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Gruppen mit Poincaré-Dualitât

Robert Bieri (Promotionsarbeit)

0. Einleitung

Die vorliegende Arbeit handelt von Gruppen G mit der Eigenschaft, dass zwischen
der Homologie und der Cohomologie von G eine der Poincaré-Dualitât einer kom-
pakten Mannigfaltigkeit analoge Dualitât besteht.

Wirnennen G zinc Poincaré-Dualitât-Gruppe(PT)-Gruppë) der Dimension n, wenn
es eine (feste) Zahl n, auf der additiven Gruppe der ganzen Zahlen eine G-Modul-
Struktur Z und fur jeden G-Modul A eine Folge von natûrlichen Isomorphismen

keZ,

gibt. Dabei operiert G diagonal auf 2®A. Es stellt sich heraus, dass solche
Isomorphismen - falls sie existieren - stets durch das cap-Produkt mit einem festen Tunda-
mentalzyklus' e eHn(G, 2) geliefert werden (Satz 2.6). Wir werden daher schon in der
Définition die Isomorphismen /k als durch das cap-Produkt gegeben voraussetzen,
denn die dadurch entstehende Mehrarbeit wird durch bessere Einsicht belohnt. Operiert

die PD-Gruppe G trivial auf dem dazugehôrigen G-Modul 2, dann heisst sie

orientierbar, andernfalls nichtorientierbar. Jede nichtorientierbare PD-Gruppe enthâlt

genau eine orientierbare PD-Gruppe mit Index 2 (Korollar 2.1.2).
Unsere wichtigsten allgemeinen Resultate sind die folgenden zwei Erweiterungs-

sàtze: 1) PD-Gruppen sind torsionsfrei; und Untergruppen von endlichem Index in

PD-Gruppen sind PD-Gruppen. Umgekehrt ist G eine PD-Gruppe, wenn sie torsionsfrei
ist und eine PD-Gruppe mit endlichem Index enthâlt (Satz 2.1.1 und Satz 2.4.1). 2) Jede

Extension einer PD-Gruppe der Dimension n durch eine PD-Gruppe der Dimension m
ist eine PD-Gruppe der Dimension m + n (Satz 2.5).

Mit diesen zwei Erweiterungssâtzen lassen sich die auflôsbaren PD-Gruppen voll-
stândig bestimmen : Eine auflôsbare Gruppe ist genau dann eine PD-Gruppe, wenn sie

torsionsfrei und polyzyklisch ist (Satz 3.1.2 und Satz 3.3.1). Zur Untersuchung der
Orientierbarkeit drângt sich eine Verallgemeinerung auf: Man kann die Homologie
einer Gruppe ùber einem beliebigen kommutativen Koeffizientenring R mit Einsele-

ment betrachten und damit genau wie oben die Klasse der 'PD-Gruppen ûber R9

definieren. Wir hoffen, spâter auf dièse Verallgemeinerung zurûckzukommen, und
verwenden in diesem Zusammenhang nur die Tatsache, dass eine PD-Gruppe (ûber
Z) auch eine PD-Gruppe ûber dem Kôrper Q der rationalen Zahlen ist, wobei sich

an der Orientierbarkeit nichts ândert. Nun ist aber jede polyzyklische Gruppe G eine

PD-Gruppe ûber Q (Satz 3.2.2). Ob G orientierbar oder nichtorientierbar ist, lâsst
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sich an Hand einer invarianten Reihe mit abelschen Faktoren entscheiden

(Satz 3.2.4). Speziell sind aile endlich erzeugten, nilpotenten Gruppen orien-
tierbar.

Natûrlich ist G eine PD-Gruppe, wenn der Eilenberg-MacLane-Raum K(G, 1)

homotopieâquivalent zu einer kompakten Mannigfaltigkeit ist. Es ist somit leicht,
auch nichtauflôsbare PD-Gruppen anzugeben, etwa die Fundamentalgruppen der 2-

dimensionalen geschlossenen Flâchen vom Geschlecht ^2 im R3. Wir werden aber
den Eilenberg-MacLane-Raum in der vorliegenden Arbeit nie verwenden, sondern
rein algebraisch argumentieren. Immerhin sei bemerkt, dass schon allein die Analogie
zur Poincaré-Dualitât der kompakten Mannigfaltigkeiten eine Reihe von Resultaten

liefert, etwa : Ist die Dimension n einer orientierbaren PD-Gruppe G ungerade, dann
ist die Euler-Charakteristik #((j) 0; ist « 2A: gerade aber nicht durch 4 teilbar, dann
ist der Rang von Hk(G, Z) und damit auch %{G) gerade; u.s.w.

Da das cap-Produkt ein ausserordentlich starkes Werkzeug bei der Behandlung
der Poincaré-Dualitât ist, stellen wir im ersten Kapitel die Définition und einige wohl-
bekannte Eigenschaften zusammen, tun dies aber - im Hinblick darauf, dass es sich

doch nur um ein Werkzeug handelt - môglichst kurz und elementar mit Hilfe der
Barresolution. U.a. wird dabei auch die cap-Produkt-Struktur der Spektralreihen von
Lyndon-Hochschild-Serre diskutiert. Wer sich nicht fur Einzelheiten im Zusammen-

hang mit dem cap-Produkt interessiert, kann ohne weiteres mit der Lektûre des zwei-

ten Kapitels beginnen. Hier folgen Définition und allgemeine Eigenschaften der PD-
Gruppen, wobei das Schwergewicht auf den beiden Erweiterungssâtzen liegt. Schliess-

lich bestimmen wir im dritten Kapitel die auflôsbaren PD-Gruppen und diskutieren
die Orientierbarkeit der polyzyklischen Gruppen.

Im zweiten und dritten Kapitel wird intensiv die Spektralreihe von Lyndon-
Hochschild-Serre verwendet. Wir machen aber darauf aufmerksam, dass man (etwa

zum Beweis von Lemma2.2) auch die Spektralreihe von Dold [4, 2.12] heranziehen
kônnte. F. Ischebeck [7] verwendet die Dold'sche Spektralreihe zur Herleitung einer

formalen Dualitât zwischen den Funktoren Ext und Tor in einer abelschen Kategorie.
Fur Gruppen mit noetherschem Gruppenring ist Lemma 2.2 im wesentlichen die Aus-

sage von [7, Satz 1.14].
In der Terminologie halten wir uns nach Môglichkeit an MacLane [8] und an

Gruenberg [5]. Unter 'Homologie' ist in der Regel 'Homologie und Cohomologie' zu
verstehen.

An erster Stelle môchte ich Herrn Professor Dr. B. Eckmann fur sein Interesse an
meiner Arbeit, fur seine Anregungen und fur die mir in jeder Hinsicht entgegenge-
brachte Unterstûtzung herzlich danken. Zu grossem Dank verpflichtet bin ich aber

auch Herrn Professor Dr. U. Stammbach. Auch er war immer bereit, ùber Problème
im Zusammenhang mit meiner Arbeit zu diskutieren, und hat mir wertvolle Hinweise

gegeben.



Gruppen mit Poincaré-Dualitât 375

Inhaltsverzeichnis

1. Das cap-Produkt

1.1 Définition
1.2 Elementare Eigenschaften
1.3 Die cap-Produkt-Struktur der Lyndonspektralreihe

2. Poincaré-Dualitât-Gruppen

2.1 Définition - Orientierbarkeit
2.2 Ein nùtzliches Lemma
2.3 Opération auf der Homologie eines Normalteilers
2.4 Extensionen von PD-Gruppen durch endliche Faktorgruppen
2.5 Extensionen von PD-Gruppen durch PD-Gruppen
2.6 Définition einer PD-Gruppe ohne Verwendung des cap-Produkts

3. Anwendungen

3.1 Polyzyklische Gruppen
3.2 Die Orientierbarkeit polyzyklischer Gruppen
3.3 Die auflôsbaren PD-Gruppen

1. Das cap-Produkt

1.1 Définition
Es sei G eine Gruppe, A ein G-Modul. Wir setzen xa ax~1 (xeG, aeA)9 was uns

ermôglicht, A nach Belieben als links- oder als rechts-G-Modul aufzufassen. Sei Z die
additive Gruppe der ganzen Zahlen mit trivialer G-Modul-Struktur, und sei X eine

G-projektive Auflôsung von Z mit Differential d. Die Homologiegruppen von G mit
Koeffizienten in A sind definiert als

Hn (G, ,4) Hn (A ® G X), Hn (G, A) Hn (HomG (X9 A)).

