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Fibres vectoriels holomorphes homogènes

et /-représentations

par P. Saillen1)

Introduction

On considère un groupe de Lie réel G connexe et un sous-groupe fermé B de G, en

sorte que G/B soit muni d'une structure complexe invariante par l'action naturelle
de G. On sait dans ce cas que le fibre tangent TG/B est un G-fibré vectoriel holo-
morphe. On peut le voir en écrivant TG/B sous forme G x B(g/b), variété quotient de

G x (g/b) (g et b sont les algèbres de Lie réelles des groupes G et B) par la relation
d'équivalence (gb9 x) ~ (g, b • x), l'opération de B dans g/b étant induite par la
représentation adjointe de G dans g. La structure complexe de GjB (donc aussi de

TG/B) est caractérisée, comme on le rappelle au paragraphe 1, par l'existence d'une
sous-algèbre complexe g" de g® C contenant b, ce que l'on peut encore exprimer en
disant que la représentation adjointe de G est telle que la différentielle de la représentation

induite de B dans g/b (qui est un espace vectoriel complexe) se prolonge en

une représentation de g".
Sur ce modèle, J. L. Koszul a défini la notion dey-représentation de G ([4] et aussi

[5]): c'est une représentation de G dans un espace vectoriel réel V possédant un
sous-espace Vo stable par B, en sorte que d'une part, V/Vo ait une structure d'espace
vectoriel complexe donnée, et que d'autre part la différentielle de la représentation
complexe induite de B dans V/Vo se prolonge en une représentation complexe de g"
(paragraphe 4).

Dans le but d'étudier les /-représentations de G une des premières questions qui
se posent est d'en donner une interprétation géométrique, c'est-à-dire

a) G x B(V/V0) est-il un G-fibré holomorphe sur G/Bl
b) Quels sont les fibres vectoriels qui s'obtiennent ainsi?

L'objet de ce travail est de répondre à ces questions. On peut répondre par
l'affirmative à la question a) en s'appuyant sur un théorème récent de J. A. Tirao et
J. A. Wolf ([6] théorème 3.6) concernant l'existence et la classification des structures
holomorphes invariantes sur les G-fibrés vectoriels. Cependant les techniques
employées sont peu adaptées au point de vue que nous envisageons et nous avons
préféré retraiter complètement la question dans le cadre des G-fibrés principaux de

groupe complexe et connexe quelconque obtenant ainsi un résultat un peu plus
général (théorème 1).

x) L'auteur a fait ce travail en partie grâce à une bourse du Fond national de la recherche

scientifique suisse.
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Quant à la question b), nous montrons (théorème 2) que les G-fibrés vectoriels

holomorphes associés à des y-représentations de G sont ceux qui possèdent un sous-

espace vectoriel réel de dimension finie de l'espace des sections holomorphes, qui est

stable par G et cependant assez gros pour que les sections qui le constituent engendrent
la fibre en chaque point. Dans le cas du fibre TG/B, un tel espace est par exemple
formé par les projections sur GjB des champs de vecteurs différentiables invariants
à droite sur G.

Pour une étude plus détaillée des y-représentations sur la base de cette
interprétation géométrique, voir [5].

Nous avons largement bénéficié de l'aide du professeur J. L. Koszul qui nous a

également posé ces questions. Nous l'en remercions vivement.
Notations. Si V est un espace vectoriel réel et si V® C= V®J — IV est son

complexifié, À est le conjugué par rapport à F du sous-espace complexe A de V® C,

c'est-à-dire l'ensemble des v^^j —\w tels que v + ^J— iweA. Nous disons parfois
simplement «le conjugué de A». Si/est une application R-linéaire de Kdans W,fc
est l'application C-linéaire de V®C dans W® C définie par fc(v1+y/—lv2)s=

Nous désignons les groupes de Lie par des majuscules romaines G, etc. et les algèbres
de Lie toujours considérées réelles par les minuscules gothiques correspondantes.

