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Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten
und Fortsetzung von Flâchen konstanter negativer Krûmmung

von Ch. Wissler

Einleitung

Die vorliegende Arbeit besteht aus drei Teilen :

Den Ausgangspunkt des ersten Telles bildet der Satz von Hilbert [1], der besagt,
dass die hyperbolische Ebene keine isometrische Immersion in den dreidimensionalen
Euklidischen Raum zulàsst, oder anders ausgedrûckt, dass es im dreidimensionalen
Euklidischen Raum keine vollstàndigen Flâchen mit konstanter negativer Krûmmung
gibt. Die Flâchen mit konstanter negativer Krûmmung haben bekanntlich die Eigen-
schaft, dass das Netz der Asymptotenlinien ein Tschebyscheff-Netz bildet, d.h. ein Netz,
bei welchem in jedem Netzviereck gegenûberliegende Seiten gleich lang sind. Wegen
dieser Eigenschaft ist der Satz von Hilbert aequivalent zu der folgenden Aussage : In
der hyperbolischen Ebene gibt es keine globalen Tschebyscheff-Netze. Diesen Satz

werden wir verallgemeinern durch den folgenden Satz (Abschnitt 3): Aufeiner orien-
tierbaren, zweidimensionalen, vollstàndigen Riemannschen Mannigfaltigkeit der Dif-
ferenzierbarkeitskiasse C3, deren Krûmmung K von Null verschieden ist und auf der es

ein globales Tschebyscheff-Netz gibt, gilt:

inf|K|=0, sup grad

Der Beweis beruht aufeiner Verallgemeinerung des Beweises, den Holmgren [3] zum
Satz von Hilbert gegeben hat (Abschnitt 2.1).

Bei den Mannigfaltigkeiten mit negativer Krûmmung sind die Bedingungen (*)
ganz âhnlich den Bedingungen von Efimov, die bei der Frage nach der Existenz einer
isometrischen Immersion in den dreidimensionalen Euklidischen Raum auftreten:
Wie N. V. Efimov [5, 6] bewiesen hat, ist fur die Existenz einer solchen Immersion
notwendig

1

inf \K\ 0 und sup grad oo.

Bei positiv gekrûmmten Flâchen im Raum kann grad l/y/K beschrânkt sein; ein

Beispiel hierfûr ist das Paraboloid z x2 + y2.

Der Zweite Teil schliesst an die Arbeit von M. H. Amsler [2] ûber die Singulari-
tâten der Flâchen mit konstanter negativer Krûmmung im Raum an. Amsler beweist

in dieser Arbeit, dass jede regulâre Flàche mit konstanter negativer Gauss'scher



Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten 349

Krûmmung unendlich viele Randpunkte hat. Wenn die Flâche analytisch ist, oder
wenn sie nur endlich viele Verzweigungspunkte hat (zur Définition der Verzweigungs-
punkte vgl. [2]), so enthâlt der Rand mindestens einen Kurvenbogen, der im Falle der
Analytizitât unendlich oft differenzierbar ist. Aus der Analytizitât der Flâche oder aus
dem Vorhandensein von nur endlich vielen Verzweigungspunkten folgt also, dass die

Menge der Randpunkte die Màchtigkeit des Kontinuums hat. Es stellt sich nun die

Frage, ob Flâchen mit konstanter negativer Krûmmung im Raum existieren, deren
Rand aus nur abzâhlbar unendlich vielen Randpunkten besteht. Dièse Frage werden
wir durch die Konstruktion eines Beispiels in folgendem Sinne beantworten (Ab-
schnitt 4): Es gibt eine unendlich oft differenzierbare Riemannsche Mannigfaltigkeit
M mit folgenden Eigenschaften:

M hat konstante négative Krûmmung, die Menge der Randpunkte von M ist abzâhl-
bar unendlich, es gibt eine isometrische Cœ -Immersion von M in den dreidimensionalen
Euklidischen Raum.

Dabei ist ein Randpunkt von M ein Punkt, der zu der vollstândigen Huile von M
bezùglich der inneren Metrik gehort, der aber nicht in M liegt.

Die Konstruktion des Beispieles beruht auf dem in Abschnitt 2.2 bewiesenen

Fortsetzungssatz ùber die Lôsungen der hyperbolischen Differentialgleichung couv

/(a>), die eine Verallgemeinerung der Gleichung œuv sinco ist. Letztere Gleichung
stellt das Theorema egregium fur Flâchen mit der Krûmmung K — 1 dar. m, v sind
dabei Asymptotenlinienparameter, co ist der Winkel zwischen den Asymptotenlinien.
Zum Vergleich sei noch auf den allgemeineren Fall der mindestens zweimal stetig
differenzierbaren Flâchen im Raum mit negativer, von Null weg beschrânkter Krûmmung

hingewiesen: Wie N. V. Efimov [5] bewiesen hat, gibt es auch unter diesen

Flâchen keine vollstândigen. Es gibt aber solche, die nur endlich viele Randpunkte
haben: E. R. Rozendorn [8] hat ein Beispiel mit vier Randpunkten gefunden.

Im dritten Teil werden Tschebyscheff-Netze auf Rotationsflâchen vom Zylinder-
oder Torustyp, also ohne Schnittpunkte mit der Achse untersucht. Das Ergebnis
besteht aus den beiden folgenden Sâtzen, von denen sich der erste auf rotationssym-
metrische Tschebyscheff-Netze bezieht, der zweite auf beliebige Tschebyscheff-Netze

(Abschnitt 5):
Jede durch zwei beliebige Parallelkreise begrenzte Zone làsst sich durch eine Schar

rotationssymmetrischer Tschebyscheff-Netze uberdecken. Falls das Supremum der

Parallelkreisradien endlich is't, lâsst sich sogar die ganze Flâche durch eine Schar von

rotationssymmetrischen Tschebyscheff-Netzen uberdecken.

Aufeiner vollstândigen Rotationsflàche, die die Rotationsachse nicht schneidet undauf
der es ein globales Tschebyscheff-Netz gibt, sind die Radien derParallelkreise beschrânkt.

Es werden zunâchst im Abschnitt 1 bekannte Eigenschaften der Tschebyscheff-

Netze und der Flâchen mit konstanter negativer Krûmmung zusammengestellt (Sâtze

1_4), wir beschrânken uns auf Netze, die global in zwei Kurvenscharen zerfallen.
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Im Abschnitt 2 î werden die Holmgrenschen Ûberlegungen auf den Fall der allge-
memeren Differentialgleichung(2 1) couv= g(u, v)f(œ) mit gewissen Voraussetzungen
uber /, g verallgemeinert (Satz 5)

Der Abschnitt 2 2 enthalt den Beweis des entscheidenden Fortsetzungssatzes
(Satz 6), welcher gestattet, eine Losung der Differentialgleichung (2 8) œuv / (co),
deren Werte in einem Intervall / mit f(co)>0 liegen und die in einem Rechteck A
gegeben ist, so in ein benachbartes Rechteck A * fortzusetzen, dass die Werte von co in
/ bleiben A * hat dabei eine auf die Halfte verkurzte Seite mit A gemeinsam und einen
festen, nur von / abhangigen Flacheninhalt Beim Beweis spielt die ,,Fortsetzungs-
bedingung" eine wichtige Rolle co wird durch eine Funktion cp ersetzt, die œ (aber
nicht die Ableitungen von co) approximiert, wobei die Ableitungen von cp feste Schran-
ken haben

Die Abschnitte 3 und 4 enthalten als Folgerung die Aussagen uber Mannigfaltig-
keiten mit globalem Tschebyscheff-Netz (Satz 7) und die Konstruktion der Flache
mit abzahlbar vielen Randpunkten (Satz 8). Abschnitt 5 enthalt die Ergebnisse uber
Rotationsflachen mit Tschebyscheff-Netz (Satze 9 und 10).

1. Tschebyscheff-Netze

1.1. Auf einer zweidimensionalen, onentierten Manmgfaltigkeit betrachten wir
Kurvennetze, die durch einen Netztensor defimert sind, d h die lokal als Losung der
Gleichung

£ atJ du1 du3 0 (1.1)

darstellbar sind; dabei sind w1, u2 lokale Parameter, ^(w1, w2) die Komponenten
emes symmetnschen, kovananten Tensors zweiter Stufe mit det(atJ)<0.

