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Globale Tschebyscheff-Netze auf Riemannschen Mannigfaltigkeiten

und Fortsetzung von Flichen konstanter negativer Kriimmung

von CH. WISSLER

Einleitung

Die vorliegende Arbeit besteht aus drei Teilen:

Den Ausgangspunkt des ersten Teiles bildet der Satz von Hilbert [1], der besagt,
dass die hyperbolische Ebene keine isometrische Immersion in den dreidimensionalen
Euklidischen Raum zulésst, oder anders ausgedriickt, dass es im dreidimensionalen
Euklidischen Raum keine vollstindigen Fldchen mit konstanter negativer Kriimmung
gibt. Die Flichen mit konstanter negativer Kriimmung haben bekanntlich die Eigen-
schaft, dass das Netz der Asymptotenlinien ein Tschebyscheff-Netz bildet, d.h. ein Netz,
bei welchem in jedem Netzviereck gegeniiberliegende Seiten gleich lang sind. Wegen
dieser Eigenschaft ist der Satz von Hilbert aequivalent zu der folgenden Aussage: In
der hyperbolischen Ebene gibt es keine globalen Tschebyscheff-Netze. Diesen Satz
werden wir verallgemeinern durch den folgenden Satz (Abschnitt 3): Auf einer orien-
tierbaren, zweidimensionalen, vollstindigen Riemannschen Mannigfaltigkeit der Dif-
ferenzierbarkeitsklasse C?>, deren Kriimmung K von Null verschieden ist und auf der es
ein globales Tschebyscheff-Netz gibt, gilt:

1

inf|K| =0, sup gradk =90 *

Der Beweis beruht auf einer Verallgemeinerung des Beweises, den Holmgren [3] zum
Satz von Hilbert gegeben hat (Abschnitt 2.1).

Bei den Mannigfaltigkeiten mit negativer Kriimmung sind die Bedingungen (*)
ganz dhnlich den Bedingungen von Efimov, die bei der Frage nach der Existenz einer
isometrischen Immersion in den dreidimensionalen Euklidischen Raum auftreten:
Wie N. V. Efimov [5, 6] bewiesen hat, ist fiir die Existenz einer solchen Immersion
notwendig

inf|[K| =0 wund sup |grad =00.

1
J-K
Bei positiv gekrimmten Flichen im Raum kann grad 1/,/K beschrdnkt sein; ein
Beispiel hierfiir ist das Paraboloid z=x2+ y2.

Der Zweite Teil schliesst an die Arbeit von M. H. Amsler [2] iiber die Singulari-
titen der Flichen mit konstanter negativer Krimmung im Raum an. Amsler beweist
in dieser Arbeit, dass jede reguldre Fldche mit konstanter negativer Gauss’scher
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Krimmung unendlich viele Randpunkte hat. Wenn die Flidche analytisch ist, oder
wenn sie nur endlich viele Verzweigungspunkte hat (zur Definition der Verzweigungs-
punkte vgl. [2]), so enthédlt der Rand mindestens einen Kurvenbogen, der im Falle der
Analytizitdt unendlich oft differenzierbar ist. Aus der Analytizitit der Fliche oder aus
dem Vorhandensein von nur endlich vielen Verzweigungspunkten folgt also, dass die
Menge der Randpunkte die Machtigkeit des Kontinuums hat. Es stellt sich nun die
Frage, ob Flichen mit konstanter negativer Kriimmung im Raum existieren, deren
Rand aus nur abzidhlbar unendlich vielen Randpunkten besteht. Diese Frage werden
wir durch die Konstruktion eines Beispiels in folgendem Sinne beantworten (Ab-
schnitt 4): Es gibt eine unendlich oft differenzierbare Riemannsche Mannigfaltigkeit
M mit folgenden Eigenschaften:

M hat konstante negative Kriimmung, die Menge der Randpunkte von M ist abzdihl-
bar unendlich, es gibt eine isometrische C *-Immersion von M in den dreidimensionalen
Euklidischen Raum.

Dabei ist ein Randpunkt von M ein Punkt, der zu der vollstindigen Hiille von M
beziiglich der inneren Metrik gehort, der aber nicht in M liegt.

Die Konstruktion des Beispieles beruht auf dem in Abschnitt 2.2 bewiesenen
Fortsetzungssatz liber die Losungen der hyperbolischen Differentialgleichung w,,=
f(w), die eine Verallgemeinerung der Gleichung w,,=sinw ist. Letztere Gleichung
stellt das Theorema egregium fiir Flichen mit der Kriimmung K= —1 dar. u, v sind
dabei Asymptotenlinienparameter, @ ist der Winkel zwischen den Asymptotenlinien.
Zum Vergleich sei noch auf den allgemeineren Fall der mindestens zweimal stetig
differenzierbaren Flichen im Raum mit negativer, von Null weg beschriankter Kriim-
mung hingewiesen: Wie N. V. Efimov [5] bewiesen hat, gibt es auch unter diesen
Flichen keine vollstindigen. Es gibt aber solche, die nur endlich viele Randpunkte
haben: E. R. Rozendorn [8] hat ein Beispiel mit vier Randpunkten gefunden.

