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Gruppen mit Poincaré-Dualitit

ROBERT BiErI (Promotionsarbeit)

0. Einleitung

Die vorliegende Arbeit handelt von Gruppen G mit der Eigenschaft, dass zwischen
der Homologie und der Cohomologie von G eine der Poincaré-Dualitit einer kom-
pakten Mannigfaltigkeit analoge Dualitdt besteht.

Wir nennen G eine Poincaré-Dualitit-Gruppe (PD-Gruppe) der Dimension n, wenn
es eine (feste) Zahl n, auf der additiven Gruppe der ganzen Zahlen eine G-Modul-
Struktur Z und fiir jeden G-Modul 4 eine Folge von natiirlichen Isomorphismen

f“H*(G,A)=H,_.(G,Z® 4), keZ,

gibt. Dabei operiert G diagonal auf Z® 4. Es stellt sich heraus, dass solche Isomor-
phismen - falls sie existieren — stets durch das cap-Produkt mit einem festen ‘Funda-
mentalzyklus’ e € H,(G, 7)) geliefert werden (Satz 2.6). Wir werden daher schon in der
Definition die Isomorphismen f* als durch das cap-Produkt gegeben voraussetzen,
denn die dadurch entstehende Mehrarbeit wird durch bessere Einsicht belohnt. Ope-
riert die PD-Gruppe G trivial auf dem dazugehdrigen G-Modul Z, dann heisst sie
orientierbar, andernfalls nichtorientierbar. Jede nichtorientierbare PD-Gruppe enthilt
genau eine orientierbare PD-Gruppe mit Index 2 (Korollar 2.1.2).

Unsere wichtigsten allgemeinen Resultate sind die folgenden zwei Erweiterungs-
sdtze: 1) PD-Gruppen sind torsionsfrei; und Untergruppen von endlichem Index in
PD-Gruppen sind PD-Gruppen. Umgekehrt ist G eine PD-Gruppe, wenn sie torsionsfrei
ist und eine PD-Gruppe mit endlichem Index enthdlt (Satz 2.1.1 und Satz 2.4.1). 2) Jede
Extension einer PD-Gruppe der Dimension n durch eine PD-Gruppe der Dimension m
ist eine PD-Gruppe der Dimension m+n (Satz 2.5).

Mit diesen zwei Erweiterungssidtzen lassen sich die auflésbaren PD-Gruppen voll-
stindig bestimmen: Eine auflosbare Gruppe ist genau dann eine PD-Gruppe, wenn sie
torsionsfrei und polyzyklisch ist (Satz 3.1.2 und Satz 3.3.1). Zur Untersuchung der
Orientierbarkeit dringt sich eine Verallgemeinerung auf: Man kann die Homologie
einer Gruppe liber einem beliebigen kommutativen Koeffizientenring R mit Einsele-
ment betrachten und damit genau wie oben die Klasse der ‘PD-Gruppen iiber R’
definieren. Wir hoffen, spiter auf diese Verallgemeinerung zuriickzukommen, und
verwenden in diesem Zusammenhang nur die Tatsache, dass eine PD-Gruppe (iiber
Z) auch eine PD-Gruppe iliber dem Korper Q der rationalen Zahlen ist, wobei sich
an der Orientierbarkeit nichts &ndert. Nun ist aber jede polyzyklische Gruppe G eine
PD-Gruppe iiber Q (Satz 3.2.2). Ob G orientierbar oder nichtorientierbar ist, ldsst
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sich an Hand einer invarianten Reihe mit abelschen Faktoren entscheiden
(Satz 3.2.4). Speziell sind alle endlich erzeugten, nilpotenten Gruppen orien-
tierbar.

Natiirlich ist G eine PD-Gruppe, wenn der Eilenberg-MacLane-Raum K(G, 1)
homotopiedquivalent zu einer kompakten Mannigfaltigkeit ist. Es ist somit leicht,
auch nichtauflésbare PD-Gruppen anzugeben, etwa die Fundamentalgruppen der 2-
dimensionalen geschlossenen Flichen vom Geschlecht >2 im R3. Wir werden aber
den Eilenberg-MacLane-Raum in der vorliegenden Arbeit nie verwenden, sondern
rein algebraisch argumentieren. Immerhin sei bemerkt, dass schon allein die Analogie
zur Poincaré-Dualitdt der kompakten Mannigfaltigkeiten eine Reihe von Resultaten
liefert, etwa: Ist die Dimension »n einer orientierbaren PD-Gruppe G ungerade, dann
ist die Euler-Charakteristik y(G)=0; ist n=2k gerade aber nicht durch 4 teilbar, dann
ist der Rang von H,(G, Z) und damit auch y(G) gerade; u.s.w.

Da das cap-Produkt ein ausserordentlich starkes Werkzeug bei der Behandlung
der Poincaré-Dualitét ist, stellen wir im ersten Kapitel die Definition und einige wohl-
bekannte Eigenschaften zusammen, tun dies aber — im Hinblick darauf, dass es sich
doch nur um ein Werkzeug handelt — mdoglichst kurz und elementar mit Hilfe der
Barresolution. U.a. wird dabei auch die cap-Produkt-Struktur der Spektralreihen von
Lyndon-Hochschild-Serre diskutiert. Wer sich nicht fiir Einzelheiten im Zusammen-
hang mit dem cap-Produkt interessiert, kann ohne weiteres mit der Lektiire des zwei-
ten Kapitels beginnen. Hier folgen Definition und?allgemeine Eigenschaften der PD-
Gruppen, wobei das Schwergewicht auf den beiden Erweiterungssitzen liegt. Schliess-
lich bestimmen wir im dritten Kapitel die aufilésbaren PD-Gruppen und diskutieren
die Orientierbarkeit der polyzyklischen Gruppen.

Im zweiten und dritten Kapitel wird intensiv die Spektralreihe von Lyndon-
Hochschild-Serre verwendet. Wir machen aber darauf aufmerksam, dass man (etwa
zum Beweis von Lemma 2.2) auch die Spektralreihe von Dold [4, 2.12] heranziehen
konnte. F. Ischebeck [7] verwendet die Dold’sche Spektralreihe zur Herleitung einer
formalen Dualitit zwischen den Funktoren Ext und Tor in einer abelschen Kategorie.
Fiir Gruppen mit noetherschem Gruppenring ist Lemma 2.2 im wesentlichen die Aus-
sage von [7, Satz 1.14].

In der Terminologie halten wir uns nach Moglichkeit an MacLane [8] und an
Gruenberg [5]. Unter ‘Homologie’ ist in der Regel ‘Homologie und Cohomologie’ zu
verstehen.

An erster Stelle mochte ich Herrn Professor Dr. B. Eckmann fiir sein Interesse an
meiner Arbeit, fiir seine Anregungen und fiir die mir in jeder Hinsicht entgegenge-
brachte Unterstiitzung herzlich danken. Zu grossem Dank verpflichtet bin ich aber
auch Herrn Professor Dr. U. Stammbach. Auch er war immer bereit, {iber Probleme
im Zusammenhang mit meiner Arbeit zu diskutieren, und hat mir wertvolle Hinweise
gegeben.
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1. Das cap-Produkt

1.1 Definition

Es sei G eine Gruppe, 4 ein G-Modul. Wir setzen xa=ax™! (xeG, ac A), was uns
ermdglicht, A nach Belieben als links- oder als rechts-G-Modul aufzufassen. Sei Z die
additive Gruppe der ganzen Zahlen mit trivialer G-Modul-Struktur, und sei X eine
G-projektive Auflésung von Z mit Differential d. Die Homologiegruppen von G mit
Koeffizienten in A4 sind definiert als

H,(G, A) = H,(A®sX), H"(G,A4)=H"(Homg (X, A)).

Dabei nimmt man im Kettenkomplex 4 ® ;X die Homologie beziiglich dem Differen-
tial 0,=1,®d,, im Cokettenkomplex Homg(X, A) beziiglich dem Corandoperator
o"=(-1)"*! Homg(d,, 1,).

Zur Definition des cap-Produkts wihlen wir fiir X speziell die normalisierte Bar-
resolution B(G). B,(G) ist die freie abelsche Gruppe iiber den (n+1)-Tupeln (x,,
X1y .-es Xp), X;€ G, mit X;_; # x;, versehen mit der durch x(x,, x4, ..., x,)= (xXq, ..., XX,,),
xe @, gegebenen G-Modul-Struktur. Das Differential d: B,— B, _, ist gegeben durch

d(xo, ceny xn) = .Zo (—' l)i (xO, ey ‘fi’ veny x,,).