SATZ 1. Ein durch einen Netztensor definiertes Kurvennetz zerfallt global in zwei
Scharen.

Beweis Wir betrachten die quadratische Form Q~Yuaij du1 du3 in der Tangen-
tialebene eines festen Punktes Die beiden Geraden, auf welchen Q den Wert Null
annimmt, teilen die Ebene in vier Quadranten In je zwei gegenuberhegenden mmmt
Q positive, bez. négative Werte an Durch die Onentierung ist in der Tangentialebene
ein positiver Drehsinn defimert. Die beiden Nullgeraden von Q konnen nun folgender-
massen unterschieden werden: Die eine Nullgerade uberstreicht bei einer Drehung im
positiven Smne zuerst die Quadranten, m welchen Q positiv ist, die andere Nullgerade
die Quadranten, m welchen Q negativ ist. Nach diesem Knterium konnen die durch
(1.1) defimerten Richtungsfelder global unterschieden werden.

Bemerkung. Zwei Netztensoren aip bip die sich nur um ein Vielfaches vonein-
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ander unterscheiden: au Xbij9 wobei X eine reellwertige, positive oder négative Funk-
tion auf der Mannigfaltigkeit ist, definieren das selbe Netz.

1.2. DEFINITION. Ein Netz heisst Tschebyscheff-Netz (T-Netz), wenn in jedem
Netzviereck gegenûberliegende Seiten gleich lang sind.

gifa1, u2) seien die Komponenten des Fundamentaltensors. Die Parameterlinien
bilden genau dann ein T-Netz, wenn (d/du2)g11(u1, u2) 0 und {dldul)g22(u1, w2) 0.

In diesem Fall kann man o.B.d.A. annehmen, dass t/1, u2 die Bogenlângen der m1, m2-

Linien sind, d.h. g11 l, g22==l un<i gi2 cosœ> wobei œ der Winkel zwischen den
Netzlinien ist. Die erste Fundamentalform hat somit die einfache Gestalt

2)2I: (du1)2 + 2cosco du1 du2 + (du2) (1.2)

Fur die Gauss'sche Krûmmung erhâlt man aus dem Theorema egregium die Bezie-

hung:

d2œ
: — — K sin co

du1 du2

Wir fùhren noch die folgenden Bezeichnungen ein: a=det(atJ), g=det(gjj),

(1.3)

SATZ 2. Ein Netztensor atj ist genau dann Netztensor eines T-Netzes, wenn der

normierte Tensor Aij jg/ — a au die Codazzigleichungen erfùllt.
Beweis. Wir wâhlen lokale Parameter so, dass die Parameterlinien die Netzlinien

sind; dann ist All=A22=0 und die Codazzigleichungen lauten:

(1.4)

Wir benûtzen nun, dass det(Aij)/g= -1, d.h.

so erhalten wir:

12

or1 —Zi 17 —12

d

'¦dû1

yjgist. Setzen wir dies in (1.4) ein,

(1.5)

woraus unmittelbar (d/du2)gn=0 und (d/du1)g22 0 folgt.
Bemerkung. m1, u2 seien beliebige, lokale Parameter in der Umgebung des Punktes

P, w1, ù2 seien Parameter in der selben Umgebung, so dass das Parameternetz ein

T-Netz ist; P habe in beiden Parametersystemen die Koordinaten 0/0. Aus den Trans-
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formationsformeln der r)k folgt wegen ril2=0 (vgl. (1.5)) einerseits, dass die Para-
metertransformation u* /'(m1, w2), / 1,2, den Gleichungen genûgt:

- o

Dies ist ein quasilineares, hyperbolisches System mit gleichem Hauptteil ([10] S. 323).
Hieraus folgt andererseits gemâss dem Existenz- und Eindeutigkeitssatz fur die Lôsun-

gen des charakteristischen Anfangsproblems : Zu gegebenen Anfangskurven (fl (û1, 0),

f2(û\ 0)) und (/HO, û2), /2(0, û2)), die sich in P unter einem von Null und n ver-
schiedenen Winkel schneiden, gibt es in einer Umgebung von P genau eine Parameter-
transformation u1 f1 {û1, w2), u2 f2 (m1, ù2), so dass die w*-Linien ein T-Netz bilden.
Auf Grund dièses Satzes erhâlt man z.B. aile T-Netze in der Euklidischen Ebene,
indem man zwei sich schneidende Kurven gegen einander parallel verschiebt.

SATZ 3. Auf einer orientierbaren, einfach zusammenhângenden, vollstândigen,
zweidimensionalen Riemannschen Mannigfaltigkeit ist jedes global definierte T-Netz
global kartesisch, d.h. es gibt einen Homôomorphismus von der Mannigfaltigkeit aufdie

Euklidische Ebene, der das T-Netz auf das kartesische Netz der Ebene abbildet.
Beweis. Wir werden zeigen, dass jede Kurve der einen Schar mit jeder Kurve der

andern Schar genau einen Schnittpunkt hat. Daraus folgt, dass das Netz global
kartesisch ist.

M kann nicht kompakt sein, ist also homôomorph zur Euklidischen Ebene. Nach
Sâtzen aus der Bendixonschen Théorie (vgl. Kaplan [4]) folgt, dass keine Kurve
geschlossen ist und dass sich die Kurven aus verschiedenen Scharen hôchstens einmal
schneiden. Wir zeigen: Je zwei Kurven aus verschiedenen Scharen schneiden sich

mindestens einmal. Es seien nâmlich c0 eine Kurve der ersten Schar, k0 eine Kurve der

zweiten Schar, die sich in O schneiden. P sei ein Punkt, der nicht auf c0 oder ko liegt;
cp, kp seien die Kurve der ersten, bez. der zweiten Schar durch P. cP schneide k0 in Q.

Behauptung: Dann schneidet auch kPc0 in einem Punkt S. Man kann nâmlich
o.B.d.A. annehmen, dass aile Kurven kP> durch Punkte P', die auf cP zwischen Q und
P liegen, c0 schneiden. (Pnx) sei eine gegen P konvergente Folge, so dass die Bogen-

lângen QP'n auf cP monoton zunehmen. S^ seien die Schnittpunkte von kP, mit co. Die

Lângen QP'n und OS'n sind gleich, also ist OS'n < QP. Wegen der Vollstândigkeit von
M konvergiert die Folge £„' gegen einen Punkt 5, und wegen der Regularitât der

zweiten Schar schneiden sich kP und cP in S.

A sei die Menge der Punkte P s M, fur welche cP und kPk0, bez. c0 schneiden. A
ist wegen der Regularitât der beiden Scharen offen. Es sei R ein Hâufungspunkt von
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A. In einer genûgend kleinen Umgebung von R kann man dann ein Netzviereck und
einen Punkt P eA finden, so dass P und R Ecken dièses Netzviereckes sind. Aus dem
vorher Bewiesenen folgt, dass ReA, d.h. A M (vgl. Bieberbach [9] und fur einen
etwas allgemeineren Fall Efimov [7]).

Bemerkung. Auf Grund des bewiesenen Satzes kann man auf M globale T-Para-
meter w, v einfûhren, indem man die eine Schar isometrisch auf die Parallelen zur
w-Achse und die andere Schar isometrisch auf die Parallelen der u-Achse abbildet.

1.3. Auf den Flâchen (mindestens dreimal stetig differenzierbar) mit negativer
Gauss'scher Krûmmung K im dreidimensionalen Euklidischen Raum ist das durch
den zweiten Fundamentaltensor (Lo) definierte Netz das Netz der Asympotenlinien.
Wenn £=const.<0 ist, bilden die Asymptotenlinien nach Satz 2 ein T-Netz, da ja

und \jyj — Kfaij) fur konstantes (und nur fur konstantes) A'die Codazzigleichungen
erfûllt.

