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Harmonische Funktionen und Jacobi- Determinanten

von Diffeomorphismen
HANS MARTIN REIMANN

Meinem verehrten Lehrer A. Pfluger zum 65. Geburtstag gewidmet

Einleitung

Es scheint eine offene Frage zu sein, ob jede stetige positive Funktion J:R" - R
die Jacobi-Determinante (Funktionaldeterminante) eines Diffeomorphismus f von
R" auf sich ist. In dieser Arbeit wird gezeigt, dass unter gewissen zusitzlichen Bedin-
gungen iiber die Stetigkeit von J immer Diffeomorphismen mit Jacobi-Determinante
J konstruiert werden konnen (Sétze 1 und 2).

Zur Konstruktion werden Differentialgleichungen und harmonische Funktionen
beigezogen. Die Verwendung von Differentialgleichungen in diesem Zusammenhang
ist nicht neu; eine entsprechende, allgemeine Konstruktion auf kompakten Mannig-
faltigkeiten wurde von J. Moser [1] angegeben. In der vorliegenden Arbeit finden
jedoch nur sehr spezielle Differentialgleichungen Verwendung: Die Losungen der
Differentialgleichungen sind Stromlinien von harmonischen, in R} ' ={(x, y) | xeR",
y>0} definierten Funktionen.

Zur Formulierung der Ergebnisse fiithren wir den Stetigkeitsmodul

s(r)= sup| [ (J(x+78) =T (x) & M

xeRr Sn-

einer stetigen Funktion J:R"— R ein. (S"~! is die (n—1)-dimensionale Einheitskugel
|€|=1, r>0.) Ist J Holder-stetig, d.h. ist

J(x)—J(x'
Ule= sup 17 (x) = I (x')]

x, x’ € R® |x - x'la

fiir ein ae(0, 1] endlich, so geniigt der Stetigkeitsmodul s(7) von J der Ungleichung
s(r)<const. r*. Fiir beschrinkte |J| ist auch s(r) beschrankt.

SATZ 1. Erfiillt die Holder-stetige Funktion J:R"—->R die Voraussetzung
0<m< IS M< oo (m, M konstant) und besitzt (J— 1) kompakten Tréger, so existiert
ein Diffeomorphismus f:R" — R" mit Jacobi-Determinante J.

Dieser Satz ist ein Spezialfall des folgenden Satzes. In der allgemeinen Formulie-
rung wird die Holder-Stetigkeit durch eine Bedingung iiber den Stetigkeitsmodul s
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ersetzt. Anstelle von Funktionen J—1 mit kompaktem Triger kdnnen auch stetige
Funktionen zugelassen werden, deren Riesz-Potential

qu-1y=R*(J —1)

in L*(R") ist (sieche Bedingung 3 im Satz 2). R ist der Riesz-Kern (c,/(n—1))!x|*~".
Die Konstante c, ist durch [, ¢,y (|Ix|?+y*)~"*D/2 dx=1 definiert (siche (8)).

SATZ 2. Zu jeder stetigen Funktion J:R" >R, welche die drei Voraussetzungen
erfiillt:

)0<m<J<M<oo (m, M konstant)

2)fr_1s(r)dr<oo fiirein ¢>0 2
0

3) qu-1y=R*(J - 1)eL”(R"),

existiert ein Diffeomorphismus f:R" — R" mit Jacobi-Determinante J.

Im Satz 2 muss nicht vorausgesetzt werden, dass J stetig ist. Vielmehr ist fiir
messbare J die Stetigkeit (nach Modifikation auf einer Nullmenge) eine Konsequenz
der Bedingungen 1, 2 und 3. Der Stetigkeitsmodul s(r) muss in diesem Falle durch
die L®-Norm von [g-1(J(x+r&)—J(x)) d¢ definiert werden.