Sei C ein rechts-G-Modul. Das cap-Produkt
n: (C ®GBn) ® HomG (Bk’ A) - (C ® A) ®GBn—-k
ist auf den Elementen e=c®(xg,..., X,)eC®¢ B, und feHomg(B,, 4) wie folgt de-
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finiert:
enf =(c® (Xgs..0 X)) OV =(c® f (X5 -v05 X)) ® (Xigs -+ Xp) -

Dabei operiert G diagonal auf C® 4, d.h. es ist (c®a)x =cx®ax, fiir alle ceC, acA,
xeG. Nun gilt denf)=(=1)*denf+endf, k=deg(f), also induziert das cap-
Produkt in den Komplexen ein cap-Produkt in der Homologie

n:H,(G,C)® H*(G, A) > H,_,(G,C® A).

Bemerkung. Verwendet man zur Berechnung der Homologie von G die Barreso-
lution einer grosseren Gruppe G o G, dann induziert die Einbettung B(G) < B(G) einen
Isomorphismus. Man kann also mit genau derselben Formel das cap-Produkt auch
mit Hilfe von B(G) berechnen.

1.2 Elementare Eigenschaften

Das cap-Produkt liefert Homomorphismen zwischen der Cohomologie und der
Homologie einer Gruppe G. Um Aussagen iiber diese Homomorphismen zu gewinnen,
wollen wir hier einige elementare Eigenschaften des cap-Produkts zusammenstellen.

LEMMA 1.2.1. Es seien A, A', C, C' G-Moduln, und seien «.: A> A" und y:C—-C’
zwei G-Homomorphismen. Dann ist das folgende Diagramm kommutativ

H,(G,C)®H*(G,A) 5 H,_,(G,C® A4)
%®7 ] L@,
H,(G,C)®H*(G,A)S5 H,_(G,C'®4).

LEMMA 1.2.2. Sei E:0—A'—>A— A"—0 eine kurze exakte Folge von G-Moduln.
Sei C ein G-Modul mit der Eigenschaft, dass die Folge CRE:0-C®®A'>CRA—
—CQ®A"—0 immer noch exakt ist. Dann ist das folgende Diagramm kommutativ :

H,(G,C)® H*(G,A") 5 H,_,(G,C®A4")
1®AEl lAC@E
Hn (Gs C) ® Hk+1 (G’ A,) 2) Hn‘k—- 1 (G9 C ® A’) .

Dabei ist A der zur entsprechenden kurzen exakten Folge gehorige ‘connecting homo-
morphism’.

Lemma 1.2.1 ist fast trivial, Lemma 1.2.2 beruht auf der Formel d(en f)
=(—-1)*den f +end f,eeC®¢B, feHomg(B, A). Vertauscht man in Lemma 1.2.2
die Rollen des G-Moduls C und Folge E, dann erhilt man eine analoge Aussage:
Das entsprechende Diagramm ist bis auf ein Vorzeichen (— 1)* ebenfalls kommutativ.
Aus Lemma 1.2.1 und 1.2.2 folgt direkt:
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LEMMA 1.2.3. Sei C ein G-Modul, dessen unterliegende abelsche Gruppe torsions-
frei ist. Dann liefert das cap-Produkt mit einem festen Element ec H, (G, C) eine natiir-
liche Transformation der zusammenhdingenden Folge von Funktoren

(en —):HYG,-)»H,_,(G,C®-), kelZ.

Um die folgenden Eigenschaften tibersichtlich darstellen zu kénnen, verwenden
wir die Adjungiertheit von Tensorprodukt und Hom-Funktor und schreiben das cap-
Produkt als Abbildung

n:H,(G, C) > Hom (H*(G, A), H,_(G,C® A)), n,kel.

LEMMA 1.2.4. Sei ¢:G,—G ein Gruppenhomomorphismus. Fasst man die G-Mo-
duln A und C mit Hilfe von ¢ auch als G,-Moduln auf, dann ist das folgende Diagramm
kommutativ :

H,(G,, C) 5 Hom (H*(Gy, A), H,_ (G, C ® A))
ox| JHom(e*, 0,)

H,(G, C) > Hom (H*(G, A), H,_ (G, C ® 4)).

Der Beweis von Lemma 1.2.4 ist evident. In den meisten Féllen ist ¢ die Einbettung
einer Untergruppe in G, und wir schreiben ¢, =cor, und ¢*=res*.

Sei U eine Untergruppe von endlicheom Index in G. Dann gibt es bekanntlich
Abbildungen resy: Hy (G, C)— Hy (U, C) und cor*: H*(U, A). Wir wollen das Ver-
halten des cap-Produkts beziiglich dieser Abbildungen studieren. Sei C ein G-Modul,
A ein U-Modul. Dann induziert die Kettendquivalenz s ™!: (C®(A®y ZG))® ¢ B(G)—~
—>(CRA)®yB(G), mit s ' ((c®(@®x))Rb)=(cx"'Qa)®xb, ceC, acd, xeG,
be B(G), einen natiirlichen Isomorphismus

0% '1Hy(G,C®(AR®yZG)) > H, (U, C® A).

Dabei ist A® ; ZG via rechts-G-Struktur von ZG als G-Modul aufzufassen, G operiert
diagonal auf C®(A®yZG), und U operiert diagonal auf C®A4. Ist C der triviale
Modul Z, dann liefert o, die wohlbekannte Isomorphie H,(U, A)= H,(G, AQyZG).
Der dazu duale Isomorphismus

™*: H* (U, A) > H* (G, Homy (ZG, A))

wird durch die Cokettendquivalenz ¢ : Homy(B(G), A)—Homg(B(G), Homy(ZG, A)),
mit tf (b) (x)= f (xb), fe Homy(B, 4), be B(G), xe G, induziert.

LEMMA 1.2.5. Sei U eine Untergruppe von endlichem Index in der Gruppe G. Sei
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C ein G-Modul und A ein U-Modul. Dann ist das folgende Diagramm kommutativ :
H,(G, C) 5> Hom (H* (G, Homy(ZG, A4)), H,_ (G, C ® Hom (ZG, A)))

res‘l lHom(t*, e, 16,)

H,(U, C)> Hom (H*(U, A), H,-, (U, C ® 4)).

Dabei wird 0, vom wohlbekannten Isomorphismus 6: Homy(ZG, A)»A®,ZG
induziert. 6 wird mit Hilfe eines links-Repréisentantensystems {r;} von G modulo U
definiert: Fiir fe Homy(ZG, A) ist 0(f)=); f (r;)®r;. Nachdem nun alle beteiligten
Homomorphismen explizite angegeben wurden, kann Lemma 1.2.5 durch einfache
Verifikation von s~ '0(e nt f) =resye N f, ee C ® ¢ B(G), fe Homy(B(G), A), bewiesen
werden.

Ist N ein Normalteiler der Gruppe G, dann operiert bekanntlich G auf der Homo-
logie von N mit Koeffizienten in einem G-Modul. Es gilt:

LEMMA 1.2.6. Sei N ein Normalteiler der Gruppe G, seien A und C G-Moduln.
Dann gilt fiir alle ge G, ee H(N, C), fe H¥(N, A): (en f)g=egng”f.

Beweis. Sei é=c®(xo,..., X,)€C®yB,(G), feHomy(B(G), A). Dann ist ég
=cg®(g "xgs.--» 8 'x,) und (g7f) (xp5---» X)) =8 f (gX05 ..., &%), also

ég N gvlf = (Cg ® gnlf(xo""’ xk)) ® (g~1xk’--'a g_lxn)
= (c ®f(x0a°“a xk))g Y (g_lxka“" gﬂlxn)
=(@nf)e,

was zu beweisen war.

1.3 Die cap-Produkt-Struktur der Lyndonspektralreihe
Es sei N ein Normalteiler der Gruppe G, und sei 4 ein G-Modul. Dann gibt es
nach Lyndon-Hochschild-Serre Spektralreihen

H,(G/N, H,(N, A))= E2,=H,,,(G, A)
H?(GIN, H'(N, A)) = E}?=H*"%(G, 4).

