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A Définition of Exotic Characteristic Classes of Spherical Fibrations1)

By Douglas C. Ravenel

1. Introduction

The object of this paper is to define certain characteristic cohomology classes for
spherical fibrations which are zéro on vector bundles and to show that the classes

defined are not always zéro. For an introductory survey of characteristic classes and

spherical fibrations the reader is referred to [12] and the références therein.

Briefly there is a 'structure group' G and a classifying space BG for spherical
fibrations and similar spaces (SG and BSG) for oriented spherical fibrations. SG has

the homotopy type of \imn^o0(QnSn)l, where (QnSn)i is the space of degree 1 base-

point preserving maps of S" to itself. The cohomology of ail four spaces has recently
been computed by Milgram ([10]), May ([8]) and Tsuchiya ([18]). My object is to
define certain classes ekeHrpk~1 (BSG; Zp) for p an odd prime (where r 2p — 2) and
ekeH2k 1~1(BG;Z2) which I will refer to as exotic classes. In order to simplify
notation I will only deal with the case of p odd, but ail of the theorems herein can be

proved for/? 2 with the obvious changes in notation. Ail cohomology groups will
hâve Zp coefficients unless otherwise indicated. The définition given hère is similar
to one given by Peterson in [13] and to a définition of ex given by Gitler-Stasheff in
[4].

In each case the exotic classes are defined in terms of twisted secondary cohomology
opérations (TSCO's) acting on the Thom class we#*MSG, where MSG is the
Thom space of the universal bundle over BSG. TSCO's were introduced by Thomas

([16]) and axiomatized by McClendon ([9]). They are a generalization of ordinary
secondary opérations to the category of topological pairs (X, V) over a fixed space Y.

The analogue of the Steenrod algebra in this category is A (Y) where A is the Steenrod

algebra and A(Y) — H*Y®A as a vector space with the multiplication appropriate
to defining an A Y) module structure on H* (X, V). TSCO's are derived from relations
in A {Y) just as ordinary secondary opérations are derived from relations in A.
Indeed, ordinary secondary opérations can be regarded as TSCO's for the spécial

case Y—pt.
Now the Thom space of any oriented spherical fibration can be regarded as a

pair over BSG, so relations in A (BSG) could be used to define characteristics classes

on suitable spherical fibrations. In [13] Peterson defined an algebra injection
0:A-+A(BSG) with the property that 6(a) annihilâtes the Thom class u of MSG

x) This work partially supported by an NSF Graduate Fellowship.
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(and hence ail Thom classes), and if aeA dima>0. Hence any relation in A can be

used to define a characteristic class in H*BSG modulo a certain indeterminacy.
He also showed that in the case of the Adem relation for p(p~1)pk+1ppk~1 (which will
be denoted by Rk) the indeterminacy is zéro in H*MSG, so one could use this
construction to define exotic classes in H*BSG. However, as in the case of ordinary
secondary opérations, one must make a choice in deriving an opération from a

relation in A (BSG) and two such choices can differ by any primary opération, e.g. by
multiplication by any class in H*BSG. Practically speaking this choice is another
form of indeterminacy which in the above case is undesirably large. TSCO's and

Peterson's use of them are dealt with in more détail in Chapter 2.

The object of Chapter 3 is to give a définition of exotic classes for which there is

less indeterminacy in the choice involved. Let Z f|I>0^(Zp, ir) and let #:BSG-»Z
be the map corresponding to the total Wu class in /f*BSG {q^u—P^ in H*MSG).
The main resuit of Chapter 3 is :

THEOREM 3.1.1. There are relations Rk in A(Z) such that q*(Rk) 6(Rk) + ak

where ock is a sum of terms of the form 0-P1.
This is proved by a direct computation involving the natural Hopf algebra

structures of A (BSG) and A (Z). It can also be shown by homological methods that
the Rk along with the relation AA=0(AeA being the Bochstein opération) are the

only indécomposable relations in 0(A)c:ASBSG) which can be lifted to A(Z). This
will not be done hère since it is irrelevant to the problem at hand.