Si M et N sont deux variétés dans lesquelles un groupe G opère, une application

/ de M dans N est G-équivariante ou simplement équivariante si elle commute aux
actions de G.

Un G-fibré vectoriel (holomorphe) est un espace fibre vectoriel (holomorphe) dans

lequel G opère par des automorphismes de fibres vectoriels (holomorphes).
Nous désignons par la même lettre une application différentiable (i.e. C00) entre

variétés et son application tangente.

§1. Rappel d'un théorème de Frôlicher ([1] p. 91, [2] p. 564)

Soient G un groupe de Lie réel et connexe et B un sousgroupe fermé de G (non
nécessairement connexe). Pour qu'il existe sur G/B une structure de variété analytique
complexe invariante par l'opération naturelle de G, il faut et il suffit qu'il existe un
endomorphisme / de l'algèbre de Lie réelle g de G vérifiant les conditions suivantes:

(i) JXb {0}

(ii) J2X= -X (mod. b) pour tout Xe g

(iii) / Adb • Z= Adb • JX (mod. b) pour tout Xe g et tout b e B

(iv) [X, Y~]+J[JX, r\+J[X,JY] -[JX, J7]eb pou tout X, Teg.

(Si B est connexe, (iii) est conséquence de (iv).) De (i) et (ii) résulte que J(J2 +1)=0.
On vérifie sans peine que (iv) équivaut à la condition suivante:
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(iv) le noyau g" de JC{JC+^J — 1) est une sous-algèbre complexe de g® C.

En outre, les propriétés de J impliquent g~+g~ g®C, g"~ng~=b®C ou
encore g~ng b, et Adbc-Q~c:Q~ pour tout beB. Réciproquement, si on donne

une sous-algèbre g~ de g® C vérifiant les trois conditions qui précèdent, on peut
construire un endomorphisme J de g vérifiant (i), (ii), (iii) et (iv) en convenant que

la restriction de / à b est nulle et que Jc est la multiplication par —J~\ sur un
supplémentaire de b® C dans g". Tous les J que l'on obtient ainsi définissent la
même structure complexe sur G/B.

Dans le cas où B= {e} (e élément neutre G) et où G est un groupe de Lie complexe,

en choisissant / égal à la multiplication par •>/— 1 dans l'algèbre de Lie réelle g de G,

on voit que g® C g~®g~ et que g~ est un idéal de g® C.

Pour plus de détails sur ces correspondances voir [5].

§2. Structures holomorphes sur les fibres principaux homogènes

2.1. Dorénavant, le groupe de Lie réel et connexe G, le sousgroupe fermé B et la
structure complexe invariante sur G/B (supposée exister) sont fixés.

Soit q un homomorphisme analytique de B dans un groupe de Lie complexe et

connexe S. Le but du présent paragraphe est l'étude des structures holomorphes
invariantes sur l'espace fibre principal homogène P=(Gx S)/H de base G/B, H étant
le sous-groupe de GxS formé des couples (B, g(b)) tels que beB. La projection p
de P sur G/B est l'application qui rend commutatif le diagramme.

où n et q sont les projections canoniques. Contrairement à l'habitude, S opère à

gauche dans P.

Supposons qu'il existe une application IR-linéaire h de g" dans s telle que
1) La restriction de h à b coïncide avec la différentielle de q

2) h[X, Y~\ [h(X\ h (Y)] pour tout X, 7e g
~

3) h(Adbc-X) Q{b) h(X) qQ))'1 pour tout beB, Xe$~
4) h(J^\X) Jh(X) pour tout Xe$

où / est la multiplication par yf — 1 dans s.
Définissons un endormorphisme noté encore / de g x $ en posant

(JX9Ja-Jf(X)) (2.1)
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(on voit facilement que si / est l'endomorphisme de g qui représente la structure

complexe de G/B alors 1 +>/— 1/envoie g dans g~.)

PROPOSITION 1. J définit sur P une structure d'espace fibre holomorphe GxS-
invariante.

Démonstration. Le noyau de Jc (Jc + y/ — 1 est

et aes"}.

