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Harmonische Funktionen und Jacobi- Determinanten

von Diffeomorphismen

Hans Martin Reimann

Meinem verehrten Lehrer A. Pfluger zum 65. Geburtstag gewidmet

Einleitung

Es scheint eine offene Frage zu sein, ob jede stetige positive Funktion J: Un -> R

die Jacobi-Determinante (Funktionaldeterminante) eines Diffeomorphismus / von
IR" auf sich ist. In dieser Arbeit wird gezeigt, dass unter gewissen zusâtzlichen Bedin-

gungen liber die Stetigkeit von J immer Diffeomorphismen mit Jacobi-Determinante
J konstruiert werden kônnen (Sâtze 1 und 2).

Zur Konstruktion werden Differentialgleichungen und harmonische Funktionen
beigezogen. Die Verwendung von Differentialgleichungen in diesem Zusammenhang
ist nicht neu ; eine entsprechende, allgemeine Konstruktion auf kompakten Mannig-
faltigkeiten wurde von J. Moser [1] angegeben. In der vorliegenden Arbeit finden

jedoch nur sehr spezielle Differentialgleichungen Verwendung: Die Lôsungen der

Differentialgleichungen sind Stromlinien von harmonischen, in [R"++ * {(x, y) \xeUn9

y>0} definierten Funktionen.
Zur Formulierung der Ergebnisse fùhren wir den Stetigkeitsmodul

s(r) sup| J (j(x + r0-J(x))dç\ (1)
xeUn Sn ~ 1

einer stetigen Funktion /: Un -> M ein. (5""1 is die (n — 1 )-dimensionale Einheitskugel
|£| 1, r>0.) Ist / Hôlder-stetig, d.h. ist

\J(x)- J(x')\
\\J\\c«= sup LiJ ±Ji

\XXf
fur ein ae(0, 1] endlich, so genûgt der Stetigkeitsmodul s(r) von / der Ungleichung
^(r)^const. ra. Fur beschrânkte |/| ist auch s(r) beschrânkt.

SATZ 1. Erfullt die Hôlder-stetige Funktion /:IRW-^IR die Voraussetzung

0<m^J^M< oo (m, M konstant) undbesitzt (J— 1) kompakten Tràger, so existiert
ein Diffeomorphismus f: Un -? Un mit Jacobi-Determinante J.

Dieser Satz ist ein Spezialfall des folgenden Satzes. In der allgemeinen Formulierung

wird die Holder-Stetigkeit durch eine Bedingung ûber den Stetigkeitsmodul s
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ersetzt. Anstelle von Funktionen /— 1 mit kompaktem Trâger kônnen auch stetige
Funktionen zugelassen werden, deren Riesz-Potential

in L°°(Un) ist (siehe Bedingung 3 im Satz 2). R ist der Riesz-Kern (cj(n-l))\x\i'n.
Die Konstante cn ist durch jRn cny(\x\2+y2)~in+1)/2 dx 1 definiert (siehe (8)).

SATZ 2. Zu jeder stetigen Funktion J:Un-*U, welche die drei Voraussetzungen

erfullt:

l)0<m<J<M<oo (m, M konstant)
c

2) \ r~ s (r) dr < oo fur ein c> 0 (2)

o

3) <?(J_1) K*(J--l)eL00([r),

existiert ein Diffeomorphismus f: IR"-> Rn m// Jacobi-Determinante J.

Im Satz 2 muss nicht vorausgesetzt werden, dass / stetig ist. Vielmehr ist fur
messbare J die Stetigkeit (nach Modifikation auf einer Nullmenge) eine Konsequenz
der Bedingungen 1, 2 und 3. Der Stetigkeitsmodul s(r) muss in diesem Falle durch
die L°°-Norm von JSn-i(/(x4-r<^) — J(x)) dÇ definiert werden.