Then we can define the exoctic class e^H^"1 BSG by eku (f)lueH*MSG,
where <j>% is the TSCO associated with the relation Rk in A (Z). Two possible choices

of (j)%u differ only by multiplication by an élément in Imq^czH^BSG, and we hâve

PROPOSITION 3.1.2. Imq* Zp[mqi:i>0']<8>E[Aqi:i>0'] where £[•] dénotes as

usual the exterior algebra on the indicated generators.
Hence two possible choices of ek differ by an ordinary characteristic class. Further-

more §\ as an opération has indeterminacy zéro on Thom classes. This définition
also has the advantage of enabling one to relate the exotic classes to the action of the

ordinary secondary opération 4>A associated with Rk. We hâve

COROLLARY 3.1.4. cj)Au <t>zu ifu is any Thom class on which 4>A is defined,

The proof uses the diagram

BSG-^PZ
pi le (1.1)

BSG-» Z
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where Ç is the path fibration and p is the induced fibration. Now TSCO's are natural
with respect to test spaces and £* (</>z) </>A. The resuit follows from the fact that

BSG is the classifying space for bundles for which (j)Au is defined.
The object of Chapter 4 is to show that the classes defined herein are nonzero.

We hâve

THEOREM 4.1.1. There exists a spherical fibration Ç over a space X such that(O()
COROLLARY. The exotic characteristic classes ekeHv*r~l BSG of Définition

3.1.3 are nonzero modulo Imq* for ail k.

The space X is ZÏ2BSG and £ is induced by the obvious map to BSG. The proof of
Theorem 4.1.1 consists of relating the opération (j)A to Dyer-Lashof homology opérations

in H*G which are known to be nonzero.
The exotic classes for p =2 appear to be related to the Kervaire invariant. Using

the techniques of Section 3 it should be possible to relate the exotic classes to the
classes i*(k2j-2) in Theorem 4.3 of [1]. For p odd it follows from the work of
Tsuchiya [17 ] that the exotic classes are nonzero in /f*BSPL, so they may be regarded
as some sort of smoothing obstructions. A formula for the first exotic class of a

(pr— 1 dimensional manifold was given by David Frank in [3 ].

For their advice and encouragement I wish to thank Pete Bousfield, David Frank,
Samuel Gitler, Frank Peterson, Bill Singer, Dennis Sullivan, and most of ail Edgar
Brown, my thesis adviser.

2. Preliminaries

2.1. Hopf Algebra Notation and the Algebra A (Y)
First I must establish some notation. Throughout this paper ail cohomology and

homology groups will hâve coefficients in the field Zp (p a prime) unless otherwise

indicated, and ail Hopf algebras considered will be graded, connected, associative
and coassociative with ground ring Zp. To simplify notation I will assume p is odd,
although ail of the theorems in this paper can be proved analogously for p 2 modulo
the obvious changes in notation. If R is a Hopf algebra, fiR : R®R -» R will dénote the

product, nnR:R®n->R the iterated product, \I/R:R-+ R®R thecoproduct, il/nR:R-+R®n

the iterated product, eR:R-^Zp the augmentation, J(i?) ker eR the augmentation
idéal, nR:Zp->R the unit, and Xr• ^-* ^ the canonical antiautomorphism. Subscripts
will be omitted whenever possible. If reR, \jt{r) will be denoted by Ir'®r\ ij/n(r)
by Zr'<S>r"®r'"®~-r(n\ and x(r) by f. If Mis a left i?-module, let aRsM:R®M-+M
dénote the module structure map and if TV is a right i£-comodule let TNtR:N->N(g)R
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dénote the comodule structure map: For right modules and left comodules the
subscripts will be reversed. If S is an algebra over R (i.e. if S is an R module with a

multiplication such that for sl9s2eS,r(sis2) Zr' (s^r" (s2)), thesemitensor product
R(S) is S®R with the foliowing multiplication:

\Si 09 rt) {$2 09 ri) — 2L v l) 'yiri \si) Qy rir2

where rl9 r2eR. If R and S are cocommutative Hopf algebras, so is R(S) and the

coproduct is given by

The conjugation is given by s(g)r Z(— l)|r"' |s|f'(.s)<g)r". If Y is a space then if* F
is an algebra over the Steenrod algebra A and the semitensor product A (H* Y) will
be denoted simply by A (Y). If/: Z-^ Fis a continuous map and FcXthen H* (X, V)
has an y4(F)-module structure defined by (j®a)jc=/*(j)ua(x) for aeA,
xeH*(X, V) and yeH*Y. This module structure is the motivation for considering
A(Y).

