punkt von Y ist,
so konvergiert die Filterbasis <S'U(y2)= {cpy(Fx U); Feg, U Umgebung von y2 in Y}
gegen yt oder y2 ist Hâufungspunkt von 3T1-

Falls nâmlich die erste Behauptung nicht gilt, gibt es zu jeder Umgebung Vt von

yt in Y und zu jeder Umgebung A von y2 in Y mit dA c X (dièse bilden nach 3.2 eine

Umgebungsbasis von y2) und in jedem Fe$ ein geF, so daB g'A<^V1. Falls F in
einer Umgebung V2 von y in G gemâB 4.4 enthalten ist, folgt daraus g A^CVX oder

âquivalent AzDg~1'CVl. Betrachten wir zu einem Punkt xGXnCV1 die Abbildung
0X: ô -> Y. Dann gibt es zu jeder Umgebung A von y2 in Y ein Elément g~x$G mit
(Pxiê1)^^ und das zu einem Elément geFe$ invers ist. Nach Konstruktion der

Topologie von G ist dann y2 Hâufungspunkt von g"1.
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4.6. Wir erhalten als Folgerung die angekundigte Aussage: Die Abbildung
<p':(Ôx F)-/-> Y mit

<p' | G x Y= cpY

und

cp' | ((G — G) x Y) — I Projektion aufdie erste Komponente

ist stetig. Die Abbildung q>' ist eine Fortsetzung von (p.

4.7. G operiert eigentlich auf Y-Ro. R-Ro ist dicht in R, faite R^R0. Y-Ro
erfullt die Voraussetzung Z. Insbesondere erfiillt Y, Y— Ro die Voraussetzungen von
3.6 an Stelle von F, X.

Beweis. Um die Eigentlichkeit der Opération zu beweisen, geniigt es zu zeigen,
daB es zu je zwei (nicht notwendig verschiedenen) Punkten aus Y— Ro kompakte
Umgebungen Kund L in Y- Ro gibt, so daB P:={geG;gK nL^Q} relativ kompakt
in G ist. Wir wàhlen K so daB dKaX. Wâre P nicht relativ kompakt in G, so gàbe es

einen Hâufungspunkt yeR0 von P. Da cp'(y, x)=y fiir aile xeY— Ro gilt, und cpr

stetig ist, gibt es eine Umgebung U von y, so daB q>'(UxK)czCL, da CL eine Um-
gebung von y ist. Fiir jedes Elément ge UnP erhalten wir also g-Kn L 0 im Wider-
spruch zur Konstruktion von P.

Aus der Stetigkeit von q>' folgt, daB fur jeden Filter von Teilmengen von G, der

gegen einen Punkt yeR0 konvergiert und fur jeden Punkt xe Y— RQ die Filterbasis der

Bildmengen bei der Abbildung G-+ Y mit g^(p(g9 x) gegen yeR0 konvergiert.
Wenn speziell xeR — R0, folgt daraus, daB y Hâufungspunkt der Bahn GxcR — R0 ist.
Daraus folgt die zweite Behauptung.

Zur dritten Behauptung: Jeder PunktyeR — R0 besitzt eine Basis aus Umgebungen
UczY— Ro mit kompaktem dUaX. Wenn K eine kompakte zusammenhângende
Teilmenge von Zist, die ô t/enthâlt, dann ist C/u Kcz Y— Ro eine kompakte zusammenhângende

Menge. Hieraus folgt die dritte Behauptung leicht (s. 3.4.)

4.8. Bezeichnen wir fur yoeRo mit V (yo)={yeRo;yo ist der einzige zu y inverse

Punkt}. Dann gilt
v&7o- (4.8.1)

Wenn nâmlich yeR0 nicht in V (y0) liegt, dann existiert ein Filter 3 auf G, der gegen

y konvergiert, aber y0 nicht Hâufungspunkt von g"1 ist. Dann konvergiert 5'Jo
gegen y nach 4.5 und damit ist yeG-y0.

Nun treten die beiden folgenden Fâlle auf:

1- V(yo) Qfùr aile j>oei?o. Dann ist Gy R0 fur aile yeR0 und damit y~1 R0

fur aileyeR0; dcnny'1 ist eine nicht leere abgeschlossene G-stabile Teilmenge von Ro.
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(yo)^0yoo .yoj>ogjo (jg)
=y~1=y09 also ist y0 Fixpunkt. Wenn umgekehrt y0 Fixpunkt ist, ist nach der obigen
Formel V(yo)=>Ro-{yo}, also y~1=y0 fur yeR0,

4.9. SATZ. Unter den Voraussetzungen von 3.6 bestehe Y—X aus genau zwei
Punkten. Dannbesitzt G eine diskrete unendliche zyklische Untergruppe H, so dafi X/H
kompakt ist. Insbesondere ist dann G/H kompakt.