Es sei jetzt F eine Flâche (Differenzierbarkeitsklasse Cq, q^3) mit K= —\;u,v
seien lokale Parameter, so dass die Parameterlinien die Asymptotenlinien sind: es ist
also Ln L22 0. Aus (1.6) folgt unter Berûcksichtigung von (1.2): L12 ±sinco. Fur
die zweite Fundamentalform erhàlt man also :

II: ±2sinœ du dv. (1.7)

Sowohl die erste (1.2) als auch die zweite (1.7) Fundamentalform sind also nur von
der einen Grosse œ abhàngig, welche Lôsung der aus (1.3) folgenden Gleichung

(1.8)

ist und der Nebenbedingung

0 < co< n (1.9)

genûgt. Hierauf beruht der folgende Satz:

SATZ 4. In einem einfach zusammenhângenden, offenen Gebiet G der u, v-Ebene

sei die Funktion (o:G-+R(Cq~2, q^3) Losung der Gleichung (1.8) und genûge der

Nebenbedingung (1.9). Dann gibt es bis auf Bewegung genou eine Flâche F (Cq) mit
der Gauss'schen Krûmmung K= — \,so dass co(u, v) der Winkelzwischen den Asymptotenlinien

ist.
Beweis. Man defîniere die Fundamentalformen gemâss (1.7) und (1.2). Wegen (1.9)

ist gug22 —g12 >0. Die Behauptung folgt nun aus dem Fundamentalsatz der Flâchen-
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théorie zusammen mit einer Monodromieûberlegung; die Integrabilitâtsbedingungen
sindmit(1.8)erfûllt.

2. Der Satz von Holmgren und der Fortsetzungssatz

2.1. Die Gleichung (1.3) ist bei gegebener Gauss'scher Krûmmung K(u, v) eine qua-
silineare hyperbolische Differentialgleichung fur co. Die Charakteristiken sind die Ge-
raden w const. und i? const.

Wir betrachten nun eine etwas allgemeinere Gleichung vom selben Typ :

a>uv g(u9v)f(œ) (2.1)

und beweisen den folgenden, im Falle der Gleichung (1.8) von Holmgren stammenden
Satz ûber die Lôsungen in einem charakteristischen Streifen S= [a, b] xR.

SATZ 5.

Voraussetzungen. - f: R -> R sei eine mindestens einmal stetig differenzierbare Funk-
tion mit der Eigenschaft f(t)i^O fur fe(0, n),

- g: S-> R sei eine mindestens einmal stetig differenzierbare Funktion mit g(u, v) ^
l/(co + ciM)> wobei c0 eine positive, cx eine nicht négative, réelle Zahl ist,

- œ:S-+R sei eine Lôsung von (2.1) mit co(u, 0)e(0, n)fùr a < u ^ b.

Behauptung. Das Supremum

co sup{|y| œ(u, v')e(0, n) fur (u, t/)e[a, 6] x [0, v], veR}

ist endlich, d.h. œ hat im Streifen S mindestens eine 0-oder n-Stelle.

Beweis. u0 sei eine beliebige Stelle in la, b~\. Es sind drei Fâlle zu unterscheiden,

je nachdem, ob die erste partielle Ableitung œu(u0, 0) >, < oder =0 ist.
1. œu(u0, 0)>0. Es gibt dann ein u0 enthaltendes Intervall \a\ br\ in welchem

cou(u, 0)>0 ist. Wir zeigen, dass die Beschrânkung von œ auf den Streifen S'= [a\ b'~\

x R in *S" eine 0- oder eine 7r-Stelle hat. [a\ b"~\ sei ein in [a\ b'~\ enthaltenes Intervall,
so dass a'<a"<b"<bf. Es gilt:

0 < œ (a\ 0)<co(a\ 0)<co (6", 0) < co (a', 0)<n. (2.2)

ô sei die kleinere der beiden Zahlen co(a", 0)-co(af, 0) und co(b',0)-co(b",0).
Nach Voraussetzung ist f(t)^0 fur te(0, n). Wir nehmen zuerst f(t)>0 an und

bezeichnen

a' sup {v | co (u, v') e (0, n) fur (u, v') e [a', b'~] x [0, t>], v > 0}.

Integriert man (2.1) ûber das Rechteck mit den Ecken (a\ 0), {a", 0), (a\ v), {a\ v),
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0<v<a' so erhâlt man

355

co (a\ v) -co(a\ v) co(a\ 0) - co(a', 0) + J J g(u9 v') f(co(u9 v')) du dv'

woraus folgt:

co(a"9v)>ô.

a' 0

(2.3)

Entsprechend erhâlt man durch Intégration ûber das Rechteck mit den Ecken (b\ 0),

(b'90)9{b',v),(b\v)

co(b",v)<n-ô.
A sei die Menge: \a\ b"] x [0, a').

Fur (w, v)eA folgt aus (2.1):

(2.4)

cou

V

(w, v) œu(u9 0) + J g(u, v') f(œ(u, v')) dv' > œu(u, 0) > 0.

Dies ergibt zusammen mit (2.3) und (2.4) fur (u, v)eA

ô<co (a\ v)^co (m, v)^co (b"9 v)<n-ô. (2.5)

Es sei fi min {f(t)\ te[ô, tt-5]}.
Wir integrieren nun (2.1) ùber das Rechteck mit den Ecken (a", 0), (b\ 0), (b\ v),

(a", v), wobei v < a' ist und schâtzen die rechte Seite nach unten ab :

[co {b\ v)-co (a"9 v)] - [co (b"9 0)-co {a"9 0)]
b" v b" v

[ \g(u, v')f{co{u9 v')) du dv' > f—^ du dv'.

a" 0

Hieraus folgt:

(2.6)

: n> ii(b"-a") ^
c0

\i(b" -a")fur ci:=0: n >— -v
Co

und weiter

fur ct > 0: v < ¦

nc0
(2.7)
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Falls/(0<0, fûhren wir die folgende Koordinatentransformation durch: w w, v —

— v. Wir setzen œ(u, v) co(u, -v) œ(û, v). Es folgt: œûd(û, v)= -couv(û, — v)

-f(œ(ù9v))g(û, -v).
Die Funktionen f((ô)=—f((ô) und g(û, v)=g(û, —v) erfûllen die Vorausset-

zungen des Satzes 8, und es ist coa(uo, 0)>0 und/(câ)>0. Diesen Fall haben wir aber
soeben behandelt.

2. cou(uo, 0)<0. Diesen Fall fûhren wir durch die Koordinatentransformation
u— —û, v=v auf 1. zurûck.

3. œu(u0, 0) 0. Wegen (d/dv) cou(uo, v)=g(u0, v) f(co(u0, v))^0 ist fur eine

genûgend kleine positive Zahl s cou (w0, e) # 0. Durch die Transformation û u,v v + s

wird auch dieser Fall auf 1. zurùckgefùhrt.
Bemerkung. Entsprechend dem Lemma II Amsler [2] folgt auch hier aus dem

Bewiesenen die Existenz einer Niveaulinie co n oder co 0, deren Steigung im Streifen

[#', b'~\ x R von Null verschieden ist.

2.2 Der Fortsetzungssatz

Wir gehen aus von der Gleichung

couv f(co). (2.8)

Ûber die Funktion /: R -> R setzen wir jetzt folgendes voraus : / gehôre zur Difïeren-
zierbarkeitsklasse Cr(r=l, 2,..., oo), / und die erste Ableitung /' seien beschrànkt
und das Supremum M von / sei positiv. Wir fûhren noch einige Bezeichnungen ein :

a, fi, ô seien drei réelle Zahlen mit a</?, <5>0, so dass /(t)^0 fur ie[a —8, /? + 8];
A sei das charakteristische Rechteck [0, à] x [0, b~] in der w, u-Ebene, a> b>0y A* das

charakteristische Rechteck [0, a * ] x \b, b + b * ], wobei a * a/2, b*=(p-a)jaM (d.h.
A* hat den Flâcheninhalt 0*6*= (0-a)/2Àf).

Nun beweisen wir den folgenden Fortsetzungssatz:

SATZ 6. Voraussetzung: co sei eine Cq-Lôsung (2<#^r+l) von (2.8) in A, die der

folgenden Fortsetzungsbedingung geniigt: Es gibt eine Funktion cpiA-^R^çe^^so dass

(i) \œ(u, v)-(p(u, v)\<ô, (ii) (p(u, v)e[a, £],
(iii) \(d/du)cp(u9 v)\ <(/î-a)/a, (iv) \(d/ôv)ç(u, v)

Behauptung. co hat eine Fortsetzung œ auf Au A* infolgendem Sinne: In A* gibt
es eine Cq-Lôsung co* -*R V0« (2.8), $0 dass folgendes gilt:

2) rf/> Funktion œ, definiert durch œ\ A co, œ\ A* co*, gehôrt zur Klasse Cq.