Now A (Y) can be regarded as the algebra of stable primary opérations for the

category of pairs of spaces over Y. An object in this category is a map/: X-> F and a

subspace Vc X, ail denoted by (X, V,f A morphism g in the category is a commu-
tative diagram

V r- Y —» Fr v_« ./jl ^^ jI

gin gj, /
The map / induces an >4(F)-module structure on H*(X, V) as described above.

This structure will be used in what follows but / will be suppressed in the notation.
For précise définitions and properties of this category, see McClendon [9]
références therein. The éléments in A (Y) will be referred to as twisted primary
opérations over Y.

2.2. Twisted Second Cohomology Opérations
McClendon has given axioms for higher order cohomology opérations (called

twisted opérations) which generalize those given by Maunder [6] for the case Y=pt.,
i.e. for the ordinary category of pairs of spaces. I will give McClendon's axioms (in
a slightly modified form) for secondary opérations. Let

d2 dx
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be a chain complex of free ^(F)-modules. Let

a:HomkA(Y)(CuH*(X, V))->HomkA{Y){C2, H* (X, V))

/?: Hom*(y)(C0, H*(X9 V))^HomkA(Y)(Cu H*(X9 V))

be defined by a Hom(âf2, 1), p Hom(d1, 1) for ail k.

DEFINITION. If M and N are modules, an additive relation r\M-^N is a
submodule R of M®N and

Defr {meM: 3neN such that <m, n> eR} the domain of définition of r

:<0, n}eR}. the indeterminacy of r

DEFINITION. A twisted secondary cohomology opération (TSCO) <$> associated

with C is an additive relation

)(C0, H*(X, F))-Hom^(C2) H*(X, V))

defined for ail k and for ail pairs (X, V,f) over F and satisfying the following axioms:
1) Def<£ ker/? and Ind</> ima.
2) Naturality. Let g(X, V,f)->(X', V'J1) be a map of pairs over Y i.e.

#:(X, V)->(X\ V) and/'g^/, and let ee#*(jr\ F'). Then

3) Suspension: IY(j)= —<j)ZY where IY is the suspension map in the category of
pairs over Y (see McClendon [9] p. 188).

4) Peterson-Stein relation. Let V'cVcX-^Y, tieH*(X,V) and let

H*(V, V')£-H*(X, V')£-H*(X, V) be the exact séquence of the triple (X, V, V).
L

Then i*qekerfi^olj*'1 Prjcz-ôfa*^
McClendon has proved the following:

THEOREM 2.2.1. (Existence) For any chain complex C: C2-^C1-^C0 there

exists an associated TSCO 0.

THEOREM 2.2.2. (Quasi-uniqueness) If 4>0 and fa are two TSCO's associated

with C, then 3d:C2->C0 such that HomAiY)(d, 1) (fi)e^0(e) —^(e) for each

1, i.e. (j>0 and (f>1 differ by a twistedprimary opération.

THEOREM 2.2.1. (Naturality with respect to Y) Let w:Y-+Y' be a map, C
a chain complex of free A{Y')-modules, and C=A(Y)®A(Y>)C'. There is a natural
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isomorphism

y:Hom,(r)(C'} H*(X9 V))-+HomAm(C, H*(X, V))

and the TSCO ^ y</>/y~1 is associated with C. Moreover

Ind 4> => Ind <£' and Def (j> a Def<£'.

In particular of Y=pt. then $ is an untwisted Adams-Maunder opération. This fact
is of crucial importance in this paper. In section 3 I use the fact that an appropriate
two stage Postnikov System is a universal example for Adams-Mauder opérations.
Similar universal examples exist for TSCO's (see McClendon [9] and Thomas [16])
but will not be used hère.