On vérifie sans peine que (g x s)~ est un sous-espace complexe de (g® C) x (s® C)
grâce à 4). De 1) et 4) résulte que l'intersection de (gx$)~ avec son conjugué est

égale à la complexifiée I)® C de l'algèbre de Lie réelle ï) de H. En effet, soient X,
Yeq~ et a, be$~. Si (X, a+h(X)) est égal à l'élément (T, b + h{Y)) du conjugué de

(g x s)~, d'une part X= 7 appartient à b® C et on peut écrire X= Y=Xl + yJ—lX2
où Xl9 X2eb et d'autre part, a-b= -h(X) + h(Y)\ mais a=al+yJ-Uax et

b b1+y/—Ub1 avec ax et bt dans s, d'où a — b=—2Jh(X2) d'après la condition

4) sur h. On en tire ax= -bx= -Jh(X2) d'où a +h{X) h(X1) +J^lh{X2) ce qui
montre que l'intersection est contenue dans I)® C d'après la condition 1). L'autre
inclusion est immédiate.

Sachant que g~ + g~ g®C et de même pour $~, des raisons évidentes de

dimension montrent que la somme de (g x s)~ et de son conjugué est (g x s)® C.

Finalement, 2) implique que (g x $)" est une sous-algèbre et 3) montre que

JAd (b, q (b)) -(X,a) J (Adb • X, g (b) ag (b) ' *)

(Adb - JX9 g (b) (Ja - Jf (X)) g (b)) (mod. I)) } (2.2)

pour tout beB, Xeq,

Ainsi, le théorème de Frôhlicher rappelé au paragraphe 1 permet de conclure

que / définit sur (G x S)/H une structure complexe invariante par G x S.

Reste à voir que les applications analytiques

où A (s) n (e, s), sont compatibles avec les structures complexes dont sont munis S,

P et G/B. Mais ceci est conséquence des inclusions Àc(z~)cznc(Qxs)~ et

Jpr1(gxs)" g~.
La proposition 1 permet de définir une application $ de l'ensemble Jf (S) des

applications IR-linéaires de g~ dans s vérifiant 1), 2), 3) et 4) dans l'ensemble des

structures de fibre holomorphe G-invariantes sur P, via la formule (2.1).
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THÉORÈME 1. Qestbijective.
A) 0 est surjective: la structure complexe de la variété P, étant invariante par

l'action de G x S, elle détermine comme on l'a rappelé au paragraphe 1 une sous-

algèbre complexe (gxs)" de (gxs)®C. Comme A et prx sont des applications
holomorphes, on a les inclusions

{0} x s" c (g x s)~ c g" x (s ® C). (2.3)

L'espace fibre P possède par ailleurs une connexion différentiable dont la forme de

connexion y sur P à valeurs dans s est de type (1,0) (au sens des formes différentielles
de type (p, q) sur une variété analytique complexe) (voir [3] pages 111-115). y induit
une scission notée encore y : g x s -> 5 de la suite exacte

telle que y (t)) {0} et 7e(g x s)~ es". Comme ly est la transformation identique de

g x s, on a 7 (X, 0) y (X, b) — b pour tout Xe g et tout Z> e s ; ainsi, si k est l'application
linéaire de g dans s définie par k (X) 7 (X, 0), on a 7 (X, b) k (X) + b. Soit / l'homo-

morphisme IR-linéaire de l'algèbre de Lie 5® C dans $ défini par t(a + yj— \b)
—a—Jb9 a, be% et prenons pour h la restriction de tkc à g". Il est clair que h

vérifie les conditions 1) et 4). On montre ensuite

(Qxs)- {(X,a-kc(X))\XeQ- et ae^}. (2.4)

L'inclusion du membre de gauche dans celui de droite résulte aussitôt de (2.3) et du
fait que yc(g x 5)" es". Quant à l'autre inclusion, soit (X, a — kc{X)) tel que XeQ~
et <zes~ ; puisque (g x s)® C est somme de (g x s)~ et de son conjugué, il existe des