Der Beweis von Satz 2 wird im dritten Teil dieser Arbeit gegeben. Bei der Kon-
struktion der Diffeomorphismen lassen wir uns durch den folgenden Hilfssatz leiten:

HILFSSATZ 1. u(x, y) sei in einer Umgebung von {(x,y)|xeR", 0<y<1}
cR**Y  harmonisch und besitze beschrinkte partielle Ableitungen: |gradu|
=|(Uyys .ees Uy, U,)| S M. Zudem wird vorausgesetzt, dass u,+1=m fiir eine positive
Konstante m. Die Differentialgleichung

d«  u, 1
dy_uy+1_uy+1

(Uyys oees ) 3)

mit der Anfangsbedingung x (0)=z besitzt dann fiir jedes zeR" eine im Intervall 0<y<1
eindeutige Losung x(z, y), und die Jacobi-Determinante der Abbildung f(z)=x(z, 1) ist
durch

Jr(2) =

gegeben.
Die Losungen der Differentialgleichung kénnen als Stromlinien der harmonischen

u,(z,0)+1
u,(f(2),1) + 1

4
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Funktion A(x, y)=u(x, y)+y interpretiert werden. Eine einfache Anwendung des
Divergenzsatzes fithrt dann auf die Beziehung (4).

Beweis. Wegen der Beschranktheit und Regularitit von (u/u,+1) besitzt (3)
natiirlich eindeutige Lsungen x (z, y). Fiir positive r und festes ze R” betrachten wir
das Gebiet

S=Sr)={(x»)eR"" |x=x(z, )1z -zl <r,0<y<1
dessen Rand 0 wir in 3 Teile zerlegen
0S; =8S n {(x, y)eR""! | y =0}

S, =05 n {(x, y)eR""' | y=1}
333 == 65’\(651 W) 682).

Da h harmonisch ist, gilt

oh _
on
o8

(%)

(nach dem Divergenzsatz). Die Normalableitung 0h/0n verschwindet jedoch auf
0S5, denn die Tangente zur Kurve (x(z', y), y) 0<p <1, ist auf Grund der Differential-
gleichung (3) durch (u,+1)7! grad (u+y) gegeben. Auf S, fillt 0h/on mit u,+1
zusammen, desgleichen auch auf 0S;, jedoch mit entgegengesetztem Vorzeichen.
Aus (5) ergibt sich daher die Beziehung

(u,(z,0) + 1) dm, = f (u, (f(z"), 1) + 1) dm,
{z*| |z’ —z|<r} ()| lz'-z|<r}

und fiir die Jacobi-Determinante von f erhélt man

L m,,{f(z’)llz'—z|<r}= u,(z,0) +1
Jf(z)—zin; m,{z' |1z’ — z| <1} u,(f(z), 1) +1

Damit ist der Hilfssatz bewiesen.

Im dritten Teil dieser Arbeit wird dieser Hilfssatz auf harmonische, in R%!
definierte Funktionen erweitert. Neben den Bedingungen lim,., ,u,(x, y)=0 und
lim,.,ou,(x, y)=J(x)—1 sind zusitzliche Voraussetzungen iiber das Wachstum der
Ableitungen von u fiir y —0 und fiir y — oo entscheidend. Erfiillt jedoch die harmo-
nische Funktion u alle diesbeziiglichen Forderungen, so kann der Diffeomorphismus
£ mit Jacobi-Determinante J(x) dann wie im Hilfssatz 1 konstruiert werden.

Im zweiten Teil dieser Arbeit sind die Sitze iiber die Beziehung zwischen den
Randwerte einer in R%" ' harmonischen Funktion # und dem Wachstum der partiellen
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Ableitungen von u# zusammengestellt und bewiesen. Die Ergebnisse sind in den
Sédtzen 3 und 4 enthalten. Da ein enger Zusammenhang zwischen dem Randverhalten
harmonischer Funktionen und der Theorie der singuldren Integraltransformationen
besteht — der Ubergang zwischen den partiellen Ableitungen u, und u,, von u kann
durch die Riesz-Transformation beschrieben werden — kommt diesen Ergebnissen
hier eine besondere Bedeutung zu. Fiir eine ausfiihrliche Darstellung der Beziehungen
zwischen harmonischen Funktionen und singuldren Integraltransformationen sei auf
das Buch von E. Stein [2] verwiesen.

