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Enden von Riumen mit eigentlichen Transformationsgruppen

HERBERT ABELS

§1

1.1. Man kann sich das folgende Problem vorlegen: Man finde handliche Kri-
terien dafiir, ob auf einem gegebenen lokal kompakten topologischen Raum irgend
eine nicht kompakte lokal kompakte topologische Gruppe eigentlich operiert (Alle
topologischen Rdume seien hausdorffsch). Ein einfaches notwendiges Kriterium
liefert der folgende

SATZ A. Voraussetzungen: X sei ein lokal kompakter topologischer Raum mit
der Eigenschaft Z: Jede kompakte Teilmenge von X ist in einer kompakten zusammen-
hingenden Teilmenge enthalten.

G sei eine lokal kompakte, nicht kompakte topologische Gruppe.

G operiere eigentlich auf X.

Behauptungen: Dann hat X ein, zwei oder unendlich viele Enden. Falls G zusammen-
hiingend ist, hat X hiochstens zwei Enden.

Beweis s. 3.6. Zur Definition der Endenzahl s. 2.1.

Jeder lokal kompakte, lokal zusammenhéngende und zusammenhéngende Raum
hat die Eigenschaft Z.

Man erhélt die folgenden Korollare. Fiir diskrete Gruppen:

KOROLLAR. Wenn auf einem lokal kompakten Raum X mit der Eigenschaft Z
eine unendliche Gruppe eigentlich diskontinuierlich operiert, dann hat X ein, zwei oder
unendlich viele Enden.

Wenn X ein lokal zusammenhingender Uberlagerungsraum ist, dann operiert z.B.
die Gruppe der Decktransformationen eigentlich diskontinuierlich auf X.

Da die Liegruppe der differenzierbaren Isometrien einer zusammenhéngenden Rie-
mannschen C*-Mannigfaltigkeit X eigentlich operiert, erhilt man das

KOROLLAR. Die Liegruppe Iso (X) der differenzierbaren Isometrien einer zusam-
menhdngenden Riemannschen C*-Mannigfaltigkeit X ist entweder kompakt oder X
hat ein, zwei oder unendlich viele Enden. Falls die Zusammenhangskomponente der 1
von Iso (X) nicht kompakt ist, hat X ein oder zwei Enden.

Fiir Operationen von kompakten Gruppen kann die Endentheorie nichts Satz A
entsprechendes leisten. Wenn ndmlich X ein beliebiger lokal kompakter topologischer
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Raum ist und G eine kompakte zusammenhédngende topologische Gruppe ist, dann
operiert G auf X x G und die Endenzahlen von X und X x G stimmen iiberein (vgl.

[4D).

1.2. Bisher ist anscheinend nur der Spezialfall von Satz A betrachtet worden,
daB der Bahnenraum X/G kompakt ist (s. [9, 6, 12 und 13]). Fiir diesen Spezialfall
wurde der Satz A in [13] bewiesen unter der zusitzlichen Voraussetzung, da3 die
Gruppe G diskret ist oder G die Voraussetzung Z erfiillt. Die iibrigen erwahnten
Arbeiten beschiftigen sich nur mit dem Fall diskreter Gruppen. Allerdings wird in
den erwdhnten Arbeiten fiir den Fall, daB X/G kompakt ist, ein genaueres Resultat
erhalten: Der Endenraum ¢(X) von X 148t sich mit einem ,,Endenraum‘ der topo-
logischen Gruppe G identifizieren. Der Endenraum der topologischen Gruppe G
ist dabei i.a. nicht der Endenraum des G zugrundeliegenden topologischen Raumes
(s. [13D).

Falls X/G kompakt ist, hat G eine kompakte Menge von erzeugenden Elementen
[1; §1 Proposition 8]. Der Fall, daB G nicht kompakt erzeugt ist, wurde also bisher
anscheinend nicht behandelt.

1.3. Besondere Aufmerksamkeit ist dem Spezialfall gewidmet worden, daB
G=X ist und G vermoge Linkstranslationen auf sich operiert (s. [4, 5 und 13]),
also der Endenzahl einer zusammenhidngenden lokal kompakten topologischen
Gruppe. Fiir diesen Fall erhédlt man aus Satz A:

SATZ B. Eine zusammenhdngende, lokal kompakte topologische Gruppe hat héch-
stens zwei Enden.

Mit Hilfe der Losung des 5. Hilbertschen Problems zeigt man ndmlich, daB eine
solche Gruppe die Bedingung Z erfiillt (s. 3.7). Man kann Satz B auch ohne Zuhilfe-
nahme der hochgradig nichttrivialen Losung des 5. Hilbertschen Problems beweisen,
indem man die Methoden des Paragraphen 3 geeignet abdndert. Dasselbe gilt fiir
Paragraph 4. Details hierzu sollen anderswo veroffentlicht werden.

In [13] wurde Satz B unter der explizit gemachten Voraussetzung, daf3 die Be-
dingung Z erfiillt ist, bereits bewiesen. In [5 ] wurde der Satz B fiir den Fall bewiesen,
daB das zweite Abzidhlbarkeitsaxiom gilt, allerdings wurde die Lokalkompaktheit
ersetzt durch die schwichere Voraussetzung, dal G semikompakt ist, d.h. jeder Punkt
besitzt eine Umgebungsbasis aus Mengen mit kompaktem Rand.

1.4. Ein mit dem in 1.1 genannten Problem eng zusammenhéngendes Problem ist
das folgende: Man finde handliche Kriterien dafiir, ob auf einem gegebenen Raum X
eine gegebene nicht kompakte topologische Gruppe G eigentlich operiert. Fiir den
Fall, daB X/G kompakt ist, liefern die Resultate, die in 1.2 zitiert wurden, gute Kri-
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terien: Wenn G eigentlich auf X operiert und X/G kompakt ist, sind — unter geeigneten
Voraussetzungen — E(X) und ein ,,Endenraum‘ der topologischen Gruppe G homo-
omorph.

Falls X/G nicht kompakt ist, ist diese Aussage falsch, wie man leicht an Beispielen
bestitigt. Allerdings gehort zu jeder eigentlichen Operation von G auf X unter den
Voraussetzungen von Satz A eine Kompaktifizierung G von G, so daB G—G einem
abgeschlossenen G-stabilen Unterraum von E(X) homéomorph ist (s. 4.2).