3) œ* genùgt in A * der Fortsetzungsbedingung, d.h. esgibt eine Funktion (p*:A*->R,
1 (i)* \œ*(u, v)-q>*(u, v)\<ô, (ii)* <p*(u9 »)e[a, 0],
(iii)* \(dldu)q>*(u, v)\^(fi-oî)la*, (iv)* \(d/dv)ç*(u9 v)
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Folgerung. Die Funktion co genûgt der Gleichung (2.8), und es gilt co (w, v)e (a — <5,

Beweis. Es sei u0 eine Stelle, so dass

cp («0, b) — min {cp (w, b) | u e [0, a/2]}, und es sei

(5* i {min<5 - |co(u, b) -cp(u, b)\ \ ue[0, a/2 >]}0.

Da / und /' beschrànkt sind, lâsst sich das charakteristische Anfangswertproblem
der Gleichung (2.8) fur jedes vorgegebene Rechteck lôsen; insbesondere gibt es genau
eine in ganz A * definierte Lôsung co* der Gleichung (2.8) mit den folgenden Anfangs-
werten :

<y* (w, b) co (m, b), ue [0, a*]

0, *;)

q(v),

co* (n0, *;) co (u0, b) + —ir [oc + Muob* - cp (w0,
£7

(2.9)

Dabei ist Q:[b, 6 + è*]->R eine C^-Funktion, fur welche |@(iOK<5* und die so be-

schaffen ist, dass g(b) 0 und dnco*/dvn dnco/dvn ist fur (w, v)= (uo, b) und 1 ^n^q.
Die Existenz einer derartigen Funktion fur q= oo folgt aus einem Satz von E. Borel,
wonach es zu jeder beliebigen unendlichen Folge von reellen Zahlen {a0, al9... an9...}
eine in einer Umgebung von b definierte C00-Funktion gibt, deren «-te Ableitung an
der Stelle b den Wert an annimmt. Unmittelbar aus (2.9) und den Eigenschaften von q

folgen die Punkte 1) und 2) der Behauptung.
Zu 3). \j/:A*-+R sei die durch ilf(u,v) $vb$of(G)*(u',v'))du'dv' definierte

Funktion. Fur die gemischte Ableitung gilt:

Hieraus folgt:

co* (m, t;) co* (m, b) + co* (w0, v) - co* (u0, b) + \J/ (u, v).

Nach Einsetzen der Anfangswerte (2.9) erhâlt man:

co*(m, v) co(u, b) + q(v)-(v- b) cp(u0, b)
p - a

+ (v — b) f aM + Mu0 ] + \j/ (m, v)

(2.10)
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Die Funktion cp* definieren wir nun folgendermassen:

(p* (11, v) co* (u, v)-co (u, b)-Q(v) + q> (m, b). (2.11)

Hieraus folgt, dass cp * die Eigenschaft (i) * hat, denn :

|û>* (w, t>) - <p* (u, t?)| ^ |o (m, b)-q> (u, b)\ + \g (v)\

^\Ô-2Ô*\+Ô* Ô-Ô*<Ô.

Um die Eigenschaft (ii) * nachzuweisen, zeigen wir, dass die Mengen

F K e [i, * + **] | 9* (u, t>) e [a, j8] fur (u,v)e [0, a/2] x [é, t;0]}

und

5è + 6*]|co*(W,t;)e(a-(5Ji8 + 5) /w> (u, v)e[0, a/2] x [é, i;o]}

gleich sind. Hieraus folgt nâmlich, dass V= [b,b + b*']9 weil offensichtlich W offen
in [6, b + b*~\ und F abgeschlossen und nicht leer ist. Va W folgt unmittelbar aus

(i)*. Um zu zeigen, dass Wa V, setzen wir zunâchst (2.10) in (2.11) ein. Nach einer
einfachen Umformung erhalten wir:

(2.12)

x \<p (u, b) - q> (u0, *)] + M (v - b) \

Es sei nun voe W; wir schâtzen (p*(u9 v) fur aile (w, t;) mit t;e[é, t;0] nach unten und
nach oben ab, indem wir in (2.12) jeden Summanden einzeln wie folgt abschâtzen:

Fur den ersten Summanden erhalten wir, da nach Voraussetzung (ii) (p (u, v)e [a, /?],

und da (t? — 4)<i*= (fï-(x)/aM9 die eckige Klammer also ^0 ist, die Abschâtzung:

Zweiter Summand: Einerseits ist [<p(w, è)-^(wo^)]^° gemâss der Définition
von u0; andererseits gilt nach dem Mittelwertsatz und der Voraussetzung (iii):

P -a
[<p (u, b) - <p (u0, 6)] < \u - MOI

a

Es seien ux =min(w, t/0), w2 max(M, w0) fur we[0, a/2].
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Dann ist \uo->u\=u2 — ul. Fur den zweiten Summanden folgt:

aM
0<(v-b) [<p(u, b) -<p(uO9 b)} ^M(v-b) (u2 - u±). (2.14)

p - a

Vierter Summand: Da 0</(co*)<Mfûr co*e(<x-ô, p + ô)9 gilt:
u

M (ui - u0) < f f(co* («', »)) <&' < M («2 - ii0) (2.15)

«0

und folglich auch

M(v-b) (u± - u0) ^ J J
fc I/O

(2.16)

\j/ (w, v) < M (v — b) (u2 — u0).

Setzen wir (2.13), (2.14) und (2.16) in (2.12) ein, so erhalten wir einerseits q>* (w, v)^
cc + M(v — b) u^ol und andererseits (p*(u, v)^P + M(v — b) [ — a+2u2 — Wi]<
P-2M(v-b)[a/2-u2~]^pfùr v^v0.

Damit ist gezeigt, dass auch W<=. F, also V= W.

Um (iii)* und (iv)* nachzuweisen, differenzieren wir (2.12) nach m, bez. nach v:

v

cp* (u, v) cpu (u, b) + J f(co* (m, i;')) dv'.

Unter Berûcksichtigung von (iii) folgt:
V

\<PÎ(u, v)\ < \<pu(u, b)\ + I /(û>*(w, i?')) do' < -^ ¦

J a
b

Fur die Ableitung nach v erhâlt man aus (2.12):

<pt(u, v) - ^-<p(u0, b) + m(^.+ u0) + f /(©V. »)) <*«'•
p — oc \p — oc / J

"o

Mit Hilfe von (2.15) und der Voraussetzung (ii) erhalten wir:

o

- Ma + Afttj ^ ç>*(w, ») ^ Mu2 ^Ma ~r-b

folglich \<p*(u9 »)|< (jS —a)/6*. Damit ist der Fortsetzungssatz bewiesen.
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Bei der Konstruktion und beim Nachweis der Fortsetzungseigenschaft von co*

haben wir nur Eigenschaften der Restriktionen von œ und cp auf die linke Hâlfte von
A benutzt. Durch analoge Ûberlegungen fur die redite Hâlfte von A erhâlt man eine
der Fortsetzung œ* entsprechende Fortsetzung œ** von œ auf das Rechteck A**
[a/2, a] x [£,

Bemerkungen :

1. Wir geben nun noch eine Lôsung von (2.8) an, die den Voraussetzungen des

Fortsetzungssatzes genûgt.

Ao sei das Quadrat [ — a/2, a/2] x [ — a/2, a/2] mit der Seitenlânge

(2.17)

Behauptung. Die Lôsung œ, die auf den Koordinatenachsen v 0, w=0 den Wert
(a + /?)/2 annimmt, erfullt in Ao die Voraussetzungen des Fortsetzungssatzes.

Beweis. A'o sei die obère Hâlfte des Quadrates Ao:

4> [-a/2,a/2]x[0,a2].