Im vorliegenden Abschnitt werden wir die cap-Produkt-Struktur dieser Spektralreihen
untersuchen. Dabei wire es ohne weiteres moglich, genau dual dazu auch das cup-
Produkt zu behandeln. Das wollen wir aber nicht tun. Erstens sind wir im Hinblick
auf die Poincaré-Dualitdt hauptsichlich am cap-Produkt interessiert, und zweitens
wurde die cup-Produkt-Struktur der Lyndonspektralreihe schon 1953 von Hochschild-
Serre [6] untersucht. Der Beweis von Hochschild-Serre ist allerdings nicht derselbe,
sondern verwendet eine direkte Filtrierung der Cokettengruppe von G.
Wir betrachten die zwei Bikomplexe

K”?(4) = Homg(B,(G/N) ® B,(G), A) = Homg,y(B,(G/N),Homy (B, (G), 4)),.
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mit den partiellen Differentiationen ¢, §”,
G'f)(B @b)=(—-1)P"""1 f(db' @ b"), feK”", b'eB,.,, b"€B,,
"B @b)=(-1)"f ®db"), [feK»4, b'eB,, b"eB,;,
und
Ks,r(A) = A ®G (Bs (G) ® Br (G/N)) ;(A ®N Bs (G)) ®G/N Br (G/N)’
mit den partiellen Differentiationen ¢’, ¢”,
(a®@b ®b')=a®db’' ® b"
all(a ® bl ® b//) — (_ l)sa ® b/ ® dbrl

K* und K, sind Funktoren von der Kategorie der G-Moduln in die Kategorie der
Bikomplexe. Zu zwei G-Moduln 4 und C definieren wir ein cap-Produkt in den
Bikomplexen

N:K;,,(C)® K"1(4) > K, ,-,(C® A)

wie folgt: Fiir die Elemente e=c®(x,, ..., X;) ® (o, ..., ¥)€ K ,(C) und f e K*4(A4)
sei

enf =(=1)(c ® (o s 7)) ® (505 -5 %)) @ (g > Xe) ® (o5 37)-

Man {iiberzeugt sich leicht, dass die folgenden Formeln gelten:

"(enf)=(—1)P""0enf +endf
denf)y=(—1)Ff"0enf+end'f.

} acA, b'eB,, b"eB,.

™
N induziert in den Totalen Komplexen Tot K* und Tot K, ein Produkt

N:(Tot K4 (C)), ® (Tot K* (4))* - (Tot K4 (C @ A4))p—r

und aus (*) folgt fiir die totalen Differentiale 6=06'+06" und 0=0"+0", d(en f)=
=(—=1)*den f +end f.Damit wird auch in der Homologie der totalen Komplexe ein
Produkt n induziert. Die Homologie der totalen Komplexe ist aber isomorph zur
Homologie von G, wobei diese Isomorphismen durch die folgenden Kettentransfor-
mationen induziert werden:

¢:Homg (B(G), 4) > K% * (4) = Tot K* (4)
1:Tot Ky (C) » Ky, 0(C) = € @ B(G).

Dabeiist (¢ f) (b'®b")= f (b"), fiir fe Homs(B, 4), b'e By, b"e B, und ' (c® (b’ ®b"))
=c®b’, fiir ceC, b’eB, b"e B,. Nun verifiziert man leicht:

LEMMA 1.3.1. Das iiber die Bikomplexe K*, K, definierte cap-Produkt fillt mit
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dem gewdhnlichen cap-Produkt in der Homologie von G zusammen, d.h., das folgende
Diagramm ist kommutativ:

H,(Tot K, (C)) > Hom (H* (Tot K* (4)), H,_; (Tot K4 (C ® 4)))
e JHom(&, n,)
H,(G, C) 5 Hom (H* (G, A), H,_ (G, C ® A)).

Zu den Bikomplexen K* und K, gehoren je zwei Spektralreihen, die beide gegen
die Homologie des entsprechenden totalen Komplexes konvergieren. Die eine der
beiden Spektralreihen ist jeweils trivial. Die anderen, nicht trivialen Spektralreihen
bezeichnen wir als

E,,=H, (TotK,) und E”?= H”"(TotK").

Dank den Formeln (*) induziert das in den Bikomplexen definierte cap-Produkt ein
Produkt in den Spektralreihen, d.h., fiir jedes w=2, 3,... eine Abbildung

A:ESL(C) ® ER4(4) > EX oo (C ® A).
Andererseits gilt fiir die Anfangsterme (w=2) bekanntlich

0x:E} (C) = H,(G/N, H,(N, C))
0*:E}%(4) =~ H”(G/N, H'(N, A)),

und durch das cap-Produkt in der Homologie von N und G/N wird in der iterierten
Homologie in naheliegender Weise ebenfalls ein Produkt

n:H,(G/N, Hy(N, C)) ® H(G/N, H*(N, 4))- H,_,(G/N, H,_,(N, C ® A))

induziert. Aus der Definition folgt nun fast trivialerweise:

LEMMA 1.3.2. Das folgende Diagramm ist bis auf ein Vorzeichen (— 1) kommu-
tativ:
E2,(C) ® E3*(4) BB sy (C ® 4)
0, ®¢*| e
H,(G/N, H,(N, C)) ® H?(G/N, H*(N, A)) > H,_,(G/N, H,_,(N, C ® 4)),

d.h. fiir alle e E} ,(C) und fe E5(A) gilt
ex(enf)=(=1)"ex(e) 0 *(f).
2. Poincaré-Dualitit-Gruppen

2.1 Definition — Orientierbarkeit

DEFINITION. Eine Gruppe G heisst eine Poincaré—Dualitdit-Gruppe (kurz: eine
PD-Gruppe) der Dimension n, wenn es auf der additiven Gruppe der ganzen Zahlen
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eine (triviale oder nichttriviale) G-Modul-Struktur Z gibt, derart dass das cap-Produkt
mit einem festen Element ee H,(G, Z) fiir jeden G-Modul A Isomorphismen

(en—):H*(G,A)=H,_, (G, A), kelZ,

liefert. Dabei ist A der G-Modul Z® A mit diagonaler Operation. e heisst ein Funda-
mentalzyklus der Gruppe G. Wir nennen G eine orientierbare PD-Gruppe, wenn Z der
triviale G-Modul Z ist; hat Z eine nichttriviale G-Struktur, dann heisst G eine nicht-
orientierbare PD-Gruppe.

Bemerkungen. 1) Wenn eine Gruppe G die Eigenschaft hat, dass fiir jeden G-Modul
A und fiir alle k>n H,(G, A)=0 ist, dass es aber einen G-Modul B mit H,(G, B)#0
gibt, dann ist n die homologische Dimension von G, und wir schreiben hdG=n. Gilt
analog fiir jeden G-Modul 4 und fiir alle k>m H*(G, A)=0, aber H™(G, B)#0 fiir
einen gewissen G-Modul B, dann ist m die cohomologische Dimension von G, und wir
schreiben cdG = m. Fiir jede PD-Gruppe G der Dimension » gilt offenbar hdG = cdG =n.
PD-Gruppen sind also torsionsfrei.

2) Fiir eine PD-Gruppe der Dimension # gilt offensichtlich: H,(G, Z) ist unend-
lich-zyklisch und wird von jedem Fundamentalzyklus e erzeugt. G ist genau dann
orientierbar, wenn H,(G, Z)#0 ist.

3) Istder Eilenberg-MacLane-Raum K(G, 1)einer Gruppe G homotopiedquivalent
zu einer n-dimensionalen, kompakten Mannigfaltigkeit 9, dann ist G eine PD-Gruppe
der Dimension n und genau dann orientierbar, wenn It eine orientierbare Mannig-
faltigkeit ist. Wir werden aber den Eilenberg-MacLane-Raum nie verwenden, sondern
alle Beweise rein algebraisch fiihren.

SATZ 2.1.1. Sei G eine PD-Gruppe, U< G eine Untergruppe von endlichem Index.
Dann ist U eine PD-Gruppe derselben Dimension. Ferner ist die Untergruppe U genau
dann orientierbar, wenn sie im Kern der Abbildung G— Aut (Z) liegt.

Beweis. Es sei n die Dimension von G und ee H,(G, Z) ein Fundamentalzyklus.
Wir berechnen das cap-Produkt mit dem festen Elementres, ee H,(U, Z)in der Homo-
logie von U. Nach Lemma 1.2.5. ist das folgende Diagramm kommutativ:

H,(G, Z) 5 Hom (H* (G, Homy (ZG, 4)), H,_, (G, Homy(ZG, A)))
res*l lHom(t*, a,”10,)

H,(U,Z)5 Hom (H* (U, A), H,_, (U, 4)).

t*, 05 ! und 0, sind Isomorphismen. Da nach Voraussetzung (en —) ein Isomorphis-
mus ist, muss auch (res, en —) ein Isomorphismus sein. U ist also eine PD-Gruppe der
Dimension #, mit dem Fundamentalzyklus res e H,(U, Z). Offensichtlich ist U genau
dann orientierbar, wenn Z als U-Modul trivial ist. Damit ist der Satz bewiesen.
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KOLLAR 2.1.2. Jede nichtorientierbare PD-Gruppe enthdlt genau eine orientier-
bare PD-Gruppe mit Index 2.

2.2 Ein niitzliches Lemma
Das folgende Lemma erweist sich oft als ein recht niitzliches Werkzeug, wenn es
darum geht, von einer gegebenen Gruppe nachzuweisen, dass sie eine PD-Gruppe ist.