2.3. Peterson's opération
Now I will recall a TSCO defined by Peterson in [13]. Let the qteH*BSG dénote

the /th. Wu class of the universal bundle, which is defined by qiu=PiueH*MSG>
where PleA is the ith Steenrod reduced power, and let <7tei/*BSG be the /th Wu

class of the Whitney inverse of the universal bundle. Let 6:A->A(BSG) be defined by

0(A)c 1®A, where AeA is the Bochstein, and d{Pi)=Iqt®Pi~t. Peterson showed
that this définition makes sensé and that 9 is an injection of Hopf algebras. Now we

can make ^4(BSG) into a right ^4-module with structure map 0^(BSG), A /^4(bsg> 0 ® #)>

so if CA is any chain complex of free ^4-modules, CBSG ^4(BSG)®^CA is a chain

complex of free ^(BSG)-modules. The CA I want to consider has the form

where Co=A;CA has as ^4-basis the set {p(:i>0, dimpi ir}; an^4-basis of CA is the
set {ek:k>0, dimek=pkr}; d^p-^P1', and d2ek=pkI~J1ak)iPpk~îPi, where aktieZp and

ak, pk-i l such that Iaki ^'^ 0 is the Adem relation forP^-1^"1/^*""1 which
will be denoted by Rk.

McClendon's theory then gives a family of TSCO's of the form

<l>™G:Hom»MBSG)(CFG9H*(X9 V))^HomTjSG)(CfG9H*(X, V))

where (Z, V) is a pair over BSG. We can regard MSG as the pair (BSG, ESG)
where ESG is the total space of the universal spherical fibration over BSG. Hence
0BSG is defined on a subset of #*BSG. Peterson proved

PROPOSITION 2.3.1. <£BSGw is defined and has zéro indeterminacy.
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Proof

Def</>BSG p| ker0(P') and 6(F) u £ &P'-ru £ £g,_rw 0

so

Ind<£BSGu IJ 9(Ppk~l) (/f^BSG) m U E^fc0 k

U I qa(P*~l-'~'Hv-iBSG) P*u
k', i s,t k,i

U (Ppk"lHir"1BSG) m 0 since î < p*'1.

Hence we could use 0BSG to define the total exotic class, but this would be too
imprécise since two choices of </>BSG may differ by any twisted primary opération over
BSG, e.g. by multiplication by any élément in H*BSG. I will avoid this difficulty in
section 3.1 by replacing $BSG by 4>z, sl TSCO associated with a certain chain complex
over A(Z) (see p. 1.3 for the définition of Z). Two choices of </>zw will differ only by
multiplication by an ordinary characteristic class.

3. The Définition of Exotic Characteristic Classes

3.1. Statement of Results

The object of this section is to give a définition of exotic characteristic classes

modulo ordinary characteristic classes which will enable one to construct (in chapter
4) a spherical fibration for which the exotic characteristic classes can be shown to be

nonzero. The main tool is

THEOREM 3.1.1. There exists a chain complex Cz of free A{Z)-modules such

thaï CBSG ^(BSG)®A(Z)CZ.
Proof. See section 3.3.

PROPOSITION 3.1.2. Im^* Zp[^I:/>0]®£t[J^:/>0] where £[•] as usual
dénotes the exterior algebra on the indicated generators.

Proof. See section 3.2.

DEFINITION 3.1.3. Let 4>z be a TSCO associated with Cz. Define the total
exotic class eeH*BSGIlmq* by eu <$)z u where wei/*MSG is the Thom class. Let
ek dénote the (pkr— l)-dimensional component of e.

Remarks. This définition makes sensé since by Theorem 3.1.1. (pzu (j)BSGu

for a suitable choice of 0BSG and therefore <j>zu is defined with indeterminacy zéro by
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Theorem 2.2.3. Two possible choices of (j>z differ by a twisted primary opération over
Z. Such an opération applied to u gives an élément in (Img*) u and hence e is indepen-
dent of the choice of </>z, i.e. the exotic characteristic classes are defined modulo
ordinary characteristic classes.