éléments Xx dans g", X2 dans g", ax dans s" et tf2 dans $~ tels que (Il5 ai ~/:c(Ar1))
appartienne à (gx$)~ et (Z2, a2 — kc{X2)) au conjugué et dont la somme est

(X9 a — kc(X)). On en déduit que X2eb®C et que a2 0; comme Ze b implique

-k(Z) Q(Z), il vient finalement (X2, a2-kc(X2)) (X29 Qc{X2))e\)® C d'où (2.4).
Si J5Test un élément de g", kc(X) + h(X) (l + t) (kc(X)) est un élément de s",

en considérant 5 comme un sous-espace de s® C, car pour tout a, b dans 5, (1 + 0

Ainsi, en vertu de (2.4),

(g x s)" {(X, a + h(X)) |

De cette dernière égalité et du fait que s" ns {0} on déduit sans peine que h

vérifie 2) et que l'endomorphisme / défini par (2.1) représente la structure complexe
de P. La propriété 3) de h résulte alors de la propriété (2.2) que possède /.
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B) <P est injective. Si hx et h2 sont deux éléments de 3tf (S) tels que
donc en particulier tels que pour tout Xeq~ et tout aes~ il existe Yeq~ et bes~
tels que (X, a + h1(X)) (Y, b + h2(Y)% alors Z= Y et a-b h2(X)-h1(X), d'où

2.2. Supposons maintenant que S=GL(F) est le groupe linéaire complexe des

automorphismes d'un espace vectoriel complexe F de dimension finie. Soit se l'espace
vectoriel complexe des applications fGL (Z^-équivariantes de P dans F(GL(F)
opérant canoniquement dans F). On définit une représentation linéaire complexe de

G dans sf en posant (g/) (^)=/(g-^), geG, £eP.
Désignons par Xf (Xeq) la différentielle de cette représentation et supposons

que P est muni de la structure holomorphe associée à heJ$?(S). Si Ç0 n(e, 1) où 1

est l'élément neutre de GL(F) on a:

PROPOSITION 2. / esf holomorphe au voisinage de ^0 m £* seulement si

(2.6)

tout Xdans g~.
Démonstration. Désignons par

/j,:Gx GL(F)x P-*P

la loi d'opération de GxGL(F) dans P. Les éléments/de ja^ satisfont la relation

/(ju (g, 0, ^)) a(g~1f) (£) par définition de l'opération de G dans j/. En différentiant
cette relation au point (e, 1, <^0) et en complexifiant les espaces tangents on trouve

a(f (É0)) - (Xf) (i0) =fc(fic(X, a, Ço))

où aegl(jp)® C, XeQ® C. Si/est holomorphe au voisinage de £0, on déduit de cette

relation/c(fic(X, h(X), £0)) 0 pour Xe§~ puisque nc(X, h{X\ <J0) appartient alors

Réciproquement, si (2.6) a lieu, il suffit de vérifier que/c(juc(0, a, £o)) 0 pour
tout aeQÏ(F)" pour conclure. Or/c(jUc(0, a, £o)) tf/(£o) et Ie membre de droite est

nul puisque a est de la forme ax + -J —l Jal9ale qI (F).

§3. G-fibrés vectoriels holomorphes

3.1 Soit E un G-fibré vectoriel complexe sur G/B, c'est-à-dire un fibre vectoriel

sur G/B associé à une représentation linéaire q de B dans un espace vectoriel
complexe F de dimension finie. JE1 est associé à P= (G x GL(F))/Ha.u moyen de la fibration
t:PxF -* E définie par / (n(g9 a), v)=g-a~1v pour tout geG, aeGL(F), veF; (voir
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[3] page 36). Ainsi le théorème 1 permet de conclure que, par transport au moyen
de t, les structures de G-fibré holomorphe sur E correspondent biunivoquement aux
éléments h de J^(GL(F)). Supposons donc que £ est muni de la structure holomorphe
associée à h. Désignons par Sf l'espace des sections différentiables de E. On définit
une application bijective œ de Sf dans sf en convenant que si cre^, co(g) est l'application

telle que t (£, œ(a) (Ç)) a(p(Ç)) pour tout Ç eP ([3] pages 90-91). L'opération
naturelle de G dans G/B et l'opération de G dans E induisent une représentation
C-linéaire de G dans Sf\ g-a=gag'1 pour tout geG. On voit facilement que co est