Im dritten Teil werden Tschebyscheff-Netze auf Rotationsflichen vom Zylinder-
oder Torustyp, also ohne Schnittpunkte mit der Achse untersucht. Das Ergebnis
besteht aus den beiden folgenden Sdtzen, von denen sich der erste auf rotationssym-
metrische Tschebyscheff-Netze bezieht, der zweite auf beliebige Tschebyscheff-Netze
(Abschnitt 5):

Jede durch zwei beliebige Parallelkreise begrenzte Zone ldsst sich durch eine Schar
rotationssymmetrischer Tschebyscheff-Netze iiberdecken. Falls das Supremum der
Parallelkreisradien endlich ist, ldsst sich sogar die ganze Fliche durch eine Schar von
rotationssymmetrischen Tschebyscheff-Netzen iiberdecken.

Auf einer vollstindigen Rotationsfliche, die die Rotationsachse nicht schneidet und auf
der es ein globales Tschebyscheff-Netz gibt, sind die Radien der Parallelkreise beschrdnkt.

Es werden zunichst im Abschnitt 1 bekannte Eigenschaften der Tschebyscheff-
Netze und der Flichen mit konstanter negativer Kriimmung zusammengestellt (Sitze
1-4). Wir beschrinken uns auf Netze, die global in zwei Kurvenscharen zerfallen.
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Im Abschnitt 2.1 werden die Holmgrenschen Uberlegungen auf den Fall der allge-
meineren Differentialgleichung (2.1) ®,,= g (4, v) f (w) mit gewissen Voraussetzungen
iiber f, g verallgemeinert (Satz 5).

Der Abschnitt 2.2 enthdlt den Beweis des entscheidenden Fortsetzungssatzes
(Satz 6), welcher gestattet, eine Losung der Differentialgleichung (2.8) w,,= f (w),
deren Werte in einem Intervall 7 mit f (w)>0 liegen und die in einem Rechteck A
gegeben ist, so in ein benachbartes Rechteck A * fortzusetzen, dass die Werte von w in
I bleiben. A * hat dabei eine auf die Hélfte verkiirzte Seite mit A gemeinsam und einen
festen, nur von f abhédngigen Flidcheninhalt. Beim Beweis spielt die ,,Fortsetzungs-
bedingung” eine wichtige Rolle: w wird durch eine Funktion ¢ ersetzt, die w (aber
nicht die Ableitungen von w) approximiert, wobei die Ableitungen von ¢ feste Schran-
ken haben.

Die Abschnitte 3 und 4 enthalten als Folgerung die Aussagen tiber Mannigfaltig-
keiten mit globalem Tschebyscheff-Netz (Satz 7) und die Konstruktion der Fliche
mit abzdhlbar vielen Randpunkten (Satz 8). Abschnitt 5 enthilt die Ergebnisse tiber
Rotationsflichen mit Tschebyscheff-Netz (Sédtze 9 und 10).

1. Tschebyscheff-Netze

1.1. Auf einer zweidimensionalen, orientierten Mannigfaltigkeit betrachten wir
Kurvennetze, die durch einen Netztensor definiert sind, d.h. die lokal als Lésung der
Gleichung

Y a;dut du’ =0 (1.1)

darstellbar sind; dabei sind u!, ¥* lokale Parameter, a;; (u?, u?) die Komponenten
eines symmetrischen, kovarianten Tensors zweiter Stufe mit det (a;;) <O.

SATZ 1. Ein durch einen Netztensor definiertes Kurvennetz zerfillt global in zwei
Scharen.

Beweis. Wir betrachten die quadratische Form Q=) a;; du’ du’ in der Tangen-
tialebene eines festen Punktes. Die beiden Geraden, auf welchen Q den Wert Null
annimmt, teilen die Ebene in vier Quadranten: In je zwei gegeniiberliegenden nimmt
0 positive, bez. negative Werte an. Durch die Orientierung ist in der Tangentialebene
ein positiver Drehsinn definiert. Die beiden Nullgeraden von Q konnen nun folgender-
massen unterschieden werden: Die eine Nullgerade iiberstreicht bei einer Drehung im
positiven Sinne zuerst die Quadranten, in welchen Q positiv ist, die andere Nullgerade
die Quadranten, in welchen Q negativ ist. Nach diesem Kriterium konnen die durch
(1.1) definierten Richtungsfelder global unterschieden werden.