COROLLARY 3.1.4. Let (j)A be an ordinary secondary opération associated with

CA, then (j)Aû=<j)zû eû, where u is the Thom class o/MSG, the Thom space of BSG
(defined on p. 1.4).

Proof. CA A®A(Z)CZ, where the y4(Z)-module structure on A is derived from

diagram 0.1 and MSG can be regarded as a pair over PZ~pt., so the resuit follows
from Theorem 2.2.3.

Remarks. <\>zû does not dépend on the choice of 0Z since ail twisted primary
opérations over Z vanish on û. Corollary 3.1.4. will be used in the next section to
show (z

3.2. A (Z) as a Hopf Algebra
The object of this section is to prove that A (Z) is a Hopf algebra which is an

extension of a certain Hopf algebra A(B)aA(BSG) by a bicommutative Hopf
algebra D. (See Gugenheim [5] and Singer [14] for the définition and basic properties
of Hopf algebra extensions.)

Let B=Imq* a H*BSG. The structure of B is given by Proposition 3.1.2. which
I will now prove

Proof of 3A.2. Clearly Zp[qù®E[Aq^B so it suffices to show that

a(qn)eZp[qi']®E[Aqi-} VaeA

so it suffices in turn to show this for aeA indécomposable. It is obvious for a A.

Now I will show PkqneZp[qi~] by induction on k + n. To start the induction we hâve

P°qo= 1 eZp[#f]. Now qu=Pu so the Cartan formula gives

Pk(inU) £ (P'qn) (Pk-'u) i (/>'<?„) («*_,«). 3.2.11
i=0 i 0

Pkqn 0 so I will assume k<pn. Then there is an Adem relation

Z CiP^^qtu) E c^P"-1-'*,) (PJu) £ c^P"-1-'*,) (qju).
i i, J i, j

3.2.12

Equating 3.2.11 with 3.2.12 gives a recursive formula for PkqneZp[qi~].
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Moreover B is an ,4-algebra and
In order to proceed further, I must recall the définition of the cotensor product

R

M® N, where M and TV are right and left comodules over the coalgebra R respectively,

R

M ®N ker(rM>R® 1 - l ®rRfN):M ® N -> M ® R® N.

Next observe that B and H*Z are bicommutative A-Hopf algebras with coproducts
*Afl(#) #®<7 and ^H*z{1)—1®1 where ï 1+Xî>o lir and iireHir K(Zp, ir) is the
fundamental class. Moreover q*:H*Z-+B is an A-Hopï algebra map.

B

Now let D H*Z®Zp and observe that Dc+H*Z is a sub-Hopf algebra
(Gugenheim [5], Theorem 4.21*). H*Z is a free (in the graded sensé) commutative

algebra on generators aiir where iireHir Z is a fundamental class and aeA with
excess a<{p— \)i. Hence the sub-Hopf algebra Zp[ifr]®^[Jïir], is a factor of
77*Z (over Zp) which q* maps isomorphically onto B. The inverse y of this iso-

morphism is a Zp Hopf algebra map and a splitting of the Hopf algebra extension

EH*ZD -> H Z*± B

so the extension is trivial over Zp and H*Z&D®B as Zp-Hopf algebras. However
the splitting is not an ^4-map and H*Z does not split over A.

(AB)

PROPOSITION 3.2.3. A(Z)®ZpxD. (AB)

Proof: An élément z®aeA(Z) {aeA, zeZ) is in ^(Z)®Zp iff

0 iff a 1 and q*{z") 0 V^Vl.
But this is precisely the définition of an élément in D.

COROLLARY 3.4. D -> A (Z) -> A (B) is an extension of Hopf algebras and

A(Z) D®A (B) as coalgebras.

3.3. The Proof of Theorem 3.1.1

The object of this section is to prove theorem 3.1.1 by constructing a relation in
A (Z) which maps to the relation in A (BSG) used to define CBSG. The construction
will involve the Hopf algebra structure of A (Z) given by Corollary 3.4.