équivariante. Ainsi, en appliquant la proposition 2, on obtient:

PROPOSITION 3. Une section différentiable a de E est holomorphe si et seulement

si

(Xœ(a))ao) h(X)co(cr)^0) (3.1)

pour tout XeQ~.
3.2. Soient Qt et q2 deux représentations linéaires de B dans les espaces vectoriels

complexes de dimension finie Fx et F2, dont les différentielles se prolongent respectivement

en les représentations h± et h2 de g~ ; si / est un homomorphisme complexe de

F1 dans F2 tel que XQi(b) Q2(b)x Pour tout beB, on définit un morphisme G-

équivariant 0(x) du fibre E^ associé à q1 dans le fibre E2 associé à q2 en posant

pour tout geG, veFl9nri désignant la projection canonique de G x Ft sur Et (/= 1, 2).

Supposons que Et est muni de la structure holomorphe associée à ht (/= 1, 2).

PROPOSITION 4. Pour que 0(x) soit holomorphe, ilfaut et il suffit que

(3.2)

pour tout XeQ~.
Démonstration. Soit a une section de Ex et soit t(x)co1((r) œ2(0(x)o). Comme

œl9 co2 et 0(x) sont équivariantes, il en est de même de t(#), et de plus on a pour

si Ço ni(e, 1) (f=l, 2). Si (3.2) a lieu, la proposition 3 montre que si a est

holomorphe, il en est de même de la section 9 {x)o de E2 et que par conséquent 9 (x) est

holomorphe.
Réciproquement, si cp est un homomorphisme holomorphe équivariant de Ex
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dans E2, on voit de même que la restriction <pf de cp à la fibre de Ex en x0 est une
application linéaire complexe qui commute à l'action de B, qui vérifie (3.7) et qui
est telle que 6((p') (p,

§4. Fibres vectoriels associés à des J-représentations

4.1 Soit k une représentation de G dans un espace vectoriel V de dimension finie.
On dit que k est une ./-représentation de G s'il existe un sous-espace complexe V~

de F®C tel que F~ + K~ F®C, stable par la restriction de la complexifiée de

k à B et par la restriction de la complexifiée de la différentielle de k à g~. (La première
condition de stabilité est conséquence de la seconde si B est connexe.)

Il revient au même (voir [5]) de dire qu'il existe un endomorphisme / de V tel que,
si l'on pose Vo V~ n V:

(i) J\Vo 0

(ii) J2v= - v (mod. Vo) pour tout ve V
(iii) Jk(b)v k(b)Jv (mod. Vo) pour tout ve F et tout beB
(iv) k(X)v + Jk(X)Jv+Jk(JX)v-k(JX)Jve Vo pour tout Xgq et tout ve V.

Une y-représentation A de G dans K induit une représentation complexe g de B
dans y4 (F®C)/F~ dont la différentielle se prolonge en une application h de g"
dans gl(^4) appartenant à l'ensemble Jf(GL(A)) (paragraphe 2).

Le G-fibré vectoriel E=GxBA associé à g, muni de la structure holomorphe
G-invariante associée à h est appelé le fibre associé à la ^'-représentation A de G et

noté E(k).
Soit E un fibre vectoriel complexe différentiable sur G/B. Désignons par ex,

xeG/B, l'application de Sf dans E qui fait correspondre à toute section oeSf sa

valeur o{x) au point x.

