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Fibrés vectoriels holomorphes homogénes

et J-représentations

par P. SAILLEN1)

Introduction

On considére un groupe de Lie réel G connexe et un sous-groupe fermé B de G, en
sorte que G/B soit muni d’une structure complexe invariante par ’action naturelle
de G. On sait dans ce cas que le fibré tangent 7G/B est un G-fibré vectoriel holo-
morphe. On peut le voir en écrivant 7G/B sous forme G x 5(g/b), variété quotient de
G x (g/b) (g et b sont les algebres de Lie réelles des groupes G et B) par la relation
d’équivalence (gb, x)~ (g, b-x), I'opération de B dans g/b étant induite par la
représentation adjointe de G dans g. La structure complexe de G/B (donc aussi de
TG/B) est caractérisée, comme on le rappelle au paragraphe 1, par I’existence d’une
sous-algebre complexe g~ de g® C contenant b, ce que I’on peut encore exprimer en
disant que la représentation adjointe de G est telle que la différentielle de la représen-
tation induite de B dans g/b (qui est un espace vectoriel complexe) se prolonge en
une représentation de g~ .

Sur ce modele, J. L. Koszul a défini la notion de j-représentation de G ([4] et aussi
[S]: c’est une représentation de G dans un espace vectoriel réel V' posseédant un
sous-espace V', stable par B, en sorte que d’une part, V/V,, ait une structure d’espace
vectoriel complexe donnée, et que d’autre part la différentielle de la représentation
complexe induite de B dans V/V,, se prolonge en une représentation complexe de g~
(paragraphe 4).

Dans le but d’étudier les j-représentations de G une des premiéres questions qui
se posent est d’en donner une interprétation géométrique, c’est-a-dire

a) Gx g(V[V,) est-il un G-fibré holomorphe sur G/B?

b) Quels sont les fibrés vectoriels qui s’obtiennent ainsi?

L’objet de ce travail est de répondre & ces questions. On peut répondre par
I’affirmative a la question a) en s’appuyant sur un théoréme récent de J. A. Tirao et
J. A. Wolf ([6] théoréme 3.6) concernant I’existence et la classification des structures
holomorphes invariantes sur les G-fibrés vectoriels. Cependant les techniques em-
ployées sont peu adaptées au point de vue que nous envisageons et nous avons
préféré retraiter complétement la question dans le cadre des G-fibrés principaux de
groupe complexe et connexe quelconque obtenant ainsi un résultat un peu plus
général (théoréme 1).

1) L’auteur a fait ce travail en partie grace a une bourse du Fond national de la recherche
scientifique suisse.
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Quant a la question b), nous montrons (théoréme 2) que les G-fibrés vectoriels
holomorphes associés a des j-représentations de G sont ceux qui possédent un sous-
espace vectoriel réel de dimension finie de I’espace des sections holomorphes, qui est
stable par G et cependant assez gros pour que les sections qui le constituent engendrent
la fibre en chaque point. Dans le cas du fibré TG/B, un tel espace est par exemple
formé par les projections sur G/B des champs de vecteurs différentiables invariants
a droite sur G.

Pour une étude plus détaillée des j-représentations sur la base de cette inter-
prétation géométrique, voir [5].

Nous avons largement bénéficié de ’aide du professeur J. L. Koszul qui nous a
également posé ces questions. Nous 1’en remercions vivement.

Notations. Si V est un espace vectoriel réel et si V® C= VG)\/—‘I V est son
complexifié, 4 est le conjugué par rapport 3 ¥ du scus-espace complexe 4 de V'® C,

c’est-a-dire I’ensemble des v_\/r———fw tels que v+\/ —1weA. Nous disons parfois
simplement «le conjugué de A». Si f est une application R-linéaire de V dans W, f €
est Papplication C-linéaire de ¥® C dans W® C définie par f*(v, +\/ —1v,)=
= (v)+/ =11 (v2)-

Nous désignons les groupes de Lie par des majuscules romaines G, etc. et les algebres
de Lie toujours considérées réelles par les minuscules gothiques correspondantes.

Si M et N sont deux variétés dans lesquelles un groupe G opére, une application
fde M dans N est G-équivariante ou simplement équivariante si elle commute aux
actions de G.