Beweis. Es gilt R0 R. Wâre Rq^R, dann lâge R — Ro dicht in R, besàBe also

unendlich viele Punkte.
Die Untergruppe G1 von G, die Ro punktweise fix lâBt, hat einen Index <2 in G.

Wenn yieR0 Hâufungspunkt von Gx ist, dann ist auch g-yt Hâufungspunkt von
g'G1g~î G1 fiirgeG. Injedem Fall ist i^cG^ Wir dûrfen daher annehmen, dafî G

aile Punkte von Ro fix lâBt.

Wir befinden uns also imzweiten der in 4.8 unterschiedenen Fâlle: Jeder Punkt von
Ro ist zum anderen Punkt von Ro invers, aber nicht zu sich selbst.

Es seien nun Vl9 Wt offene Umgebungen von yiER0 in Y, die y2 nicht enthalten,

deren Rand in Jf liegt und fur die gilt: V1czVlc:W1. Wegen der Stetigkeit von cp' gilt
fiir Elemente geG nahe bei yt :

g'V.czW,, denn (p'(y9Vi) y.

H sei die von g erzeugte zyklische Untergruppe von G. Wir definieren W2: C Vl9

V2:=zCW1. Die offenen Mengen V2 und W2 enthalten y2, ihr Rand liegt in X und es

gelten die Inklusionen : V2aV2aW2 und g~lV2aW2.
H ist diskret, denn fur aile gneH,n>0 gilt gn'V\cW1 und fiir aile gneH,n<0 gilt

gn'V2cz W2 und daher hat H mit der folgenden Umgebung von 1 in G nur das Elément
1 gemeinsam:

{geG; gdV1 n C Wx * 0} u {geG; gdV2 nCW2^0}.

Die Folge gn, «>0, konvergiert gegen yx. Denn sonst gâbe es einen Teilfilter von gn9

der gegen einen Punkt ±yx aus G konvergiert. Da H diskret ist, kann dieser Punkt nur
y2 sein. Dann wûrde aber fur jeden Punkt yeVY und genugend groBes n gelten:

gn-yeCWl9 im Widerspruch zur Konstruktion. Ebenso erhâlt man, daB g~n, «eN,
gegen y2 konvergiert. Fur jeden Punkt xeX konvergiert daher gnx gegen yx und g~nx

gegen y2 fiir «eN. Es gibt also einen kleinsten Exponenten neZ mit gnxe Vv Dann ist

gnxe V1 —g- Vv Dièse Menge hat keinen Hâufungspunkt in Ro, ist also relativ kompakt

in X. Daher ist X/H als stetiges Bild von Vx—g'V^ kompakt. Dann ist auch GjH als

stetiges Bild der kompakten Menge ç>^1(^i~g' V±) kompakt. Die beiden Râume
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X/H und G/H sind nach einem Satz ûber eigentliche Transformationsgruppen
hausdorffsch (s. [2] Chap. 3, §4, n° 2 Proposition 3).

4.10. In der Situation des Satzes von 4.9 ist X/G kompakt. Daher haben JTund G

in der Endentheorie von Specker [13] isomorphe Endenrâume. Ferner sieht man aus
den Definitionen von Specker leicht, daB G und H isomorphe Endenrâume haben. H hat
aber - als diskrete Gruppe - genau zwei Enden. Es folgt, daB Y die Endenkompaktifi-
zierung von X ist und G die Endenkompaktifizierung der topologischen Gruppe G ist.

Falls in 3.6 Y— X aus einem oder unendlich vielen Punkten besteht, kann die
Endenzahl von G in beiden Fàllen gleich 1, 2 oder oo sein, wie man an Beispielen
leicht sieht.

4.11. Wir fassen die wichtigsten Resultate dièses Paragraphen in einem Satz

zusammen.

SATZ D. Vorawsetzungen: Y sei ein kompakter Raum, X sei ein dichter lokal
kompakter Unterraum. R:=Y—X sei total unzusammenhângend. G sei eine lokal
kompakte, nicht kompakte topologische Gruppe. G operiere stetig auf Y; X sei ein
G-stabiler Unterraum, auf dem G eigentlich operiert. X hat die Eigenschaft Z: Jede

kompakte Teilmenge von X ist in einer kompakten zusammenhângenden Menge enthalten.