Im Falle, daB X genau zwei Enden hat, kann man genauere Aussagen machen:

SATZ C. Unter den Voraussetzungen von Satz A bestehe ©(X) aus genau zwei
Punkten. Dann besitzt G eine diskrete unendlich zyklische Untergruppe H, so daf$ X/H
kompakt ist.

Insbesondere ist dann G/H kompakt. Nach [13] (s. 1.2) hat G als topologische
Gruppe in der Endentheorie von Specker genau zwei Enden.

Fiir zusammenhédngende lokal kompakte topologische Gruppen kann man noch
mehr als Satz C aussagen. Jede solche Gruppe mit zwei Enden ist direktes Produkt
der additiven Gruppe R mit einer kompakten zusammenhdngenden Gruppe, falls G
dem zweiten Abzdhlbarkeitsaxiom geniigt (s. [7 und 10]). Diesen Satz — ohne die
Abzihlbarkeitsvoraussetzung — erhdlt man aus Satz C, wenn man der Beweisidee von
Freudenthal [7] folgt: Man zeigt ndmlich mit Hilfe von Satz C und 3.7 Lemma leicht,
daB jede zusammenhingende lokal kompakte topologische Gruppe mit genau zwei
Enden maximal fast-periodisch ist, und verwendet dann den Struktursatz fiir zusam-
menhidngende maximal fast-periodische Gruppen.

Ich danke dem Referenten fiir den Hinweis auf die Arbeit: ,,Ends of locally com-
pact groups and their coset spaces* von C. H. Houghton, die demnéchst im J. Aust.
Math. Soc. erscheinen wird. Dort wird u.a. die Struktur der in Satz C auftretenden
Gruppen G genau bestimmt, also der Gruppen, die eine unendlich zyklische Unter-
gruppe H mit kompaktem Faktorraum G/H besitzen.

1.5. Wir geben eine Ubersicht iiber den Inhalt der vorliegenden Arbeit. Die
Beweismethoden sind Verallgemeinerungen der klassischen Methoden der Enden-
theorie, insbesondere von [9 und 6). Im Paragraphen 2 wird die Definition der Enden-
kompaktifizierung X * eines lokal kompakten Raumes X referiert. Ferner wird iiber
den Zusammenhang zwischen der Endenzahl von X und gewissen Kohomologie-
gruppen von X berichtet (s. 2.4).

Es wird bewiesen (s. 2.3), daB sich jede stetige Transformationsgruppe auf X
zu einer stetigen Transformationsgruppe auf X * fortsetzen 148t. Daher wird in den
weiteren Paragraphen der Arbeit immer die folgende allgemeinere Situation vor-
ausgesetzt: X sei ein lokal kompakter Raum, der dicht in einem kompakten Raum Y
liegt, so daB Y —X total unzusammenhingend ist. Ferner setzen wir voraus, daB eine
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lokal kompakte nicht kompakte topologische Gruppe G stetig auf Y operiert. Die
Operation sei so, daB3 X ein G-stabiler Unterraum ist und die induzierte Operation
von G auf X eigentlich ist. Im Paragraphen 3 werden im Wesentlichen die Sitze A und
B bewiesen. Uber den-Inhalt von Paragraph 4 wurde schon in 1.4 einiges gesagt.
Am SchluB} erhdlt man in Satz D die vollkommene Entsprechung eines Satzes von
Freudenthal [6, Satz 6.16]. Der Satz von Freudenthal wurde fiir den Endenraum
diskreter Gruppen formuliert. Der Satz D in 4.11 gilt fiir die Menge der Grenzpunkte
der Transformationsgruppe (Definition der Grenzpunkte s. 4.7).

§2

2.1. Alle auftretenden topologischen Rdume seien hausdorffsch. Eine Kompak-
tifizierung Y eines topologischen Raumes X ist ein kompakter topologischer Raum Y
der X als dichte Teilmenge enthdlt. Die Endenkompaktifizierung (oder Freudenthal-
kompaktifizierung) X" eines lokal kompakten topologischen Raumes X ist durch die
beiden folgenden dquivalenten Bedingungen definiert:

a) R:=X" — X ist total unzusammenhéingend und fiir jede Kompaktifizierung Y
von X, fiir die Y— X total unzusammenhéngend ist, gibt es (genau) eine Fortsetzung
der identischen Abbildung von X zu einer stetigen Abbildung f: X+ — Y.

b) R ist total unzusammenhingend und R zerlegt X * lokal nicht, d.h. zu keiner
Umgebung V eines Punktes yeR in X * gibt es eine Zerlegung von VX in zwei dis-
junkte offene Teilmengen U,, U,, so daB yeU,nU,.

Zum Beweis der Aquivalenz sei bemerkt, daB R abgeschlossen in X * ist (s. 3.1).
Ein kompakter Raum R ist aber dann und nur dann total unzusammenhéngend, wenn
er 0-dimensional im Sinne von Menger ist (s. etwa [15]). Die Aquivalenz von a) und b)
folgt dann aus [11], Theorem 3.3 (vgl. auch [5, 7. Abschnitt]).

DaB zu jedem lokal kompakten Raum X eine Kompaktifizierung X * mit der
Eigenschaft a) existiert, folgert man leicht aus dem Satz von Tychonov und der Tat-
sache, daf} das Produkt von total unzusammenhidngenden Riumen total unzusammen-
hingend ist.

Der Raum E(X):=X " — X heit Endenraum von X, die Anzahl seiner Elemente
heilt Endenzahl e(X) von X, falls diese endlich ist, sonst setzt man e(X)= co. Offen-
bar ist e(X) genau dann gleich null, wenn X kompakt ist.

2.2. Mit Hilfe der Eigenschaft b) kann man leicht Beispiele von Endenkompak-
tifizierungen angeben: Aus einer kompakten zusammenhéngenden Mannigfaltigkeit
Y mit oder ohne Rand der Dimension n>1 entferne man k& Punkte (oder eine
konvergente Punktfolge einschlieBlich Limespunkt); dann erhdlt man einen lokal
kompakten Raum X, dessen Endenkompaktifizierung gleich Y ist. So erhilt
man:
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e(R") = e(S" — 1 Punkt) =1 fir n>1
e(Rx S" ')=e(S"—2Punkte) =2 fir n>1,
e(R)=e({xeR;0<x<1})=2,

weil {xeR; 0<x<1}*={xeR; 0<x<1}; die Eigenschaft b) priift man ndmlich
leicht nach.
Fiir allgemeinere Konstruktionen von diesem Typ s. [11, Proposition 3.12].