Un G-fibré vectoriel (holomorphe) est un espace fibré vectoriel (holomorphe) dans
lequel G opére par des automorphismes de fibrés vectoriels (holomorphes).

Nous désignons par la méme lettre une application différentiable (i.e. C*) entre
variétés et son application tangente.

§1. Rappel d’un théoréme de Frolicher ([1] p. 91, [2] p. 564)

Soient G un groupe de Lie réel et connexe et B un sousgroupe fermé de G (non
nécessairement connexe). Pour qu’il existe sur G/B une structure de variété analytique
complexe invariante par I'opération naturelle de G, il faut et il suffit qu’il existe un
endomorphisme J de I'algébre de Lie réelle g de G vérifiant les conditions suivantes:

(@) JXb={0}

(ii) J2X = —X (mod.b) pour tout Xeg

(iii) J Adb-X= Adb-JX (mod.b) pour tout Xeg et tout beB

(iv) [X, Y]+J[JX, Y]+J[X, JY] —[JX, JY]eb pou tout X, Yeg.
(Si B est connexe, (iii) est conséquence de (iv).) De (i) et (ii) résulte que J(J2+1)=0.
On vérifie sans peine que (iv) équivaut a la condition suivante:
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(iv) le noyau g~ de J°¢ (J°+\/ —1) est une sous-alg¢bre complexe de g® C.

En outre, les propriétés de J impliquent g‘+g—”=g® C, g_: Nng =b®C ou
encore §- ng=Db, et Adb°-g” =g~ pour tout beB. Réciproquement, si on donne
une sous-algébre g~ de g® C vérifiant les trois conditions qui précédent, on peut
construire un endomorphisme J de g vérifiant (i), (ii), (iii) et (iv) en convenant que

la restriction de J & b est nulle et que J¢ est la multiplication par -—\/ —1 sur un
supplémentaire de b® C dans g~. Tous les J que ’on obtient ainsi définissent la
méme structure complexe sur G/B.

Dans le cas ou B={e} (e élément neutre G) et ol G est un groupe de Lie complexe,

en choisissant J égal a la multiplication par \/ —1 dans I’algébre de Lie réelle g de G,
on voit que g® C=g‘®? et que ;;t est un idéal de g® C.
Pour plus de détails sur ces correspondances voir [5].

§2. Structures holomorphes sur les fibrés principaux homogénes

2.1. Dorénavant, le groupe de Lie réel et connexe G, le sousgroupe fermé B et la
structure complexe invariante sur G/B (supposée exister) sont fixés.

Soit ¢ un homomorphisme analytique de B dans un groupe de Lie complexe et
connexe S. Le but du présent paragraphe est I’étude des structures holomorphes
invariantes sur 1’espace fibré principal homogeéne P= (G x S)/H de base G/B, H étant
le sous-groupe de G x S formé des couples (B, ¢(b)) tels que be B. La projection p
de P sur G/B est I'application qui rend commutatif le diagramme.

GxS> P
pry ) pl
¢ Lq/B

ou 7 et g sont les projections canoniques. Contrairement & I’habitude, S opére a
gauche dans P.

Supposons qu’il existe une application R-linéaire 4 de g~ dans s telle que

1) La restriction de # & b coincide avec la différentielle de ¢

2) h[X, Y]=[h(X), h(Y)] pour tout X, Yeg™

3) h(Adb*-X)=0(b) h(X) ¢(b)~* pour tout be B, Xeg~

4) h(\/—- 1X)=Jh(X) pour tout Xeg
ou J est la multiplication par \/ —1 dans s.

Définissons un endormorphisme noté encore J de g X s en posant

J (X, a) = (JX, Ja — Jf (X)) .1)
f(X)=h(1+/=1))(X)
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(on voit facilement que si J est ’endomorphisme de g qui représente la structure
complexe de G/B alors 1 +\/ —1J envoie g dans g~.)

PROPOSITION 1. J définit sur P une structure d’espace fibré holomorphe G x S-
invariante. L
Démonstration. Le noyau de J°(J¢ +\/ —1)est

(gxs)” ={(X,a+h(X))|Xeg™ et aes™}.