Harmonische Funktionen im Halbraum

Mit R%"! wird der (n+1)-dimensionale obere Halbraum {(x,y) | xeR", y>0}
cR"*! bezeichnet. Zu einer Funktion feL® (R") betrachten wir die beschrinkte
harmonische Funktion u in R%"*, deren Randwerte lim,_,ou(x, ») fast iiberall durch
f(x) gegeben sind. u(x, y) ldsst sich als Konvolution von f mit dem Poissonkern

Cny

P(x,y)= (Ix]Z + y2)+ D2 (6)

darstellen:
Cny
u(x,y)= j (Ix — tlz +y2)(n+1)/2 f (1) dt (7)
R»

¢, ist eine Normierungskonstante:

fP(x,y)dx=1. ®)

Rn

Zu feL*(R") bilden wir das Riesz-Potential g,= Rx*f mit R=(c,/(n—1))|x|' "
Wir setzen voraus, dass |gq,| beschridnkt ist. u=P#*q, ist dann die beschrdnkte,
harmonische Funktion in R%"!, die fast iiberall die Randwerte ¢ ; annimmt, und die
partielle Ableitung von u nach y besitzt die Darstellung

u,=Pxf. 9)

Zum Beweis von (9) bemerken wir, dass fiir y>0

|x —¢t|* " dt

Cn
P xR (x, y)=JP(t, »)
n—1
R»

Cn
n—1

(|x|2 + y2)—(n—1)/2
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und

P y)——-%(

Cn
n—1

([xlz + y2)—(n—1)/2>;
die Gleichung (9) folgt dann aus
u,=P,xq;=P,xRxf=(PxR),*f.

Da |u| beschrdnkt ist und da fiir die partiellen Ableitungen von P die Abschdtzungen

”Pyxkul = J
Rn

und
”Pxixklll = O(y—z)

gelten, folgt aus den Darstellungen

2

0y 0x;

dx=0(y"%)

Uy = Py *u und u, =P, *u
dass
Uyxy = 0 (y—Z) und  u,,, =0 (y_z) (10)

fiir y - o0, gleichmadssig auf R".
Uber das Verhalten von
[ty ll o () = sUp |1y, (x, ¥)I

xe R

und |[|u, |l fir kleine y geben die folgenden beiden Sdtze Auskunft, wenn v=u,
=Pxf(und f=J—1) gesetzt wird. Es stellt sich heraus, dass unter den Voraussetzungen
von Satz 2 sowohl [,|lu,,,|l.dy wie auch [ollu, Il dv konvergieren (d.h. [uy,, |l
und |lu, |, sind iiber ein Intervall (0, ¢) mit ¢>0 integrierbar).

SATZ 3. v sei harmonisch in R und |v| sei beschrénkt. Aus

f 0,10 dy <co (11)
0

folgt dann
f og 1o dy <00 (12)
0

und f(x)=lim,_,v(x, y) ist unter diesen Voraussetzungen stetig.
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Aus den Voraussetzungen des Satzes folgt unmittelbar, dass f(x)=lim,.,,v(x, )
fur alle x existiert und beschrinkt ist. Es gilt dann v=Pxf und somit v, =P, = f fiir
y>0. Wegen g |P,|ldx=0(y") fiir y— oo ist lim,_, , v, (x, y)=0 und daher

0

v, (x,y)=— f vy, (X, 7) dt

y

Mit der Darstellung von v,,,(x, ¢) als Konvolution von v,(x, ¢/2) und P, (x, t/2)
erhdlt man die Abschidtzungen

[0, (%, )| = IJ P (z,t2)v,(x — z,t[2) dz| < const.;2 lv,ll o (2/2)
-

und

dt
fo,. (2, 7)] < const. f ol (1) 5

y/2

Setzt man a(t)=|v,l, () und b(y)=][;;, a(t) dt/t, so bleibt zu zeigen, dass [§
b(y) dy fiir ein ¢>0 konvergiert. Da aber g und b positiv sind, folgt dies unmittelbar
durch partielle Integration:

c [+

fb(t)dt=cb(c)—rb(r)+fa(t/2)dt<cb(c)+fa(t/2) it

r

Nach Voraussetzung (11) ist die rechte Seite dieser Ungleichung endlich.
Um die Stetigkeit von f zu beweisen braucht man eine Abschdtzung fiir

If(x+18)—f(x) mit t=r ¢ =1r>0.

Aus den Ungleichungen
F@=o@ i< [ Iolady = [a@ar
0 0

und

r

lo(x+tr)—v(x,r) < f (;21 v, (x + s&, r)llw) ds

0
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folgt

r
I

|lf(x+1t)— f(x)| <2 | a(s)ds+ const.rb(r)
0
"

o
0

<2 | a(s) ds+const.fb(s) ds.
0

f ist also stetig.
Wir erinnern daran, dass der Stetigkeitsmodul s(r) einer Funktion feL®(R")
durch

5(r) =| f (F (x + r8) = £(x)) dell.o 13)

sn—-1

(mit t=r&, r=|t| und |£]|=1) definiert wurde.