2.3. Wegen Bedingung a) setzt sich jeder Hom&omorphismus von X zu einem Ho-
mdomorphismus von X * fort. Jede Operation einer Gruppe auf X induziert daher
eine Operation auf X *.

SATZ. Wenn die topologische Gruppe G stetig auf dem lokal kompakten Raum X
operiert, dann ist die induzierte Operation auf der Endenkompaktifizierung X* eben-
falls stetig, falls X zusammenhdingend ist.

Beweis. Wir miissen zeigen, daB fiir geG, yeX " —X, V eine Umgebung von y
in X* die Menge {(h,2)eGxX™; h-zeV} eine Umgebung von (g, g"'y) ist. Da
die Linkstranslationen L,:G— G mit L,(x)=gx Homdomorphismen von G sind,
diirfen wir g=1 annehmen. Es gibt offene Umgebungen ¥’ und ¥ von y in X+,

deren Rinderin X liegen (s. 3.2) und sodaB V'< V' < V gilt. Die Menge M :={geG;

goV'eV, g oV e CI7} ist eine offene Umgebung von 1 in G, da V", 0V kompakt
c X sind und die Operation von G auf X stetig ist. Wir zeigen, daB MV’ cV ist.
Fiir ge M ist

o(gV' nCV)c(0gV nCV)u (gV' naV)=0.

Da X zusammenhingend, ist auch X ¥ zusammenhingend. Folglich hat jede Teilmenge
von X, auBer @ und X, einen nicht-leeren Rand. Daher ist gV"'n CV leer, da
#X*, also gV’ <V fiir alle ge M, q.e.d.

2.4. Ein Zusammenhang zwischen der Endenzahl eines topologischen Raumes und
Funktoren der algebraischen Topologie wird durch die folgenden Resultate gege-
ben.

X sei ein lokal kompakter parakompakter topologischer Raum. Es sei 4 ein kom-
mutativer Ring mit 1, der als Koeffizientenring aller folgenden Kohomologien ver-
wendet wird. H(X) sei die Cech-Kohomologie von X, H,(X) die Cech-Kohomologie
von X mit kompaktem Tréager und H(X) der direkte Limes des induktiven Systems
der Kohomologien H(F), wo F das inverse System aller abgeschlossenen Teilmengen
von X mit relativ kompaktem Komplement durchléuft.

Dann gelten die folgenden Sitze (s. [8]): Es existiert ein exaktes Dreieck
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H.—-H

'\6 m/
H

wo o durch die Inklusionen F < X induziert wird. Wenn X zusétzlich zusammenhén-
gend ist (in [8] wird die - iiberfliissige — zusdtzliche Voraussetzung gemacht, daB X
lokal zusammenhéngend ist), so ist H2(X) kanonisch isomorph zu H°(X*—X).
Es folgt: Fiir endliches E(X) ist HY (X)~A®®. Wenn A4 ein Korper ist, so gilt
dim, H3 (X)=e(X), falls e(X) endlich ist, und e(X) ist dann und nur dann unend-
lich, wenn dim, Hg(X) unendlich ist. Man erhilt als Folgerung, daB dim, H§(X)
unabhéingig vom Korper A4 ist, falls man unendliche Kardinalzahlen nicht unter-
scheidet.

Ganz analoge Aussagen wie fiir die Cech-Kohomologie gelten fiir die singuldre
Koholomogie (s. [12, vgl. auch 3]) und fiir die Alexander-Spanier-Kohomologie
(s. [14]) unter geeigneten Voraussetzungen fiir X.

§3

3.1. Der lokal kompakte Raum X liege dicht in dem Hausdorff-Raum Y. Dann ist
R:=Y— X abgeschlossen in Y.

Denn X ist als lokal kompakter Raum lokal abgeschlossen in Y, also Durch-
schnitt einer offenen und einer abgeschlossenen Teilmenge von Y. Das Komplement
R ist daher Vereinigung einer offenen und einer abgeschlossenen Menge. Da aber R
nirgends dicht in Y liegt, ist der offene Anteil leer.

3.2. Wenn R auferdem total unzusammenhdngend und Y kompakt ist, besitzt jeder
Punkt ye Y eine Umgebungsbasis von Mengen V mit 0V < X.

Fiir Punkte yeX ist das nach 3.1 trivial. R ist als kompakter total-unzusam-
menhdngender Raum O-dimensional (s. etwa [15]). Zu jeder offenen Umgebung U
(in der Topologie von Y) eines Punktes ye R gibt es daher offen-abgeschlossene
Teilmengen (in der Topologie von R) A, R— A von R, so daBl A< U. Diese Mengen
sind nach 3.1. auch in der Topologie von Y abgeschlossen. Da Y als kompakter
Raum normal ist, gibt es offene disjunkte Umgebungen ¥ von 4 und W von (R—A4)
U CU. Daherist VecUund VNnR=A=V nR, also 0V nR=0.

3.3. Nun operiere die nicht kompakte lokal kompakte topologische Gruppe G
stetig auf Y, fiihre X in sich {iber und operiere eigentlich auf X. Die Transformation
9:Gx X- X, (g, x)> ¢(g, x)=":gx heiBt dabei eigentlich, wenn fiir jede kompakte
Teilmenge K von X die Menge {geG; g-Kn K #0} (relativ) kompakt ist. (Ndheres
tiber eigentliche Transformationsgruppen s. [2, Chap. 3 §4]).



Enden von Rdumen mit eigentlichen Transformationsgruppen 463

Wenn § ein Filter auf G ist, der keinen Haufungspunkt besitzt und K eine kompakte
Teilmenge von X ist, so hat die Filterbasis (K)={A4-K; Ae &} einen Haufungs-
punkt in dem kompakten Raum Y. Kein Haufungspunkt von §(K) liegt in X. Wire
ndmlich U eine kompakte Menge in X, so daB A-K n U #0 fiir alle Ae{, so hitte
jedesElement 4 € F Punktemit der MengeP = {geG; g* K n U # 0} Punkte gemeinsam.
Da P aber kompakt ist, weil G eigentlich auf X operiert, hitte ¥ dann einen Hiu-
fungspunkt in P < G.