On vérifie sans peine que (g x $)~ est un sous-espace complexe de (g® C) % (s® C)
grice a 4). De 1) et 4) résulte que I'intersection de (g x )~ avec son conjugué est
égale a la complexifiée hH® C de l'algebre de Lie réelle ) de H. En effet, soient X,
Yeg~ eta, bes™. Si (X, a+h(X)) est égal & ’élément (¥, 5+ 4(¥)) du conjugué de
(gxs)~, d’une part X= ¥ appartient 3 b® C et on peut écrire X=Y=X, +./—1X,
ol X;, X,eb et d’autre part, a—b=—h(X)+h(Y); mais a=al—|-\/i—l.la1 et
b=b1+\/— 1Jb, avec a, et b, dans s, d’ot a—b= —2Jh(X,) d’aprés la condition
4) sur A. On en tire a; = —b, = —Jh(X,) d’ou a+h(X)=h(X1)+\/_—T h(X3) ce qui
montre que 'intersection est contenue dans h® C d’aprés la condition 1). L’autre
inclusion est immédiate.

Sachant que g~ +§' =g® C et de méme pour s~, des raisons évidentes de
dimension montrent que la somme de (g xs)~ et de son conjugué est (g x 5)® C.

Finalement, 2) implique que (g x $)~ est une sous-algébre et 3) montre que

JAd (b, ¢ (b))-(X, a) = J (Adb-X, ¢ (b) ag (b)™?)
= (Adb-JX, ¢ (b) (Ja — Jf (X)) ¢ (b)) (mod.}) (2.2)
pour tout beB, Xeg, aes.

Ainsi, le théoréme de Frohlicher rappelé au paragraphe 1 permet de conclure
que J définit sur (G x S)/H une structure complexe invariante par G x S.
Reste a voir que les applications analytiques

A p
S—P—-G/B

ou A(s)=mn (e, s), sont compatibles avec les structures complexes dont sont munis S,
P et G/B. Mais ceci est conséquence des inclusions A°(s7)c=n®(gxs)” et
pri(gxs)"=g".

La proposition 1 permet de définir une application @ de I’ensemble S (S) des
applications R-linéaires de g~ dans s vérifiant 1), 2), 3) et 4) dans I’ensemble des
structures de fibré holomorphe G-invariantes sur P, via la formule (2.1).
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THEOREME 1. ® est bijective.

A) @ est surjective: la structure complexe de la variété P, étant invariante par
I’action de G xS, elle détermine comme on I’a rappelé au paragraphe 1 une sous-
algébre complexe (gxs)” de (gxs)® C. Comme A et pr, sont des applications
holomorphes, on a les inclusions

{0} xs" =(gxs) =g x(s®C). (2.3)

L’espace fibré P possede par ailleurs une connexion différentiable dont la forme de
connexion y sur P & valeurs dans s est de type (1, 0) (au sens des formes différentielles
de type (p, q) sur une variété analytique complexe) (voir [3] pages 111-115). y induit
une scission notée encore y:g x s — s de la suite exacte

A pri
0os—>gxs—g—0

telle que y(h)={0} et y°(gxs)” =s~. Comme Ay est la transformation identique de
gxs,onay(X,0)=y(X, b)—b pour tout Xeg et tout bes; ainsi, si k est "application
linéaire de g dans s définie par k (X)=1y (X, 0), on a y(X, b)=k (X)+b. Soit ¢t ’homo-
morphisme R-linéaire de 1’algébre de Lie s® C dans s défini par #(a+ \/jf b)
= —a—Jb, a, bes et prenons pour A la restriction de tk© a g~. Il est clair que 4
vérifie les conditions 1) et 4). On montre ensuite

(gx9)” ={(X,a—k°(X))| Xeg™ et aes }. '(2.4)

L’inclusion du membre de gauche dans celui de droite résulte aussitdot de (2.3) et du
fait que y°(gx )~ =s~. Quant & Iautre inclusion, soit (X, a—k¢ (X)) tel que Xeg~
et aes ™ ; puisque (g x 5)® C est somme de (g xs)~ et de son conjugué, il existe des
éléments X, dans g, X, dans g™, a, dans s~ et a, dans 5™ tels que (X1, a,—k°(X}))
appartienne a (gxs)” et (X,,a,—k°(X;)) au conjugué et dont la somme est
(X, a—k°(X)). On en déduit que X,eb® C et que a,=0; comme Ze b implique
—k(Z)=0(2), il vient finalement (X, a, —k°(X,))=(X,, ¢°(X,))eh® C d’ou (2.4).