LEMMA 2.2. Die Gruppe G ist dann und nur dann eine PD-Gruppe der Dimension
n, wenn die folgenden drei Bedingungen erfiillt sind:
(1) cdG<n
(i) HYG, F)=0, fiir jeden freien G-Modul F und fiir alle k=0, 1, 2,...,n—1.
(iii) Es gibt auf der additiven Gruppe der ganzen Zahlen eine G-Modul-Struktur Z,
und es gibt ein (festes) Element ec H,(G, Z), derart dass das cap-Produkt mit e fiir jeden
freien G-Modul F einen Isomorphismus (en—): H"(G, F)= Hy(G, F) liefert.

Beweis. Sei G eine PD-Gruppe der Dimension n. Dann ist (i) trivialerweise erfiillt.

~

Ferner gilt A=A fiir jeden G-Modul 4, also ist auch (iii) evident. Sei B eine beliebige
abelsche Gruppe. Wir betrachten den durch die rechts-G-Struktur von ZG definierten
G-Modul B,=B®ZG. B, heisst ein induzierter G-Modul. Nun ist die Abbildung f :
:B,,— B,, auf den Elementen b®ge B, gegeben durch

B 1®b®g, fir geKer(G- Aut(Z))
f(b®g)_{——l®b®g, fir g¢Ker(G— Aut(Z)),

ein G-Isomorphismus. Speziell sind alle freien G-Moduln Finduziert, also ist H*(G, F)
~H,_,(G, F)=0, fiir k#n, womit auch (ii) verifiziert ist.

Sei umgekehrt G eine Gruppe mit (i), (ii) und (iii). Wir betrachten den Funktor
h(G,—)=H""%(G, Z® — ), ke Z, von der Kategorie der G-Moduln in die Kategorie
der abelschen Gruppen. %, (G, — ) hat die folgenden drei Eigenschaften:

1) Zu jeder kurzen exakten Sequenz 0—+A4'—A—A4"—0 von G-Moduln gibt es eine
lange exakte Sequenz

o> hk (G, A,) - hk(G, A)"') hk (G, A”)—) hk—l (G, A,) = 4 ’

gegeben durch die zur exakten Folge 0—A4"— 4— A" —0 gehorigen ‘Cohomologiese-
quenz’.

2) Ist F ein freier G-Modul, dann gilt 4, (G, F)=0, fiir alle k>0. Das folgt aus
(ii) und der Tatsache, dass F und F isomorphe G-Moduln sind.

3) Fiir jeden G-Modul A liefert das cap-Produkt mit e einen Isomorphismus
ho (G, A)=H,(G, A). Um das zu zeigen, betrachten wir eine kurze exakte Folge
0—+K—-F-+A-0 von G-Moduln, wobei F G-frei sein soll. Dann ist auch die Folge
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0— K— F— A—0 exakt und induziert das Diagramm

-+ H"(G,R)—> H*(G, F) » H" (G, A) - 0

(en—)|y 18 la
+=>Hy (G, K) > Hy (G, F) > Hy (G, A) - 0.

Die obere Zeile ist exakt wegen cdG=n. F ist frei, also ist § nach Voraussetzung (iii)
ein Isomorphismus. Dann ist aber « epimorph. Diese Uberlegung gilt fiir beliebige
G-Moduln A, also ist y ebenfalls epimorph. Dann muss aber o ein Monomorphismus
sein.

Aus 1), 2), 3) und der durch Lemma 1.2.3 garantierten Natiirlichkeit folgt die
Existenz einer Folge von natiirlichen Isomorphismen f,:4, (G, A)~ H, (G, A), keZ
(7 (G,— ) ist ein minimaler homologischer Funktor; siche Gruenberg [5, chapter 2.2]).
Man kann aber noch viel mehr sagen: Die Erweiterung des natiirlichen Homomor-
phismus f;: 5, (G, A)— H, (G, A) zu einer natiirlichen Transformation der minimalen
homologischen Funktoren ist eindeutig bestimmt. Aus f,= (en — ), folgt daher f,=
(en— ) fiir alle k, womit Lemma 2.2 bewiesen ist.

2.3 Operation auf der Homologie eines Normalteilers

Es sei N eine PD-Gruppe der Dimension #» und Normalteiler in der Gruppe G.
Die Homologiegruppen von N mit Koeffizienten in einem G-Modul A haben bekannt-
lich eine G-Modul-Struktur. Im allgemeinen respektieren die durch das cap-Produkt
gegebenen Isomorphismen H*(N, 4) =~ H, (N, A) die G-Modul-Struktur nicht.
Diese Unzulidnglichkeit ldsst sich allerdings leicht korrigieren:

LEMMA 2.3. Sei N eine PD-Gruppe der Dimension n und Normalteiler in der
Gruppe G; sei H,(N, Z)=~Z. Dann kann man Z als G-Modul auffassen, und die durch
das cap-Produkt gegebenen Isomorphismen

H*(N,A)~H, (N,H,(N,2) ® 4), keZ,

sind fiir jeden G-Modul A mit der G-Modul-Struktur der Homologiegruppen vertrdglich.
Dabei operiert G diagonal auf H,(N, Z)®A.

Beweis. Sei N=Ker(N—Aut(Z)). Nach Satz 2.1.1 ist N eine orientierbare PD-
Gruppe, und wegen Korollar 2.1.2 charakteristisch in N, also normal in G. Daher hat
H,(N, Z) eine wohldefinierte G-Modul-Struktur. Wir wollen zeigen, dass H, (N, Z)
und Z als N-Moduln isomorph sind. Das ist trivial, wenn N selber orientierbar, also
N=Nist. Sei N nichtorientierbar, und sei xe N, x¢ N. Nach Cartan-Eilenberg [3, XII,
Corollary 9.2] ist die zusammengesetzte Abbildung

cor,

H,(N,Z) = H,(N, Z) —> H, (N, Z)
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gerade die Multiplikation mit der Norm 1+ xN der Faktorgruppe N/N =~ Z,. Da aber
H,(N, Z)=0 ist, folgt daraus (1+xN)a=0, also (xN)a= —a, fir alle acH,(N, Z),
was zu beweisen war. Damit haben wir Z zu einem G-Modul erweitert. Der Rest der
Behauptung ist eine direkte Konsequenz von Lemma 1.2.6.

2.4 Extensionen von PD-Gruppen durch endliche Faktorgruppen

PD-Gruppen sind torsionsfrei, und wir haben gezeigt, dass die Untergruppen von
endlichem Index in einer PD-Gruppe wieder PD-Gruppen sind (Satz 2.1.1). In diesem
Abschnitt werden wir die Umkehrung beweisen:

SATZ 2.4.1. Jede torsionsfreie Gruppe, die eine PD-Gruppe als Untergruppe von
endlichem Index enthdlt, ist selber eine PD-Gruppe.

Sei U eine Untergruppe von endlichem Index in der Gruppe G. Dann enthilt U
einen Normalteiler N; von G mit endlicher Faktorgruppe G/N,. Mit U ist auch N,
eine PD-Gruppe und enthdlt daher eine orientierbare PD-Gruppe N vom Index
IN;:N|<2. N ist nach Korollar 2.1.2 charakteristisch in »,, also normal in G. Es
geniigt somit, das folgende Korollar zu beweisen:

KOROLLAR 24.2. Sei S:1->N—G—E—1 eine kurze exakte Folge von Gruppen.
Sei E endlich, G torsionsfrei und N eine orientierbare PD-Gruppe. Dann ist G eine (ev.
nichtorientierbare ) PD-Gruppe.

ZUSATZ. Es sei n die Dimension von N. G ist dann und nur dann orientierbar, wenn
E trivial auf H,(N, Z)=Z operiert.

Beweis. Nach dem Satz von Serre (siche [10, Theorem 9.2]) haben N und G dieselbe
cohomologische (und homologische) Dimension #. Ist F ein freier G-Modul, dann ist
Fauch als N-Modul frei, also H*(N, F)~H,_,(N, F)=0, fiir k#n. Durch Betrachten
der zur Sequenz S gehodrigen Spektralreihe folgt daraus, H*(G, F)=0, fiir k=0, 1, 2,
..., n—1. Damit sind die Voraussetzungen (i) und (ii) von Lemma 2.2 erfiillt. Die
Verifikation der Voraussetzung (iii) fithren wir in zwei Schritten.

BEHAUPTUNG 1. Es bezeichne Z den G-Modul H,(N, Z). Dann gilt:
(1) H,(G,Z)=Z, (2) coryH,(N,Z)=|E|H,(G,Z).