Durch eine âhnliche Ûberlegung wie beim Beweis des Fortsetzungssatzes beweisen

wir, dass co(u, t?)e[a, ff\ fur (w, v)eA'o, indem wir zeigen, dass die Mengen

F {t;e[0,a/2]|co(W,i/)e[a,£] fur (u, i/)e[- a/2, a/2] x [0, v]}

und

W {vel09al2-]\co(u,v')e((x-ô9p + ô) fur (u, i/)e[- a/2, a/2] x [0, r]}

gleich sind. Hieraus folgt, dass V= [0, a/2] ist.
Offensichtlich ist Va W. Es sei jetzt ve W. Fur aile we[-a/2, a/2] gilt dann die

folgende Ungleichung:
U V

2

\\M
2 (* (*

-M —<-M|m|i;< f{(o(u\vr))du' oV ^M\u\v
0 0

Aus (2.8) erhâlt man unter Berûcksichtigung der Anfangswerte :

U V

(u, v) - "-^- f !f(co(u', v')) du' dv'.
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Setzen wir dies oben ein, so folgt:

a2
x

<x + p a2
(u, v)

Nach Einsetzen von (2.17) erhalten wir: co(u, v)e[cc9 j8], d.h. es ist veFalso folgt
W=V.

Wegen co( —m, — v) œ(u, v) ist œ(u, u)e[a, /?] fur aile (w, v)eA0. Wir setzen nun
cp(u, v) co(u, v). Die Bedingungen (i) und (ii) des Fortsetzungssatzes sind dann sicher

erfûllt. (iii) folgt aus der Abschâtzung:

V

pu(u, v)\ \cou(u9 v)\ \[ f(co(u, v')) dv'\

0

M

M

Entsprechend weist man (iv) nach. Damit ist die Behauptung bewiesen.
Es sei noch bemerkt, dass die Restriktion von œ auf ein kleineres in Ao enthaltenes,

charakteristisches Rechteck die Fortsetzungsbedingungen ebenfalls erfûllt.
2. Im Abschnitt 4 werden wir den Fortsetzungssatz auf den folgenden Spezialfall

anwenden: /(co) sinco, [oc, /?] [n/4, 3tt/4], ô ist eine beliebige Zahl aus dem Inter-
vall (0, n/4).

In diesem Fall ist M 1 und der Inhalt des Rechteckes A * ist n/4.

3. T-Netze auf Mannigfaltigkeiten, deren Kriimmung von 0 verschieden ist

SATZ 7. M sei eine mindestens dreimal stetig differenzierbare, orientierbare, zwei-
dimensionale, vollstândige Riemannsche Mannigfaltigkeit, deren Kriimmung festes Vor-
zeichen habe: K>0 oder K<0. Wenn es auf M ein globales T-Netz gibt, dann ist

inf |X| 0 und sup |grad \/K\ oo

Wir beweisen den Satz 7 indirekt, d.h. wir nehmen an, es gebe ein globales T-Netz
und es sei 1) entweder inf |AT|>0 oder 2) sup |gradl/jRT | ^<oo und zeigen, dass

beide Fâlle zu einem Widerspruch mit Satz 5 fûhren.
M sei die universelle Ueberlagerung von M. Dem T-Netz auf M entspricht ein

T-Netz auf fit, das nach Satz 3 global kartesisch ist. Wir fûhren entsprechend der

Bemerkung zu Satz 3 globale T-Parameter (w, v) ein. Zwischen der Krûmmung und
dem Winkel œ zwischen den Parameterlinien besteht die Beziehung (1.3), wobei co

noch die Nebenbedingung (1.9) erfûllt.
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Wir betrachten, wie in 2.1 einen charakteristischen Streifen S [a, b] x R. Im Fall
1) genûgen die Funktionen g(u, v)= \K(u, v)\ und /(co)= —sig(A^)sina) der Vor-
aussetzung des Satzes 5. œ hat folglich in S eine 0- oder 7c-Stelle. Dies widerspricht
aber (1.9).

2) Wir setzen k=l/K. Fur den Gradienten von k erhalten wir:

(gradfc)2 T-T- \_k2u - 2 cos œkjc, + k2v~].
sin œ

Zusammen mit der Voraussetzung erhalten wir hieraus

kl - 2 cos cokukv + k2v^q2 sin2co. (3.1)

Wir bezeichnen mit S" den Streifen [a", b"~\ x R, wobei a", b" die gleiche Bedeu-

tung haben wie im Beweis des Satzes 5. Es folgt wie in jenem Beweis, dass im oberen
oder unteren Halbstreifen von S" die Ungleichungen (2.5) gelten. Im Halbstreifen, in
dem dies zutrifft, gilt fur den kleineren Eigenwert 1 — |cosco| der Matrix

(1 -cosaA
die Ungleicnung

-cosû) 1 /
1 — |cosco| > 1 — cos ô.

Aus (3.1) folgt nun

kl-2kukvcosœ + k2v q2
1 - cos ô<<u ~r K-v

weiter folgt:

1 — COS O

und somit

^/l — cos (5

Wir bezeichnen:

(3-2)

und c0 max {\k(u9
^/l — cos ô

Durch Intégration von (3.2) folgt fur den betrachteten Halbstreifen:

\k\<co + Ci\v\ d.h. [XI >
*

c0 + cx \v\
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Hieraus folgt wie im Beweis des Satzes 5, dass co im betrachteten Halbstreifen von
S" eine 0- oder 7i-Stelle hat; dies steht aber im Widerspruch zur Ungleichung (1.9).
Damit ist Satz 7 bewiesen.

Bemerkungen:
1. Der Satz von Hilbert ûber die Nichtexistenz vollstândiger Flâchen mit kon-

stanter negativer Gauss'scher Krûmmung folgt aus Satz 7, denn der Satz von Hilbert
ist ja aequivalent zu der Aussage, dass es in der hyperbolischen Ebene keine globalen
T-Netze gibt.

2. Beispiele fur vollstândige Flâchen im Raum mit einem globalen T-Netz und
mit K^O sind das Rotationsparaboloid z x2 + y2 mit K>0 und das hyperbolische
Paraboloid z — x2 — y2 mit K<0. Dièse beiden Flâchen sind Spezialfâlle der Schieb-
flâchen: x(u, v) a(u) + S(v); x(u, v) ist der Ortsvektor der Flâche, a(u), S(v) sind
die Ortsvektoren zweier glatter, sich schneidender Raumkurven. Auf allen Schieb-
flâchen bilden die Parameterlinien ein T-Netz.

4. Existenz einer Flâche mit konstanter, negativer Gauss'scher Kriimmung und abzâhlbar
unendlich vielen Randpunkten

SATZ 8. Es existiert eine zweidimensionale Riemannsche C™ — Mannigfaltigkeit
M mit folgenden Eigenschaften:

Y) M hat konstante, négative Krûmmung jST= — 1

2) M hat abzâhlbar unendlich viele Randpunkte1)
3) Es gibt eine isometrische C00—Immersion von M in den dreidimensionalen

Euklidischen Raum.

Wir beweisen diesen Satz, indem wir die Mannigfaltigkeit M konstruieren. Die der

Mannigfaltigkeit M zugrunde liegende topologische Mannigfaltigkeit, die wir eben-

falls mit M bezeichnen, definieren wir rekursiv : Mo sei das Quadrat [—1, 1] x [ — 1, 1]
in der x, j-Ebene; die Seiten von Mo seien die acht abgeschlossenen Hâlften der

Quadratseiten. Mn-l9 n eN, und die Seiten von Mn^1 seien schon definiert.
Mit Mn bezeichnen wir dann die Vereinigung von Mn^t mit den gleichschenkligen

Trapezen, die eine Seite von Mn_x als lângere Grundlinie haben, deren Schenkel mit
dieser Seite den Winkel n/2n+2 bilden, deren kûrzere Grundlinie gleich lang wie die
Schenkel ist und deren Inneres ausserhalb von Mn_! liegt.

Als Seiten von Mn definieren wir die abgeschlossenen Hâlften der Schenkel und
der kûrzeren Grundlinie.

