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Konforme und metrische Kreise auf vollstindigen Flichen?)

von ALFRED HUBER, Ziirich

1. Einleitung

Sei § einer zur Ebene homoeomorphe abstrakte Fldche (zweidimensionale
Riemannsche Mannigfaltigkeit) mit folgenden Eigenschaften:

(A) & ist nach der Definition von Hopf und Rinow [6] vollstindig;

(B) die Gausssche Kriimmung K ist auf § absolut integrierbar, d.h.

fflKldA<oo,

&

wobei dA das Flichenelement auf & bezeichnet;
(C) die Curvatura integra von § ist kleiner als 2,

C:=fdeA<27r.

&

Nach einem bekannten Satz von Cohn-Vossen [4] folgt aus Voraussetzung (A)
bereits, dass C<2n; durch Voraussetzung (C) wird der Fall C=2r ausgeschlossen.

Wegen Voraussetzung (B) ist die  zugrundeliegende Riemannsche Fliche vom
parabolischen Typ (Blanc und Fiala [3]). Also kann & erzeugt werden durch ein
Linienelement der Form

exp {u (x, y)} /dx® + dy* = exp {u (2)} ldz],

wobei u eine in der ganzen endlichen z-Ebene (z=x+iy) definierte Funktion be-
zeichnet. Dabei berechnet sich die Gausssche Kriimmung nach der Formel

X Au A — 0° + 0*
~ exp(2u) ax? T ayr)

und es ist

KdA=—A4udxdy.

Die Voraussetzungen (A), (B), (C) iiber die Flache & sind somit aequivalent mit
folgenden Annahmen iiber die Funktion u:

1) Zum Teil verfasst wihrend eines von der National Science Foundation unterstiitzten Auf-
enthaltes an der University of Washington in Seattle,
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(a) Fiir jeden lokal rektifizierbaren, ins Unendliche fiihrenden Weg o gilt

f exp {u (z)} |dz| =0;

g

(b) es ist

fflAuldxdy<oo (z=x+iy);

z-Ebene

(c) esist

ff Au dx dy > - 2m.

z-Ehene

Das Linienelement exp {u(z)} |dz| erzeugt in der komplexen Ebene die Metrik

0(zy,25) := inff exp {u (z)} |dz]|.

Dabei ist y iiber alle z, mit z, verbindenden rektifizierbaren Kurven zu variieren.
Wir definieren

L(r):=maxg(0, z), (1)
|z|=r

I(r):= min g (0, z). (2)
lz|=r

Bekanntlich besitzen isotherme Parametersysteme die Eigenschaft, dass infinite-
simalen Kreisen in der Parameterebene infinitesimale Kreise auf der Fldche ent-
sprechen, d.h. es ist

In der vorliegenden Arbeit beweisen wir, dass unter den hier gemachten Annahmen
dasselbe auch fiir grosse Kreise giiltig ist:

SATZ 1. Sei u eine in der endlichen z-Ebene definierte, zweimal stetig differenzier-
bare reellwertige Funktion, welche die Voraussetzungen (a), (b) und (c) erfiillt. Dann gilt

L(r) . 3)

Bemerkungen
1) Mit diesem Satz wird eine von Herrn Finn miindlich gestellte Frage beant-
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wortet. Resultate von Finn [5] liessen die Giiltigkeit eines solchen Satzes als wahr-
scheinlich erscheinen.

2) Die Voraussetzungen (a) oder (b) kdnnen nicht weggelassen werden. Es fehlt
uns jedoch ein Gegenbeispiel, welchem entnommen werden konnte, dass auch die
Annahme (¢) nicht gestrichen werden darf.

Wir beweisen ferner

SATZ 2. Sei u eine in der endlichen z-Ebene definierte, zweimal stetig differenzier-
bare reellwertige Funktion, welche die Voraussetzungen (a), (b) und (c) erfiillt. Dann gilt

r

max f exp {u (e'?)} dt

0<¢p<2m

lim 9 =1. 4)

r

min f exp {u (%)} d¢
0Z¢p<2m 5

Auch fiir diesen Satz gilt Bemerkung 2 zu Satz 1.