Der Beweis von Satz 2 wird im dritten Teil dieser Arbeit gegeben. Bei der Kon-
struktion der Diffeomorphismen lassen wir uns durch den folgenden Hilfssatz leiten:

HILFSSATZ 1. w(x, y) sei in einer Umgebung von {(x, y) \ xeUn, 0<>><l}
c[Rn+1 harmonisch und besitze beschrànkte partielle Ableitungen: |gradw|

\(uXl9..., uXn, uy)\^M. Zudem wird vorausgesetzt, dass uy+l^m fur eine positive
Konstante m. Die Differentialgleichung

dy uy + 1 uy + 1

mit der Anfangsbedingung x(0) z besitzt dannfiirjedes zeUn eine im IntervallO^y < 1

eindeutige Lôsung x(z9 y), und die Jacobi-Determinante der Abbildungf(z) x(z, 1) ist
durch

uy(Z,0)+l
J{Z) W

gegeben.

Die Lôsungen der Differentialgleichung kônnen als Stromlinien der harmonischen
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Funktion h(x, y) u(x, y)+y interpretiert werden. Eine einfache Anwendung des

Divergenzsatzes fûhrt dann auf die Beziehung (4).
Beweis. Wegen der Beschrânktheit und Regularitât von (uxjuy-\-\) besitzt (3)

natùrlich eindeutige Lôsungen x(z, y). Fur positive r und festes zeW1 betrachten wir
das Gebiet

S S(r) {(x, y)eUn+1 \ x x{z\ y), \z' - z\ < r, 0 < y < 1

dessen Rand dS wir in 3 Teile zerlegen

dS1 dS n{(x,y)eUn+1 \y 0]
dS2 dS n {(x,j;)6[Rn+1 j y 1}

dS3 dS\(dS1 udS2).

Da h harmonisch ist, gilt

J — 0 fSï
on

dS

(nach dem Divergenzsatz). Die Normalableitung dhjdn verschwindet jedoch auf
dS3, denn die Tangente zur Kurve (x (z\ y), y) 0 ^y< 1, ist auf Grund der Differential-
gleichung (3) durch (w^+1)"1 grad (u+y) gegeben. Auf dS2 fâllt dhjdn mit w^+l
zusammen, desgleichen auch auf ÔS3, jedoch mit entgegengesetztem Vorzeichen.

Aus (5) ergibt sich daher die Beziehung

J (uy (z', 0) + 1) dmn J (uy (f(z'), 1) + 1) dmn

{z'\\z'-z\<r} {f{z')\\z'-z\<r}

und fur die Jacobi-Determinante von/ erhâlt man

mn{f(z')\\z'-z\<r}_ uy(z,0) + l
AZ)

,-.0 mn{z'\\z'-z\<r} Mj,(/(z),l) + r
Damit ist der Hilfssatz bewiesen.

Im dritten Teil dieser Arbeit wird dieser Hilfssatz auf harmonische, in [R++1

definierte Funktionen erweitert. Neben den Bedingungen \imy^(Xiuy{xij) 0 und

limy_>owy(;t, y) J(x)— 1 sind zusâtzliche Voraussetzungen ûber das Wachstum der

Ableitungen von u fiir y -> 0 und fiir j> -» 00 entscheidend. Erfullt jedoch die harmonische

Funktion u aile diesbezûglichen Forderungen, so kann der Diffeomorphismus

/ mit Jacobi-Determinante J(x) dann wie im Hilfssatz 1 konstruiert werden.

Im zweiten Teil dieser Arbeit sind die Sâtze ûber die Beziehung zwischen den

Randwerte einer in U ++ x harmonischen Funktion u und dem Wachstum der partiellen
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Ableitungen von u zusammengestellt und bewiesen. Die Ergebnisse sind in den
Sâtzen 3 und 4 enthalten. Da ein enger Zusammenhang zwischen dem Randverhalten
harmonischer Funktionen und der Théorie der singulâren Integraltransformationen
besteht - der Ûbergang zwischen den partiellen Ableitungen uy und uXi von u kann
durch die Riesz-Transformation beschrieben werden - kommt diesen Ergebnissen
hier eine besondere Bedeutung zu. Fur eine ausfuhrliche Darstellung der Beziehungen
zwischen harmonischen Funktionen und singulâren Integraltransformationen sei auf
das Buch von E. Stein [2] verwiesen.