Beweis. Es sei ¢: ZG—Z die Augmentationsabbildung ¢(g)=1, ge G, und I;=Kere
das Augmentationsideal. Fiir jeden G-Modul A bezeichne A; den Faktor A/AI; und
A die Fixpunkte {aeA4; ga=aVgeG} von A unter G. Wir erinnern ferner an die
Tatsache, das die Restriktionsabbildungen in die Homologie eines Normalteilers wie
folgt faktorisieren:

res*: H* (G, A) > H* (N, A)* > H*(N, A)
cory:Hy (N, A)—> Hy (N, A)g— H, (G, 4).
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Nun betrachten wir speziell die G-Moduln Z,=ZG und Z*=Hom(ZG, Z). Z, ist
N-frei. Z* ist als N-Modul isomorph zu Hom(ZN, ®Z), also coinduziert (siehe
Gruenberg [5, chapter 2.1]). Da N eine PD-Gruppe ist, gilt damit fiir k #n: H¥(N, Z,,)
=0 und H (N, Z*)=0. Durch Betrachten der zur Folge S gehorigen Spektralreihen
folgt daraus, dass die Abbildungen

r:H"(G,Z,)>H"(N,Z,)* und c:H,(N,Z*);— H,(G, Z*)

Isomorphismen sind.
Die durch die Augmentationsabbildung ¢ induzierten Homomorphismen ¢:Z,—
—Z und ¥ : Z—Z* induzieren in der Homologie die Diagramme

H"(G, Z,) 3 H"(G, Z) H,(G,2)5 H,(G, Z*)
res*l l T T°°r*
H"(N,Z,)— H"(N, Z) H,(N,Z)->H,(N,Z")
=] ! T T=
HO(Noz*)"’HO(N’Z) HO(N,Z)—)HO(N,Z*)
=] ! T 1=
ZE — Z Z ——Hom(ZE,Z)

Die beiden obersten und die beiden untersten Quadrate sind trivialerweise kommuta-
tiv, und die Kommutativitit der mittleren Quadrate folgt aus Lemma 1.2.1. Man
beachte, dass nach Lemma 2.3 simtliche Homomorphismen der beiden Diagramme
mit der E-Modul-Struktur vertraglich sind. Demzufolge werden die beiden folgenden
kommutativen Quadrate induziert:

H"(G, Z,) -2 H"(G, Z) H,(G, Z) -2 H, (G, Z*)
E’l lres* cor*T TE
ZEF — Z Z —— Hom(ZE,Z);.

Sowohl ZE* als auch Hom (ZE, Z)y~ZE; ist unendlich-zyklisch. Aus dem linken
Quadrat folgt leicht: @, ist ein Isomorphismus, und das Bild von H*(G, Z) unter
res* ist gleich dem Bild von ZE¥, also gleich |E|-Z. Auf der rechten Seite ist die
Situation nicht ganz so einfach, und wir bemerken lediglich, dass y, nicht die Nullab-
bildung ist. Daher ist H,(G, Z)=~Z. Mehr zu sagen scheint vorerst nicht méglich zu
sein. Nun kommt uns aber eine etwas allgemeinere Form des Universellen-K oeffizien-
ten-Theorems zu Hilfe: Zu jedem trivialen G-Modul A gibt es eine natiirliche, kurze
exakte Folge

0 — Ext(H,-(G, Z), 4)— H" (G, A)— Hom(H, (G, Z), A) - 0,
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welche in nichtnatiirlicher Weise spaltet. Dabei muss G nicht notwendigerweise trivial
auf Z operieren. Die iiblichen Beweise des Theorems liefern auch diese leichte Ver-
allgemeinerung. Fiir uns folgt daraus die Existenz eines natiirlichen Isomorphismus
H"G, Z)~Hom (H,(G, Z), Z). Nun folgt Behauptung 1 (2) aus der entsprechenden
Eigenschaft in der Cohomogie.

BEHAUPTUNG 2. Es gibt ein Element e’ H (G, Z), derart dass das cap-Produkt
mit ¢’ fiir jeden freien G-Modul F einen Isomorphismus (e’ n —): H"(G, F) =~ Fj liefert.

Beweis. Es sei F =Z.G® B, B eine frei-abelsche Gruppe. Ferner sei daran erinnert,
dass Z den G-Modul H,(N, Z) bezeichnet. Nach Lemma 1.2.4 ist das folgende Dia-
gramm kommutativ:

H,(N, Z) 5 Hom (H" (N, F), Hy (N, F))
cor,l lHom (res*, cor,)

H,(G,Z) 5 Hom (H" (G, F), Hy (G, F)).

Sei ee H,(N, Z) ein Fundamentalzyklus von N. Fiir das cap-Produkt mit dem Ele-
ment cor,ec H,(G, Z) gilt (cor,en —)=cory(e n —) res*. Dabei sind nach Lemma
2.3 alle Homomorphismen mit der E-Modul-Struktur vertraglich, also wird das fol-
gende kommutative Diagramm induziert:

~. Tes* ~ (en— cor,
H'(G, F) = o (N, F) =22 Fy 22 R,

I U U I
H"(G, F)— H"(N, F)* ——— (Fx)" — (Fy)s-

F ist frei als N-Modul, also gilt fiir k#n: H¥N, F)=H,_,(N, F)=0. Daraus folgt
durch Betrachten der zur Sequenz S gehorigen Spektralreihe, dass r ein Isomorphis-
mus ist. Ferner ist Fy=(ZG®B)y~ZE®B, weil E eine endliche Gruppe ist also
(Fy)t= B und (Fy)g= B. Dabei entspricht die durch die Identitdt von Fy induzierte
Abbildung i der Multiplikation mit |E|. Zusammengefasst haben wir damit ein kom-
mutatives Diagramm

(cor,en—)

H'(G, F)-="2, F,
IR IR
B — B

1E|

Nach Behauptung 1 gibt es ein Element e’e H,(G, Z) mit |E|e’ =cor,e. Dann muss
aber die Abbildung (¢’ n —): H*(G, F)— F; ein Isomorphismus sein. Damit ist Be-
hauptung 2, also nach Lemma 2.2 auch Korollar 2.4.2, bewiesen.

2.5 Extensionen von PD-Gruppen durch PD-Gruppen
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SATZ 2.5. Sei S:1-G'->G—G"—1 eine kurze exakte Folge von Gruppen. Sei G’
eine PD-Gruppe der Dimension n und G” eine PD-Gruppe der Dimension m. Dann ist G
eine PD-Gruppe der Dimension m+ n.

ZUSATZ. Es sei 1" diejenige G"-Modul-Struktur auf Z, fiir welche H (G", Z") =~
=7 ist. Dann gilt: G ist dann und nur dann orientierbar, wenn G' orientierbar und die
diagonale Operation von G" auf " @ H(G', Z) trivial ist.

Beweis. Es bezeichne Z’ diejenige G'-Struktur auf Z, fiir welche H(G', 2/)~Z ist.
Dann ist nach Lemma 2.3 Z’ ein G-Modul, also auch H,(G’, Z'). Wir setzen

Z=7"®H,(G,Z)®1Z,

mit diagonaler G-Struktur, und versuchen wieder, die Voraussetzungen von Lemma
2.2 zu verifizieren.

1) cdG<cdG +cdG"=n+m folgt mit dem ‘Maximumprinzip’ aus der Spektral-
reihe von Hochschild-Serre.

2) Sei F ein freier G-Modul. Dann sind auch die Moduln F'=2'®F und F=
=ZQF G-frei, also G'-frei. Weil G' eine PD-Gruppe ist, gilt daher HXG', F)=
~H, (G, F')=0 fiir k#n. Mit Hilfe der zur Sequenz S gehorigen Spektralreihe
folgt daraus:

H*(G,F)~ H*"(G", H"(G', F)), keZ,
~ H*""(G", Hy (G, H,(G', Z)® F")), nach Lemma 2.3,
= H,in-(G”, Ho (G, F)).
Nun ist Hy(G', F)= F; frei als G"-Modul, also ist H¥(G, F)=0 fiir k#m+n.
3) Sei A ein beliebiger G-Modul. Wir betrachten die zu S gehorigen Spektral-

reihen £* und E,. Nach Lemma 1.3.1 und 1.3.2 ist das folgende Diagramm bis auf
ein Vorzeichen kommutativ:

H,., (G, Z)® H"*"(G, 4) S Ho(G,4)
ﬂt®§*lg gl"*~
Ep . (Z)®EZ"(4) = Ego(4)
- )
En 1(Z)® E3"(4) = Ejo(d)
G,®0*l§ El(?.