3.4. Wir machen die zusétzliche Voraussetzung Z fiir X :

Z: Jede kompakte Teilmenge von X ist in einer kompakten zusammenhingenden
Teilmenge von X enthalten.

Ein lokal kompakter topologischer Raum X hat die Eigenschaft Z dann und nur
dann, wenn X zusammenhingend ist und jeder Punkt eine kompakte zusammen-
hingende Umgebung besitzt. Insbesondere ist die Voraussetzung Z erfiillt, wenn X
lokal zusammenhéngend und zusammenhingend ist. (X ist wegen 3.1 lokal kompakt).

& sei wieder ein Filter auf G ohne Haufungspunkt. Falls §(x) fiir einen Punkt
xeX gegen yeR konvergiert, so konvergiert F(K) fiir jede kompakte Menge K <X
gegen y.

Zum Beweis diirfen wir annehmen, da8 K kompakt zusammenhéngend ist und x
enthdlt. Sei V eine Umgebung von y mit 0V < X ; 0V ist kompakt, weil ¥ kompakt
ist. Es gibt eine Menge Be & mit B-K ndV = 0; denn sonst hitte §(K) einen Hauf-
ungspunkt in der kompakten Menge dV. Da J(x) gegen y konvergiert, gibt es eine
Menge Aed mit A-x< V. Fir geC:=AnBc§ gilt dann g-xeV und gk ndV =0.

Da K zusammenhédngend ist und x enthilt, folgt daraus gK <V, also C-Kc V.

3.5. Mit den bisherigen Voraussetzungen und den Bezeichnungen von 3.4 gilt:

Es gibt in Y hochstens einen von y verschiedenen Fixpunkt von G.

Beweis. Es seien z,, z, zwei verschiedene und von y verschiedene Fixpunkte von
G in Y. Ferner seien V,, V, und U disjunkte Umgebungen in Y der Punkte z,, z,
und y, deren Rédnder in X liegen. Wenn A eine in der Relativtopologie von Y—U=:Q
offen-abgeschlossene Menge ist, dann liegt ihr Rand - in der Topologie von Y — in
der kompakten Menge 0Q =0U und ist nicht leer, wenn A nicht leer ist, da Y zusam-
menhdngend ist. VergroBern wir Q um eine kompakte zusammenhidngende Menge
K c X, die 0Q enthilt, so ist Q' :=Q u K zusammenhdngend und U':=Y - Q'cU
eine Umgebung von y mit 0U’ < X. Wir diirfen also von Anfang an annehmen, da3
Y — U zusammenhéingend ist.

Nach 3.4 gibt es nun ein Element geG mit g(éV; udV,)< U. Daher hat die zu-
sammenhidngende Menge Q mit gV, den Fixpunkt gz,=2z; gemeinsam und Q trifft
gdV, nicht, also ist Q=g V,, i=1, 2. Folglich haben g-¥V; und g-¥, gemeinsame
Punkte und daher auch ¥, und V,, im Widerspruch zur Voraussetzung.
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3.6. SATZ. Voraussetzungen: Y sei ein kompakter Raum, X sei ein lokal kom-
pakter dichter Unterraum. Der Rest R:=Y — X sei total unzusammenhdngend. Auf
Y operiere die lokal kompakte nicht kompakte topologische Gruppe G stetig, X sei
ein G-stabiler Unterraum auf dem die Operation eigentlich ist. Schlieflich erfiille X die
Bedingung Z: Jede kompakte Teilmenge von X ist in einer kompakten zusammenhdngen-
den Teilmenge von X enthalten.

Behauptung: R besteht aus hochstens zwei oder unendlich vielen Punkten. Falls
G zusammenhdingend ist, besteht R aus hochstens zwei Punkten.

Beweis. Betrachten wir einen Filter ' auf G, der keinen Hiufungspunkt hat,
z.B. bestehe &’ aus den Komplementen relativ kompakter Mengen. Wegen 3.3 hat
&' (x) fiir jedes xe X einen Haufungspunkt ye R. Es gibt daher einen feineren Filter
Fo &', so daB F(x) gegen y konvergiert. Damit ist 3.5 anwendbar.

Falls G zusammenhangend ist, operiert G trivial auf dem total unzusammenhéin-
gendem Raum R; denn die Bahn eines jeden Punktes ye R unter G ist eine zusam-
menhéngende Teilmenge von R und daher gleich {y}. Wegen 3.5 gibt es dann hoch-
stens zwei Punkte in R.

Nun sei G nicht zusammenhidngend. Wenn R nur aus endlich vielen Punkten
besteht, dann induziert die Operation von G auf R einen stetigen Homomorphismus
von G in die endliche diskrete Permutationsgruppe von R. Der Kern dieses Homo-
morphismus ist ein offen-abgeschlossener Normalteiler G' von G, der alle Voraus-
setzungen des Satzes erfiillt. G’ 148t alle Punkte yeR fix. Daher besteht R nach 3.5
aus hochstens zwei Punkten.

Bemerkung. In [9] hat H. Hopf fiir den Fall, daB X/G kompakt ist und unter
weiteren Voraussetzungen bewiesen, da3 die Méchtigkeit von E(X') entweder kleiner
oder gleich zwei oder mindestens gleich der des Kontinuums ist. Das ist im Falle,
daB X/G nicht kompakt ist, nicht mehr richtig. Als Beispiel betrachte man X=
=C—-Z,G=2,Y =X"=1-Punkt-Kompaktifizierung von C. Die Operation von Z
auf Y sei die Fortsetzung der Translationen x — x+n, neZ. Alle Voraussetzungen
von 3.6 sind erfiillt, aber ¥ — X ist abzdhlbar. Der Grund fiir diese Abnormitit liegt
darin, daB die Punkte von Z ,,kiinstlich*“ aus Y entfernt worden sind. Betrachtet man
nur die Menge der Grenzpunkte (s. 4.7) der Transformation, so gilt der Satz von
Hopf wieder (s. 4.11, Satz D, Behauptung 4).

3.7. LEMMA. Jede lokal kompakte zusammenhingende topologische Gruppe
erfiillt die Bedingung Z.

KOROLLAR. Wenn Y eine Kompaktifizierung der lokal kompakten zusammen-
hdngenden topologischen Gruppe G ist, so daff R:=Y — G total unzusammenhdngend
ist, dann besteht R aus hochstens zwei Punkten.