Identifying ^4(Z) with D®A(B\ its product is given by (Singer [14], Prop. 3.4)
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where dud2eD,bub2eA (B), b\ (d2) is defined by a certain A (B) module structure
on D (denved from the >4-module structure which D inherits from H*Z) which will
not be needed hère, and t A(B)®A(B)-+D (the twist) is a certain coalgebra map
which plays an essential rôle in what follows To define x let y t]D®

b'2) y(b'[b2') whereS l®eMB) D®
®A(B)=A(Z)->D

The foliowing calculation is the crucial part of this entire section

LEMMA33 1 Let 9m 9(Pm)eA(B) Then T(6m®9n) 0 ifm^(p-l) n

Proof Let £ A-+B be the composition A^>A(B) B®A >BÇis a coalgebra

map and we hâve 9(a) Z£,(af)®a" and (identifying A (Z) with H*Z ® ^4))

t(0 (a) ® 9 (b)) ÔZ(yÇ (a') ® a") (yÇ (br) ® b") (yÇ {ambf") ® a(4)Z?(4))

ÔI (yÇ (a') a" (y{ (b')) ® a'"b") (b1 â(4)y^ (a(5)Z>(4)) ® b(5)â(6))

ÔZyç{a') a"{

The last step above follows from the fact that yÇ(a"'b")elmy and (5y 0 in positive
dimensions
Hence

0 if m>(p-l)n
O if m (p-l)n Q

Proof of 3 11 Let r I(A (B))®I(A (B)) -> I(A (Z))®I(A (Z)) be defined by

àimb >0

+ I (t (a'® Z>)®1)®(1® a")
dim a >0

for a, beA (B) It is straightforward (beanng in mmd that t is a coalgebra map) that

— x(a®b)® 1 Hence by the above lemma r(9m®9n)= \®9m9n

for m^(p-\)n To define Cz C2-^CI-^Cq A(Z) let {tt i>0, dim^ ïr} be an
y4(Z)-basis for Czu {eK k>0 dimeK=pkr} a basis for C29 ditl y(9l) and

M^O l,U>0
v>0

Then it is straightforward that dxd2^0 and CA A®A(Z)Cz
Remark Note that d2ekeC{ has terms involving r, for 0<i<pk where as

d2eKeCf only involves /?, for 0<i</?fe"1, so there are some extra terms of the form
0 p\pk~1<i<pk, in the relation one would use to define the ordmary opération
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for eki but thèse terms will not change the value of the opération on any cohomology
class on which it is defined.

The Nontriviality of Exotic Characteristic Classes

4.1. The Main Theorem and Dyer-Lashoff Opérations
In this section I will prove that the exotic classes are nontrivial, i.e.

THEOREM 4.1.1. There exists a spherical fibration t; over a space X such that
the opération <\>A is defined on the Thom class of { and is nontrivial in every possible
dimension, i.e. eK(£)^0Vfc.

The proofwill involve certain information about H*QS° where QS° lim,,_> ^ QnSn,

so I will begin by recalling some basic properties of the Dyer-Lashoff homology
opérations as axiomatized by May [7]. In the foliowing theorem of May the modifications

necessary for p 2 will be indicated in square brackets :

THEOREM 4.1.2. Let B be an infinité loop space. There exist natural homo-

morphisms Ql:H#B-> H#B of degree ir [of degree i]. They are axiomatized by the

properties:
1) Q°(<t>) <t> <md Qî((l>) 0 for i>0, where (j>eH0B is the identity élément for

the loop product in B.

2) g*(jc) 0f/2/<dim;c \ifi<â\mx]
3) glxS^xUf 2i=à\mx[if i^éimx]
4) o"*Ôl=:ôIcr*> where a*I{H*QB)-+ H*B is the homology suspension.
The opérations also satisfy the properties :

5) Cartan formula: Qs{xy) f?i=o ô'(*) QTl(y) and

6) Nishida relations. Let P*HitlB-+H*B of degree (-sr) be the dualof PseA and

ifp>2 let p be the Bochstein in homology. Then

r z (- i)/+s((p "1} {rr
i \ s Pl

" ^ ir ~.

i \ S — pi — L

Thèse opérations generate a Hopf algebra R with the property
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THEOREM 4.1.3. (May [8]) Let [d]eH0QS° be the generator for the component
corresponding to maps of degree d. Then R acts freely on [1].