DÉFINITION. On dit que E est un fibre homogène représentable si E est un
G-fibré holomorphe et s'il existe un sous-espace vectoriel réel W de £?9 tel que

1) W est de dimension finie

2) W est stable par l'opération naturelle de G dans Sf
3) Pour tout xeG/B9 l'image de Wpar sx est égale à la fibre de E en x.
4) Les éléments de W sont des sections holomorphes.
On remarque que si W vérifie 2) et s'il vérifie 3) au point x0, il vérifie 3) : en effet,

si xeG/B, il existe geG tel que x=gx0; soit Ç un élément de la fibre de E au point x:
il existe aeW tel que <T(xo) G(g~1x)=g~1Z9 donc (g-a) (x) Ç et g-a est dans JF

d'après 2).

THÉORÈME 2. J£ est un fibre homogène représentable si et seulement si E est

tG~)isomorphe à E(k)pour une j-représentation k de G.
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Démonstration.

A) E{X) est représentable: on a un diagramme commutatif

G x A^
pri | p

G -^

où n' et # sont les projections canoniques. Soit alors W l'ensemble des sections

f, où v appartient à l'espace F de lay-représentation A de G, définies par

a! étant la restriction à F de la projection canonique a de V® C sur ^4. On a

Ù(q(gb)) n'(gb, a'iWy1 Hg)'1 v)) ir'(gft, g(ô)-1 a' (A(g)"1 v))

donc 6 est bien définie.
W est un sous-espace vectoriel réel de S? de dimension finie puisque l'application

qui associe v à tout élément v de V est R-linéaire. W a la propriété 2) car si geG,

vgK (s-<O(tf(Si))=S%(rti)) ^^ P°ur
tout gi e G.

Comme a' est surjective, W vérifie également 3). Pour constater que les sections î>

sont holomorphes sur G/B, il suffit de le voir au voisinage de x0 pour tout veV; en

effet, si c'est le cas et si xeG/B, on a

pour un geG; or G opère dans 2?(A) par des automorphismes holomorphes, et

g"1 • v est un élément de W d'après 2). En utilisant la proposition 3, avec les notations

qui s'y trouvent, il suffit en définitive de montrer que les applications GL(A)-
équivariantes co(0) vérifient la relation (3.1) pour tout Xe g". On a co(D) (n(g9 a))

a ocf(À(g)~1v) où ve V, geG, aeGL(A), par définition de ù et de œ. Par conséquent,

En différentiant il vient

d

Jt t=o



446 P. SAILLEN

pour tout Xe g, d'où (Z-co(O)) (Ç0) x(kc(X)v) pour tout Xeq® C, ce qui permet de

conclure par définition de h.

B) Réciproque : on suppose que E est représentable et on désigne par h eJf (GL (Eo

l'application de g~ dans Ql(E0) définissant la structure holomorphe de E, Eo étant la
fibre de E en x0. Désignons encore par W~ le sous-espace complexe de J^® C égal

au noyau de l'application sc de W® C sur Eo définie par

di, (t2eW, où / est la multiplication par v — 1 dans Eo. Si A est la représentation
linéaire de G dans W induite par l'opération de G dans £f9 il est clair que W~ est

stable par la restriction à B de la complexifiée de À.

LEMME. k est une j-représentation de G.

Démonstration. La représentation k est équivalente à la représentation \i de G

dans le sous-espace V=œ(W) de «a/. Soit fi l'application de V® C sur Eo telle que

et considérons le diagramme

W ® C —? F (g) C

où a est la projection canonique et où / est définie par
Comme les sections aeW sont holomorphes, on a

pour tout Ze g~ et tout ce JF® C d'après la proposition 3, c'est-à-dire

(<T). (4.1)

On en tire aussitôt que W~ est stable par g". Indiquons comment on finit de

démontrer B): si k est la représentation de g" dans A induite par A, i.e. telle que
)<x{G) a(kc(X)o) pour tout XeQ~, aeW® C, on a d'après (4.1)

pour tout XeQ~. Par ailleurs, il est clair que par définition, % commute avec les

actions de B induites dans A par k et dans Eo par l'action de G dans E. D'après la
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proposition 4, % induit donc un unique isomorphisme holomorphe G-équivariant cp

de E(X) sur E défini par

<pn'(g, Gc((T)) gxoc(a)

pour tout geG, ae W® C.