Enden von Ridumen mit eigentlichen Transformationsgruppen 465

Beweis des Lemmas. Nach der Losung des 5. Hilbertschen Problems [16] besitzt
jede lokal kompakte zusammenhidngende topologische Gruppe G einen kompakten
Normalteiler K, so dall G/K eine Liegruppe ist. Die Zusammenhangskomponente K|,
der 1 in K ist ein kompakter Normalteiler in G. Wir werden zeigen, daB G/K, eine
Liegruppe ist. Daraus folgt die Behauptung des Lemmas offenbar.

Nach Ubergang von G zu G/K,, bleibt also zu zeigen: G sei eine lokal kompakte
zusammenhédngende topologische Gruppe, K sei ein kompakter total unzusammen-
hingender Normalteiler von G, so daB3 G/K eine Liegruppe ist. Dann ist G selbst eine
Liegruppe. Zunichst ist K zentral in G; denn das Bild der stetigen Abbildung
G- K mit g— g-x-g~! ist fiir jedes xeK zusammenhingend, also gleich einem
Punkt, ndmlich x. Nun durchlaufe L die Umgebungsbasis von 1 in K aller offenen
kompakten Untergruppen L von K. Dann ist G/L— G/K ein lokaler Isomorphismus
und daher Uberlagerungsgruppe. Folglich ist K/L isomorph zu einer endlichen Un-
tergruppe der ersten Homotopiegruppe n der Liegruppe G/K, die bekanntlich eine
endlich erzeugte abelsche Gruppe ist. Also ist K/L isomorph zu einer Untergruppe der
Torsionsgruppe von 7, die endlich ist. Die Ordnung von K/L ist daher beschridnkt und
folglich ist K diskret.

§4

4.1. f: W — X sei eine eigentliche stetige und surjektive Abbildung zwischen zwei
lokal kompakten topologischen Rdumen und X liege dicht in einem kompakten
Raum Y. Dann kann man - grob gesprochen — den Restraum R:= Y — X an W ankle-
ben, d.h. es gibt einen kompakten topologischen RaumW , in dem W dicht liegt und
eine stetige Abbildung /: W, — ¥, so daBf | W=fund f| W,— W ein Homdomorphis-
mus auf R ist. Man definiere einfach W,:=W UR, fdurch f | W=f, f | R=idg und
nehme als offene Mengen in W, alle Mengen der Form U u f~*(¥), wo U offen
< W und V offen < Y. Mit dieser Topologie ist Wf ein kompakter Raum. Sei ndmlich
{U;u f~1(V)); i el} eine offene Uberdeckung von W,, dann bilden die Mengen
{V:n R;iel} eine offene Uberdeckung von R, der als abgeschlossener (s. 3.1) Unter-
raum von Y kompakt ist. Also iiberdecken endlich viele V', etwa V..., V,, bereits R.
Die Menge A=W,—Jj.,f *(V)=F""(CUV,) ist als f—Urbild einer
kompakten Teilmenge von X kompakt in W und 14Bt sich daher von endlich vielen
der U, iiberdecken. Die iibrigen Eigenschaften von Wf und £ priift man leicht
nach.

Wf ist durch die angegebenen Bedingungen bis auf Homéomorphie eindeutig be-
stimmt. Genauer gesagt: Gegeben ein kompakter Raum ¥ mit einem dichten Unter-
raum V und Abbildungen wie in dem folgenden kommutativen Prisma von Abbil-
dungen, dann ist V- W + ein Homéomorphismus. Das Zeichen ,, = * bedeutet dabei
einen HomGomorphismus.
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F—X
7
?—V*W,—/y/;}/
Vv SWw X
=
! ffv/

Denn V—V— Wf—— W ist ein Homdomorphismus. Die stetige bijektive Abbildung
V — W, zwischen kompakten Riumen ist dann ein Homdomorphismus.

Die Topologie von Wf hat die folgenden Eigenschaften: Wenn & ein Filter auf
Wf ist, so dapf f () gegen eine Punkt aus R konvergiert, dann konvergiert & gegen
den entsprechenden Punkt von Wf— w.

4.2. Nun seien die Voraussetzungen von 3.6 erfiillt. Es sei also eine Operation
@y:Gx Y— Y gegeben, deren Einschrinkung auf X wir mit ¢ : G x X — X bezeichnen.
Dann gibt es eine Kompaktifizierung G von G und eine Fortsetzung ¢ von ¢ zu einer
stetigen Abbildung ¢:GxX—Y, so daf ¢ | (G—G)x {x} ein HomSomorphismus auf
G-x—G-x ist. Der Querstrich bedeutet dabei die abgeschlossene Hiille in Y. Durch
diese Eigenschaften ist G bis auf Homoomorphismus eindeutig bestimmt.

Zum Beweis betrachten wir die stetige eigentliche surjektive Abbildung ¢,,:G—
— G x, fiir ein xoeX und konstruieren nach 4.1 G:=G¢xo=GuR0, WO Ry:=
=G-xy—G-x, und definieren ¢ | GxX=¢, ¢ | Ry x X=Projektion auf die erste
Komponente.

Wir zeigen die Stetigkeit von ¢. Es sei

F=1{0"V)nG=09_"(VnX); VUmgebungvonyeRyinY}.

Dann konvergiert & (K)={F-K; Fe&} fiir jede kompakte Menge KX gegen y
(s. 3.4.). Zu jeder Umgebung W von y in Y existiert also eine Umgebung V'von yin Y
mit ¥ "nRycWund o' (VnX) K< W, also

¢ (05" (V) x K)=6¢((¢5,' (V0 X)U(VARy)) x K)
=0.'(VnX)Ku(VnRy)cW.
Also ist @ stetig. Da G kompakt ist und G als dichte Teilmenge erhilt, ist ¢ (G x {x})=
=G-x fir alle xeX. Andererseits ist ¢(Gx {x})=G-x und Ry=¢ (R, x {x})=
=G x—G-x, also ist ¢ | Ry x {x} ein Homdomorphismus auf G-x—G-x. Die
Eindeutigkeitsaussage folgt aus 4.1.
Wir identifizieren von nun an

G-G=Ry=Gx—G-x firalle xeX.
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Die Abbildung ¢,: G — ¥ mit ¢, (g)=¢ (g, x) ist fiir alle xe X die in 4.1. konstruierte
Fortsetzung von ¢,:G— G- x mit ¢, (g)=g"x.