Si X est un élément de g7, k°(X)+A(X)=(1+¢) (k°(X)) est un élément de s,
en considérant s comme un sous-espace de s® C, car pour tout a, b dans s, (1+1¢)
(@++/—1b)=/ =1 (b++/ —1Jb).

Ainsi, en vertu de (2.4),
(6xs)” ={(X,a+h(X))|Xeg™,aes7}.

De cette derniére égalité et du fait que s~ ns={0} on déduit sans peine que A
vérifie 2) et que I’endomorphisme J défini par (2.1) représente la structure complexe
de P. La propriété 3) de A résulte alors de la propriété (2.2) que possede J.
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B) @ est injective. Si A, et &, sont deux éléments de S (S) tels que @ (k)= (h,),
donc en particulier tels que pour tout Xeg™ et tout aes™ il existe Yeg™ et bes™
tels que (X, a+h, (X))=(Y, b+h,(Y)), alors X=Y et a—b=h,(X)—h,(X), d’ou
hy=h,.

2.2. Supposons maintenant que S=GL(F) est le groupe linéaire complexe des
automorphismes d’un espace vectoriel complexe F de dimension finie. Soit =/ ’espace
vectoriel complexe des applications fGL(F)-équivariantes de P dans F (GL(F)
opérant canoniquement dans F). On définit une représentation linéaire complexe de
G dans & en posant (gf) (¢)=f (g™ '¢), geG, EeP.

Désignons par Xf (Xeg) la différentielle de cette représentation et supposons
que P est muni de la structure holomorphe associée a heH#(S). Si {g=mn(e, 1) ou 1
est I’élément neutre de GL(F) on a:

PROPOSITION 2. f est holomorphe au voisinage de &, si et seulement si

(Xf) (&o) = (X)) f (&) (2.6)

pour tout X dans g~ .
Démonstration. Désignons par

u:G x GL(F)x P—>P

la loi d’opération de G x GL(F) dans P. Les éléments f de &/ satisfont la relation
f(u(g, a, &))=a(g™'f) (&) par définition de 'opération de G dans <. En différentiant
cette relation au point (e, 1, &;) et en complexifiant les espaces tangents on trouve

a(f (&o)) — (Xf) (o) =f (v (X, a, &))

ot aegl(F)® C, Xeg® C. Si f est holomorphe au voisinage de &,, on déduit de cette
relation f ¢ (u° (X, h(X), &,))=0 pour Xeg™ puisque u°(X, #(X), &,) appartient alors
a (T, P)"=n(gx gl(F))".

Réciproquement, si (2.6) a lieu, il suffit de vérifier que f°(u°(0, a, &,))=0 pour
tout aegl(F)~ pour conclure. Or f°(u°(0, a, &y))=af (&) et le membre de droite est
nul puisque a est de la forme a, +./ — 1 Ja,, a, egl(F).

§3. G-fibrés vectoriels holomorphes

3.1 Soit E un G-fibré vectoriel complexe sur G/B, c’est-a-dire un fibré vectoriel
sur G/B associé 3 une représentation linéaire ¢ de B dans un espace vectoriel com-
plexe F de dimension finie. E est associé & P=(G x GL(F))/H au moyen de la fibration
t:P x F — E définie par ¢ (n(g, a), v)=g-a"'v pour tout geG, aeGL(F), veF; (voir
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[3] page 36). Ainsi le théoréme 1 permet de conclure que, par transport au moyen
de ¢, les structures de G-fibré holomorphe sur E correspondent biunivoquement aux
éléments h de 5 (GL (F)). Supposons donc que E est muni de la structure holomorphe
associée a hA. Désignons par & I’espace des sections différentiables de E. On définit
une application bijective w de ¥ dans &7 en convenant que si 6€.%, w (o) est I'appli-
cation telle que ¢ (¢, w (o) (£))=0(p(£)) pour tout &P ([3] pages 90-91). L’opération
naturelle de G dans G/B et 'opération de G dans E induisent une représentation
C-linéaire de G dans &: g-o=gog~! pour tout geG. On voit facilement que w est
équivariante. Ainsi, en appliquant la proposition 2, on obtient:

PROPOSITION 3. Une section différentiable o de E est holomorphe si et seule-
ment Si

(X (0)) (S0) = £ (X) @ (o) (o) 3.1)

pour tout Xeq™.