Dabei nimmt man im Kettenkomplex A ®GX die Homologie bezûglich dem Differential

dn lA®dn9 im Cokettenkomplex HomG(Z, A) bezûglich dem Corandoperator

Zur Définition des cap-Produkts wâhlen wir fur X speziell die normalisierte Bar-
resolution B{G). Bn(G) ist die freie abelsche Gruppe ûber den (n+l)-Tupeln (x0,

xl9..., xn), xteG9 mit xi^l¥:xi9 versehen mit der durch x(x0, xl9..., xn) (xx09..., xxn)9

xeG9 gegebenen G-Modul-Struktur. Das Differential d:Bn-*Bn_1 ist gegeben durch

n

d(xO9...9xn)= £ (-l)f(x0,..., *i,..., xj.
i 0

Sei C ein rechts-G-Modul. Das cap-Produkt

n : (C ®G Bn) ® HomG (Bk9 A)-+(C® A) ®G £„_*

ist auf den Elementen e=c®(xO9...9 xn)eC®GBn und/eHomG(^fc, A) wie folgt de-
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finiert:

enf (c ® (x0,..., xn))nf (c ® f(xQ,..., xA

Dabei operiert G diagonal auf C®A, d.h. es ist (c®a)x cx®^x, fur aile ceC, aeA,
xeG. Nun gilt d(enf) (—l)k ôenf+enôf, k dcg(f), also induziert das cap-
Produkt in den Komplexen ein cap-Produkt in der Homologie

n:Hn(G, C)® Hk(G, A)->Hn_k(G, C® A).

Bemerkung. Verwendet man zur Berechnung der Homologie von G die Barreso-
lution einer grôsseren Gruppe GdG, dann induziert die Einbettung B(G)czB(G) einen

Isomorphismus. Man kann also mit genau derselben Formel das cap-Produkt auch
mit Hilfe von B(G) berechnen.

1.2 Elementare Eigenschaften
Das cap-Produkt liefert Homomorphismen zwischen der Cohomologie und der

Homologie einer Gruppe G. Um Aussagen ûber dièse Homomorphismen zu gewinnen,
wollen wir hier einige elementare Eigenschaften des cap-Produkts zusammenstellen.

LEMMA 1.2.1. Es seien A, A\ C, C G-Moduln, undseien a.A^A' undy\C-+C
zwei G-Homomorphismen. Dann ist dasfolgende Diagramm kommutativ :

Hn(G,C)®Hk(G,A) ^ Hn.k(G,C®A)

Hn (G, C) ® Hk (G, A') 1 Hn.k (G, C ® Af).

LEMMA 1.2.2. Sei E:0-+A'->A->A"-*0 eine kurze exakte Folge von G-Moduln.
Sei C ein G-Modul mit der Eigenschaft, dass die Folge C®E:0^C®A'-+C®A->

^0 immer noch exakt ist. Dann ist dasfolgende Diagramm kommutativ :

Hn (G, C) ® Hk (G, A") ^ Hn_k (G, C ® A")

Hn(G9C)®Hk+i(G,Af)^Hn_k.1(GiC®Af).

Dabei ist A der zur entsprechenden kurzen exakten Folge gehôrige {Connecting homo-

morphism'.

Lemma 1.2.1 ist fa^t trivial; Lemma 1.2.2 beruht auf der Formel d(enf)
(- l)k denf +enôf, eeC®GB,feHomG(B, A). Vertauscht man in Lemma 1.2.2

die Rollen des G-Moduls C und Folge E, dann erhâlt man eine analoge Aussage:
Das entsprechende Diagramm ist bis auf ein Vorzeichen (— l)k ebenfalls kommutativ.
Aus Lemma 1.2.1 und 1.2.2 folgt direkt:



Gruppen mit Poincaré-Dualitât 377

LEMMA 1.2.3. Sei C ein G-Modul, dessen unterliegende abelsche Gruppe torsions-

frei ist. Dann liefert das cap-Produkt mit einem festen Elément eeHn(G, C) eine natur-
liche Transformation der zusammenhàngenden Folge von Funktoren

(en -):Hk(G,-)-+Hn_k(G,C®-), keZ.

Um die folgenden Eigenschaften ùbersichtlich darstellen zu kônnen, verwenden
wir die Adjungiertheit von Tensorprodukt und Hom-Funktor und schreiben das cap-
Produkt als Abbildung

n:Hn(G9 C) ->Hom(iJfc(G, A), Hn_k(G, C ® A)), n,keZ.

LEMMA 1.2.4. Sei (p:Gx-+G ein Gruppenhomomorphismus. Fasst man die G-Mo-
duln A und C mit Hilfe von cp auch als G^Moduln auf, dann ist dasfolgende Diagramm
kommutativ :

HH(G1,C)lHom(Hk(GuA)9Hn-k(GuC®A))
<P*l JHom(<p*, q>J

Hn(G, C) 1 Hom(Hk(G, A\ Hn.k{G,C® A)).

Der Beweis von Lemma 1.2.4 ist évident. In den meisten Fâllen ist cp die Einbettung
einer Untergruppe in G, und wir schreiben ç?5|{ cor5N und <p* res*.

Sei U eine Untergruppe von endlicheom Index in G. Dann gibt es bekanntlich
Abbildungen res^i/^G, C)-+H*(U, C) und cot*:H*(U, A). Wir wollen das Ver-
halten des cap-Produkts bezûglich dieser Abbildungen studieren. Sei C ein G-Modul,
A ein C/-Modul. Danninduziert die Kettenâquivalenzs'1 : (C®(v4®t;ZG))®GB(G)->
-*(C®A)®UB(G), mit s~1((c®(a®x))®b)=(cx~1(g)a)®xb, ceC, aeA, xeG,
beB(G), einen naturlichen Isomorphismus

a;1 :H*(G9 C®(A ®VZG)) -> H* (U9 C®A).

Dabei ist A®VZG via rechts-G-Struktur von ZG als G-Modul aufzufassen, G operiert
diagonal auf C®(A®VZG), und U operiert diagonal auf C®A. Ist C der triviale
Modul Z, dann liefert a* die wohlbekannte Isomorphie H*(U, A)^H*(G, A®VZG).
Der dazu duale Isomorphismus

t* :H*(U9A)-+ H* (G, Hom^ (ZG, A))

wird durch die Cokettenâquivalenz t :Homv(B(G), A)-+HomG(B(G), Hom^ZG, A)),
mit tf(b) (x)=f(xb),feHomu(B9 A)9 beB(G)9 xeG, induziert.

LEMMA 1.2.5. Sei U eine Untergruppe von endlichem Index in der Gruppe G. Sei
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C ein G-Modul und A ein U-ModuL Dann ist das folgende Diagramm kommutativ :

Hn(G, C) -i Hom (Hk (G, Hom^ZG, A)), Hn.k (G, C ® Hom^ZG, A)))

H, (17, C) ^ Hom(Jï* (17, A), Hn.k (U, C ® A)).

Dabei wird 0* vom wohlbekannten Isomorphismus 9:Homv(ZG9 A)-*A®VZG
induziert. 9 wird mit Hilfe eines links-Reprâsentantensystems {rj von G modulo U
definiert: Fur feHomv(ZG, A) ist 9(f) YJif(ri)®ri. Nachdem nun aile beteiligten
Homomorphismen explizite angegeben wurden, kann Lemma 1.2.5 durch einfache
Verifikation von s~19(entf) rçs*er\f, eeC®GB{G),feYiov[iXj{B(G), A), bewiesen
werden.

Ist N ein Normalteiler der Gruppe G, dann operiert bekanntlich G auf der Homo-
logie von TV mit Koeffizienten in einem G-Modul. Es gilt :

LEMMA 1.2.6. Sei N ein Normalteiler der Gruppe G, seien A und C G-Moduln.
Dann gilt fur aile geG, eeHn(N, C),feHk(N, A): (enf)g=egng-1f.

Beweis. Sei ê=c®(x0,..., xn)eC®NBn(G), feHomN(Bk(G), A). Dann ist ëg

cg®(g-1x0,...,g-1xn)und {g~1f){x0,...,xk)=g-1f{gx0,...,gxk\ also

êg n g"1/ (cg ® g'VOco, •••» xk)) ® (g'%, -.., g~\)
(c ® /(x0, ...5 xk)) g ® (g"^,..., g"1*,,)

(ënf)g,
was zu beweisen war.

1.3 Die cap-Produkt-Struktur der Lyndonspektralreihe
Es sei N ein Normalteiler der Gruppe G, und sei A ein G-Modul. Dann gibt es

nach Lyndon-Hochschild-Serre Spektralreihen

Hr(G/N, HS(N9 A)) s Els=>Hr+s(G, A)
HP(G/N, Hq(N, A)) s Ep2>q=>Hp+q(G, A).