Diese Resultate sind zunéchst giiltig unter der Annahme, dass die Funktion u
zweimal stetig differenzierbar ist. Die im Beweis verwendete potentialtheoretische
Methode ldsst dariiber hinaus folgende Abschwichung der Regularitdtsvoraus-
setzungen zu: Es geniigt, dass u sich als Differenz subharmonischer Funktionen
darstellen ldsst. Der Laplaceoperator ist dann im Sinne der Theorie der Distributionen
zu verstehen: Au ist ein Radonsches Mass, von welchem - in Verallgemeinerung der
Bedingung (b) — vorausgesetzt wird, dass seine totale Variation endlich sei. Nach
einem Resultat von Reschetnjak [9] bedeutet diese Allgemeinheit, dass die Mannig-
faltigkeiten beschrankter Kriimmungim Sinnevon A. D. Alexandrow [1] erfasst werden.

r—* o0

2. Beweis der Siitze 1 und 2

Sei u eine die Voraussetzungen der Sitze 1 und 2 erfiillende Funktion. Es bezeichne
u dasjenige Radonsche Mass in der komplexen Ebene C, dessen Flachendichte
(4u)/(27) betrdgt. (Es ist also u=(4u/2n) im Sinne der Theorie der Distributionen).
Dieses Mass ist von endlicher Variation, und es gilt u(C)> —1. Nach dem Korollar
zu Satz 1 in [8] besitzt u die Darstellung

u(z)=Jlog du(() + C,

z
{—2=
4

d.h. u ist eine Funktion vom Potentialtypus im Sinne von Arsove [2]. Die Konstante C
darf im folgenden ohne Verlust an Allgemeinheit gleich O gesetzt werden.
Sei p=pu, —u, die Jordansche Zerlegung des Masses u. Lings Kreisen um den
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Ursprung projizieren wir das Mass u, auf die negative und das Mass u, auf die
positive reelle Achse,

vi([—b, —al):=p;,({z| a2 |21 £B}),
v2([a, b]) := . ({z | a £ |2| £ b)),
fiir b>a=0. Wir definieren

vk(z):=flog =@ =12, )
v(2) :=0,(2) = v,(2). (6)

Wir stiitzen uns auf den nachstehenden Hilfssatz, dessen Beweis wir auf den
Schluss der Arbeit verschieben.

LEMMA. Fiir die durch (5) und (6) definierte Funktion v gilt

r

f exp {v (1)} dt
lim— =1. (7N

0

f exp {v(¢)} dt

-r

r—+o

Zuriickfiihrung der Sditze 1 und 2 auf das Lemma. Wir definieren

uk(z):=jlog 1 —gl A ()  (k=1,2). ®)

c
Aus (5) und (8) folgt

u(z)=|log|l — g duy (€) S.flog 1+ "Z;“ dpy (£)
c c
[ |z]

= | log|l — T dvi () =v,(l2]).

c

Analog beweist man, dass
u(2) 2o (= lzl), u(z2)Sv,(—1l2l), 1w, (2) 2 v, (I2]).

Somit ist

u(z) vy (l2l) — vz (I2]) = v(l2l), 9)
u(2) 2 vy (= lzl) —v2 (= lzl) = v (= |2]). (10)
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Daraus folgt
L()s [ exp (v} d, (1)
I(r) = [ exp{v(t)} dt. (12)

J

-Fr

Aus (9), (10) und (7) folgt (4); aus (11), (12) und (7) folgt (3). QED
Beweis des Lemmas. Wir beweisen vorerst die Vollstdndigkeit der Metrik
exp{v(z)}|dz|, wobei v durch (6) definiert ist. Sei

M, (r):=maxv,(z) (k=1,2),

|z]=r

m(r):= inf v, (z) (k=1,2),

jz]=r

m(r):= inf v(z).