Harmonische Funktionen im Halbraum

Mit IR++1 wird der (n +1 )-dimensionale obère Halbraum {(x, y) \ xeUn, y>0}
c=IRn+1 bezeichnet. Zu einer Funktion/eL00 (IRM) betrachten wir die beschrânkte
harmonische Funktion u in R++1, deren Randwerte limy_ow(x, y) fast ûberall durch

/(x) gegeben sind. u(x, y) lâsst sich als Konvolution von/mit dem Poissonkern

darstellen:

cn ist eine Normierungskonstante :

j P(x,y)dx l. (8)

Zu/GL°°(Rn) bilden wir das Riesz-Potential qf R*f mit R (cj(n-
Wir setzen voraus, dass \qf\ beschrânkt ist. u=P*qf ist dann die beschrânkte,
harmonische Funktion in R++1, die fast ùberall die Randwerte qf annimmt, und die

partielle Ableitung von u nach y besitzt die Darstellung

uy P*f. (9)

Zum Beweis von (9) bemerken wir, dass fur y >0

J 1-1
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und

die Gleichung (9) folgt dann aus

u, P,*qf P,*R*f (P*R),*f.
Da | u | beschrânkt ist und da fiir die partiellen Ableitungen von P die Abschâtzungen

Ô2P

dy dxk
Rn

und

gelten, folgt aus den Darstellungen

dass

Uy*k 0(y~2) und uXiXk 0(y-2) (10)

fur y -> oo, gleichmâssig auf Un.

Ûber das Verhalten von

xeUn

und llw^jçjoo fur kleine y geben die folgenden beiden Sâtze Auskunft, wenn v uy

=P*/(und/= /-1) gesetzt wird. Es stellt sich heraus, dass unter den Voraussetzungen

von Satz 2 sowohl Jo||Wyxklloo^V w*e auc^ Jollwjctxjoo dy konvergieren (d.h. \\uyXk

und ||wA;iJCk||0o sind ûber ein Intervall (0, c) mit c>0 integrierbar).

SATZ 3. v sei harmonisch in IR++1 und \v\ sei beschrânkt. Aus

*yxk\\co

j \\vy\\œdy<œ (11)

o

folgt dann

JlKII.^<oo (12)

0

limy_+ov(x, y) ist unter diesen Voraussetzungen stetig.
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Aus den Voraussetzungen des Satzes folgt unmittelbar, dass/(x) limy_,ot;(x, y)
fiir aile x existiert und beschrânkt ist. Es gilt dann v=P*fxmd somit vXi=PXi*ffùr
y>0. Wegen ^Rn\PXi\dx 0(y~î)fur y-^oo ist \imy^o0vXi(xyy) 0 und daher

00

Vxt (*, y) - j VyXi (*, t) dt

y

Mit der Darstellung von vyXi(x,t) als Konvolution von vy(x, t\2) und PXl(x>
erhâlt man die Abschâtzungen

l^x, (x, 01 I f PXi (z, tjl) vy (x - z, t\2) dz\ < const. j \\v,\\„ (r/2)

und

l^(x,^)|< const

00

¦I
y/2

Setzt man a(r)=||t?,||00(r) und b(y) jyn/2 a(t) dt/t, so bleibt zu zeigen, dass Jo

b(y) dy fiir ein c>0 konvergiert. Da aber a und b positiv sind, folgt dies unmittelbar
durch partielle Intégration:

c cef b(t)dt cb(c)-rb(r)+ f a(t/2) dt ^ cb(c) + fa (r/2) A.
r r 0

Nach Voraussetzung (11) ist die redite Seite dieser Ungleichung endlich.
Um die Stetigkeit von/zu beweisen braucht man eine Abschâtzung fur

Aus den Ungleichungen

r r

|/(x) - i;(x, r)| < f H^IL dy f a (t) dt
J J
0 0

und

r
f / n \

ds\v(x + t,r)- v(x, r)\ < J Q£ ||^( (x



Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen 403

folgt
r

\f(x + i) - f{x)\ < 2 f a (s) ds + const. rô (r)
o

r r

<2 I a (5)^ +const. I b(s)ds.
0 0

/ ist also stetig.
Wir erinnern daran, dass der Stetigkeitsmodul s(r) einer Funktion /eL°°(IR")

durch

*to H J (/(* + rfl-/(*)) «IL (13)

Sn-1

(mit t=rÇ, r=\t\ und |£| 1) definiert wurde.