Im vorliegenden Abschnitt werden wir die cap-Produkt-Struktur dieser Spektralreihen
untersuchen. Dabei wâre es ohne weiteres môglich, genau dual dazu auch das cup-
Produkt zu behandeln. Das wollen wir aber nicht tun. Erstens sind wir im Hinblick
auf die Poincaré-Dualitât hauptsâchlich am cap-Produkt interessiert, und zweitens
wurde die cup-Produkt-Struktur der Lyndonspektralreihe schon 1953 von Hochschild-
Serre [6] untersucht. Der Beweis von Hochschild-Serre ist allerdings nicht derselbe,
sondern verwendet eine direkte Filtrierung der Cokettengruppe von G.

Wir betrachten die zwei Bikomplexe

Kp>q(A) HomG(^(G/iV) ® Bq(G),A) S HomG/iV(Bp(G/iV)5HomN (Bq(G),
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mit den partiellen Differentiationen ô'9 ô",

(ô'f) (b' ® b") (- l)p+q+1f(db' ® b"), feKp'\ b'eBp+1, b"eBq9

{à"f) (b' ® b") (- l)q+1f(bf ® db")9 feKp'q9 b'eBp, b"eBq+l,

und

KStr{A) A®G (BS(G) ® Br(G/N)) îé(A ®n Bs(G)) ®G/NBr(G[N),

mit den partiellen Differentiationen d\ d'\

d' {a® V ® b") a® db' ® b"
d"\a ® V ® b") (- l)s a®bf ®d

K* und K# sind Funktoren von der Kategorie der G-Moduln in die Kategorie der
Bikomplexe. Zu zwei G-Moduln A und C definieren wir ein cap-Produkt in den

Bikomplexen

n:KStr(C)® Kp'q(A)-+Ks-qtr-p(C® A)

wie folgt: Fur die Elemente e c®(x09..., xs) ® {yo^..9 yr)e Ksr(C) und feKp>q(A)
sei

e nf (- l)sp(c ® f((y09..., yp) ® (x09..., xq))) ® ((xq9...9 xs) ® (yp9..., yr)).

Man ûberzeugt sich leicht, dass die folgenden Formeln gelten:

ô"f \
ô'f. Jôf(enf) (-l)p+qÔ"enf+ enô'

n induziert in den Totalen Komplexen TotÂ"* und TotjRf* ein Produkt

n : (Tôt K* (C))n ® (Tôt K* (A)f -+ (Tôt K* (C ® A))n.k,

und aus (*) folgt fur die totalen Differentiale ô ô' + ô" und d d' + d\ d(enf)
(— l)kdm/+en(5/.Damitwird auchin der Homologie der totalen Komplexe ein

Produkt n induziert. Die Homologie der totalen Komplexe ist aber isomorph zur
Homologie von G, wobei dièse Isomorphismen durch die folgenden Kettentransfor-
mationen induziert werden :

Ç : HomG (B (G), ,4) £ K0' * (.4) c Tôt X* (A)
-+C ®G B(G).

Dabeiist ({'/) {V®b") f {b"\ fûr/eHomG(5, A\ b'eB0, b"eB, undri'(
c®b', fur ceC, b'eB, b"eB0. Nun verifiziert man leicht:

LEMMA 1.3.1. Das ûber die Bikomplexe K*, K* definierte cap-Produkt fâllt mit
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dem gewôhnlichen cap-Produkt in der Homologie von G zusammen, d.h., das folgende
Diagramm ist kommutativ :

Hn(Tôt K* (C)) ^ Hom(Hk (Tôt X* (A)), Hn.k (Tôt K* (C ® A)))

Hm(G, C) Z Rom(Hk(G, A), Hn_k(G, C®A)).
Zu den Bikomplexen K* und K* gehôren je zwei Spektralreihen, die beide gegen

die Homologie des entsprechenden totalen Komplexes konvergieren. Die eine der
beiden Spektralreihen ist jeweils trivial. Die anderen, nicht trivialen Spektralreihen
bezeichnen wir als

Er>s^Hr+s(TotK*) und Ep>q => Hp+4(TotX*).

Dank den Formeln (*) induziert das in den Bikomplexen definierte cap-Produkt ein

Produkt in den Spektralreihen, d.h., fur jedes co 2, 3,... eine Abbildung

Andererseits gilt fur die Anfangsterme (co 2) bekanntlich

Q*:Ep2>q(A) s HP(G/N9 Hq(N, A)),

und durch das cap-Produkt in der Homologie von N und G/N wird in der iterierten
Homologie in naheliegender Weise ebenfalls ein Produkt

n:Hr(G/N, HS(N9 C)) ® HP(G/N, Hq(N, A))->Hr_p(G/N9 Hs_q(N9 C ® A))

induziert. Aus der Définition folgt nun fast trivialerweise:

LEMMA 1.3.2. Das folgende Diagramm ist bis aufein Vorzeichen (— l)sp kommutativ:

E2riS{C) ® Ep>«(A) ÏEr_p,s_q(C ® A)

Hr(G/N, HS(N, C)) ® Hp(G/N, Hq(N, A)) 1 Hr-P(G/N, Hs_q

d.h. fur aile eeEr2>s(C) undfeE%'q(A) gilt

2. Poincaré-Dualitat-Gruppen

2.1 Définition - Orientierbarkeit

DEFINITION. Eine Gruppe G heisst eine Poincaré-Dualitât-Gruppe (kurz: eine

PD-Gruppe) der Dimension n, wenn es auf der additiven Gruppe der ganzen Zahlen
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eine (triviale oder nichttriviale) G-Modul-Struktur 2 gibt, derart dass das cap-Produkt
mit einem festen Elément eeHn(G9 2) fur jeden G-Modul A Isomorphismen

(en-):Hk(G9A)^Hn_k(G9Â)9 keZ,

liefert. Dabei ist A der G-Modul Z®A mit diagonaler Opération, e heisst ein Funda-

mentalzyklus der Gruppe G. Wir nennen G eine orientierbare PD-Gruppe, wenn Z der
triviale G-Modul Z ist; hat Z eine nichttriviale G-Struktur, dann heisst G eine nicht-
orientierbare PD-Gruppe.

Bemerkungen. 1) Wenn eine Gruppe G die Eigenschaft hat, dass fur jeden G-Modul
A und fur aile k>n Hk(G9 A) 0 ist, dass es aber einen G-Modul B mit Hn(G9 B)^0
gibt, dann ist n die homologische Dimension von G, und wir schreiben hdG — n. Gilt
analog fur jeden G-Modul A und fur aile k>m Hk(G9 A) 09 aber Hm(G, B)^0 fur
einen gewissen G-Modul B, dann ist m die cohomologische Dimension von G, und wir
schreiben cdG m. Fur jede PD-Gruppe G der Dimension n gilt offenbar hdG cdG n.

PD-Gruppen sind also torsionsfrei.
2) Fur eine PD-Gruppe der Dimension n gilt offensichtlich : Hn(G, 2) ist unend-

lich-zyklisch und wird von jedem Fundamentalzyklus e erzeugt. G ist genau dann

orientierbar, wenn Hn(G9 Z^O ist.

3) Ist der Eilenberg-MacLane-Raum K(G, 1 )einer Gruppe G homotopieâquivalent
zu einer jz-dimensionalen, kompakten Mannigfaltigkeit 9Jt, dann ist G eine PD-Gruppe
der Dimension n und genau dann orientierbar, wenn 9JÎ eine orientierbare
Mannigfaltigkeit ist. Wir werden aber den Eilenberg-MacLane-Raum nie verwenden, sondern
aile Beweise rein algebraisch fùhren.

SATZ 2.1.1. Sei G eine PD-Gruppe, UaG eine Untergruppe von endlichem Index.
Dann ist U eine PD-Gruppe derselben Dimension. Ferner ist die Untergruppe U genau
dann orientierbar, wenn sie im Kern der Abbildung G->Aut(Z) liegt.

Beweis. Es sei n die Dimension von G und eeHn(G, Z) ein Fundamentalzyklus.
Wir berechnen das cap-Produkt mit dem festen Elément res* eeHn(U, Z) in der Homo-
logie von U. Nach Lemma 1.2.5. ist das folgende Diagramm kommutativ:

If,(G, Z) ^ Hom(Hk(G9 Hom^ZG, A)), Hn.k(G9 Hom^ZG, A)))
res^ J,Hom(T*. et~ %)

Hn(U9 Z)-a Hom(Hfc(l7, A), Hn.k(U9 A)).