Aus der Konstruktion der Topologie von G folgern wir nun, daB sich die Rechts-
und Linkstranslationen von G auf sich zu stetigen Operationen von G auf G fortsetzen
lassen. Dazu definieren wir

L:Gx G- G durch
L(g,h)=g'h fiir heG, und

und weiter

R:GxG-G durch
R(g,h)=hg”' fir heG, und
R(g,h)=h fir heG-G.

Dann gilt

¢.oL(g, h) = oy(g, #.(k)) und
¢oR(g, h)=¢(h, 0.(g”") fir geG, heG, xeX.

Wir haben die Stetigkeit von Lund R zu zeigen. Sei § ein Filter auf G, der gegen
g€G konvergiert, sei &' ein Filter auf G, der gegen he G konvergiert und sei xeX.
Wir miissen zeigen, daB L(Fx F’), bzw. R(FxF’), Fe%, F'e® gegen L(g, h)
bzw. R(g, h) konvergieren. Wir brauchen nur den Fall e G—G zu betrachten. Da
®.(F'), F'e ' gegen @, (h)=h konvergiert, konvergiert ¢, o L(F x F')= ¢ (Fx ¢, (F")),
Fe®, F'el gegen ¢y(g,y). Nach Definition der Topologie von G konvergiert
daher L(FxF’), Fe{, F'ed gegen L(g, h). Fiir R gelten analoge Uberlegungen:
@, (F '), FeE konvergiert gegen ¢.(g7 '), und ¢,cR(FxF)=¢(F x ¢, (F™")),
Fe®, F'ed’ konvergiert gegen ¢ (h, ¢.(g”'))=h. Also konvergiert R(FxF’)
gegen h=R(g, h).

Statt (g, &) schreiben wir oft einfach g-h, ebenso fiir R(g, ) einfacher h-g~*.

Wir haben jetzt zwei stetige Fortsetzungen von ¢:G x X — X, ndmlich ¢,:Gx Y —
— Y. Eine stetige Fortsetzung auf G x Y — Y ist im allgemeinen nicht moglich. Man
nehme zu Beispiel G=X=R, Y=Kompaktifizierung von R durch die zwei Punkte
+ o0, — 0. G operiere auf Y durch ¢y(g, y)=g+y, wobei g+ 00 =+ 00, g+(—0)=
= —00. In diesem Fall ist G=Y. Eine stetige Fortsetzung von ¢ auf ¥x Y kann es
nicht geben, denn ¢ (n, —n)=0und ¢ (n, —2n)= —n— — 00, aber n — 00, —cn— — ©
fiir ¢>0, neN. Wir werden indessen zeigen, daB3 abgesehen von diesem Sonderfall,
daB die Randpunkte zueinander invers sind, eine stetige Fortsetzung moglich ist.
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4.3. Zwei Punkte y,, y, aus R, heiBlen invers, wenn es einen Filter § auf G gibt,
der gegen y, konvergiert und so daf3 der Filter §':={F~'; Fe{} gegen y, konver-
giert. Daher ist y, genau dann zu y, invers, wenn y, Haufungspunkt von (U (»,) | G)~*
ist, wo U(y;) | G={U nG; U Umgebung von y, in G} ist.

Die Menge I={(y1, ¥,)€ Ry %X Ry; ¥, ¥, sind invers} ist daher abgeschlossen in
Ry % Ry; denn fiir (y,, y,)¢I gibt es offene Umgebungen U; von y; in G, so daB
(U;nG)"'nU,=0ist und jedes Element von U, x U, liegt folglich nicht in . Wenn
Y1, Y, invers sind, dann sind auch gy, und y,-g~'=y, invers. Die Menge der zu
einem Punkt y € R, inversen Punkte bezeichnen wir mit y~!. Diese Menge ist ab-
geschlossen und G-stabil gegeniiber Linkstranslationen.

Wenn (y,, y,)el ist, dann gilt fiir jedes Paar von Umgebungen U, von y, in G und
U, von y,in y,daB ¢ ((U; nG)x (U, n X))=X ist. Esexistiert alsosicher keine stetige
Fortsetzung von ¢ auf I. Zum Beweis betrachte man die stetige Abbildung ¢,: G — Y.
Dann gibt es zu jedem Paar von Umgebungen U, von y, in Gund V,:=¢ ! (U,) von
¥, in G zueinander inverse Elemente g und g~ aus G, so daB ¢ (g, ¢,(g™"))=g'g ' x
=x in ¢ ((U; n G) x (U, " X)) liegt.

4.4. Wir machen die Voraussetzungen von 3.6 und iibernehmen die bisherigen
Bezeichnungen. Wenn V' eine Umgebung eines Punktes ye R, in Y ist, dann gibt es zu
jeder Menge A=Y mit 0A < X eine Umgebung V, von y in G, so dap fiir alle geV, G
gilt:

gAcV, oder gA>CV,.

Zunichst diirfen wir ndmlich annehmen, dal CV, zusammenhingend ist (vgl.
Beweis von 3.5.). Wegen der Stetigkeit von ¢:G x X— ¥ und weil 4 = X kompakt ist,
gibt es dann eine Umgebung ¥, von y in G, so daB ¢ (¥, x84) = V. Fiir jedes Ele-
ment geGnV, golt daher g.04 <V, und hieraus folgt die Behauptung, weil CV,
zusammenhingend ist.

4.5. & seiein Filter auf G, der gegen y, € R, konvergiert. Falls y, ein Punkt von Y ist,
so konvergiert die Filterbasis W (y,)={¢,(Fx U); Fe&, U Umgebung von y, in Y}
gegen y, oder y, ist Hiufungspunkt von 1.