Remark. If xeH*QS° is in the component of degree d, then Qlx is in the component

of degree pd9 and SGczQS0 is the component of degree 1. The product in
H*QS° will be the loop product; the composition product will not be used hère.

4.2. Proof of the Main Theorem

Now I am ready to define {. Consider the foliowing diagram

m,—
VI»

4.2.01

where xneHn(Sn, Z) is a generator, /?! and/?2 are the principal fibrations induced by
the indicated maps, x'n and x"n are the unique liftings of xn9 i2 is the inclusion of the
fibre and M is the fibre production of x"n and i2, and n is sufficiently large. Hence QE1

is the fibre of t and we hâve fibre squares.

a) m >PEt
4.2.02

where PEX is the path space of Et and the équivalence on the right is a homotopy
équivalence but not an i/-homotopy équivalence. M is «-connected so QnM is

connected and its image under Qnt will lie in the degree zéro component of QnSn,

which is canonically homotopy équivalent to SG, so I hâve a map g:QnM-+SG
which induces an orientable spherical fibration £ on X=IQnM. Now I need two
lemmas which will be proved in 4.3:

LEMMA 4.2.1. The class [-/?2] PQ(p~1)plpQpl ([\])eH*QnSn is in the image of
(Qnt)*.

LEMMA 4.2.2. Let bleHrpi + 1_2 QnE2 be the fundamental class. Then

« [2W(1)i().
Qnt

Now we hâve a map QnM—+QnSn, which defines the bundle £ over IQnM. This

map has an adjoint ZnQnMJ+Sn and it is straightforward that the Thom space TÇ is
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homotopy équivalent to IC\ where C% is the mapping one of 1. Now consider the

following diagram:

Orr f2 p _P2r 4>A „WA2 >Ej2 >r*l > ^2
*î "4 II î»

aî || îa' îIa

where a is the adjoint of the identity, the rows are fiber séquences in the stable range,
and a', x'm v, and v are the obvious maps. I must show that every fundamental class in
H*K2 lies in

Im (0V)* Im (I (ha) v)* I Im (/za)* In+i (Qnh)*.

This leads us to the square

h£ A2 ^4^ ti2 — iû A2 X hi Aj X Z/

where I must show that the fundamental classes in H*Qn+1K2 are in the image of
(Qnh)*, i.e. in the notation of Lemma 4.2.2, I must show bieIm(Qni2h)*czH*QnE2,
but

ï>t [- P2] fiQ^'^PQ^ÏM by 4.2.2

eIm(£X'O* by 4.2.1

and theorem 4.1.1 is proved.

4.3. The Proof of Lemmas 4.2.1. and 4.2.2

Proof of Lemma 4.2A. I will use the Eilenberg-Moore spectral séquence for
/f-spaces as described by Moore-Smith in [11]. In their terminology the degree zéro

component of 4.2.02 b) is a Hopf fibre square and there is a spectral séquence con-
verging to H*QnM with

E2 CotorH*Qn+1K*(H* (QnSn)09 Zp)
lm(Qnx'n)*

S (ff (QnSn)0 ® Zp) ® Cotor ™n+1Xl (Zp5 Zp)

where (O/l5rw)0 is the component of degree zéro. The indicated isomorphism is

proved in [11]. Hence H*(QnSn)0 ®Im(f2n*'")*Zp lives to E™ so it suffices to show that
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it contains

[- P2] /JQ(p-1)pf/?eP'[l], i.e. that (1 ® (O-x%) *([- p2] j?G<p~x'p"j5Qpl[1])

By the Cartan formula, the Adem relations, and the fact that \l/[d~] \d~]®\_d~] we
hâve

+ Q(p~ 1)jQj[1] ® G**"1'ipi-J)pQpi-j[1]
so

To complète the proof I will show that

'ï 'ï i] o w, y.