H,(G", H,(G', Z)) ® H™(G", H"(G', A)) > Ho(G", Ho (G', )

Sei e'e H,(G', Z’) ein Fundamentalzyklus von G’ und e"€ H,(G", Z") ein Fundamen-
talzyklus von G”. Z ist als G’-Modul isomorph zu Z’' und H,(G', Z) ist als G"-Modul
isomorph zu Z”, also definiert das Paar ¢’, ¢” ein Element éeH,(G", H(G', Z)).
Das cap-Produkt mit & ist definiert durch die zusammengesetzte Abbildung

(€n =) =Ho(G", (¢ n =)o ("N )
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und liefert daher einen Isomorphismus. Folglich liefert das cap-Produkt mit dem
Element e=7, " 0y '(6)eH,,.,(G, Z) einen Isomorphismus (en —):H™ (G, A)~
~ Hy(G, A).

Damit sind die Voraussetzungen von Lemma 2.2 erfiillt, G ist also eine PD-Gruppe
der Dimension m+n. Ist G’ nichtorientierbar, dann ist H,(G’, Z)=0, also ist auch
H,. G,Z)=H,(G", H(G', Z))=0, d.h. G ist ebenfalls nichtorientierbar. Fiir orien-
tierbare G’ gilt nach Definition: G ist genau dann orientierbar, wenn Z=Z2"® H (G’,
Z) der triviale G-Modul Z ist. Damit ist Satz 2.5 bewiesen.

2.6 Definition einer PD-Gruppe ohne Verwendung des cap-Produkts

In [2] nennen wir G eine ‘Gruppe mit Poincaré-Dualitit’, wenn es eine ganze Zahl
n=0 und zu jedem G-Modul A natiirliche Isomorphismen H*(G, A)~ H,_(G, A),
keZ, gibt. Diese Definition ist scheinbar schwicher als die Definition einer (orien-
tierbaren) PD-Gruppe. Wir werden aber in diesem Abschnitt zeigen, dass die ‘Gruppen
mit Poincaré-Dualitdt’ im Sinne von [2] genau die orientierbaren PD-Gruppen
sind.

SATZ 2.6. Sei G eine Gruppe, und sei Z die additive Gruppe der ganzen Zahlen mit
einer (trivialen oder nichttrivialen) G-Modul-Struktur. Wenn es eine Zahl n=0 und fiir
Jjeden G-Modul A eine Folge von natiirlichen Isomorphismen

fi:H*(G,A) =~ H,_,(G, ), keZ,

gibt, dann ist G eine PD-Gruppe der Dimension n. Genauer : Es existiert ein Fundamen-
talzyklus ec H(G, Z), derart dass das cap-Produkt mit e gerade die Abbildungen fX
liefert. Dabei bezeichnet A den G-Modul Z® A mit diagonaler Operation.

Beweis. Wir werden wieder die Voraussetzungen von Lemma 2.2 verifizieren. Die
Voraussetzungen (i) und (ii) sind trivialerweise erfiillt. Die Verifikation von (iii) fiihren
wir in zwei Schritten.

BEHAUPTUNG 1. Es gibt ein Element ee H,(G, Z), derart dass das cap-Produkt
mit e, (en —),: HY(G, Z)>Z, gerade die Abbildung f, liefert.

Beweis. Die im Beweis von Korollar 2.4.2 bereits erwidhnte, etwas allgemeinere
Form des Universellen-Koeffizienten-Theorems liefert einen Epimorphismus o:
:H"(G, Z) > Hom(H (G, Z), Z). Beide Gruppen sind unendlich-zyklisch, also muss «
ein Isomorphismus sein. Die cap-Produkt-Abbildung n :H,(G, Z) - Hom(H"(G, Z, Z.)
kann als Zusammensetzung der Evaluationsabbildung H,(G, Z)-»Hom (Hom(H,(G,
Z), Z), Z) mit dem induzierten Homomorphismus Hom(«, Z) beschrieben werden.
Beide Abbildungen sind in unserem Falle Isomorphismen, und daher gibt es sicher
ein Element ee H,(G, Z), das dabei auf den Homomorphismus f,e Hom(H"(G, Z),
Z) abgebildet wird.
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BEHAUPTUNG 2. Das cap-Produkt mit e liefert fiir jeden freien G-Modul F
einen Isomorphismus (en —)i: H™G, F)= Hy(G, F), der gerade mit /% iiberein-
stimmt. ,

Beweis. Wir betrachten die kurze exakte Folge O-—->IG—E>ZG—>Z~+0, wo I; das
Augmentationsideal von G bezeichnet. Die Abbildungen /" und (e~ —)" sind beide
natiirlich, also ist das folgende Diagramm kommutativ:

H"(G, 1) —— H"(G, ZG) —> H"(G, Z) — 0
fia] fro| [en-23e | fz=ten—;

Hy (G, Is) —— Ho (G, ZG) — H, (G, Z) — 0.

Die Einbettung i induziert in der Homologie die Nullabbildung H,(G, i)=0. Daff,
und f, Isomorphismen sind, ist auch i*=H"(G, i)=0. Dann muss aber f,; mit
(e n —);c zusammenfallen. Damit ist Behauptung 2 fiir endlich erzeugte freie G-Mo-
duln F bewiesen. Der Beweis ist fiir beliebige freie G-Moduln F erbracht, wenn wir
zeigen, dass unter den Voraussetzungen von Satz 2.6 der Cohomologiefunktor
H*G, —) mit dem direkten Limes vertauscht. Das ist aber fast trivial, denn er ist
nach Voraussetzung ja natiirlich dquivalent zum Funktor H,_ (G, Z® —). Damit ist
Behauptung 2 bewiesen, nach Lemma 2.2 also auch Satz 2.6.

Bemerkung. Man konnte mit Hilfe von Satz 2.6 die PD-Gruppen ohne Verwendung
des cap-Produkts definieren. Dadurch wiirden sich einzelne Beweise etwas verein-
fachen lassen, insbesondere miisste man zum Beweis von Satz 2.5 die cap-Produkt-
Struktur der Lyndonspektralreihe nicht mehr verwenden. Da aber andererseits das
cap-Produkt derart eng mit dem Begriff der PD-Gruppe verkniipft ist, scheint mir
eine Definition, die diesen Zusammenhang von Anfang an in den Mittelpunkt stellt,
berechtigt zu sein.

3. Anwendungen

3.1 Polyzyklische Gruppen
Die Gruppe G sei unendlich-zyklisch und vom Element x erzeugt. Dann ist der

Filenberg-MacLane-Raum K (G, 1) homotopiedquivalent zur Sphire S*. Es gilt also:

LEMMA 3.1.1. Die unendlich-zyklische Gruppe ist eine orientierbare PD-Gruppe
der Dimension 1.

Der Vollstindigkeit halber wollen wir diese fast triviale Tatsache auch algebraisch
beweisen. Es sei I; das Augmentationsideal von G, und sei 4 ein beliebiger G-Modul.
I; ist als G-Modul frei auf dem Element 1—x, also gibt es einen natiirlichen Isomor-
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phismus
fi:H' (G, A) = Coker (Homy(ZG, A) — Homg (I, A))
= Coker (4 — A)
= AG .

Ferner gilt fiir jeden freien G-Modul F =@ZG:H°(G, F)=F° >~ ®(ZG)°=0, man
kann also f; zu einer Folge von natiirlichen Isomorphismen fi: HYG, A)=
H, _, (G, A) erweitern. Nach Satz 2.6 folgt daraus die Behauptung.

Bemerkung. Die unendlich-zyklische Gruppe ist die einzige PD-Gruppe der Dimen-
sion 1. In der Tat muss eine solche Gruppe G nach Stallings-Swan frei sein, und wegen
H,(G, Z)=~ G/G’ ist erstens G orientierbar und zweitens die Anzahl der freien Erzeu-
genden gleich 1.

Eine Gruppe G heisst auflosbar, wenn sie eine (endliche) Normalreihe G=G,>
=G, >G,>---=>G,=1 mit abelschen Faktoren G, _ /Gy, 1 <k <r, besitzt. Es bezeichne
hG die Summe der Ridnge dieser Faktoren (ev. o0). G ist unabhingig von der gewihl-
ten Normalreihe und heisst die ‘ Hirschzahl von G’. Die Gruppe G heisst polyzyklisch,
wenn sie eine (endliche) Normalreihe mit lauter zyklischen Faktoren besitzt. Lemma
3.1.1, zusammen mit den Erweiterungssidtzen 2.4.1 und 2.5, impliziert:

SATZ 3.1.2. Jede torsionsfreie, polyzyklische Gruppe G ist eine PD-Gruppe der
Dimension hG.