T*5 g*1 und Q* sind Isomorphismen. Da nach Voraussetzung (en — ein Isomorphis-
musistjmussauchCres^en— )ein Isomorphismus sein. U ist also eine PD-Gruppe der

Dimension n, mit dem Fundamentalzyklus res^eHn(U9 2). Offensichtlich ist U genau
dann orientierbar, wenn Z als {/-Modul trivial ist. Damit ist der Satz bewiesen.
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KOLLAR 2.1.2. Jede nichtorientierbare PD-Gruppe enthâlt genau eine orientier-
bare PD-Gruppe mit Index 2.

2.2 Ein nutzliches Lemma
Das folgende Lemma erweist sich oft als ein recht nutzliches Werkzeug, wenn es

darum geht, von einer gegebenen Gruppe nachzuweisen, dass sie eine PD-Gruppe ist.

LEMMA 2.2. Die Gruppe G ist dann und nur dann eine PD-Gruppe der Dimension

n, wenn die folgenden drei Bedingungen erfullt sind:

(i) cdG^n
(ii) Hk(G9 F) 0, fur jeden freien G-Modul F undfur aile k 0, 1, 2,..., n -1.
(iii) Es gibt aufder additiven Gruppe der ganzen Zahlen eine G-Modul-Struktur 2,

und es gibt ein (festes) Elément eeHn(G, Z), derart dass das cap-Produkt mit efurjeden
freien G-Modul F einen Isomorphismus (en — ): Hn(G, F)^H0(G, F) liefert.

Beweis. Sei G eine PD-Gruppe der Dimension n. Dann ist (i) trivialerweise erfullt.

Ferner gilt A^A fur jeden G-Modul A, also ist auch (iii) évident. Sei B eine beliebige
abelsche Gruppe. Wir betrachten den durch die rechts-G-Struktur von ZG definierten
G-Modul B* B(g)ZG. B* heisst ein induzierter G-Modul. Nun ist die Abbildung/ :

:B*-*B*, auf den Elementen b®geB* gegeben durch

1®*®*' fÛr *6Ker(G->Aut(2))
|i®4g)gf fur g£Ker(G->Aut(2)),

ein G-Isomorphismus. Speziell sind aile freien G-Moduln Finduziert, also ist Hk(G, F)
^Hn_k(G, F) 0, fur k^n, womit auch (ii) verifiziert ist.

Sei umgekehrt G eine Gruppe mit (i), (ii) und (iii). Wir betrachten den Funktor
Afc(G,~ #w~"* (G, 2® - keZ, von der Kategorie der G-Moduln in die Kategorie
der abelschen Gruppen. hk(G9 — hat die folgenden drei Eigenschaften:

1) Zu jeder kurzen exakten Sequenz 0-+A'-+A-+A"-+0 von G-Moduln gibt es eine

lange exakte Sequenz

gegeben durch die zur exakten Folge 0^>Â'-*Â-+Â"-+0 gehôrigen 'Cohomologiese-
quenz'.

2) Ist F ein freier G-Modul, dann gilt hk(G, F) 0, fur aile k>0. Das folgt aus

(ii) und der Tatsache, dass F und F isomorphe G-Moduln sind.

3) Fur jeden G-Modul A liefert das cap-Produkt mit e einen Isomorphismus
ho(G9 A)^H0(G9 A). Um das zu zeigen, betrachten wir eine kurze exakte Folge
0-+K-+F-+A-+0 von G-Moduln, wobei F G-frei sein soll. Dann ist auch die Folge
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Q-+K^>F-*Â-*0 exakt und induziert das Diagramm

••.-> ff"(G, K) -> Hn(G, F) -> Hn(G, Â)-+Q
(en-)[y [p [a

»-+Ho(G9K)-+Ho(G,F)-+Ho(G9A)^0.

Die obère Zeile ist exakt wegen cdG=n. F ist frei, also ist p nach Voraussetzung (iii)
ein Isomorphismus. Dann ist aber a epimorph. Dièse Ûberlegung gilt fur beliebige
G-Moduln A, also ist y ebenfalls epimorph. Dann muss aber a ein Monomorphismus
sein.

Aus 1), 2), 3) und der durch Lemma 1.2.3 garantierten Natùrlichkeit folgt die
Existenz einer Folge von natûrlichen Isomorphismen fk:hk(G> A)^Hk(G, A), keZ
(hk(G,~ ist ein minimaler homologischer Funktor; siehe Gruenberg [5, chapter 2.2]).
Man kann aber noch viel mehr sagen: Die Erweiterung des natiirlichen Homomor-
phismus/0 : h0 (G, A )-+H0 (G, A zu einer natûrlichen Transformation der minimalen
homologischen Funktoren ist eindeutig bestimmt. Aus fo= (en — )0 folgt daher fk
(en — )k fur aile k, womit Lemma 2.2 bewiesen ist.

2.3 Opération aufder Homologie eines Normalteilers
Es sei N eine PD-Gruppe der Dimension n und Normalteiler in der Gruppe G.

Die Homologiegruppen von N mit Koeffizienten in einem G-Modul A haben bekannt-
lich eine G-Modul-Struktur. Im allgemeinen respektieren die durch das cap-Produkt
gegebenen Isomorphismen Hk(N, A) £ Hn_k(N, A) die G-Modul-Struktur nicht.
Dièse Unzulànglichkeit làsst sich allerdings leicht korrigieren :

LEMMA 2.3. Sei N eine PD-Gruppe der Dimension n und Normalteiler in der

Gruppe G; sei Hn(N, 2*) Z. Dann kann man 2 als G-Modul auffassen, und die durch
das cap-Produkt gegebenen Isomorphismen

Hk(N9 A) s Hn.k(N, Hn(N, 1) ® 1), keZ,

sindfur jeden G-Modul A mit der G-Modul-Struktur der Homologiegruppen vertrâglich.
Dabei operiert G diagonal aufHn(N, Z)®Â.

Beweis. Sei 7V=Ker(A^->Aut(£)). Nach Satz 2.1.1 ist N eine orientierbare PD-
Gruppe, und wegen Korollar 2.1.2 charakteristisch in N9 also normal in G. Daher hat
Hn(jiï, Z) eine wohldefinierte G-Modul-Struktur. Wir wollen zeigen, dass Hn(N, Z)
und 2 als N-Moduln isomorph sind. Das ist trivial, wenn N selber orientierbar, also

N=N ist Sei N nichtorientierbar, und sei xeN,x$N. Nach Cartan-Eilenberg [3, XII,
Corollary 9.2] ist die zusammengesetzte Abbildung

Hn {R, Z) -^ Hn (N, Z) ^> H. (N, Z)
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gerade die Multiplikation mit der Norm 1 +x/Vder Faktorgruppe N/N^ Z2. Da aber

Hn(N, Z) 0 ist, folgt daraus (1 +xN)a 0, also (xN)a -a, fur aile aeHn(N, Z),
was zu beweisen war. Damit haben wir Z zu einem G-Modul erweitert. Der Rest der
Behauptung ist eine direkte Konsequenz von Lemma 1.2.6.

2.4 Extensionen von PD-Gruppen durch endliche Faktorgruppen
PD-Gruppen sind torsionsfrei, und wir haben gezeigt, dass die Untergruppen von

endlichem Index in einer PD-Gruppe wieder PD-Gruppen sind (Satz 2.1.1). In diesem
Abschnitt werden wir die Umkehrung beweisen :

SATZ 2.4.1. Jede torsionsfreie Gruppe, die eine PD-Gruppe als Untergruppe von
endlichem Index enthâlt, ist selber eine PD-Gruppe.

Sei U eine Untergruppe von endlichem Index in der Gruppe G. Dann enthâlt U
einen Normalteiler Nx von G mit endlicher Faktorgruppe G/Nl. Mit U ist auch Nt
eine PD-Gruppe und enthâlt daher eine orientierbare PD-Gruppe N vom Index
\NÎ:N\^2. N ist nach Korollar 2.1.2 charakteristisch in Nl9 also normal in G. Es

genûgt somit, das folgende Korollar zu beweisen:

KOROLLAR 2.4.2. Sei S : 1 ->N^>G->E-> 1 eine kurze exakte Folge von Gruppen.
Sei E endlich, G torsionsfrei und N eine orientierbare PD-Gruppe. Dann ist G eine (ev.

nichtorientierbare) PD-Gruppe.
ZUSATZ. Es sei n die Dimension von N. G ist dann undnur dann orientierbar, wenn

E trivial aufHn(N, Z)êëZ operiert.
Beweis. Nach dem Satz von Serre (siehe [10, Theorem 9.2]) haben TV und G dieselbe

cohomologische (und homologische) Dimension n. Ist F ein freier G-Modul, dann ist
i^auch als N-Modul frei, also Hk(N, F)^Hn_k(N, F) 0, fur k^n. Durch Betrachten
der zur Sequenz S gehôrigen Spektralreihe folgt daraus, Hk(G, F) 0, fur k 0, 1, 2,

...,« — 1. Damit sind die Voraussetzungen (i) und (ii) von Lemma 2.2 erfûllt. Die
Verifikation der Voraussetzung (iii) fûhren wir in zwei Schritten.