SATZ 4. Ist feL* (R") und erfiillt der Stetigkeitsmodul s von f die Bedingung

f ris(r)dr <o (14)

0

so ist f nach Modifikation auf einer Lebesgue-Nullmenge stetig, und fiir die partielle
Ableitung v, von v=Pxf gilt:

[ 10l dy <co. (1
0
Wegen [z« P,(x, y) dy=0 ist

v,(x, )= J” P,(t, ) (f (x + £) — f(x)) dt

R

3

= ”py(,., )t J‘w(f(x+ ré) — f(x)) dé dr.

o
0

Nach Definition des Stetigkeitsmoduls folgt daraus die Ungleichung

@
0, DI < [[I7F =m0 4+ 7)1 s ()
0
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Mit Hilfe der Substitution »=_zy und der Abschédtzung
|22 —n| (22 +1)""I27" < e(1 +2)"%  (c konstant)

erhidlt man dann

oo}

me=f*fca+zr24@qw.

0

Eine Integration beziiglich y und eine Substitution x =zy fithren auf die Ungleichung

[ee] z

} vyl dy < ¢ f (1+2)72 (f x " 1s(x) dx) dz

0

und, nach Vertauschen der Integrationen, zu

1 0
fﬂ%hdySCJf*U+xfiﬂﬂdm
0 0

s ist beschrinkt, denn feL* (R"). Zusammen mit der Voraussetzung (14) folgt
daher, dass die rechte Seite dieser Ungleichung endlich ist. Die Stetigkeit von f ist
nun eine Konsequenz von Satz 3.

Beweis von Satz 2
Wir setzen voraus, dass J messbar ist und den Voraussetzungen von Satz 2 geniigt:
O<m<gJ(x) <M<,

der Stetigkeitsmodul s(r) von J (siehe (13)) erfiillt

fr‘ls(r) dr <o,

0

q(]‘l) = R*(J - I)ELw (Rn).

Die partielle Ableitung u,=P%(J—1) von u=Pxq;_,, erfillt dann die Voraus-
setzungen von Satz 4 mit u,=v (vgl. (6), (7) und (9)). Es gilt also Jolluy,ll dy < 0 und
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J(x) is nach Modifikation auf einer Nullmenge stetig. Nach Satz 3 und (10) folgt
| Bipulo dy <co. (15)
0

Wir schliessen daraus, dass |u, | in R%*! beschrinkt ist und — nach Satz 3 — stetig auf

den abgeschlossenen Halbraum R%"' erweitert werden kann. Wird in den Sitzen
3 und 4 fiir v die Funktion u,, eingesetzt, so zeigt dieselbe Uberlegung, dass

[ Mo dy <co. (16)
0
HILFSSATZ 2. Die in R%"™! harmonische Funktion u erfiille die Bedingungen

f ity llo dy <0 und f ltgn, | dy <0
0 0
u,+1=>2m>0, |ul <M, |gradu| <M

(m, M konstant) und die partiellen Ableitungen u, und u,, i=1,..., n seien stetig
auf R fortsetzbar. Dann besitzt die Differentialgleichung (3)

dx u,

;’; u,+1

zu jedem Anfangswert x(0)=z eine eindeutige Losung x(z,y) im Intervall [0, c0).
Zudem ist die Abbildung z — x(z, y) fiir jedes positive y ein Diffeomorphismus von R"
auf sich.

Die Aussagen des Hilfssatzes werden fiir y=1 bewiesen. Es wird also gezeigt,
dass die Gleichung (3) eine im Intervall [0, 1] eindeutige Losung x(z, y) mit Anfangs-
bedingung x(0)=z besitzt und dass die Abbildung f(z)=x(z, 1) ein Diffeomorphis-
mus ist. Fiir ein beliebiges positives y ist der Beweis genau derselbe.