Bemerkungen. 1) Satz 2.4.1 liefert sogar etwas mehr: Eine torsionsfreie Gruppe G,
die eine polyzyklische Untergruppe G, von endlichem Index enthélt, ist eine PD-Grup-
pe der Dimension AG,. Ein Spezialfall davon ist die (von der topologischen Betrach-
tungsweise her natiirlich wohlbekannte) Tatsache, dass alle torsionsfreien, kristallo-
graphischen Gruppen des R"” PD-Gruppen der Dimension 7 sind ; siehe [11, Theorem
3.3.2].

2) Satz 3.1.2 enthidlt ein Resultat von Gruenberg [5, chapter 8.8], wonach die
cohomologische Dimension einer torsionsfreien, polyzyklischen Gruppe gleich ihrer
Hirschzahl ist.

3) Wir werden im Abschnitt 3.3 sehen, dass mit den torsionsfreien, polyzyklischen
Gruppen schon alle auflésbaren PD-Gruppen gefunden sind.

3.2 Die Orientierbarkeit polyzyklischer Gruppen

Es geht nun darum, ein rein gruppentheoretisches Kriterium zu finden, das uns
erlaubt zu entscheiden, ob eine gegebene, torsionsfreie, polyzyklische Gruppe orien-
tierbar oder nichtorientierbar ist. Hier drdngt sich eine Verallgemeinerung auf: Es sei
G eine beliebige Gruppe, und sei R ein kommutativer Ring mit Einselement. Ein
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RG-Modul ist gegeben durch einen R-Modul 4, zusammen mit einem Gruppenhomo-
morphismus @:G— Autg(A4). Wir sagen, 4 sei ein fasttrivialer RG-Modul, wenn das
Bild @(G) in der Untergruppe {Id, —Id} = Autg(A4) liegt.

DEFINITION. G heisst eine ‘PD-Gruppe der Dimension n iiber R’, wenn es auf
R eine fasttriviale RG-Modul-Struktur R gibt, derart dass das cap-Produkt mit einem
festen Element ec H,(G, R) fiir jeden RG-Modul 4 R-Isomorphismen

(en —):H*(G,A) = H, (G, R®zA4), keZ,

liefert. Dabei operiert G diagonal auf R®z 4. Ist R der triviale RG-Modul R, dann
heisst G orientierbar, andernfalls nichtorientierbar iiber R.

Wir hoffen, spater auf diese allgemeinere Situation zuriickzukommen, und machen
in diesem Zusammenhang nur die folgenden Bemerkungen: Eine PD-Gruppe der
Dimension z (iiber Z) ist eine PD-Gruppe der Dimension # liber jedem Ring R. Wenn
die Charakteristik von R nicht 2 ist, dann dndert sich dabei nichts an der Orientier-
barkeit. Zur Untersuchung der Orientierbarkeit einer PD-Gruppe G braucht man also
G nur als PD-Gruppe iliber dem Korper Q der rationalen Zahlen zu betrachten. Das
hat zwei Vorteile: Erstens werden die Rechnungen einfacher, und zweitens wird das
Resultat allgemeiner, da man sich dank dem folgenden Lemma nicht mehr auf tor-
sionsfreie Gruppen zu beschrinken braucht.

LEMMA 3.2.1. Jede endliche Gruppe ist eine orientierbare PD-Gruppe der Dimen-
sion 0 tiber Q.

Beweis. Lemma 3.2.1 ist im wesentlichen die Aussage des Maschke’schen Satzes.
Sei G eine endliche Gruppe und sei 4 ein QG-Modul. i: A%— A sei die durch die
Identitdt von 4 induzierte Abbildung. Dann ist der Homomorphismus

1
jiAg— A%, j(a +AIG)=I~é—I(Z g)a, acA,

geG
Zu i invers.

Da sich die Sitze von Kapitel 2 ausnahmslos auf PD-Gruppen iiber Q libertragen
lassen, folgt daraus:

SATZ 3.2.2. Jede polyzyklische Gruppe G ist eine PD-Gruppe der Dimension hG
iiber Q.

Es sei N eine frei-abelsche Gruppe mit den freien Erzeugenden x4, ..., x,, und sei
E=Ez\[x,,..., x,] die dussere Algebra iiber ZN. Diese hat die Form einer exakten
Sequenz

05X, 55X, 5X,—>Z—0,
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wobei die X, freie N-Moduln auf den Erzeugenden x;, A x;, -+ A X, , mit 1<k, <k, <
<---<k,<n, sind. Fiir das Differential d vergleiche man MacLane [8, VI.6, p. 189].
Ist A ein trivialer N-Modul, dann ist A® yd =0, also folgt H(N, Z)=H,(ZQyE)=Z,
d.h. N ist eine orientierbare PD-Gruppe.

Nun sei zusitzlich N Normalteiler in einer Gruppe G. Dann ist die Operation von
G fiir jeden G-Modul A4 bis auf ein Vorzeichen mit dem Isomorphismus H, (N, 4) =~ A"
vertrdglich (Lemma 2.3). Wir wollen dieses Vorzeichen gruppentheoretisch deuten.
Zu einem festen Element ge G betrachten wir die Abbildung ¢,: E—E, auf den Ele-
menten X(x, A -+ A X, )X, xeN, gegeben durch

0 (XK s XE,)

(pg(x (xk1 A A xkp)) = Z xg a(xl.u’ ivey xvp)

[v]

(X, A A X, ).

Dabei ist x2= g~ 'xg, die Funktionaldeterminante besteht aus partiellen Ableitungen
im Sinne der Fox-Derivationen, und summiert wird tiber alle Kombinationen
[v]=[vy, v,,..., v,] mit 1<v; <v,<--- <v,<n. Eine kleine Rechnung zeigt, dass ¢,
mit dem Differential d kommutiert. Ferner ist X, =~ ZN, und die Abbilduug (pg fallt
mit dem Automorphismus f :ZN—ZN, f(x)=x%, xe N, zusammen.

Uns interessiert hauptsédchlich die Dimension #. Es ist X, =~ ZN, und nach Defini-
tion gilt fiir xe N

0 (x5, x5, ..., x7)

O (X1, X5 eves Xp)"

Pg(x) =x

Fiir jeden G-Modul 4 kann die Operation von g auf H,(N, A)=H,(A®y E) beschrie-
ben werden durch (a®e)og=ag®q,(e),ac A, ec E. In der Dimension n ist H,(N, A) =
=~ A", und wir haben dog=(a®1)-g=ag@¢;(1)=agp;(1)=¢(¢ps(1)) ag. Dabei ist
¢:ZN—Z die Augmentationsabbildung.

Der durch Konjugation mit g in N induzierte Automorphismus wird in der Basis
X1 X35..+s X, durch eine unimodulare Matrix o, det(x;)= +1, beschrieben: x§=
[ [i=1xi*. Mit den Rechenregeln fiir Fox-Derivationen findet man:

ox}

e(pi (1)) =¢ (det(ax )) = det(az) ==+ 1.

i

Damit haben wir bewiesen, dass die Operation von g mit dem Isomorphismus H,(N, A) =
=~ AN bis auf das Vorzeichen det(a;,) vertriglich ist.

Nun betrachten wir eine etwas allgemeinere Situation. Sei NV ein endlich erzeugter,
abelscher Normalteiler in der Gruppe G, und sei ¢N die Torsionsuntergruppe von N.
Zu jedem Flement ge G definieren wir ein Vorzeichen beziiglich N :
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DEFINITION. Zu jedem Element geG sei signy(g) die Determinante der durch
Konjugation mit g in N/tN induzierten Abbildung. Ist N/tN =1, dann sei signy(g)=
= +1 fiir alle geG.

LEMMA 3.2.3. Sei N ein endlich erzeugter, abelscher Normalteiler vom Rang n in
der Gruppe G, und sei A ein QG-Modul. Dann ist N eine orientierbare PD-Gruppe der
Dimension n iiber Q, und jedes Element geG operiert auf H, (N, A)=A" wie a-g
=signy(g)ag, ac A".

Beweis. Nach Lemma 2.3 und 3.2.1 ist H,(N, A)=H,(N/tN, Hy(tN, A))
=~ H,(N/iN, A™). Diese Isomorphismen respektieren die G-Struktur. Fiir den frei-
abelschen Normalteiler N/tN<1G/tN ist aber die Behauptung schon bewiesen.

Es sei nun G eine polyzyklische Gruppe, und sei G=G,>G,>---=>G,=1 eine
invariante Reihe von G (d.h. alle G, sind Normalteiler von G) mit abelschen Faktoren.
Wir versehen jedes Element ge G mit einem Vorzeichen

DEFINITION.

r

sign(g) = [] signg,_,6.(8Gr)-

k=1

ferner sagen wir, g sei positiv, wenn sign(g)= + 1, negativ, wenn sign(g)= —1 ist.
Aus unserem nichsten Satz folgt unmittelbar, dass diese Definition von der speziellen
Wahl der invarianten Reihe unabhingig ist.