BEHAUPTUNG 1. Es bezeichne Z den G-Modul Hn(N, Z). Dann gilt:

(1) Hn(G,l) Z, (2) œr*Hn(N,l) \E\Hn(G,Z).

Beweis. Es sei e:Z(7->Z die Augmentationsabbildung e(g)= 1, geG, und /G Kere
das Augmentationsideal. Fur jeden G-Modul A bezeichne AG den Faktor A/AIG und
AG die Fixpunkte {aeA; ga a V^eG} von A unter G. Wir erinnern ferner an die

Tatsache, das die Restriktionsabbildungen in die Homologie eines Normalteilers wie

folgt faktorisieren:

res* : H* (G, A) A H* (AT, A)E - H* (N, A)

cor* : H* (N, A) -> H* (N, A)E^ H* (G, A).
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Nim betrachten wir speziell die G-Moduln 2* ZG und Z* Hom(ZG, Z). Z* ist
iV-frei. Z* ist als 7V-Modul isomorph zu Hom(ZAr, ©Z), also coinduziert (siehe
Gruenberg [5, chapter 2.1]). Da Neine PD-Gruppe ist, gilt damit fur k^n:Hk(N9 Z*)
=?0 und Hk(N, Z*) 0. Durch Betrachten der zur Folge S gehôrigen Spektralreihen
folgt daraus, dass die Abbildungen

r:Hn{G,Z*)^Hn{N,Z*)E und c:Hn(N,Z*)E-+Hn(G,2*)

Isomorphismen sind.

Die durch die Augmentationsabbildung s induzierten Homomorphismen cp:2j*-+
-»Z und i/f :Z-»Z* induzieren in der Homologie die Diagramme

Hn (G, Z*) % Hn (G, Z) Hn (G, Z) U Hn (G, 2*)

if" (JV, Z*) -, H" (iV, Z) HM (AT, Z) -, Hn (N, Z*)
sl I î îs

Ho (N, Z#) -> Ho (iV, Z) H° (iV, Z) -> H° (iV, Z*)
H i î îs
ZE -» Z Z -^Hom(Z£,Z)

Die beiden obersten und die beiden untersten Quadrate sind trivialerweise kommuta-
tiv, und die Kommutativitàt der mittleren Quadrate folgt aus Lemma 1.2.1. Man
beachte, dass nach Lemma 2.3 sâmtliche Homomorphismen der beiden Diagramme
mit der is-Modul-Struktur vertrâglich sind. Demzufolge werden die beiden folgenden
kommutativen Quadrate induziert:

H" (G, Z,)-2
4-

ZEE —

-* H (G, Z)
|res*

-> Z

Hn(G92
cor*î

Z

;)-^fl,(G,2*)

^Hom(Z£5Z)£

Sowohl Z^£ als auch Hom(Z£', Z)E^ZEE ist unendlich-zyklisch. Aus dem linken
Quadrat folgt leicht: cp* ist ein Isomorphismus, und das Bild von Hn(G,2,) unter
res* ist gleich dem Bild von ZEE* also gleich \E\-Z. Auf der rechten Seite ist die
Situation nicht ganz so einfach, und wir bemerken lediglich, dass \jj* nicht die Nullab-
bildung ist. Daher ist i/n(G, Z)^Z. Mehr zu sagen scheint vorerst nicht môglich zu
sein. Nun kommt uns aber eine etwas allgemeinere Form des Universellen-Koeffizien-
ten-Theorems zu Hilfe: Zu jedem trivialen G-Modul A gibt es eine natûrliche, kurze
exakte Folge

0 -> Ext (#„_ x (G, Z), A) -> Hn (G, A)- Hom (H, (G, Z), A) -+ 0,
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welche in nichtnatûrlicher Weise spaltet. Dabei muss G nicht notwendigerweise trivial
auf 2 operieren. Die ûblichen Beweise des Theorems liefern auch dièse leichte Ver-
allgemeinerung. Fur uns folgt daraus die Existenz eines natûrlichen Isomorphismus
Hn(G, 2)^Hom(/fn(G, 2), Z). Nun folgt Behauptung 1 (2) aus der entsprechenden
Eigenschaft in der Cohomogie.

BEHAUPTUNG 2. Es gibt ein Elément ëeHn(G, 2), derart dass das cap-Produkt
mit ë fur jeden freien G-Modul Feinen Isomorphismus (en—): Hn(G, F)^FG liefert.

Beweis. Es sei F ZG®2?, B eine frei-abelsche Gruppe. Ferner sei daran erinnert,
dass 2 den G-Modul Hn(N, Z) bezeichnet. Nach Lemma 1.2.4 ist das folgende Dia-

gramm kommutativ:

Hn (N, 2) A Hom (Hn (N, F), Ho (N, F))
cor,,,

I J,Hom (res*, cor^,)

Hn (G, 2) A Hom (Hn (G, F), Ho (G, F)).

Sei eeHn(N, 2) ein Fundamentalzyklus von N. Fur das cap-Produkt mit dem
Elément cor#eeHn(G, ïi) gilt (coréen —) corHc(en —) res*. Dabei sind nach Lemma
2.3 aile Homomorphismen mit der is-Modul-Struktur vertrâglich, also wird das

folgende kommutative Diagramm induziert:

H»(G,F)^H»(N9F)^ FN A Fq
II u u ||

F ist frei als iV-Modul, also gilt fur k^n:H\N, F) Hn__k(N, F) 0. Daraus folgt
durch Betrachten der zur Sequenz S gehôrigen Spektralreihe, dass r ein Isomorphismus

ist. Ferner ist FN (ZG®B)N^ZE®B, weil E eine endliche Gruppe ist also

(FN)E^B und (FN)E^B. Dabei entspricht die durch die Identitàt von FN induzierte

Abbildung i der Multiplikation mit \E\. Zusammengefasst haben wir damit ein kom-
mutatives Diagramm

II? II?

B B
\E\

Nach Behauptung 1 gibt es ein Elément ëeHn(G, 2) mit \E\ë cor*e. Dann muss
aber die Abbildung (en —):Hn(G,F)-+FG ein Isomorphismus sein. Damit ist
Behauptung 2, also nach Lemma 2.2 auch Korollar 2.4.2, bewiesen.

2.5 Extensionen von PD-Gruppen durch PD-Gruppen
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SATZ 2.5. Sei S : 1->G'-»G-»G"-»1 eine kurze exakte Folge von Gruppen, Sei G'
eine PD-Gruppe der Dimension n und G" eine PD-Gruppe der Dimension m. Dann ist G
eine PD-Gruppe der Dimension m + n.

ZUSATZ. Es sei 1" diejenige G"-Modul-Struktur auf Z9 fur welche Hm(G\ 2")
£ Z ist. Dann gilt : G ist dann und nur dann orientierbar, wenn G' orientierbar und die
diagonale Opération von G" aufU'®Hn(G\ Z) trivial ist.

Beweis. Es bezeichne 2' diejenige G'-Struktur auf Z, fur welche Hn{G\ 2') Z ist.
Dann ist nach Lemma 2.3 2' ein G-Modul, also auch Hn(G\ 2'). Wir setzen

2 2"®i/tt(G',2')®2\
mit diagonaler G-Struktur, und versuchen wieder, die Voraussetzungen von Lemma
2.2 zu verifizieren.

1) cdG^cdG' + cdG" n + m folgt mit dem 'Maximumprinzip' aus der Spektral-
reihe von Hochschild-Serre.