[z]=r

Nach den Sitzen 5 und 6, p. 100, in [8] sind fiir jedes >0 die Ungleichungen

[V (C) —n] logr < My (r) < [w(C) + n]logr (k=1,2) (13)
und
m(r)> (1 —n) M, (r) (k=1,2) (14

erfiillt fiir alle ~Werte bis auf eine (von n abhingige) Ausnahmemenge von end-
lichem Mass. Aus (13) und (14) folgt

m (r) 2 my (F) = My (1) 2 [¥(C) = 1 (v1 (€) + 2 — )] log .

Da nach Voraussetzung v(C)=pu (C)> —1, und da ferner 5 beliebig klein gewéhlt
werden kann, folgt: Fiir jede Wahl von « aus dem Intervall (—1, v(C)) gibt es eine
(von a abhingige) Menge von endlichem Mass, ausserhalb welcher

m(r)>oalogr.

Daraus schliessen wir, dass

oo

f exp{m(r)} dr=c0.

0

Somit ist die Metrik exp {v(z)} |dz| vollstindig.
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Sei nun &£>0 vorgegeben. Auf Grund der Vollstindigkeit der Metrik exp {v(z)|dz]
gilt: Zu jeder vorgegebenen Zahl ¢>0 gibt es eine Zahl r,(q, ¢) mit der Eigenschaft,
dass

f exp {v (1)} dt f exp {0 (1)} dt
g S+t 15
f exp {v(2)} dt f exp {v(¢)} dt

fiir alle r>r, (g, €).
Fiir |z|<r und |{| = R, r<R, gilt die Ungleichung

R—r
R+r—

z R+r

¢

Daraus schliessen wir: es gibt eine Zahl R, (r, ¢) mit der Eigenschaft, dass

<1 - _g_

exp{v(t)} dt exp {J log|l — é dv (C)} dt
" _ c
exp{v(2)} dt exp{ log|1 —é dv (C)} dt
Y v d
exp{ j log|1 ——é dv(C)} dt
< (140t W= (16)
exp log|l — - dv (C)} dt
“r lei <R
f exp{ [ log|t — | dv (C)} dt
Y Y,
=(1+¢)L— =X
[ exp{ f log|t — (| dv(C)} dt
v e

fiir alle R> Ry (r, ).
Seien nun p, g, r, R positive Zahlen derart, dass 0<p<g<r<2r<R. Im iibrigen
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werden wir liber die Wahl dieser Grossen spdter verfiigen. Wir definieren

o:=v{{| 10l =p}),

Be=vi{¢|p<lll<2r}), t k=1,2

wi=v({{|2r £l <R}),

wr=oy—dy, Pi=fi—PBa, Vi=91-7,.
Die Wahl von p wird so erfolgen, dass B, f,, 71, ¥, geniigend klein sind. Wie klein,
ergibt sich im Laufe der nachstehenden Abschitzungen.

Wir betrachten nun der Reihe nach Zihler und Nenner des auf der rechten Seite
von (16) stehenden Quotienten. Abschdtzung nach oben des Zdhlers des auf der rechten
Seite von (16) stehenden Quotienten:

Zu vorgegebenem p >0 gibt es ein g, (p, ¢) mit der Eigenschaft, dass

exp{ f log|t — ¢| dv (C)} S(l+¢)t* (17)
Klsp

fiir alle t=q, (p, ¢).
Ist te[q, r] und || = 2r, so gilt |(z—{)/{| =2, und somit

log |t — (| = log|{| + log2. (18)

Daraus schliessen wir, dass

exp{ f log|t - ¢| dv (c)}
2rs|gl<R

< exp{ (71 +72) log2 + f log|{| dv (C)}-

2rs1t] <R

Infolgedessen gibt es ein p, (&) mit der Eigenschaft, dass

exp{ | loglr—cldv(C)}g(Ha)exp{ | logmdv(c)}}, (19)
2r=[{|<R 2rs|fl<R

falls te[q, r] und p>p, (¢). Fiir p>p, (¢) und g> g, (p, ¢) gilt also

r

!exp{lcik log|t — (| dv(C)} dt

<(1+e¢) exp{ f log |C] dv (C)} (20)

2rs¢f <R
r

xft“exp{ f log|t — {| dv(C)}dt.