Nun definieren wir M (J™=0 Mn9 wobei Mn das Innere von Mn bedeutet. Wir
bezeichnen noch M (J£L 0 Mn und W M — M. W besteht aus den Eck- bzw. Seiten-

mittelpunkten der Trapèze, enthâlt also abzâhlbar unendlich viele Punkte; wir nennen

x) Zur Définition der Randpunkte siehe Einleitung Seite 349.
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sie Windungspunkte. Der Mannigfaltigkeit M geben wir auf folgende Weise eine dif-
ferenzierbare Struktur: 5Ï sei das System der Teilmengen ÂcM, die Vereinigung
zweier lângs einer ganzen, bzw. halben Seite aneinandergrenzender Trapèze sind.
Dabei betrachten wir auch Mo als Trapez. A bezeichne das Innere der Menge Â; das

System U der Mengen A ist eine offene Uberdeckung von M. $ sei eine Abbildung von
M in die Euklidische w, f-Ebene mit folgenden Eigenschaften :

1) Jede Menge Â eS wird homoomorph auf zwei aneinandergrenzende Recht-
ecke je mit dem Flàcheninhalt tt/4 abgebildet, so dass die Seiten, bzw. Halbseiten der

Trapèze von Â in die Seiten, bzw. Halbseiten der Rechtecke ûbergehen (siehe Bemer-

kung 2 im Abschnitt 2.2).

2) $ (Mo) ist das Quadrat mit achsenparallelen Seiten, Inhalt n/4 und dem Null-
punkt als Mittelpunkt.

Bemerkungen:
1. Eine solche Abbildung kann man leicht konstruieren, indem man z.B. die

Trapèze geeignet in Dreiecke zerlegt und simplizial auf die entsprechend unterteilten
Rechtecke abbildet. Vgl. Fig. 1.

tlx

Fig.l

2. Die Restriktionen $„ von $ auf Mn sind stetig, ebenfalls die Restriktion <f> von
$ auf M. $ ist stetig bezûglich der auf M durch das Aneinandersetzen der Trapèze
definierten Identifizierungstopologie. Dièse Topologie ist feiner als die durch die

Topologie der Euklidischen Ebene induzierte. Beide Topologien induzieren jedoch
auf M und auf den Mengen Mn dieselbe Topologie. Bei den folgenden (Jberlegungen

beziehen wir uns auf die Identifizierungstopologie.
Wir ûbertragen nun mittels $ die Riemannsche Metrik der Euklidischen u, i;-Ebene

auf M. Die zugehôrige innere Metrik bezeichnen wir mit g. Nun erweitern wir g zu

einer Metrik g auf M (Zu dieser Erweiterung vgl. man H.-J. Kowalsky, Top. Râume,
Seite 195, Satz 32.3).

LEMMA 1. M ist als metrischer Raum vollstàndig.

Folgerung. Die Windungspunkte sind die einzigen Randpunkte von M.

Bevor wir dièses Lemma beweisen, stellen wir zwei Hilfsbetrachtungen an.

1. Die Gesamtheit der Trapèze, die in einem Windungspunkt w zusammenstossen,
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besteht aus einem Trapez To und zwei Folgen (Tf)feN, (T-)ieN von Trapezen, die

lângs einer Seite bzw. Halbseite aneinandergrenzen. Dabei bilden die Halbseiten von
To, die in w zusammenstossen, die lângere Grundseite von 7\ bzw. 7\'. Die Rechtecke

$(T2l) und $(T2i), i^l, sind kongruent zu <f>(T0); die Rechtecke $(T2i+1), />1,
sind unter sich kongruent, ebenso die Rechtecke (j)(T2i+1). Hieraus folgt, dass die

Windungspunkte isoliert sind.
2. Es sei a die Seitenlànge des Quadrates $ (Mo). Ist das Trapez Tin Mn enthalten,

so hat das Rechteck $(T) Seitenlângen ^a/2n. Nun sei T ein Trapez, so dass die

Lange einer Seite des Rechteckes $(T) kleiner als a/2n+l ist.

Behauptung. Dann gilt fur den Abstand zwischen T und Mn:q(T, Mn)>aln.
Beweis. Wir betrachten die eindeutig bestimmte Folge To, Tt,..., TN T anein-

andergrenzenderTrapèze, dieMnmit T verbindet, d.h. Ttc:Mn+i — Mn+i_l90^i^N.
Die kûrzere Seitenlànge des Rechteckes (j)(Ti) Ri sei a{\ si9 si seien parallèle

Seiten von Rt mit der Lange at. Da aile Rechtecke flâchengleich sind, ist at^a und die
andere Seitenlànge von Ri'istb t

a2lat. Dabei ist a^a\T und aN<a/2n+2 nach Vor-
aussetzung ûber T. k sei der kleinste Index, so dass ak^aN;k ist >2. Wir zeigen, dass

die Rechtecke Rk und Rk-2 mit Rk-i an den kûrzeren parallelen Seiten sk_u 4-i
zusammenstossen; daraus folgt dann ak=\ak-1 und

2 2 2

q (T, Mn) > q (Tk_2, Tk) bk. t — ^~ > ^~ > aT.
ak-i 2ak 2aN

Zunàchst ergibt sich, dass Rk-1 und Rk an der kûrzeren Seite ^_! zusammenstossen:
anderfalls hâtte nàmlich Rk die Seitenlângen ibk-1 a2/2ak-l und 2ak-l; wegen

ak-1>ak mûsste ak a2/2ak_l sein; daraus wûrde wegen ^.^a folgen ak^a/2 im
Widerspruch zu ak^aN<aj2. Somit ist afe_1 2afc und bk-l=a2lctk_1. Dann ist aber

Rk_t n Rk-2 ==sk-1> die zu sk parallèle Seite, denn sonst wâren Rk-2 und Rk kongruent,
also ak-2 — ak im Widerspruch zur Définition von k. Damit ist die Behauptung
bewiesen.

Beweis des Lemmas 1: (Pi)ies sei ein Cauchyfolge in M; man kann o.B.d.A.
annehmen, dass jeder Punkt pt im Innern eines Trapèzes Tt liegt (Falls ein Punkt pt
nicht im Innern eines Trapèzes liegt, kann man ihn durch einen im Innern eines

Trapèzes liegenden Punkt p\ ersetzen, so dass Q(Pi,p'i)<l/i ist).
Wie oben bezeichne at die Lange der kûrzeren Seite des Rechteckes <?(r£). Fur

das Infimum <5=inf{a£, /eN} gilt: <5>0. Anderfalls gâbe es nàmlich eine Teilfolge

W}*eN mit aik+i<a/2nk+1> wobei«fc= minl^/^eMj. Eine Folge mit dieser

Eigenschaft ist aber nach der Hilfsbetrachtung 2 keine Cauchyfolge, denn es wâre

N sei ein Index, so dass Q(ph pk)<àl% fur f,

In der abgeschlossenen 5/8-Umgebung 0 von pN gibt es wegen der Hilfsbetrachtung

1 hôchstens einen Windungspunkt w. Wir unterscheiden drei Fâlle :
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a) î? enthâlt keinen Windungspunkt. Die Restriktion $ \v ist dann eineindeutig;
$(Û) ist eine abgeschlossene Kreisscheibe, die in einem oder in zwei benachbarten
Rechtecken enthalten ist.

b) Û enthâlt einen Windungspunkt w und die Folge konvergiert gegen w.

c) Û enthâlt einen Windungspunkt w, aber die Folge konvergiert nicht gegen w.

Wir fûhren diesen Fall auf a) zurûck, indem wir mit <5' den Abstand zwischen w und
der Folge (pt) bezeichnen, mit N' einen Index, so dass Q(pj,pk)<ô'/2 fur j, k^N\
Auf die abgeschlossene ô'/2'Umgebung vonpN,9 kônnenwir die Uberlegung a) anwen-
den. Damit ist gezeigt, dass die Cauchyfolge (pt) konvergiert, und das Lemma 1 ist
bewiesen.

Auf M definieren wir nun mit Hilfe des Fortsetzungssatzes rekursiv eine stetige
Funktion co:M-+ R mit den beiden Eigenschaften:

(I) n/4-ô<œ0)<3tc/4 + S, wobei p eM, ô e(0, te/4).

(II) co \M ist eine Ck-Funktion (&=2, 3,..., oo), so dass fur jedes AetyL gilt:
d2/dudv(œo(j) |^1)(w, v) sm(coo(j) |^1(w, v)).

cof : $ (Mo) "^ R sei ^ie Lôsung der Gleichung

mit den Anfangswerten œ'(u, 0) n/2 und û/(0, v) — n\2.