3.2. Soient g, et g, deux représentations linéaires de B dans les espaces vectoriels
complexes de dimension finie F, et F,, dont les différentielles se prolongent respective-
ment en les représentations A, et 4, de g ; si x est un homomorphisme complexe de
F, dans F, tel que xo,(b)=¢,(b)y pour tout beB, on définit un morphisme G-
équivariant 0(y) du fibré E, associé & ¢, dans le fibré E, associé & g, en posant

0 (x) 71 (g, v) = 3 (g, x (v))

pour tout geG, veF,, n; désignant la projection canonique de G x F; sur E; (i=1, 2).
Supposons que E; est muni de la structure holomorphe associée a 4; (i=1, 2).

PROPOSITION 4. Pour que 0 (y) soit holomorphe, il faut et il suffit que

xhy (X) = hy(X) 1 (3.2)

pour tout Xeg ™.

Démonstration. Soit ¢ une section de E, et soit 1(x)w, (6)=w,(0(x)s). Comme
w,, w, et 0(x) sont équivariantes, il en est de méme de t(x), et de plus on a pour
tout fes

(z (1)) (£3) = x(f (%o))

si £g=m;(e, 1) (i=1,2). Si (3.2) a lieu, la proposition 3 montre que si ¢ est holo-
morphe, il en est de méme de la section (x)o de E, et que par conséquent 6 (x) est
holomorphe.

Réciproquement, si ¢ est un homomorphisme holomorphe équivariant de E,
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dans E,, on voit de méme que la restriction ¢’ de ¢ a la fibre de E, en x, est une
application linéaire complexe qui commute a I’action de B, qui vérifie (3.7) et qui
est telle que 6(p')=¢.

§4. Fibrés vectoriels associés a des J-représentations

4.1 Soit A une représentation de G dans un espace vectoriel ¥ de dimension finie.
On dit que 4 est une j-représentation de G s’il existe un sous-espace complexe V'~

de V®C tel que V'~ +V =V® C, stable par la restriction de la complexifiée de
A & B et par la restriction de la complexifiée de la différentielle de 1 & g~. (La premiére
condition de stabilité est conséquence de la seconde si B est connexe.)

Il revient au méme (voir [5]) de dire qu’il existe un endomorphisme J de V tel que,
sil’on pose Vo=V"nV:

(i) J|Vo=0

(i) J?v=—v (mod.V,) pour tout ve ¥V

(ii) JA(B)v=A(b)Jv (mod. V,) pour tout ve V et tout be B

@iv) A(X)o+JA(X)Jv+JA(JX)v—A(JX)JveV, pour tout Xeg et tout ve V.

Une j-représentation A de G dans V induit une représentation complexe ¢ de B
dans A=(V® C)/V~ dont la différentielle se prolonge en une application 4 de g~
dans gl(4) appartenant a I’ensemble 5 (GL(A)) (paragraphe 2).

Le G-fibré vectoriel E=G x g4 associé a ¢, muni de la structure holomorphe
G-invariante associée a A est appelé le fibré associé a la j-représentation A de G et
noté E(A).

Soit E un fibré vectoriel complexe différentiable sur G/B. Désignons par ¢,
xeG/B, I'application de & dans E qui fait correspondre a toute section o€ sa
valeur o (x) au point x.

DEFINITION. On dit que E est un fibré homogéne représentable si E est un
G-fibré holomorphe et s’il existe un sous-espace vectoriel réel W de &, tel que

1) W est de dimension finie

2) W est stable par I’opération naturelle de G dans &

3) Pour tout xeG/B, I'image de W par ¢, est égale a la fibre de E en x.

4) Les éléments de W sont des sections holomorphes.

On remarque que si W vérifie 2) et s’il vérifie 3) au point x,, il vérifie 3): en effet,
si xeG/B, il existe ge G tel que x=_gx,; soit & un élément de la fibre de E au point x:
il existe ae W tel que o(x,)=0(g 'x)=g ¢, donc (g-0) (x)=¢ et g-o est dans W
d’apres 2).