SATZ 4. IstfeL™ (Un) und erfullt der Stetigkeitsmodul s vonf die Bedingung

[r-xs(r)dr< oo (14)

o

so ist f nach Modifikation auf einer Lebesgue-Nullmenge stetig, und fur die partielle
Ableitung vy von v—P*fgilt:

WVyW^dy <co. (11)

o

Wegen \Rn Py (x, y)dy=0 ist

vy (x, y)=[py (*, y) {f(x + 0 - /(x)) dt

Rn

jpy(r,y)r"~l Ç (/(x + rÇ) - /(x)) d« dr.

Nach Définition des Stetigkeitsmoduls folgt daraus die Ungleichung

00

\vy{x, y)\ < J \r2 - n/\ (r2 + y^^'V^sir) dr.
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Mit Hilfe der Substitution r — zy und der Abschâtzung

\z2 - n\ (z2 + lye+Mf-i < c(l + z)~2 (ckonstant)

erhâlt man dann

00

\\vy\\œ=y-1 jc(l+z)-2s(zy)dz.
0

Eine Intégration bezùglich y und eine Substitution x zy fuhren auf die Ungleichung

1 00 Z

j KL dy^cj(l+ z)-2 (J x-^(jc) dx^j dz

0 0 0

und, nach Vertauschen der Integrationen, zu

1 00

J KL dy < c j X'1 (1 + x)'1 s(x) dx.
0 0

s ist beschrânkt, denn feL°°(Rn). Zusammen mit der Voraussetzung (14) folgt
daher, dass die redite Seite dieser Ungleichung endlich ist. Die Stetigkeit von / ist

nun eine Konsequenz von Satz 3.

Beweis von Satz 2

Wir setzen voraus, dass / messbar ist und den Voraussetzungen von Satz 2 genùgt:

der Stetigkeitsmodul s(r) von / (siehe (13)) erfûllt

" xs (r) dr < oo

o

Die partielle Ableitung uy=P*(J-\) von w=P*^(J_1} erfûllt dann die

Voraussetzungen von Satz 4 mit uy v (vgl. (6), (7) und (9)). Es gilt also Jo||uyy\\ ^dyKoo und
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J(x) is nach Modification auf einer Nullmenge stetig. Nach Satz 3 und (10) folgt

J dy<co. (15)

Wir schliessen daraus, dass \uXi\ in [R++1 beschrânkt ist und - nach Satz 3 - stetig auf
den abgeschlossenen Halbraum [R++1 erweitert werden kann. Wird in den Sâtzen
3 und 4 fur v die Funktion uXi eingesetzt, so zeigt dieselbe Ûberlegung, dass

(16)

HILFSSATZ 2. Die in [R++ * harmonische Funktion u erfulle die Bedingungen

ou ou

J II uyXi H
oo dy < oo und J || uXkXi \\ „ dy < oo

0 0

uy + 1 ^ m > 0, \u\ ^ M, |gradw| < M

(m, M konstant) und die partiellen Ableitungen uy und uXi i=l,...9n seien stetig

auf M. ++ x fortsetzbar. Dann besitzt die Differentialgleichung (3)

dy uy + l

zu jedem Anfangswert x(0) z eine eindeutige Lôsung x(z, y) im Intervall [0, oo).
Zudem ist die Abbildung z -* x(z, y) fur jedes positive y ein Dijfeomorphismus von Un

auf sich.

Die Aussagen des Hilfssatzes werden fur ^=1 bewiesen. Es wird also gezeigt,
dass die Gleichung (3) eine im Intervall [0, 1] eindeutige Lôsung x(z, y) mit Anfangs-
bedingung x(0) z besitzt und dass die Abbildung f(z) x (z, 1) ein Diffeomorphis-
mus ist. Fur ein beliebiges positives y ist der Beweis genau derselbe.