Fur peM0 definieren wir nun co(p) œf o(j)(p).
Aus der Bernerkung 1 zum Fortsetzungssatz (Seite 17) folgt, dass co' in $>(Afo)die

Voraussetzungen des Fortsetzungssatzes erfûllt. co kann daher aufMt erweitert werden

so dass fur jedes Trapez TdM1 — Mo die Funktion œ 0$ \j1 : <? T) -> R der Gleichung
(*) genûgt und die Fortsetzungseigenschaft hat. Entsprechend erweitert man co

rekursiv auf ganz M. Dass co (I) und (II) erfûllt, folgt aus dieser Définition.
Mit cx> ist nun auf M eine Riemannsche Metrik mit konstanter, negativer Krûm-

mung K= — 1 gegeben, nâmlich durch den metrischen Tensor mit den Komponenten

(gu)
l cosco>) bezûglich des Atlas (% cj>).

\ COS CO x J
Wir bezeichnen die durch (gij) induzierte Metrik mit q.

LEMMA 2. Eine Punktfolge in M ist genau dann eine Cauchyfolge bez. der

Metrik q, wenn sie bezûglich der Metrik q eine Cauchyfolge ist.

Folgerung: Die Windungspunkte sind auch bezûglich der Metrik q die einzigen Rond-

punkte von M.
Beweis. Die Eigenwerte der Matrix (gtJ) sind 1 — |cosco| und 1 + |cosco|.

Da wegen (I) |cosco|<&<1, wobei k cos(n/4-ô), gilt:

du2 + 2 cos co du dv + dv2

l-k<l - |cosco| < --5 —, < 1 + |cosco| < 1 +k.
du + dv
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Fur die Abstânde q(Pi,p2)> Q (PuPi) zweier Punkte pl9p2eM erhalten wir deshalb:

u p2) <q{pup2) < -s/l + ko(pup2).

Hieraus folgt die Behauptung.
Die Existenz einer isometrischen C00 — Immersion: /:M-»R3 folgt aus Satz 4.

Danach gibt es nâmlich zu jedem AetyL eine bis auf Bewegung eindeutig bestimmte,
isometrische Immersion IA : A -> R3 ; das heisst aber, dass es erstens eine Immersion
Io : Mo -> R3 gibt und dass es zweitens zu einer auf Mn definierten Immersion eine
eindeutig bestimmte Erweiterung auf Mn+l gibt.

Bemerkung. Das Flàchenstûck / (Mo) ist ein Stûck der von Amsler in [2] dar-
gestellten Flâche.

Damit ist Satz 8 bewiesen.

5. T-NetzeaufRotationsflâchen

5.1. jF sei eine Rotationsflâche, die ihre Rotationsachse nicht schneidet. Wir
wâhlen das Koordinatensystem (x, y9 z) so, dass die z-Achse die Rotationsachse ist.

cp sei der Drehwinkel, s die Bogenlânge der Meridiankurve. Die Punkte der Flâche
sind dann gegeben durch:

F (r (s) cos cp9 r (s) sin q>, z (s)).

Dabei sind r (s) und z (s) mindestens dreimal differenzierbare Funktionen, die auf
einem offenen Intervall (a, b)cR definiert sind; r (s) ist positiv.

5.2. SATZ 9. JededurchzweibeliebigeFarallelkreisebegrenzteZonelâsstsichdurch
eine Schar von rotationssymmetrischen T-Netzen uberdecken. Faite das Supremum

sup{r(^), se (a, b)} endlich ist9 làsst sich sogar die ganze Flâche durch eine Schar von

rotationssymmetrischen T-Netzen uberdecken.

Wir beweisen den Satz mit Hilfe des Satzes 2, indem wir die Codazzigleichungen
fur den Spezialfall der rotationssymmetrischen Netze lôsen.

E9 F, G seien die ersten Fundamentalgrôssen:
E r2, F 09 G= 1. k9 \i9 v seien die Komponenten des Netztensors.
Die Gleichung des Netzes in der cp, £-Ebene lautet somit :

À dcp2 4- 2fi dcp ds + v ds2 0. (5.1)

Der Tensor sei gemâss Satz 2 normiert:

Êï^¥ -1' also "2-Av r2- <5-2>
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Die Codazzigleichungen lauten :

r(K-^) r(r2v + X)

r (ft - v,) - \it

(• bedeutet d/ds).

(5.3)

(5.4)

Wir machen den Ansatz
Aus 5.4 folgt dann: rfis + r=0, also rji c, c konst. und somit

Setzen wir (5.5) in (5.2) ein, so erhalten wir fur v:

c2-r4
v

Xr2

(5.5)

(5.6)

(Im Fall 1=0 folgt aus (5.2) und (5.4) r=const.; man erhàlt die T-Netze auf der
Zylinderflâche, deren eine Schar die Parallelkreise sind). Einsetzen von (5.6) in (5.3)
ergibt nach einer kurzen Umformung:

Dies ist eine lineare Gleichung fur X2. Die Lôsung lautet:

X 7- {r2 - kf + k2-c2 (5.7)

wobei k eine positive Integrationskonstante ist mit k2 > c2.

Setzen wir (5.7), (5.6) und (5.5) in (5.1) ein, so erhalten wir die Gleichung fur das

T-Netz:

'-(r2- k)2 + k2-c2dtp2 + 2- dtp ds
r

c2-r4

r2j-(r2-k)2+k2-c2

(5.8)

Bei gegebenen Konstanten k, c ist das Netz auf dem Teil der Flâche definiert, wo
der Radikand in (5.8) positiv ist, d.h. dort, wo

k - Jk2 - c2 <r2<k + Jk2~c2. (5.9)
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Die Lôsungen von (3.8) sind die beiden Kurvenscharen :

dç " w ds. (5.10)
()J(2()k)2 + k22

[a\ Z/]<=(a, b) sei ein abgeschlossenes Intervall im Definitionsbereich der Funktion
r (s). R sei der grosste Parallelkreisradius in der Zone zwischen den Parallelkreisen
mit den Radien r {a') und r {b')\ i£ max{r (s), se[a', b'~\). Setzen wir in (5.9) c 0,

so folgt, dass es zu jeder Konstanten k>R2/2 ein in der ganzen Zone definiertes
T-Netz gibt. (Wie weiter unten gezeigt wird, bedeutet c 0, dass die Meridiane die
Netzwinkel halbieren). Falls das Supremum der Parallelkreisradien der ganzen
Flàche, Rs, endlich ist, so gibt es entsprechend zu jedem k>R2/2 ein auf der ganzen
Flâche definiertes T-Netz. Damit ist Satz 9 bewiesen.

Wir zeigen nun noch, dass man von einem rotationssymmetrischen T-Netz statt
der Konstanten c und k die Winkel vorgeben kann, die die beiden Scharen mit einem

Parallelkreis bilden.
Die erste Schar des Netzes sei die Schar mit dem Pluszeichen in (5.10), die zweite

Schar die Schar mit dem Minuszeichen. \^1 (s) sei der Winkel zwischen der ersten

Schar und dem Parallelkreis an der Stelle s; die Richtungen seien so festgelegt, dass

fur die erste Schar ds>0 und fur den Parallelkreis d(p>0 ist. Entsprechend sei il/2(s)
der Winkel zwischen der zweiten Schar und demselben Parallelkreis. Berechnet man
die Cosinus von \px und \j/2 nach der ûblichen Formel, so erhàlt man:

— c 4- r2 (s) — c — r2 (s)v '—, cosil/2(s)= w (5.11)
{)Jl{k

Fur c 0 folgt hieraus cos\j/1 — cos ^2, also i/^ n — \j/2 ; d.h. die Winkel zwischen

den beiden Scharen werden durch die Meridiane halbiert. (5.11) stellt fur jeden Para-

meterwert s ein Gleichungssystem fur c und k dar, dessen Lôsung folgendermassen
lautet:

2
sin {\jj2 + ^0 2

sin2 \j/2 + sin2 \j/l
If z^, f

sin (\j/2 - \l/xy sin2

Dies ist leicht nachzuprûfen, wenn man beachtet, dass

sin2 ^! + sin2 ij/2 1 — cos (\j/2 + ^i) cos {\j/2 — ^x).