Falls namlich die erste Behauptung nicht gilt, gibt es zu jeder Umgebung V; von
»1 in Y und zu jeder Umgebung A von y, in Y mit 64 = X (diese bilden nach 3.2 eine
Umgebungsbasis von y,) und in jedem Fe{ ein geF, so dall g-4¢V,. Falls F in
einer Umgebung ¥, von y in G gemaB 4.4 enthalten ist, folgt daraus g A > CV,; oder
dquivalent Ao g~ 1 CV,. Betrachten wir zu einem Punkt xe X CV, die Abbildung
¢,:G— Y. Dann gibt es zu jeder Umgebung A von y, in Y ein Element g~ 1¢G mit
¢.(g71)ed und das zu einem Element ge Fe§ invers ist. Nach Konstruktion der
Topologie von G ist dann y, Hiufungspunkt von 1.
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4.6. Wir erhalten als Folgerung die angekiindigte Aussage: Die Abbildung
@ (GxY)—I— Y mit

@’ l G x Y=oy
und
@' | ((G — G) x Y) — I= Projektion auf die erste Komponente

ist stetig. Die Abbildung ¢’ ist eine Fortsetzung von ¢.

4.7. G operiert eigentlich auf Y—R,. R—R, ist dicht in R, falls R#R,. Y—R,
erfiillt die Voraussetzung Z. Insbesondere erfiillt Y, Y— R, die Voraussetzungen von
3.6 an Stelle von Y, X.

Beweis. Um die Eigentlichkeit der Operation zu beweisen, geniigt es zu zeigen,
daB es zu je zwei (nicht notwendig verschiedenen) Punkten aus Y— R, kompakte
Umgebungen Kund L in Y— R, gibt,so daB3 P:={geG;g* K n L#0} relativkompakt
in G ist. Wir wéhlen K so dall 0K< X. Wire P nicht relativ kompakt in G, so gébe es
einen Haufungspunkt yeR, von P. Da ¢’(y, x)=y fiir alle xe Y— R, gilt, und ¢’
stetig ist, gibt es eine Umgebung U von y, so daB ¢’ (Ux K)cCL, da CL eine Um-
gebung von y ist. Fiir jedes Element ge U n P erhalten wir also g Kn L=0 im Wider-
spruch zur Konstruktion von P.

Aus der Stetigkeit von ¢’ folgt, daB fiir jeden Filter von Teilmengen von G, der
gegen einen Punkt ye R, konvergiert und fiir jeden Punkt xe Y — R, die Filterbasis der
Bildmengen bei der Abbildung G— Y mit g— ¢(g, x) gegen yeR, konvergiert.
Wenn speziell xe R— R, folgt daraus, daB3 y Hiufungspunkt der Bahn Gx< R— R, ist.
Daraus folgt die zweite Behauptung.

Zur dritten Behauptung: Jeder Punkt ye R— R, besitzt eine Basis aus Umgebungen
UcY—R, mit kompaktem dUcX. Wenn K eine kompakte zusammenhingende
Teilmenge von X ist, die dU enthéilt, dann ist Uu K< Y — R, eine kompakte zusammen-
hingende Menge. Hieraus folgt die dritte Behauptung leicht (s. 3.4.)

4.8. Bezeichnen wir fiir yoe Ry mit ¥V (yo)={y€R,; y, ist der einzige zu y inverse
Punkt}. Dann gilt

RO = V(yo) | G'yo . (4.8.1)
Wenn namlich ye R, nicht in V (y,) liegt, dann existiert ein Filter § auf G, der gegen
y konvergiert, aber y, nicht Hiufungspunkt von ! ist. Dann konvergiert { -y,

gegen y nach 4.5 und damit ist yeG_-y;.

Nun treten die beiden folgenden Félle auf:

1. V (yo)="0 fiir alle y,€ Ry. Dann ist G-y=R, fiir alle ye R, und damit y"'=R,
fiir alle ye R, ; denn y~ ! ist eine nicht leere abgeschlossene G-stabile Teilmenge von R,,.
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2. V (yo)#0fiirein yoe R,. Sei yo=y ! fiireinye R,. Dannistg-y,=(y-g" 1) 1=
=y 1=y,, also ist y, Fixpunkt. Wenn umgekehrt y, Fixpunkt ist, ist nach der obigen
Formel V (y4)= Ro— {¥o}, also y 1=y, fiir ye Ry, y#¥o.

4.9. SATZ. Unter den Voraussetzungen von 3.6 bestehe Y—X aus genau zwei
Punkten. Dann besitzt G eine diskrete unendliche zyklische Untergruppe H, so daf$ X|H
kompakt ist. Insbesondere ist dann G/H kompakt.

Beweis. Es gilt Ry=R. Wire R,# R, dann lige R— R, dicht in R, besidBe also
unendlich viele Punkte.

Die Untergruppe G; von G, die R, punktweise fix 148t, hat einen Index <2 in G.
Wenn y, € R, Haufungspunkt von G, ist, dann ist auch g-y, Hédufungspunkt von
g-G, g~ '=G, fiir geG. In jedem Fall ist R, = G,. Wir diirfen daher annehmen, daB G
alle Punkte von R, fix 14Bt.

Wir befinden uns also im zweiten der in 4.8 unterschiedenen Fille: Jeder Punkt von
R, ist zum anderen Punkt von R, invers, aber nicht zu sich selbst.

Es seien nun V,, W, offene Umgebungen von y,€R, in Y, die y, nicht enthalten,
deren Rand in X liegt und fiir die gilt: V, <V, = W,. Wegen der Stetigkeit von ¢’ gilt
fiir Elemente ge G nahe bei y;,:

g_I_/—lC Wla denn ¢,(y9 Vl)':y

H sei die von g erzeugte zyklische Untergruppe von G. Wir definieren W,:=C uV—l,
V,:= C—W;. Die offenen Mengen ¥, und W, enthalten y,, ihr Rand liegt in X und es
gelten die Inklusionen: V,<V,c W, und g~ 1V, W,.

H ist diskret, denn fiir alle g"e H,n>0 gilt g"- V_lc W und fiir alle g"e H, n< 0 gilt
g" 172c W, und daher hat H mit der folgenden Umgebung von 1 in G nur das Element
1 gemeinsam:

{geG; g0V inCW, # 3}u{geG; goV,nCW, # &}.