Zunâchst bezeichne x(w, y) die nach Hilfssatz 1 eindeutige Lôsung von (3) auf
(0, oo), fur die x(w, l) w ist. Aus (3) folgt, dass

mit h(x,y)=
uy(x9y)
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Da h(x,y) auf Un++i stetig ist, kann die Abbildung (w, y) -+ x (w, y) stetig auf R++1

fortgesetzt werden. Wir zeigen, dass sich die Funktionalmatrix X(w, y)
((dXildwk) (w, y)) ebenfalls stetig auf IR++1 fortsetzen lâsst:

X(w, y) genùgt der Differentialgleichung

-X HX H (8^\
dy ' \dxj

und der Bedingung X(w, l)=/(Identitât); in integrierter Form:

y

X(w,y) I + j H(x(w, t), t)X(w, t) dt
1

Fur die Ableitung der Norm \X\ =supûeRn>|aj 1 \Xa\ ergibt sich daher

d

(17)

(18)

dy

und sodann

d

dy

lim/T1 \HX\ dt < \H\ \X\

<\H(x(W)y),y)\.

Unter Beriicksichtigung von lnjJSf (w, l)|=0 erhâlt man aus der letzten Ungleichung
durch Intégration eine Abschâtzung von \X(w, y)\ :

In \X (w, y)\ <j\H(x (w, /), t)\ dt (y < 1)

y

Die Voraussetzungen des Hilfssatzes 2 und die Ungleichung

dK
_ uXk \ _,/M +iriu -rM+ir2Mu i

*> ~ i il/"" '^ > ' XkXt \uy ' XJ uxkuyxt\

< C\uxlXk\ + C\uyXi\ (C konstant)

dienen zur Abschâtzung von \H\

(19)

\H(x(w, y), y)\ < C
i

+ C I ||aw0. •

Nach Voraussetzung sind nun aber || Mjefcje* II
<

(20)

3, 1) integrierbar. Aus
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(19) und (20) folgt daher die Beschrânktheit von lA^w,>>)| fiir weR", je(0, 1], und
aus der nach (18) hergeleiteten Ungleichung

y'

\X (w, y)-X (w, y')\ < const. J \H\ dt

y

y'

^ const. (7 £ \\uXkXi\\^+t \\uyxt\u)dt

y

folgt die gleichmâssige Konvergenz von X(w, y) fur j->0.
Zlâsst sich also stetig auf IR++1 fortsetzen und die Abbildung g:w-+x(w, 0) ist

stetig differenzierbar. Gemâss Hilfssatz 1 ist

die Jacobi-Determinante der Abbildung w-*x(w,y). Wegen uy(x,y)+l^m>0 ist
die Jacobi-Determinante

von g positiv; g ist also lokal umkehrbar. Da aber fur jedes yo>0 die Funktion
x (w, y) auf M ++1 bereits durchx (w, y0) eindeutig bestimmt ist, so folgt, dass g auch im
Grossen eineindeutig ist.

Die Differentialgleichung (3) besitzt fur jedes zeUn eine Lôsung x(z,y) mit

x(z, 0)=z, denn uxl(uy+l) ist in IR++1 stetig. Wir schliessen daraus, dass der Diff-
feomorphismus g Un auf sich abbildet. Damit ist der Hilfssatz bewiesen.

Der Gleichung (21) entnehmen wir, dass die Jacobi-Determinante Jy der Abbildung
z-+x(z9y) durch

u,(z,0) + l
"'w u,(x(z,7)j) + l

gegeben ist.

Wir vervollstândigen nun den Beweis von Satz 2. Die harmonische Funktion u sei

durch /bestimmt:

und x(z, y) seien die Lôsungen von (3) mit x(z9 0)=z.
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f(z)=lim(x(z,y)-x(0,y))
y-*ao

existiert dann fur aile zeUn. Wegen (15) und (16) kann nâmlich fur y-> oo wie im
Beweis zum Hilfssatz 2 auf die gleichmâssige Konvergenz der Funktionalmatrizen
((ôxildzk) (z, y)) der Abbildungen z->x(z, y) — x(0, y) geschlossen werden. f(z) ist
dann stetig differenzierbar und fur die Jacobi-Determinante erhâlt man

f ist also lokal umkehrbar, und da die Abbildungen z-+x(z, y) fur ail y^O Dif-
feomorphismen von IRW auf sich sind, ist auch/ein Diffeomorphismus von Un auf sich.
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