2) Sei F ein freier G-Modul. Dann sind auch die Moduln F' Îj'®F und F
2®F G-frei, also G'-frei. Weil G' eine PD-Gruppe ist, gilt daher H\G\F)ç£

^Hn_k(G\ F') 0 fur k^n. Mit Hilfe der zur Sequenz S gehôrigen Spektralreihe
folgt daraus :

Hk(G, F) s Hk~n{G\ Hn(G', F)), keZ,
S Hk~n(G\ Ho (G', Hn(G', 20 ® F')), nach Lemma 2.3,

Nun ist H0(G'9 F)^FG> frei als G"-Modul, also ist Hk(G, F) 0 fur >

3) Sei A ein beliebiger G-Modul. Wir betrachten die zu S gehôrigen Spektral-
reihen E* und E*. Nach Lemma 1.3.1 und 1.3.2 ist das folgende Diagramm bis auf
ein Vorzeichen kommutativ:

Hm+n(G,l)®Hm+n(G,A) A H0(G,Â)

-/qq V. / 0,0 V /

Hm(G 9 Hn((j Zj))® H (Cj M {O A))—+no((jr ilo(U 9 A))

Sei e'eHn(G\ 2') ein Fundamentalzyklus von G' und é'eHm(G"91") ein Fundamen-

talzyklus von G". 2 ist als G'-Modul isomorph zu 2' und Hn(G'9 2) ist als G/r-Modul

isomorph zu 2", also definiert das Paar e'9 e" ein Elément êeHm(G'\ Hn(G'9 2)).
Das cap-Produkt mit ë ist definiert durch die zusammengesetzte Abbildung

(ën-) H0(G\(e'n-))o(e"n-)
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und liefert daher einen Isomorphismus. Folglich liefert das cap-Produkt mit dem
Elément e rj*1 g*1(ë)eHm+n(G,Z) einen Isomorphismus (en -):Hm+n(G, A)^
^H0(G,Â).

Damit sind die Voraussetzungen von Lemma 2.2 erfûllt, G ist also eine PD-Gruppe
der Dimension m + n. Ist G' nichtorientierbar, dann ist Hn(G'\ Z) 0, also ist auch
Hm+n(G, Z) Hm(G", Hn(G\ Z)) 0, d.h. G ist ebenfalls nichtorientierbar. Fur orien-
tierbare G' gilt nach Définition: G ist genau dann orientierbar, wenn Z Z"®Hn(G\
Z) der triviale G-Modul Z ist. Damit ist Satz 2.5 bewiesen.

2.6 Définition einer PD-Gruppe ohne Verwendung des cap-Produkts
In [2] nennen wir G eine 'Gruppe mit Poincaré-Dualitât', wenn es eine ganze Zahl

n^O und zu jedem G-Modul A natûrliche Isomorphismen Hk(G, A)^Hn_k(G, A),
keZ, gibt. Dièse Définition ist scheinbar schwâcher als die Définition einer (orien-
tierbaren) PD-Gruppe. Wir werden aber in diesem Abschnitt zeigen, dass die 'Gruppen
mit Poincaré-Dualitât' im Sinne von [2] genau die orientierbaren PD-Gruppen
sind.

SATZ 2.6. Sei G eine Gruppe, und sei Z die additive Gruppe der ganzen Zahlen mit
einer (trivialen oder nichttrivialen G-Modul-Struktur. Wenn es eine Zahl n^O undfur
jeden G-Modul A eine Folge von natiirlichen Isomorphismen

fkA:Hk{G,A)çÉHn-k{G,Â), k<=Z,

gibt, dann ist G eine PD-Gruppe der Dimension n. Genauer : Es existiert ein Fundamen-

talzyklus eeHn(G, Z), derart dass das cap-Produkt mit e gerade die Abbildungen f\
liefert. Dabei bezeichnet A den G-Modul Z®A mit diagonaler Opération.

Beweis. Wir werden wieder die Voraussetzungen von Lemma 2.2 verifizieren. Die
Voraussetzungen (i) und (ii) sind trivialerweise erfûllt. Die Verifikation von (iii) fûhren
wir in zwei Schritten.

BEHAUPTUNG 1. Es gibt ein Elément eeHn(G, Z), derart dass das cap-Produkt
mit e, (en -)£:Hn(G, 2)->Z, gerade die Abbildung/^ liefert.

Beweis. Die im Beweis von Korollar 2.4.2 bereits erwâhnte, etwas allgemeinere
Form des Universellen-Koefrizienten-Theorems liefert einen Epimorphismus a:
:Hn(G, 2j) -> Hom(/Tn((/, Z), Z). Beide Gruppen sind unendlich-zyklisch, also muss a

ein Isomorphismus sein. Die cap-Produkt-Abbildung n :Hn(G, Z) -> Hom(Hn(G, Z, Z)
kann als Zusammensetzung der Evaluationsabbildung Hn(G9 2i)->Hom(Hom(Hn(G9
Z), Z), Z) mit dem induzierten Homomorphismus Hom(a, Z) beschrieben werden.
Beide Abbildungen sind in unserem Falle Isomorphismen, und daher gibt es sicher

ein Elément eeHn(G, Z), das dabei auf den Homomorphismus f^eUom(Hn(G, Z),
Z) abgebildet wird.
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BEHAUPTUNG 2. Das cap-Produkt mit e liefert fur jeden freien G-Modul F
einen Isomorphismus (en -)np:Hn(G, F)^H0(G, F), der gerade mit f? ûberein-
stimmt.

Beweis. Wir betrachten die kurze exakte Folge 0->/G—?ZG-*Z-»0, wo IG das

Augmentationsideal von G bezeichnet. Die Abbildungen/n und (en — )" sind beide
natûrlich, also ist das folgende Diagramm kommutativ:

Hn (G, IG) -^ Hn (G, IG) > Hn (G, Z) > 0

/?4 Ml{en-)n*G lfn*=(en-)n*
Ho (G, IG) — Ho (G, ZG) > Ho (G, Z) > 0.

Die Einbettung i induziert in der Homologie die Nullabbildung H0(G, i) 0. Da/j"G

und/^G Isomorphismen sind, ist auch i* Hn(G, /) 0. Dann muss aber/^G mit
(en — )^g zusammenfallen. Damit ist Behauptung 2 fur endlich erzeugte freie G-Mo-
duln F bewiesen. Der Beweis ist fur beliebige freie G-Moduln F erbracht, wenn wir
zeigen, dass unter den Voraussetzungen von Satz 2.6 der Cohomologiefunktor
Hk(G, — mit dem direkten Limes vertauscht. Das ist aber fast trivial, denn er ist
nach Voraussetzung ja natûrlich âquivalent zum Funktor Hn^k(Gi Z® —), Damit ist
Behauptung 2 bewiesen, nach Lemma 2.2 also auch Satz 2.6.

Bemerkung. Man kônnte mit Hilfe von Satz 2.6 die PD-Gruppen ohne Verwendung
des cap-Produkts definieren. Dadurch wûrden sich einzelne Beweise etwas verein-
fachen lassen, insbesondere mûsste man zum Beweis von Satz 2.5 die cap-Produkt-
Struktur der Lyndonspektralreihe nicht mehr verwenden. Da aber andererseits das

cap-Produkt derart eng mit dem Begriff der PD-Gruppe verknûpft ist, scheint mir
eine Définition, die diesen Zusammenhang von Anfang an in den Mittelpunkt stellt,
berechtigt zu sein.

3. Anwendungen

3.1 Polyzyklische Gruppen
Die Gruppe G sei unendlich-zyklisch und vom Elément x erzeugt. Dann ist der

Eilenberg-MacLane-Raum K(G, 1) homotopieâquivalent zur Sphâre S1. Es gilt also:

LEMMA 3.1.1. Die unendlich-zyklische Gruppe ist eine orientierbare PD-Gruppe
der Dimension 1.

Der Vollstândigkeit halber wollen wir dièse fast triviale Tatsache auch algebraisch
beweisen. Es sei 7G das Augmentationsideal von G, und sei A ein beliebiger G-Modul.
IG ist als G-Modul frei auf dem Elément 1 — x, also gibt es einen natûrlichen Isomor-
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phismus

Si :Hl (G, A) s Coker(HomG(ZG, A) -> HomG(/G, A))

Ferner gilt fur jeden freien G-Modul F ®ZG:H°(G, F) FG^@(ZG)G 0, man
kann also f} zu einer Folge von natûrlichen Isomorphismen f%:Hk(G, A)^
Hx_k (G, A) erweitern. Nach Satz 2.6 folgt daraus die Behauptung.

Bemerkung. Die unendlich-zyklische Gruppe ist die einzige PD-Gruppe der Dimension

1. In der Tat muss eine solche Gruppe G nach Stallings-Swan frei sein, und wegen
Ht(G, Z)^G/G' ist erstens G orientierbar und zweitens die Anzahl der freien Erzeu-

genden gleich 1.