THEOREME 2. E est un fibré homogéne représentable si et seulement si E est
(G-)isomorphe a E (1) pour une j-représentation A de G.
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Démonstration.
A) E(4) est représentable: on a un diagramme commutatif

G x A5 E(2)
Pnl P’l
G - G/B

ou n’ et g sont les projections canoniques. Soit alors W I’ensemble des sections
e S, ou v appartient a ’espace V de la j-représentation J de G, définies par

(q(g))=7'(g, &' (A(g” ") v))

o’ étant la restriction & V de la projection canonique o de V® C sur 4. On a

0(q(gb)) =n"(gb, o’ (A(b)" ' A(g)~ ' v)) =7'(gh, 0 (b) ™' &’ (A(g)™' 1)) = d(q(g))

donc ? est bien définie.

W est un sous-espace vectoriel réel de . de dimension finie puisque ’application
qui associe ¥ a tout élément v de V est R-linéaire. W a la propriété 22 car si ge@G,
veV, (g0)(q(g1))=80(q(g7"g1))=""(g1, ' (2(81)~'2(8)v))=(A(g)v) (¢(g1)) pour
tout g, eG.

Comme o’ est surjective, W vérifie également 3). Pour constater que les sections
sont holomorphes sur G/B, il suffit de le voir au voisinage de x, pour tout veV; en
effet, si c’est le cas et si xeG/B,on a

B (x) =0(gxo) = g(g~"0) (x0)

pour un geG; or G opére dans E(4) par des automorphismes holomorphes, et
g~ 1- 9 est un élément de W d’aprés 2). En utilisant la proposition 3, avec les notations
qui s’y trouvent, il suffit en définitive de montrer que les applications GL(A)-
équivariantes o (9) vérifient la relation (3.1) pour tout Xe g~. On a w(?) (n(g, a))
=aa'(A(g) " 'v) ob veV, geG, ae GL(A), par définition de D et de w. Par conséquent,

(g 0®) (€ )=w®)(t(g™", 1)) =o(1(g) ).
En différentiant il vient

d

(X0 ®) @)= 5| o)~ X-)

=o' (1(X) v)
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pour tout Xe g, d’ol (X w (D)) (&o)=a(A° (X)v) pour tout Xeg® C, ce qui permet de
conclure par définition de A.

B) Réciproque: on suppose que E est représentable et on désigne par hes#’ (GL(E,))
I’application de g~ dans gl(E,) définissant la structure holomorphe de E, E, étant la
fibre de E en x,. Désignons encore par W~ le sous-espace complexe de W® C égal
au noyau de I’application ¢ de W® C sur E, définie par

e (o, + \/:*102) = g,,(0,) + ig,, (03)

o, 0,€W, ou i est la multiplication par \/ —1 dans E,. Si A est la représentation
linéaire de G dans W induite par I’opération de G dans 7, il est clair que W~ est
stable par la restriction & B de la complexifiée de 4.

LEMME. A est une j-représentation de G.
Démonstration. La représentation A est équivalente a la représentation u de G
dans le sous-espace V=w (W) de /. Soit f I’application de V'® C sur E, telle que

B(w (o) + \/_—fw (02)) = (a1) (o) + i (a2) (o)

et considérons le diagramme

W®C— sV ®C

al . 8l
A=(W®C)W~ SE,

ol « est la projection canonique et ou y est définie par yo= fw(=¢°).
Comme les sections g€ W sont holomorphes, on a

B(w* (X) @°(0)) = h(X) B(* ()

pour tout Xe g~ et tout e W® C d’aprés la proposition 3, c’est-a-dire
e (A°(X) o) = h(x) & (o). 4.1

On en tire aussitdt que W~ est stable par g~. Indiquons comment on finit de
démontrer B): si k est la représentation de g~ dans A induite par 4, i.e. telle que
k(X)a(o)=a(A°(X)o) pour tout Xeg™, e W® C, on a d’aprés (4.1)

xk (X) = h(X) x

pour tout Xeg™. Par ailleurs, il est clair que par définition, y commute avec les
actions de B induites dans 4 par A et dans E, par I’action de G dans E. D’apres la
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proposition 4, y induit donc un unique isomorphisme holomorphe G-équivariant ¢
de E(A) sur E défini par

or' (g, a () = gro (o)

pour tout geG, e W® C.