Behauptungen: R:o sei die Menge der Grenzpunkte (s. 4.7.)

1. Ro ist eine kompakte, G-stabile Untermenge von R.

2. Es gibt genau eine Kompaktifizierung ô von G, so dafi die Abbildungen (px:G^X
mit cpx (g)=g' x sichfûr jedes xeX zu einer stetigen Abbildung @x;ô-+ Yfortsetzen
lassen und <px:ô — G-+R0 Homôomorphismen sind.

3. G operiert stetig auf ô vermôge Links- und Rechtstranslationen. Die Rechtstrans-
lationen lassen ô — G punktweise fix. Fur die Linkstranslationen ist 0X mit den

Operationen von G vertvâglich.
4. Ro besteht aus einem oder zwei Punkten oder ist perfekt.
5. Wenn Ro aus genau zwei Punkten besteht, dann besitzt G eine unendlich zyklische

diskrete Untergruppe H, so dafi GjH kompakt ist.
6. Jeder Punkt aus Y ist entweder Fixpunktfur G oder die abgeschlossene Huile seiner

G-Bahn umfafit Ro.
7. Es kann 0, 1 oder 2 Fixpunkte in Y geben. Die Fixpunkte liegen in Ro. Die

Opération heifit entsprechend elliptisch, parabolisch oder hyperbolisch.
8. Operationen mit einem Grenzpunkt sind parabolisch.
9. Operationen mit zwei Grenzpunkten sind elliptisch oder hyperbolisch.

10. Operationen mit unendlich vielen Grenzpunkten sind elliptisch oder parabolisch. Ob
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es parabolische Operationen mit unendlich vielen Grenzpunkten gibt, ist ein offertes
Problem.

11. Bei elliptischen Operationen ist y~1 Rofiir jedes yeR0.
12. Beiparabolischen Operationen mit dem Fixpunkt y0 ist y ~1 yofiïr aile y e Ro — { y0}

undyô1 R0-
13. Bei hyperbolischen Operationen sind die beiden (invarianten) Grenzpunkîe zuein-

ander invers, aber keiner zu sich selbst.

14. Falls X/G kompakt ist, ist Ro R; insbesondere istdann (px:ô — G-+Rein Homôo-
morphismus fur aile xeX.

Beweis. Nur 4. ist noch nicht bewiesen. Fur die anderen Behauptungen geben wir
nur die Stellen an, wo sie bewiesen sind oder aus denen sie leicht gefolgert werden
kônnen. Définition von Ro: 4.7 und 4.2; 1., 2., 3. in 4.2; 5. in 4.9 angewandt auf Y,

Y— Ro, wasnach4.7môglichist; 6. in 4.2 angewandt auf Y, Y— Ro fiir Punktej^o,
fiir yeR0 in 4.8; 7. in 3.5 und nach Définition der Grenzpunkte; 8. ist trivial; 9. ist
trivial, da jedes Elément aus G die Grenzpunkte permutiert ; 10. gâbe es zwei Fixpunkte,
so wâre nach dem 2. Fall von 4.8 fiir jeden Punkty der nicht Fixpunkt ist: y'1 =jedem
der beiden Fixpunkte; 11. 4.8 1. Fall; 12. 4.8 2. Fall und y'1 enthâlt, falls yo^Ro,
einen Punkt y¥"y0 und ist, da y0 eine abgeschlossene (j-stabile Menge ist, nach 6.

gleich Ro; 13. wurde im Beweis von 4.9 festgestellt; 14. da es eine kompakte Menge

KczXmit GK= Xgibt, falls X/Gkompakt ist, folgt aus 3.4: Ro G^xn R3 (HhKnR

Zu 4.'• yu y2, y3 seien drei Grenzpunkte eR0=ô — G. Wenn der Filter $f

auf G gegen yt konvergiert, so hat der Filter g"1 evtl. mehrere Hâufungspunkte.
Durch Verfeinerung kônnen wir erreichen, da8 er nur gegen einen Punkt, etwa

y'eR0 konvergiert. Zwei andere Grenzpunkte seien y"^y"r. Dann konvergieren die

beiden Filter $y" und ^y'" auf Ro gegen yx nach 4.5. Insbesondere gibt es in jeder
Umgebung von yt noch zwei Punkte g'y"^g'y'". Also ist Ro perfekt.
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