Eine Gruppe G heisst auflosbar, wenn sie eine (endliche) Normalreihe G=G0o
>Gtt>G21>-• • i>Gr 1 mit abelschen Faktoren Gk_ JGk9 1< & < r, besitzt. Esbezeichne
hG die Summe der Range dieser Faktoren (ev. 00). hG ist unabhàngig von der gewâhl-
ten Normalreihe und heisst die 'Hirschzahl von G\ Die Gruppe G heisst polyzyklisch,
wenn sie eine (endliche) Normalreihe mit lauter zyklischen Faktoren besitzt. Lemma
3.1.1, zusammen mit den Erweiterungssâtzen 2.4.1 und 2.5, impliziert:

SATZ 3.1.2. Jede torsionsfreie, polyzyklische Gruppe G ist eine PD-Gruppe der

Dimension hG,

Bemerkungen. 1) Satz 2.4.1 liefert sogar etwas mehr : Eine torsionsfreie Gruppe G,

die eine polyzyklische Untergruppe Gj von endlichem Index enthâlt, ist eine PD-Gruppe

der Dimension hGv Ein Spezialfall davon ist die (von der topologischen Betrach-

tungsweise her natûrlich wohlbekannte) Tatsache, dass aile torsionsfreien, kristallo-
graphischen Gruppen des R" PD-Gruppen der Dimension n sind; siehe [11, Theorem

3.3.2].
2) Satz 3.1.2 enthâlt ein Résultat von Gruenberg [5, chapter 8.8], wonach die

cohomologische Dimension einer torsionsfreien, polyzyklischen Gruppe gleich ihrer
Hirschzahl ist.

3) Wir werden im Abschnitt 3.3 sehen, dass mit den torsionsfreien, polyzyklischen
Gruppen schon aile auflôsbaren PD-Gruppen gefunden sind.

3.2 Die Orientierbarkeit polyzyklischer Gruppen
Es geht nun darum, ein rein gruppentheoretisches Kriterium zu finden, das uns

erlaubt zu entscheiden, ob eine gegebene, torsionsfreie, polyzyklische Gruppe
orientierbar oder nichtorientierbar ist. Hier drângt sich eine Verallgemeinerung auf : Es sei

G eine beliebige Gruppe, und sei R ein kommutativer Ring mit Einselement. Ein
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i?G-Modul ist gegeben durch einen jR-Modul A, zusammen mit einem Gruppenhomo-
morphismus $:G-+AutR(A). Wir sagen, A sei ein fasttrivialer iÊG-Modul, wenn das

Bild #(G) in der Untergruppe {Id, -Id}cAutR(A) liegt.

DEFINITION. G heisst eine 'PD-Gruppe der Dimension n uber R\ wenn es auf
R eine fasttriviale jRG-Modul-Struktur R gibt, derart dass das cap-Produkt mit einem
festen Elément eeHn(G, R) fur jeden i£G-Modul A iMsomorphismen

(en-):Hk(G,A)*HH-k(G,R®RA), keZ,

liefert. Dabei operiert G diagonal auf R®RA. Ist R der triviale RG-Modu\ R, dann
heisst G orientierbar, andernfalls nichtorientierbar uber R.

Wir hoffen, spâter auf dièse allgemeinere Situation zurûckzukommen, und machen

in diesem Zusammenhang nur die folgenden Bemerkungen: Eine PD-Gruppe der

Dimension n (iiber Z) ist eine PD-Gruppe der Dimension n ûber jedem Ring jR. Wenn
die Charakteristik von R nicht 2 ist, dann ândert sich dabei nichts an der Orientier-
barkeit. Zur Untersuchung der Orientierbarkeit einer PD-Gruppe G braucht man also

G nur als PD-Gruppe ûber dem Kôrper Q der rationalen Zahlen zu betrachten. Das

hat zwei Vorteile : Erstens werden die Rechnungen einfacher, und zweitens wird das

Résultat allgemeiner, da man sich dank dem folgenden Lemma nicht mehr auf tor-
sionsfreie Gruppen zu beschrânken braucht.

LEMMA 3.2.1. Jede endliche Gruppe ist eine orientierbare PD-Gruppe der Dimension

0 uber Q.
Beweis. Lemma 3.2.1 ist im wesentlichen die Aussage des Maschke'schen Satzes.

Sei G eine endliche Gruppe und sei A ein QG-Modul. i:AG-+AG sei die durch die

Identitât von A induzierte Abbildung. Dann ist der Homomorphismus

-- (\ gja,
G

j:AG-+AG9 j(a + AIG) -- (\ gja, aeA,
geG

zu / invers.
Da sich die Sâtze von Kapitel 2 ausnahmslos auf PD-Gruppen ûber Q ûbertragen

lassen, folgt daraus :

SATZ 3.2.2. Jede polyzyklische Gruppe G ist eine PD-Gruppe der Dimension hG

ûber Q.
Es sei N eine frei-abelsche Gruppe mit den freien Erzeugenden xu...,xn, und sei

E EZN[xl9...9xn] die âussere Algebra ûber ZN. Dièse hat die Form einer exakten

Sequenz
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wobeidieXpfreieN-Moduln auf denErzeugenden xkl ax^-axkp, mit l^kl<k2<
<--<kp^n9 sind. Fur das Differential d vergleiche man MacLane [8, VI.6, p. 189].
Ist ,4 ein trivialer iV-Modul, dann ist A®Nd 0, also folgt Hn(N, Z) Hn(Z®NE)^Z,
d.h. N ist eine orientierbare PD-Gruppe.

Nun sei zusâtzlich N Normalteiler in einer Gruppe G. Dann ist die Opération von
G fur jeden G-Modul A bis auf ein Vorzeichen mit dem Isomorphismus Hn(N, A) ^ AN

vertrâglich (Lemma 2.3). Wir wollen dièses Vorzeichen gruppentheoretisch deuten.

Zu einem festen Elément geG betrachten wir die Abbildung cpg:E^E9 auf den Ele-
menten x(xki a ••• Axkp)eXp9 xeN, gegeben durch

V1 d (xg xg
<pPg(x(xkl A ••• A Xkp)) Xg "1?>"? ^ (XV1 A ••• A XVp).

Lj g\xvi> •••> xvp)
[y]

Dabei ist xg g~xxg, die Funktionaldeterminante besteht aus partiellen Ableitungen
im Sinne der Fox-Derivationen, und summiert wird ûber aile Kombinationen
[v] [vl9 vl9...9 vp] mit I^v1<v2< •" <vp^n. Eine kleine Rechnung zeigt, dass (pg

mit dem Differential d kommutiert. Ferner ist Xo ^ ZN, und die Abbilduug cp° fâllt
mit dem Automorphismus/:ZiV->ZiV,/(x) xg, xeN9 zusammen.

Uns interessiert hauptsâchlich die Dimension n. Es ist Xn ZN, und nach Définition

gilt fur xeN

d(xguxg2,...,xgn)
çng(x) xg — r.d(xl9x2,...,xHy

Fur jeden G-Modul A kann die Opération von g auf H*(N, A) H*(A®NE) beschrie-
ben werden durch (a®e)og=ag®(pg(e),aeA, eeE. In der Dimension n ist Hn(N9A)^
9éAn9 und wir haben aog=(a®l)og=ag®(png(l) ag(png(l) 8((png(l))'ag. Dabei ist
s:ZN-+Z die Augmentationsabbildung.

Der durch Konjugation mit gin Ninduzierte Automorphismus wird in der Basis

xuxl9...9xn durch eine unimodulare Matrix ccik9 det(aifc)=±l, beschrieben: xf
fj"=1jc?ik. Mit den Rechenregeln fur Fox-Derivationen findet man:

s det — det(a£&) + 1.
\ \dxJJ

Damit haben wir bewiesen, dass die Opération von g mit dem Isomorphismus Hn(N9 A) ^
AN bis auf das Vorzeichen det(a^) vertrâglich ist.
Nun betrachten wir eine etwas allgemeinere Situation. Sei N ein endlich erzeugter,

abelscher Normalteiler in der Gruppe G, und sei tN die Torsionsuntergruppe von N.
Zu jedem Elément geG definieren wir ein Vorzeichen bezûglich N :
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DEFINITION. Zu jedem Elément geG sei sign^g) die Déterminante der durch
Konjugation mit g in N/tN induzierten Abbildung. Ist N/tN=l, dann sei sig%(g)

+ 1 fur aile geG.

LEMMA 3.2.3. Sei N ein endlich erzeugter, abelscher Normalteiler vom Rang n in
der Gruppe G, und sei A ein QG-Modul. Dann ist N eine orientierbare PD-Gruppe der

Dimension n ùber Q, und jedes Elément geG operiert auf Hn(N, A)^AN wie ctog

Beweis. Nach Lemma 2.3 und 3.2.1 ist Hn(N9 A)^Hn(N/tN, H0(tN, A))
^Hn(N/tN, AtN). Dièse Isomorphismen respektieren die G-Struktur. Fur den frei-
abelschen Normalteiler NjtN^z G/tN ist aber die Behauptung schon bewiesen.