q p<|fl<2r
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Nun werden wir zeigen, dass es ein p,(¢) gibt mit der Eigenschaft, dass fiir
p>max [po (), py (¢)] und g>g, (p, ¢)

r

| exp{ f loglt — ¢| dv (C)} dt

q I6I<R (21)

at+p+1
<(1+¢)* ':1—;7 exp J log || dv (C)}

2rsieI<R

Zu diesem Zweck ist das in (20) ganz rechts stehende Integral nach oben abzuschéitzen.
Wir vergrossern dieses Integral zunidchst, indem wir die ganze Masse f, in den
(ungiinstigsten) Punkt — 2r verlegen:

f t* exp{ log|t — | dv (C)} dt
q p<|.{:]<2r (22)
S@ry | exp{— f log|t — (| dv, (C)} dt.
11 p<|l|<2r

Auf dem Intervall [g, r] gibt es einen Punkt a mit der Eigenschaft, dass

ft“lt—Cl_ﬂz dtgft"lt—al_ﬂ’dt (23)
q q

fiir alle ¢ aus dem Ringgebiet {{ l p<|{l<2r}. Wir beschrinken uns vorerst auf den
Spezialfall, da die Masse — f, in diesem Punkt a konzentriert ist, und behaupten fiir
diesen Fall, dass fiir geniigend grosses p

r

1+ e ek
Jt“exp{—- J log|t — (| de(C)}Cdtéﬁ.—gra hat1 (24)

q p<|{|<2r

Der Beweis dieser Abschitzung beruht auf einer Anwendung der Holderschen
Ungleichung, wobei zwischen den Féllen >0, a=0 und —1<a<0 unterschieden
wird.

Erster Fall: 0.>0.2)

2) Die Betrachtung des Falles a4+ 2 =1 ist nur dann unvermeidlich, wenn a=1 und (fiir
geniigend grosse p) f2 =0 ist. In diesem Falle ist aber die Behauptung trivialerweise richtig.
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r

r
B2/(atB2)
1*)t — a| P2 dt = | (1*HF2) @ HED LI L
|t — a|** P2
q

q

y af(a+B2) . dt B2/(atB2)
<(| P2 at _
= (J |t _ a|a+ﬁz
q q
r/2
1 (a+ B2+ af(a+f2) (a+B2) pal (et )
< praThaT alam i) g T TR gy
- a+52 + 1)“/(“'*'/32) ( J‘ )
( 0
- 1+¢ a2t 1
T 14«
fiir geniigend grosse p.
Zweiter Fall: 0=0.
r r/2
f [t —a| ™ P2dt<2 f tThdr< (1 +e)rt
q 0
fiir geniigend grosse p.
Dritter Fall: —1<a<0.
r r
2 1 lal/(Ja] +B2) 1 B2/(la| +B2)
aly L1~ B2 — S —
Jt |t al dt —j<t|al+ﬂ2> (lt . a||a|+ﬂ2> dt
q q
Pogr \lal4a) fr gy \BaelB) [ t-(lal+82) lal/al+82)
s RPTETH e <
tlal B2 £ — a||0‘| B2 1 — (|°‘| + ,Bz)
q q
r/2
dt B2/(Jx| +B2) 1+¢ 1+a~p;
. N <
(2Jt'“'+”2) “1+a
0

fiir geniigend grosse p.

Im nichsten Schritt beweisen wir die Giiltigkeit von (24) fiir den Fall, dass das
Mass v, in {{ | p<|{|<2r} aus endlich vielen Massenpunkten besteht: 1,8, in
(o ApBrin {oyeony AuBain { (A1 + 4, + -+ 4,=1, alle 4,>0). In diesem Falle schlies-
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sen wir unter Anwendung von (23) und des eben behandelten Spezialfalles, dass

r r

ft“ exp{— f log|t — | dv, (C)} dt= | T (¢It = &l ~%2)* dt
q p<lfl<2r q .
u 1+¢
< |1t —a| P dt PP < peB2t1
—‘kl—-—-Il (J I l ) -1 + a

q

fiir geniigend grosse p.