SATZ 3.2.4. Eine polyzyklische Gruppe G ist (als PD-Gruppe iiber Q) dann und
nur dann orientierbar, wenn alle Elemente geG positiv sind. Ist G nichtorientierbar,
dann bilden alle positiven Elemente von G die eindeutig bestimmte orientierbare Unter-
gruppe vom Index 2.

Beweis. Sei hG=n, h(G,_,/G,)=h,. Wir zeigen mit vollstindiger Induktion nach
der Linge r der invarianten Reihe

H,(G, H,,(G/G, Q)®-® H, (G,-;,Q)) = Q.

Aus dieser Formel folgt dann unmittelbar die Behauptung. Ist r =1, dann ist G abelsch
und die Formel richtig. Fiir r > 2 ist

H,(G, H,,(G/G;, Q) ®:® H,,(G,-1, Q) =
~ H,_, (G/G,_y, H,, (G,_4, H,,(G/G{, Q) ®-® H,, (G,-4, Q))),
~H,_, (G/G,_y, H,,(G/G;,Q)®--® H,, (G,-, Q) ® H,_(G,_4, Q)),
&= n—hr(G/Gr—lb H, (G/G,Q)® - ®H,, _,(G,-,/G,-1,Q ),
=~ Q, nach Induktionsvoraussetzung.
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KOROLLAR 3.2.5. Jede endlich erzeugte, nilpotente Gruppe ist eine orientierbare
PD-Gruppe iiber Q.

Beweis. Jede endlich erzeugte, nilpotente Gruppe G ist polyzyklisch. Sei ge G. Man
berechnet sign(g) mit Hilfe einer beliebigen Zentralreihe von G. Da G auf jedem
zentralen Faktor trivial operiert, folgt sign(g)= +1.

3.3 Die auflosbaren PD-Gruppen
Im vorliegenden Abschnitt werden wir die Umkehrung von Satz 3.1.2 beweisen:

SATZ 3.3.1. Jede auflosbare PD-Gruppe ist polyzyklisch.
Dazu brauchen wir zwei Hilfsresultate.

LEMMA 3.3.2. Sei G eine torsionsfreie, nilpotente Gruppe. Dann ist die homolo-
gische Dimension hdG gleich der Hirschzahl hG. Ist hG=n< oo, dann gilt iiberdies :
H (G, Z) ist torsionsfrei vom Rang 1 und genau dann zyklisch, wenn G endlich erzeugbar
ist.

Beweis. G ist der direkte Limes der endlich erzeugten Untergruppen. Der direkte
Limes vertauscht mit dem Homologiefunktor, also folgt aus Satz 3.1.2 hdG=hG. Es
sei nun AG=n< c0. Den Rest der Behauptung beweisen wir mit vollstdndiger Induk-
tion nach n. Ist n=1, dann ist G eine torsionsfreie, abelsche Gruppe vom Rang 1, und
die Behauptung ist wegen H,(G, Z)=~ G trivial. Es sei also n>2. Dann enthilt G eine
zentrale Untergruppe S vom Rang 1 mit torsionsfreier Faktorgruppe G/S. Weil S
zentral ist, folgt

H,(G,Z) = H,_,(G/S, H, (S, Z))
~H,_,(G/S,Z)®S.

Mit Hilfe der Induktionsvoraussetzung schliessen wir daraus: H,(G, Z) ist torsionsfrei
vom Rang 1 und genau dann zyklisch, wenn G/S und S endlich erzeugbar sind, d.h.
wenn G endlich erzeugbar ist.

Bemerkung. Man vergleiche Lemma 3.3.2 mit dem Resultat von Gruenberg [5,
chapter 8.8, Theorem 5]: Sei G eine torsionsfreie, nilpotente Gruppe mit endlicher
Hirschzahl AG. Dann gilt fiir die cohomologische Dimension von G ¢dG=hG, wenn
G endlich erzeugbar ist, und cdG=hG+ 1, wenn G nicht endlich erzeugbar ist.

LEMMA 3.3.3. Die homologische Dimension hdG einer torsionsfreien, auflosbaren
Gruppe G ist gleich der Hirschzahl hG.

Bemerkung. Man vergleiche dazu das Resultat von Stammbach [9], wonach die
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homologische Dimension 4d,G einer auflosbaren Gruppe G iiber dem Korper Q der
rationalen Zahlen gleich der Hirschzahl AG ist. Man konnte dieses Resultat zum Be-
weis der Ungleichung 4dG > hG heranziehen.

Beweis. Wenn G abelsche Untergruppen vom Rang oo enthéilt, dann ist trivialer-
weise hG=hdG = 0. Haben alle abelschen Untergruppen endlichen Rang, dann ent-
hdlt G nach Baer-Heineken [I, Prop. 5.5] einen nilpotenten Normalteiler N (das
Hirsch-Plotkin-Radikal) mit endlich erzeugter, fast abelscher Faktorgruppe G/N. Sei
G/N eine frei-abelsche Untergruppe von endlichem Index in G/N, und sei h(G/N)
=h(G/N)=m. Ist hG= o0, dann muss AN =hdN = oo sein, also auch hdG = 0.

Es sei nun AG <00, und sei AN =n. Dann ist hdG =hdG < hdN + hd(G/N)=hN+
+h(G/N)=h(G)=h(G)=m+n. Es bleibt zu zeigen, dass fiir einen gewissen G-Modul
A H,, (G, A)#0 ist. Dazu betrachten wir die additive Gruppe der rationalen Zahlen
Q, mit einer noch niher zu beschreibenden G/N-Struktur. Auf alle Fille ist H,, . (G,
Q)= H,(G/N, H(N, Q)= H,(G/N, H(N, Z)®Q). Nach Lemma 3.3.2 ist dabei
H,(N, Z) eine Untergruppe von Q, und die freien Erzeugenden x; von G/N operieren
darauf durch Multiplikation mit gewissen rationalen Zahlen g;. Wir definieren nun
die Operation von x; auf Q als Multiplikation mit ¢; *. Dadurch wird H, (¥, Z)®@Q
zum trivialen G/N-Modul Q, und wir erhalten H,,, (G, Q)= Q. Daher ist #dG=m +n,
also auch hdG=m+n, womit Lemma 3.3.3 bewiesen ist.

Beweis von Satz 3.3.1. Sei G eine auflésbare PD-Gruppe der Dimension »n. G ent-
hélt eine orientierbare PD-Gruppe G vom Index |G: G| < 2. Die abelschen Untergrup-
pen von G haben endlichen Rang, also gibt es nach Baer-Heineken [1, Prop. 5.5]
einen nilpotenten Normalteiler N<aG (das Hirsch-Plotkin-Radikal) mit endlich er-
zeugter, fast abelscher Faktorgruppe G/N. Sei G/N eine frei-abelsche Untergruppe von
endlichem Index in G/N. G ist von endlichem Index in G, also nach Satz 2.1.1 selber
eine orientierbare PD-Gruppe der Dimension n. Sei AN =hdN =k und h(G/N)=
=hd(G/N)=m. Dann ist nach Lemma 3.3.3 n=hdG=hG=m+k. Es folgt

Z > H,(G,Z) = H,(G/N, H.(N, Z)) = H (N, Z)*",

denn G/N ist eine orientierbare PD-Gruppe. H,(N, Z) ist nach Lemma 3.3.2 isomorph
zu einer Untergruppe der additiven Gruppe der rationalen Zahlen, versehen mit einer
gewissen G/N-Struktur. Als Fixpunkte kommen jedenfalls nur O oder ganz H,(N, Z)
in Frage; daher ist H(N, Z)~Z. Dann ist aber N nach Lemma 3.3.2 endlich erzeug-
bar, also polyzyklisch. Somit ist auch G polyzyklisch, womit Satz 3.3.1 bewiesen ist.
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Anmerkung bei der Korrektur. In einer Arbeit von F. E. A. Johnson und C. T. C.
Wall, von welcher ich nachtridglich Kenntnis erhielt und die in Ann. of Math. erschei-
nen soll, werden unsere Sdtze 2.1.1, 2.4.1, 2.5 und 3.1.2 mit teilweise anderen Metho-
den bewiesen. Wir mochten hervorheben, dass der Begriff ,,Poincaré duality group*
bei Johnson-Wall sich auf endlich pridsentierte Gruppen mit endlicher projektiver
Auflésung bezieht, wiahrend bei uns keinerlei Endlichkeitsannahmen gemacht werden.
Aus unseren Erweiterungssitzen (2.1.1, 2.4.1 und 2.5) konnen diejenigen von Johnson-
Wall leicht abgeleitet werden.



	Gruppen mit Poincaré-Dualität