Damit ist die obige Behauptung bewiesen. Es sei noch bemerkt, dass es zu 1/^ 0, n
oder ^2=05 7i ausser beim Zylinder kein T-Netz gibt.

5.3. Aus der Ungleichung (5.9) folgt, dass die Radien der Parallelkreise einer
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Flache, auf der es ein globales T-Netz gibt, das Losung von (5 8) ist, beschrankt sind

sup {r (s), se (a, b)} < oo

Allgememer gilt der

SATZ 10 Auf einer vollstandigen Rotationsflache F, die die Rotationsachse nicht
schneidet und auf der es ein globales T-Netz gibt, sind die Radien der Parallelkreise
beschrankt

Bemerkung Der Satz ist falsch, wenn die Flache die Rotationsachse schneidet,
oder wenn sie nicht vollstandig ist Ein Beispiel fur den ersten Fall ist das Rotations-
paraboloid z=x2 + y2, auf dem die Kurven x=const, j> const ein T-Netz bilden,
ein Beispiel fur den zweiten Fall ist dieselbe Flache, wenn der Punkt z 0 herausge-

nommen wird
Beweis Auf F sei ein globales T-Netz gegeben, nach Satz 1 zerfallt das Netz also

global in zwei Kurvenscharen Dem Netz auf F entspncht m der cp, s-Ebene, der uni-
versellen Oberlagerung von F, ein gemass Satz 3 global kartesisches T-Netz, das unter
den Decktransformationen Dv namlich den Translationen (cp, s)->((p + i2n, s)91 eZ?

in sich ubergeht. Wir nennen die eine Schar des Netzes m der cp, s-Ebene die erste

Schar, die andere die zweite

c0 sei Kurve der ersten Schar, die durch den Punkt (0, 0) geht
Behauptung. Entweder sind die Kurven cx Dxc0 der ersten Schar, die durch die

Punkte (iln, 0), leZ, gehen, aile voneinander verschieden, oder sie fallen aile mit c0

zusammen.
Zum Beweis nehmen wir an, es gebe eine Zahl m ^ 1 so, dass cm c0 ist Wir bewei-

sen, dass dann cx c0 ist, also aile cx zusammenfallen Da c0 bei der Translation Dm in
sich ubergeht, besteht c0 aus dem Teilbogen c'o von (0, 0) bis {min, 0) und den aus
c'Q durch Translation in <p-Richtung entstehenden Bogen Dmnc'o fur neZ (c0 ist also m
der q>, s-Ebem penodisch) Daraus folgt, dass cp auf c0 das Intervall (— oo, +oo)
durchlauft und s ein abgeschlossenes Intervall [sl9 s2~]* cQ liegt also ganz m dem
Streifen S. st ^s^s2 der q>, .y-Ebene und enthalt einen Teilbogen Cq, der zwei Punkte
(<Pu si)> (<P2> si) verbindet. Auf der Kurve ct —D^Cq durchlauft cp ebenfalls aile Werte

von — oo bis + oo ; da c'q den Streifen S zerlegt, haben c0 und cx einen Punkt gemein-
sam, und da beide Kurven zu derselben Schar gehoren, ist cQ c1.

Wir bezeichnen nun entsprechend den cx mit kx die Kurven der zweiten Schar durch
die Punkte (i2n9 0). Nach obigem genugt es, den Satz 11 fur folgende zwei Falle zu
beweisen:

(a) aile cl91 eZ, und aile kx sind verschieden

(b) die cx sind verschieden, die kx fallen aile zusammen.
Der Fall c0 ct und ko=k1 kann nicht auftreten, da dann c0, k0 wegen der Trans-

lationsinvananz mehr als einen Schnittpunkt hatten.
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Fall (a). Ptj sei der Schnittpunkt von ct und kj. Wir fùhren noch die folgende
Bezeichnung ein : Liegen zwei Punkte P, Q auf einer Netzlinie, so bezeichnen wir die

Lange des Bogens zwischen P und Q mit PQ. Die Lângen PitPii+l9 ieZ, sind aile

gleich lang, da die Bôgen durch die Decktransformationen ineinander ùbergehen;

hieraus folgt, dass fur aile 7 eZ POjPOj+1 PooPol ist, denn wegen der Tschebyscheff-

eigenschaft des Netzes ist PojPoj+1 PjjPjj+v Entsprechend ist Pi0Pi+10

PqoPio- Zwei aufeinanderfolgende Kurven kj,kj+1 schneiden also auf c0 fur aile j
Bôgen gleicher Lange aus; entsprechend schneiden ci9 ci+l auf k0 gleiche Lângen aus.

Hieraus folgt, dass das Gitter, das durch die Kurven cb kj gebildet wird, die ganze
q>, s-Ebene ûberdeckt (man beachte, dass die Kurven c0, k0 isometrisch den Koordi-
natenachsen der TschebyscherT-Parameterebene entsprechen). Fur jede Masche des

Gittersgilt:
- die Lângen gegenûberliegender Seiten sind gleich lang und zwar sind sie entwe-

der gleich ll POopoi oder gleich /2 P00P10;

- die beiden Eckpunkte Pip Pi+ij+1 liegen auf einer Parallelen zur <p-Achse. Die
beiden Punkte ûberlagern denselben Punkt von F.

Wir betrachten das Bild A einer beliebigen Masche - gebildet von ch ci+l9 kj9

kj+1 - unter der Ûberlagerungsabbildung. Die Bilder der Eckpunkte Pip Pij+u
Pt+u+u Pi+lj seien der Reihe nach T9 U, V, W. Es ist T= V. Die Bôgen TUV und

VWT sind also geschlossen; sie haben die Lange /=/1 + /2. rA sei das Minimum der

Radien der Parallelkreise, die mit A Punkte gemeinsam haben, r'A das Maximum. Die
normale Projektion p des Bogens TUVW in die x, j-Ebene liegt innerhalb des Kreis-

ringes, dessen innerer Randkreis den Radius rA und dessen âusserer Randkreis den

Radius r'A hat. Beide Randkreise haben mit p mindestens einen Punkt gemeinsam.
Die Differenz der Radien ist folglich kleiner als die Lange von p, die nicht grôsser als

die Lange des Bogens TUVW ist, d.h. rA-rA<2l, also

r'A<rA + 2l. (5.12)

Nun ist aber der Umfang des innern Randkreises nicht grôsser als die Lange der

Projektion des geschlossenen Bogens TUV, wie man leicht sieht, wenn man das Bogen-
element in der x, j-Ebene in Polarkoordinaten darstellt. Es folgt : 2nrA < /. Zusammen

mit (5.12) erhalten wir:

r'A<±- + 2l. (5.13)
2n

Da /fur aile Maschen gleich ist und da jeder Punkt der Flâche Fin einer Masche liegt,
ist mit (5.13) der Satz 10 fur den Fall (a) bewiesen.
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Fall (b). Die Kurven ct sind verschieden und die Kurven kj fallen mit der Kurve
k0 zusammen.

Die Schnittpunkte Pi0 der Kurven ct mit k0 sind die Punkte (Un, 0). Pol sei

ein beliebiger Punkt auf c0, kt die Kurve der zweiten Schar durch P01'Pn seien

die Schnittpunkte der ct mit kx. Wegen der Tschebyscheffeigenschaft sind die Bogen
Poo Pol und Pi0 Pn gleich lang; da die ct durch Translation in <p-Richtung auseinander

hervorgehen, liegen die Punkte Pn folglich auf der Parallelen zur cp-Achse durch Pou
ûberlagern also denselben Punkt von F. kx ùberlagert also wie k0 eine geschlossene

Kurve. Da P01 beliebig war, folgt: Die Kurven der zweiten Schar auf F sind aile ge-
schlossen und haben wegen der Tschebyscheffeigenschaft des Netzes die gleiche Lange.

Fur eine beliebige Kurve k der zweiten Schar auf F bezeichnen wir entsprechend
zum Fall (a) mit rk das Minimum der Radien derjenigen Parallelkreise, die mit k min-
destens einen Punkt gemeinsam haben, mit rk das Maximum dieser Radien. Wie in (a)
erhâlt man die Ungleichungen rk — rk<l, 2nrk^l und hieraus rk<l+l/2n wobei / die

Lange von k ist.
Damit ist der Satz auch fur den Fall (b) bewiesen.
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