Durch einen Grenziibergang — auf dessen Wiedergabe wir hier verzichten — 14sst
sich die Masse v, weiter verschmieren. Ungleichung (24) ist fiir beliebige Massen-
belegungen v, giiltig.

Aus (20), (22) und (24) folgt die Existenz einer Zahl p, (¢) mit der Eigenschaft,
dass aus

p>max[po(e), py(e)] und g>qo(p,e)

die Giiltigkeit der Abschitzung (21) folgt.
Abschitzung nach unten des Nenners des auf der rechten Seiten von (16) stehenden

Quotienten:
Zu vorgegebenem p >0 gibt es ein g, (p, ¢) mit der Eigenschaft, dass
exp{ f log|t — | dv (C)} > (1—¢) %, (25)
El=sp

falls |t ¢, (p, ¢).
Liegt ¢ im Intervall [—r, —g] und ist |{|=2r, so gilt |(—{)/{| =%, und somit

log|t — (] = log|{| —log2. (26)

Daraus schliessen wir, dass

CXP{ f log|z — {| dv (C)} dt

2rs[fI<R

= exp{— (yl -+ ‘yz) 10g2 + f 10glC| dv (C)}'

2rsjl]<R
Infolgedessen gibt es ein p, (¢) mit der Eigenschaft, dass

el | logn-adv(o};(l—s)exp{ [ roen dv(C)}, 1)

2rs|{l<R 2rs[¢I<R
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falls p>p, (¢). Fiir p>p, (¢) und ¢>¢, (p, ¢) gilt also

feXP{f log|t — (| dV(C)}dt

-r I§I<R

>(1- s)2°exp{ f log || dv (C)} ‘ (28)

2rs¢I<R

—q
. f [t|* exp{ f log|t — | dv (C)} dt.
-r p<|fl<2r
Nun werden wir zeigen, dass es Zahlen p, (¢) und r, (g, ¢) gibt mit der Eigenschaft,
dass fiir p>max [ p,(¢), p3(e)], 9> ¢, (p, ¢) und r > r, (g, ¢)

-4

jexp{ J 1og|r—adv(c)}d@<1-—e)‘*’":z:exp{ j 1og|c|dv(c)}.

-r [EI<R 2r<[¢I<R

(29)
Zu diesem Zweck ist das in (28) ganz rechts stehende Integral nach unten abzu-
schiatzen. Wir verkleinern dieses Integral zundchst, indem wir die ganze Masse —f3,
in den (ungiinstigsten) Punkt +2r verlegen:

-q
fltl“ exp{ log|t — (| dv(C)} dt
* piil<zr > (30)

> (3r)7% [ |t|* exp{ f log|t — (| dv, (C)} dt.

o
-r p<|¢l<2r

Unter Anwendung der Schwarzschen Ungleichung schliessen wir

-4

(fltl“dt)2=< ltl“exp{-}g f log|t — ¢ dV1(C)}

- p<lll<2r )
-exp{—~ 3 f log|t —{| dv, (C)} dt)
e p<|fl<2r (31)
< Wexp{ [ rogi-a dv1<z;)}dt
-r p<|fI<2r

y f |t]* exp{— f log|t — | dv, (C)} dt.

p<|fl<2r
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Das letzte Integral schitzen wir wie in (24) ab und erhalten

f Itl“exp{—- f logu—advl(C)}dtgiJr—i;jr“'”l“ (32)

p<l{l<2r

fiir geniigend grosse p.

Aus (28), (30), (31) und (32) ergibt sich die Existenz von Zahlen p; (¢) und r, (g, €)
mit der Eigenschaft, dass fiir p>max [p,(¢), p5(¢)], ¢>4:(p, ¢) und r > r;(q, &) die
Ungleichung (29) giiltig ist.

Aus (15), (16), (21) und (29) folgt, dass

f exp {v (1)} dt
0 < (1+e)°
0 = (1 _ 8)4
f exp {v(¢)} dt

-r

fiir geniigend grosse r. Damit ist das Lemma bewiesen.
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