4.2. Indiquons pour terminer le comportement fonctoriel de la correspondance
A E(A).

A) Si fest un homomorphisme d’une j-représentation A, de G dans ¥, dans une
J-représentation 4, de G dans V,, c’est-a-dire une application équivariante f de V,
dans ¥, telle que f°(V{ ) soit contenu dans V73, il est clair par construction de E (1)
que finduit un morphisme holomorphe équivariant noté E( f) de E(4,) dans E(4,).

B) Réciproquement, si ¢ est un morphisme holomorphe équivariant du fibré
représentable £, dans le fibré représentable E, et si ¥; est I'isomorphisme de E(4;)
sur E; (i=1,2) obtenu dans le théoréme 2, il existe un homomorphisme f de la
j-représentation A, dans la j-représentation 4, tel que

E(f)¥i=vs0. 4.2)

En effet, soit V; un sous-espace vectoriel réel de ’espace de sections ¥; de E;
(i=1, 2) vérifiant les conditions 1) a 4) du paragraphe 4.1. ¢ induit une application
équivariante ¢* de ¥, dans %, définie par ¢*(6)=¢@o pour tout ce#,. Le sous-
espace W=o¢* V,+V, de &, vérifie encore les conditions 1) a 4). On voit aussitot
que la restriction fde ¢* & ¥, est une application équivariante de V; dans W dont la
complexifiée envoie V'; dans W ™, et que (4.2.) est satisfaite.

Remarque. On peut poursuivre I’analogie avec le cas du fibré tangent mentionnée
dans I'introduction: s’il existe un volume invariant sur G/B, J. L. Koszul a calculé la
forme hermitienne qu’on peut lui associer canoniquement sur G/B au moyen de la
représentation adjointe de G ([2], théoréme 1), et il a montré qu’elle est définie
positive si et seulement si G/B est isomorphe 4 un domaine borné d’'un C¥. L’inter-
prétation des j-représentations en termes de fibrés permet comme il se doit un calcul
analogue: soit E un G-fibré vectoriel holomorphe de rang (complexe) n. Soient E’ le
G-fibré dual réel de E et A%"E’ le G-fibré puissance extérieure 2n-iéme de E’. Sup-
posons qu’il existe une section G-invariant  non nulle de A%"E’ sur G/B et soit U
un ouvert de G/B dans lequel sont définies » sections holomorphes s,, ..., s, linéaire-
ment indépendantes sur C du fibré E* dual complexe de E canoniquement plongé
dans E'® C. 1l existe alors une fonction différentiable K a valeurs réelles ou imagi-
naires pures suivant la parité de n telle que

Q=Ks; A ASy, ASg A AS,.
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Supposons que U est le domaine d’une carte de G/B et z,,..., z,, des coordonnées
holomorphes dans U. L’expression
m 5% logK

i,j=1 621-(95]-

est I’expression locale d’un tenseur H sur G/B qui est par définition la forme her-
mitienne canonique associée a E. La restriction de H aux champs de vecteurs réels
est une forme bilinéaire symétrique telle que H (IS, T)+ H(S, IT)=0, ou I est le
tenseur de la structure holomorphe sur G/B. Soit ¥ la 1-forme invariante & gauche
sur G définie pour tout Xeg par Y (X)= —Trp Jf (X), F étant la fibre réelle de E en
x, et f I’application définie dans (2.1). On peut alors démontrer (cf [S]) que I'image
inverse sur G de la 2-forme alternée H(S, IT) est la différentielle extérieure de V.
Dans le cas ou E=E(A) est associé a une j-représentation A de G dans ¥ on a

V(X)) = Tryw, (LX) = JA(X)).

Si 'on pose B(Jq(X), g(Y))=y [JX, Y], on trouve ainsi une interprétation géomé-
trique de la forme f sur g/b définie directement comme ci-dessus par Koszul dans
[4] comme étant la forme hermitienne canonique de A. Il reste a trouver des con-
ditions géométriques de non dégénérescence de H.
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