Die Folge g", n>0, konvergiert gegen y,. Denn sonst gibe es einen Teilfilter von g°,
der gegen einen Punkt #y, aus G konvergiert. Da H diskret ist, kann dieser Punkt nur
¥, sein. Dann wiirde aber fiir jeden Punkt yeV; und geniigend groBles n gelten:
g" yeCW,, im Widerspruch zur Konstruktion. Ebenso erhilt man, daB g~", neN,
gegen y, konvergiert. Fiir jeden Punkt xe X konvergiert daher g"x gegen y, und g~ "x
gegen y, fiir neN. Es gibt also einen kleinsten Exponenten neZ mit g"xe V;. Dann ist
g"xeV,—g-V,. Diese Menge hat keinen Hiufungspunkt in Ry, ist also relativ kompakt

in X. Daher ist X/H als stetiges Bild von V; —g- V; kompakt. Dann ist auch G/H als
stetiges Bild der kompakten Menge ¢ '(V,—g-V,) kompakt. Die beiden Riume
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X/H und G/H sind nach einem Satz iiber eigentliche Transformationsgruppen
hausdorffsch (s. [2] Chap. 3, §4, n° 2 Proposition 3).

4.10. In der Situation des Satzes von 4.9 ist X/G kompakt. Daher haben X und G
in der Endentheorie von Specker [13] isomorphe Endenrdume. Ferner sicht man aus
den Definitionen von Specker leicht, daB G und Hisomorphe Endenrdume haben. H hat
aber — als diskrete Gruppe — genau zwei Enden. Es folgt, da3 ¥ die Endenkompaktifi-
zierung von X ist und G die Endenkompaktifizierung der topologischen Gruppe G ist.

Falls in 3.6 Y—X aus einem oder unendlich vielen Punkten besteht, kann die
Endenzahl von G in beiden Fillen gleich 1, 2 oder oo sein, wie man an Beispielen
leicht sieht.

4.11. Wir fassen die wichtigsten Resultate dieses Paragraphen in einem Satz
zusammen.

SATZ D. Voraussetzungen: Y sei ein kompakter Raum, X sei ein dichter lokal
kompakter Unterraum. R:=Y—X sei total unzusammenhdingend. G sei eine lokal
kompakte, nicht kompakte topologische Gruppe. G operiere stetig auf Y; X sei ein
G-stabiler Unterraum, auf dem G eigentlich operiert. X hat die Eigenschaft Z: .Jede
kompakte Teilmenge von X ist in einer kompakten zusammenhdngenden Menge enthalten.

Behauptungen: R:, sei die Menge der Grenzpunkte (s. 4.7.)

1. R, ist eine kompakte, G-stabile Untermenge von R.

2. Es gibt genau eine Kompaktifizierung G von G, so daff die Abbildungen ¢,:G — X
mit ¢,.(g)=g" x sich fiir jedes x€ X zu einer stetigen Abbildung ¢,:G — Y fortsetzen
lassen und ¢,: G— G — R, Homdomorphismen sind.

3. G operiert stetig auf G vermoge Links- und Rechtstranslationen. Die Rechtstrans-
lationen lassen G—G punktweise fix. Fiir die Linkstranslationen ist ¢, mit den
Operationen von G vertrdglich.

4. R, besteht aus einem oder zwei Punkten oder ist perfekt.

5. Wenn R, aus genau zwei Punkten besteht, dann besitzt G eine unendlich zyklische
diskrete Untergruppe H, so daf} G/H kompakt ist.

6. Jeder Punkt aus Y ist entweder Fixpunkt fiir G oder die abgeschlossene Hiille seiner
G-Bahn umfafit R,,.

7. Es kann 0, 1 oder 2 Fixpunkte in Y geben. Die Fixpunkte liegen in R,. Die
Operation heifit entsprechend elliptisch, parabolisch oder hyperbolisch.

8. Operationen mit einem Grenzpunkt sind parabolisch.

9. Operationen mit zwei Grenzpunkten sind elliptisch oder hyperbolisch.

10. Operationen mit unendlich vielen Grenzpunkten sind elliptisch oder parabolisch. Ob
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es parabolische Operationen mit unendlich vielen Grenzpunkten gibt, ist ein offenes

Problem.

11. Bei elliptischen Operationen ist y~' =R, fiir jedes yeR,.

12. Beiparabolischen Operationen mit dem Fixpunkt y, ist y~1
und yo ' =R,.

13. Bei hyperbolischen Operationen sind die beiden (invarianten) Grenzpunkte zuein-
ander invers, aber keiner zu sich selbst.

14. Falls X/G kompakt ist, ist Ry= R; insbesondere ist dann ¢ .: G— G — R ein Homéo-
morphismus fiir alle xe X.

Beweis. Nur 4. ist noch nicht bewiesen. Fiir die anderen Behauptungen geben wir
nur die Stellen an, wo sie bewiesen sind oder aus denen sie leicht gefolgert werden
konnen. Definition von R,,: 4.7 und 4.2; 1., 2., 3. in 4.2, 5. in 4.9 angewandt auf Y,
Y— R,, was nach 4.7 moglich ist; 6. in 4.2 angewandt auf Y, Y — R, fiir Punkte y¢ R,,
fiir yeR, in 4.8; 7. in 3.5 und nach Definition der Grenzpunkte; 8. ist trivial; 9. ist
trivial, da jedes Element aus G die Grenzpunkte permutiert; 10. gibe es zwei Fixpunkte,
so wire nach dem 2. Fall von 4.8 fiir jeden Punkt y der nicht Fixpunkt ist: y~! =jedem
der beiden Fixpunkte; 11. 4.8 1. Fall; 12. 4.8 2. Fall und y~! enthilt, falls y,# R,,
einen Punkt y#y, und ist, da y, eine abgeschlossene G-stabile Menge ist, nach 6.
gleich R,; 13. wurde im Beweis von 4.9 festgestellt; 14. da es eine kompakte Menge
K< X mit GK = X gibt, falls X/G kompakt ist, folgt aus 3.4: Rob=G-x"R>G KN R=
=XnR=R.

Zu 4.:y,, y,, y; seien drei Grenzpunkte eR,=G—G. Wenn der Filter ¥
auf G gegen y, konvergiert, so hat der Filter ' evtl. mehrere Hiufungspunkte.
Durch Verfeinerung konnen wir erreichen, dal er nur gegen einen Punkt, etwa
y' € R, konvergiert. Zwei andere Grenzpunkte seien y”#y”. Dann konvergieren die
beiden Filter &y” und &y” auf R, gegen y, nach 4.5. Insbesondere gibt es in jeder
Umgebung von y, noch zwei Punkte g-y"#gy". Also ist R, perfekt.

=y, fiir alle ye Ry— {y,}
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