4.2. Indiquons pour terminer le comportement fonctoriel de la correspondance
X h-> E(X).

A) Si /est un homomorphisme d'une /-représentation Xx de G dans Vx dans une
y-représentation X2 de G dans V2, c'est-à-dire une application équivariante / de Vi
dans V2 telle que/c(K7) soit contenu dans V~2, il est clair par construction de E (X)

que/induit un morphisme holomorphe équivariant noté E(f) de E(Xt) dans E(X2).
B) Réciproquement, si cp est un morphisme holomorphe équivariant du fibre

représentable Et dans le fibre représentable E2 et si \j/i est l'isomorphisme de E(Xt)
sur Et (7=1,2) obtenu dans le théorème 2, il existe un homomorphisme / de la
y-représentation Xt dans la/"-représentation X2 tel que

£(/)-<Ai=</v<P. (4.2)

En effet, soit Kf un sous-espace vectoriel réel de l'espace de sections S?t de Ex

O'=l, 2) vérifiant les conditions 1) à 4) du paragraphe 4.1. cp induit une application
équivariante cp* de Sf Y dans ^2 définie par cp*(o) cpo pour tout ae^v Le sous-

espace W=(p* Vt + V2 de eS^2 vérifie encore les conditions 1) à 4). On voit aussitôt

que la restriction/de cp* à V1 est une application équivariante de Vx dans PFdont la
complexifiée envoie V\ dans JV~, et que (4.2.) est satisfaite.

Remarque. On peut poursuivre l'analogie avec le cas du fibre tangent mentionnée
dans l'introduction : s'il existe un volume invariant sur G/B, J. L. Koszul a calculé la
forme hermitienne qu'on peut lui associer canoniquement sur G/B au moyen de la
représentation adjointe de G ([2], théorème 1), et il a montré qu'elle est définie

positive si et seulement si G/B est isomorphe à un domaine borné d'un CN.

L'interprétation des/-représentations en termes de fibres permet comme il se doit un calcul

analogue: soit E un G-fibré vectoriel holomorphe de rang (complexe) n. Soient E' le
G-fibré dual réel de E et A2nE' le G-fibré puissance extérieure 2«-ième de E'.
Supposons qu'il existe une section G-invariant Q non nulle de AlnE' sur G/B et soit U
un ouvert de G/B dans lequel sont définies n sections holomorphes su...9sn linéairement

indépendantes sur C du fibre £* dual complexe de E canoniquement plongé
dans E'® C. Il existe alors une fonction différentiable K à valeurs réelles ou imaginaires

pures suivant la parité de n telle que

Q Ksx A ••• A Sn A Si A---A Sn.
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Supposons que U est le domaine d'une carte de G/B et zu zm des coordonnées

holomorphes dans U L'expression

est l'expression locale d'un tenseur H sur G/B qui est par définition la forme her-
mitienne canonique associée à E La restriction de H aux champs de vecteurs réels

est une forme bihnéaire symétrique telle que H(IS, T) + H(S,IT) 0, où / est le

tenseur de la structure holomorphe sur G/B Soit \j/ la 1-forme invariante à gauche

sur G définie pour tout XeQ par ij/(X) -TrF Jf(X), F étant la fibre réelle de E en

x0 et / l'application définie dans (2 1) On peut alors démDntrer (cf [5]) que l'image
inverse sur G de la 2-forme alternée H (S, IT) est la différentielle extérieure de \j/

Dans le cas où E=E(X) est associé à une y-représentation X de G dans F on a

Si l'on pose fi(Jq(X), q(Y)) \lj\_JX, Y], on trouve ainsi une interprétation géométrique

de la forme /? sur g/b définie directement comme ci-dessus par Koszul dans

[4] comme étant la forme hermitienne canonique de À II reste à trouver des

conditions géométriques de non dégénérescence de H
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