Consider the inclusion of the fibre Qnii:Qn+1Kl-+QnEi. Clearly Qj[\]eHrjQnE1
is in lv(x{Qni1)^ so for the iterated opération to be nontrivial on [llei/oi^, we must
hâve a Ql acting nontrivially in H^Qn+1Kl, but Dyer-Lashoff opérations are always
trivial in a product of Eilenberg-MacLane spaces with the product infinité loop
space structure, as follows from the following

PROPOSITION 4.3.01. Dyer-Lashoff opérations are ail trivial in H*K(n9m)f
where n Z or Zp.

Proof. The Dyer-Lashoff opérations on K(n, n) are defined in terms of a certain

Ip-equivariant map (see [2])

9p:WIpx(K(n,n))p->K(7i,n)

where Ip is the symmetric group on p letters, Wlp is a free acyclic I^-complex on
which Zp is acting, Ip acts on (K(n, n))p by permutation of factors and the composition

(X (tt, n))p -> WIp x (K (n, n))p ^ K (te, n)
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is/7-fold multiplication in K(n, n). Since K(n, n) is an abelian group the map 9P can be

chosen to factor through the projection onto (K(n, n))p and it follows that the Dyer-
Lashoff opérations are trivial on H*K(n, n).

Now in order to prove lemma 4.2.2 I will need

LEMMA 4.3.1. Let Mi^-i) (QnEl) be the fundamental class. Then ht

Proof of 4.3.1. For any simply-connected space X the Eilenberg-Moore spectral

séquence gives

PPUn
andthisis functorial on X. Let Ex 11 be the fibre of K(Z, n) >K(Zpi n + rpl). For the

fiber inclusion Qn~2pi-1 (EUi)-^K(Z9 n)) we get

Tor^(Zf 2pi+1) (Zp, Zp) => H*K (Z, 2p>)

l t
Tor H*Qn~2pi-iE1 (Zp, Zp) => H*^""2^!.

The upper spectral séquence has been studied by Larry Smith in [15] where it was
shown that TorH^(Zj2p/+1) (Zp, Zp)czr(xpi\ wherex^eTor^f^^+i) (Z
T(-) dénotes the divided polynominal algebra; and that dp-1yp(xpi) Ci

p, where yp(-) is the divided pth power. Hence

0

so yp((Qn~2pi~1plfi)*(xpi)) lives to E^ and the fundamental class xpieH2p
Qn~2piEui has xppi Qpixpi^0. Now QnEui ZxK(ZPf rp1-!) and ôpt[l]is the only
nonzero class in dimrp* so jSgpi[l] ^>i(jQfI2/7i)^/îf where qli:E1-^Elti is some

lifting of /v^-^Zp,**). Hence '^[l^Oei/*^^.' Now H*QnExK
^H^.(Qn+1K1 xZ) is a divided polynomial algebra on certain primitive generators
related to each other by the action of the Steenrod algebra. PQpi [1] is such a generator
so it is equal to ht if it is annihilated by every nontrivial Steenrod opération, and this
is a direct conséquence of the Nishida relations.

Proof of Lemma 4.2.2. Let E3 be the fibre of PiP2'-E2 ->K(Z9 n). I will prove the
lemma by analyzing the Dyer-Lashoff opérations on QnE3. E3 is also the fiber of

fi K(Zp) n + rj - 1) QK, *'¦*-"'-, Kl J] K(Zp, „ + rp1*1 - 1)

where ai}jeA, dimaifj r(pi+1-j) and aîtpi=P(p~l)p\ Let £3>f be the fibre of

K(Zp, n + rpl -~ 1 > (Zp, n + r/?1+1 — 1 Using maps E3->E3i and an argument
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similar to that of the proof of 42 1 one can show that ïrpi + i-2 PQ(p~1)pl

ïrpi-leH*QnE3 where ïk îs the fundamental homology class in dimension k Then
the fibre inclusion QnE3 -» QnE2 sends ïrpi-i to ht and the resuit follows
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