Es sei nun G eine polyzyklische Gruppe, und sei G=G0oG1c> -oG^l eine

invariante Reihe von G (d.h. aile Gk sind Normalteiler von G) mit abelschen Faktoren.
Wir versehen jedes Elément geG mit einem Vorzeichen

DEFINITION.

r
FI si
fcl

ferner sagen wir, g sei positiv, wenn sign(g)= 4-1, negativ, wenn sign(g)= — 1 ist.

Aus unserem nâchsten Satz folgt unmittelbar, dass dièse Définition von der speziellen

Wahl der invarianten Reihe unabhângig ist.

SATZ 3.2.4. Eine polyzyklische Gruppe G ist (als PD-Gruppe ùber Q) dann und

nur dann orientierbar, wenn aile Elemente geG positiv sind. Ist G nichtorientierbart
dann bilden aile positiven Elemente von G die eindeutig bestimmte orientierbare Unter-

gruppe vom Index 2.

Beweis. Sei hG=n, h(Gk_l/Gk) hk. Wir zeigen mit vollstândiger Induktion nach

der Lange r der invarianten Reihe

Aus dieser Formel folgt dann unmittelbar die Behauptung. Ist r — 1, dann ist G abelsch

und die Formel richtig. Fur r ^ 2 ist

^ Q, nach Induktionsvoraussetzung.
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KOROLLAR 3.2.5. Jede endlich erzeugte, nilpotente Gruppe ist eine orientierbare

PD-Gruppe tiber Q.
Beweis. Jede endlich erzeugte, nilpotente Gruppe G ist polyzyklisch. Sei geG. Man

berechnet sign(g) mit Hilfe einer beliebigen Zentralreihe von G. Da G auf jedem
zentralen Faktor trivial operiert, folgt sign(g)= +1.

3.3 Die auflôsbaren PD-Gruppen
Im vorliegenden Abschnitt werden wir die Umkehrung von Satz 3.1.2 beweisen:

SATZ 3.3.1. Jede auflôsbare PD-Gruppe ist polyzyklisch
Dazu brauchen wir zwei Hilfsresultate.

LEMMA 3.3.2. Sei G eine torsionsfreie, nilpotente Gruppe. Dann ist die homolo-

gische Dimension hdG gleich der Hirschzahl hG. ht hG=n <oo, dann gilt ûberdies:

Hn(G9 Z) ist torsionsfrei vom Rang 1 undgenau dann zyklisch, wenn G endlich erzeugbar
ist.

Beweis. G ist der direkte Limes der endlich erzeugten Untergruppen. Der direkte
Limes vertauscht mit dem Homologiefunktor, also folgt aus Satz 3.1.2 hdG=hG. Es

sei nun hG=n< oo. Den Rest der Behauptung beweisen wir mit vollstândiger Induk-
tion nach n. Ist n= 1, dann ist G eine torsionsfreie, abelsche Gruppe vom Rang 1, und
die Behauptung ist wegen HX(G, Z)^G trivial. Es sei also n^2. Dann enthâlt G eine

zentrale Untergruppe S vom Rang 1 mit torsionsfreier Faktorgruppe G/S. Weil S

zentral ist, folgt

Hn(G9Z)^Hn.1(GIS,H1(S,Z))

Mit Hilfe der Induktionsvoraussetzung schliessen wir daraus : Hn(G, Z) ist torsionsfrei

vom Rang 1 und genau dann zyklisch, wenn G/S und S endlich erzeugbar sind, d.h.

wenn G endlich erzeugbar ist.

Bemerkung. Man vergleiche Lemma 3.3.2 mit dem Résultat von Gruenberg [5,

chapter 8.8, Theorem 5]: Sei G eine torsionsfreie, nilpotente Gruppe mit endlicher
Hirschzahl hG. Dann gilt fur die cohomologische Dimension von G cdG=hG, wenn
G endlich erzeugbar ist, und cdG=hG+l, wenn G nicht endlich erzeugbar ist.

LEMMA 3.3.3. Die homologische Dimension hdG einer torsionsfreien, auflôsbaren

Gruppe G ist gleich der Hirschzahl hG.

Bemerkung. Man vergleiche dazu das Résultat von Stammbach [9], wonach die



Gruppen mit Poincaré-Dualitât 395

homologische Dimension hdQG einer auflôsbaren Gruppe G ûber dem Kôrper Q der
rationalen Zahlen gleich der Hirschzahl hG ist. Man kônnte dièses Résultat zum Be-
weis der Ungleichung hdG^hG heranziehen.

Beweis. Wenn G abelsche Untergruppen vom Rang oo enthâlt, dann ist trivialer-
weise hG hdG=oo. Haben aile abelschen Untergruppen endlichen Rang, dann
enthâlt G nach Baer-Heineken [1, Prop. 5.5] einen nilpotenten Normalteiler N (das

Hirsch-Plotkin-Radikal) mit endlich erzeugter, fast abelscher Faktorgruppe G/N. Sei

G/N eine frei-abelsche Untergruppe von endlichem Index in G/N, und sei h(G/N)
— h(G/N)=m. Ist hG oo, dann muss hN hdN oo sein, also auch hdG= oo.

Es sei nun hG<oo9 und sei hN n. Dann ist hdG hdG^hdN + hd(G/N) hN+
+ h(G/N) h(G) h(G)=rn + n. Es bleibt zu zeigen, dass fur einen gewissen (j-Modul
A Hm+n(G, v4)#0 ist. Dazu betrachten wir die additive Gruppe der rationalen Zahlen
Q, mit einer noch nâher zu beschreibenden (j/A^-Struktur. Auf aile Fâlle ist Hm+n(G,

§)^Hm(G/N9 Hn(N9Q))^Hm(G/N9 Hn(N9Z)®§). Nach Lemma 3.3.2 ist dabei

Hn(N, Z) eine Untergruppe von Q, und die freien Erzeugenden xt von G/N operieren
darauf durch Multiplikation mit gewissen rationalen Zahlen qt. Wir definieren nun
die Opération von xt auf 0 als Multiplikation mit q^1. Dadurch wird Hn(N9 Z)®Q
zum trivialen G/N-Modu\ Q, und wir erhalten Hm+n(G, Q) Q. Daher ist hdG m + n9

also auch hdG=m + n9 womit Lemma 3.3.3 bewiesen ist.

Beweis von Satz 3.3.1. Sei G eine auflôsbare PD-Gruppe der Dimension n. G ent-
hàlt eine orientierbare PD-Gruppe G vom Index |G: (7|<2. Die abelschen Untergruppen

von G haben endlichen Rang, also gibt es nach Baer-Heineken [l,Prop. 5.5]
einen nilpotenten Normalteiler N<\G (das Hirsch-Plotkin-Radikal) mit endlich

erzeugter, fast abelscher Faktorgruppe G/N. Sei G/N eine frei-abelsche Untergruppe von
endlichem Index in G/N. G ist von endlichem Index in G, also nach Satz 2.1.1 selber
eine orientierbare PD-Gruppe der Dimension n. Sei hN hdN— k und h(G/N)
=hd(G/N)=m. Dann ist nach Lemma 3.3.3 n hdG hG m + k. Es folgt

Z s H, (G, Z) s Hm (G/N9 Hk (N9 Z)) s Hk (N9 Zf/N,

denn G/N ist eine orientierbare PD-Gruppe. Hk(N9 Z) ist nach Lemma 3.3.2 isomorph
zu einer Untergruppe der additiven Gruppe der rationalen Zahlen, versehen mit einer

gewissen G/7V-Struktur. Als Fixpunkte kommen jedenfalls nur 0 oder ganz Hk(N9 Z)
in Frage; daher ist Hk(N9 Z)^Z. Dann ist aber N nach Lemma 3.3.2 endlich erzeug-
bar, also polyzyklisch. Somit ist auch G polyzyklisch, womit Satz 3.3.1 bewiesen ist.
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Anmerkung bei der Korrektur. In einer Arbeit von F. E. A. Johnson und C. T. C.

Wall, von welcher ich nachtrâglich Kenntnis erhielt und die in Ann. of Math, erschei-

nen soll, werden unsere Sâtze 2.1.1, 2.4.1, 2.5 und 3.1.2 mit teilweise anderen Metho-
den bewiesen. Wir môchten hervorheben, dass der Begriff ,,Poincaré duality group"
bei Johnson-Wall sich auf endlich prâsentierte Gruppen mit endlicher projektiver
Auflôsung bezieht, wâhrend bei uns keinerlei Endlichkeitsannahmen gemacht werden.
Aus unseren Erweiterungssâtzen (2.1.1,2.4.1 und 2.5) kônnen diejenigen von Johnson-
Wall leicht abgeleitet werden.
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