Zunichst bezeichne x(w, y) die nach Hilfssatz 1 eindeutige Losung von (3) auf
(0, o0), fiir die x(w, 1)=w ist. Aus (3) folgt, dass

y

x(w, Y)=W+fh(x, f)dt mit h(x,y)=

1

u,(x,y)
uy(x, p) +1°
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Da h(x, y) auf R%"! stetig ist, kann die Abbildung (w, y)— x (w, y) stetig auf R%*1
fortgesetzt werden. Wir zeigen, dass sich die Funktionalmatrix X(w, y)=

=((0x;/0w;) (w, y)) ebenfalls stetig auf R%"* fortsetzen ldsst:
X (w, ) geniigt der Differentialgleichung

dX—-HX H= Oh, 17

k
und der Bedingung X (w, 1)=1 (Identitit); in integrierter Form:
y
X(w,y)=I1+ f H(x(w,1),1) X (w, t) dt (18)
1

Fiir die Ableitung der Norm |X|=sup,cgn, o -1 |Xa| ergibt sich daher

y+h
d
—1X|| <limA™? f |HX| dt < |H| |X|
dy h—-0
y
und sodann

d
;1;; In|X (w, »)I| < IH(x (w, »), J’)| .

Unter Beriicksichtigung von In|X (w, 1)|=0 erhélt man aus der letzten Ungleichung
durch Integration eine Abschétzung von | X (w, y)|:

InlX (3 < [ GOm0, 0l d (<) (19)

Die Voraussetzungen des Hilfssatzes 2 und die Ungleichung

Uy,
u,+1/,,

< Cluyy,| + Clu,,|  (C konstant)

oh,
ox,

= I(uy + 1)--1 uxkxi - (uy + 1)—2 uxkuyxtl

dienen zur Abschidtzung von |H|

[H (x (w, »), ¥)| < Ci ;_‘1 lximell o + C -21 Iyl o - (20)

Nach Voraussetzung sind nun aber |u,,,, |l und [u,, |, in (0, 1) integrierbar. Aus
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(19) und (20) folgt daher die Beschranktheit von | X (w, )| fiir weR", ye(0, 1], und
aus der nach (18) hergeleiteten Ungleichung

»
| X (w, y) — X (w, ¥')| < const. f |H| dt

y
yl
n n
< COHSt. f ( Z ”uxkxt“oo + Z "u)’xiu °0> dt
i i=1

i, k=1
y

folgt die gleichméssige Konvergenz von X (w, y) fiir y - 0.

X lasst sich also stetig auf R","* fortsetzen und die Abbildung g:w - x(w, 0) ist
stetig differenzierbar. Gemadss Hilfssatz 1 ist

u,(w, 1) +1
uy(x (W’ y)= y) +1

die Jacobi-Determinante der Abbildung w— x(w, y). Wegen u,(x, y)+1>m>0 ist
die Jacobi-Determinante

1) +1 1) +1
Jg(w)=hm uJ’(w )+ _— uy(w )+

yo ty(x (w,»), ¥) + 1 u,(g(w),0) + 1 (21)

von g positiv; g ist also lokal umkehrbar. Da aber fiir jedes y,>0 die Funktion
x(w, y) auf R%*! bereits durch x (w, y,) eindeutig bestimmt ist, so folgt, dass g auch im
Grossen eineindeutig ist.

Die Differentialgleichung (3) besitzt fiir jedes zeR" eine Lésung x(z, y) mit

x(z, 0)=z, denn u,/(u,+1) ist in R}"* stetig. Wir schliessen daraus, dass der Diff-
feomorphismus g R" auf sich abbildet. Damit ist der Hilfssatz bewiesen.

Der Gleichung (21) entnehmen wir, dass die Jacobi-Determinante J, der Abbildung
z—x(z, y) durch

_ uy(z,0)+1
Jy(2) = u,(x(z,3), y) + 1

gegeben ist.
Wir vervollstindigen nun den Beweis von Satz 2. Die harmonische Funktion u sei
durch J bestimmt:

u=P*Q(J_1), uy=P*(J—1)

und x(z, y) seien die Ldsungen von (3) mit x(z, 0)=z.
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f(2) = lim (x(z, y) — x(0, y))
y— o
existiert dann fiir alle zeR". Wegen (15) und (16) kann nidmlich fiir y - c0 wie im
Beweis zum Hilfssatz 2 auf die gleichméssige Konvergenz der Funktionalmatrizen
((0x;/0z,) (2, y)) der Abbildungen z— x(z, y)—x(0, y) geschlossen werden. f(z) ist
dann stetig differenzierbar und fiir die Jacobi-Determinante erhélt man

,0) +1

=0 Uy (X (2, 1), t)+1=uy(zao)+1=J(z)

f ist also lokal umkehrbar, und da die Abbildungen z— x(z, y) fir all y>0 Dif-
feomorphismen von R” auf sich sind, ist auch fein Diffeomorphismus von R" auf sich.
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