Bemerkung. Zwei Netztensoren a;;, b;;, die sich nur um ein Vielfaches vonein-
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ander unterscheiden: q;;=Ab,;, wobei 4 eine reellwertige, positive oder negative Funk-
tion auf der Mannigfaltigkeit ist, definieren das selbe Netz.

1.2. DEFINITION. Ein Netz heisst Tschebyscheff-Netz (T-Netz), wenn in jedem
Netzviereck gegeniiberliegende Seiten gleich lang sind.

g:;(u’, u*) seien die Komponenten des Fundamentaltensors. Die Parameterlinien
bilden genau dann ein T-Netz, wenn (0/0u?)g, (4", u*)=0 und (0/0u*)g,,(u*, u*)=0.
In diesem Fall kann man o0.B.d.A. annehmen, dass u!, u? die Bogenlingen der u!, u>-
Linien sind, d.h. g;;=1, g,,=1 und g,,=cosw, wobei w der Winkel zwischen den
Netzlinien ist. Die erste Fundamentalform hat somit die einfache Gestalt

I: (du')®+2cosw du' du? + (du®)? (1.2)
Fiir die Gauss’sche Kriimmung erhédlt man aus dem Theorema egregium die Bezie-
hung:

*w

———=— K sinw 1.3

ou' ou? (13)
Wir fithren noch die folgenden Bezeichnungen ein: a=det(q;;), g=det(g;;),

SATZ 2. Ein Netztensor a;; ist genau dann Netztensor eines T-Netzes, wenn der
normierte Tensor A; j=\/ g/ —a a;; die Codazzigleichungen erfiillt.

Beweis. Wir wihlen lokale Parameter so, dass die Parameterlinien die Netzlinien
sind; dann ist 4;; =4,,=0 und die Codazzigleichungen lauten:

0 0
—5511412 + Ay, (1 —T3,)=0, 'a—u‘iAu +A,,(I',—T3,)=0. (1.4)

Wir beniitzen nun, dass det(4,;)/g=—1, d.h. 4;, =./ g ist. Setzen wir dies in (1.4) ein,
so erhalten wir:

i, = __ _a_ + _f_ =0
12 = 812 e 811 T 811 3l 822
- (1.5)

0Q | = 0Q | —

" B 0 G,
2I'i, = -] 822 5L7g11 —812&7322 =0,

woraus unmittelbar (6/0u?)g;, =0 und (9/0u')g,,=0 folgt.
Bemerkung. u', u® seien beliebige, lokale Parameter in der Umgebung des Punktes

P, @', 7 seien Parameter in der selben Umgebung, so dass das Parameternetz ein
T-Netz ist; P habe in beiden Parametersystemen die Koordinaten 0/0. Aus den Trans-
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formationsformeln der I'j, folgt wegen I'},=0 (vgl. (1.5)) einerseits, dass die Para-
metertransformation u'= f(i@*, @?), i = 1,2, den Gleichungen geniigt:

aZfl (221’ L-lz) 2 L L afi{dl, 122) af_] (al’ 122)
Tawar T, E, MU OIS B x T T =,
I=1,2.

Dies ist ein quasilineares, hyperbolisches System mit gleichem Hauptteil ([10]S.323).
Hieraus folgt andererseits geméss dem Existenz- und Eindeutigkeitssatz fiir die Losun-
gen des charakteristischen Anfangsproblems: Zu gegebenen Anfangskurven (£ (iz!, 0),
f2(@@*', 0)) und (£1(0, #*), £2(0, @?)), die sich in P unter einem von Null und = ver-
schiedenen Winkel schneiden, gibt es in einer Umgebung von P genau eine Parameter-
transformation u* = f* (a',i?),u* = f (4", #*), so dass die #'-Linien ein T-Netz bilden.
Auf Grund dieses Satzes erhdlt man z.B. alle T-Netze in der Euklidischen Ebene,
indem man zwei sich schneidende Kurven gegen einander parallel verschiebt.

SATZ 3. Auf einer orientierbaren, einfach zusammenhdngenden, vollstindigen,
zweidimensionalen Riemannschen Mannigfaltigkeit ist jedes global definierte T-Netz
global kartesisch, d.h. es gibt einen Homdéomorphismus von der Mannigfaltigkeit auf die
Euklidische Ebene, der das T-Netz auf das kartesische Netz der Ebene abbildet.

Beweis. Wir werden zeigen, dass jede Kurve der einen Schar mit jeder Kurve der
andern Schar genau einen Schnittpunkt hat. Daraus folgt, dass das Netz global kar-
tesisch ist.

M kann nicht kompakt sein, ist also homdomorph zur Euklidischen Ebene. Nach
Sédtzen aus der Bendixonschen Theorie (vgl. Kaplan [4]) folgt, dass keine Kurve
geschlossen ist und dass sich die Kurven aus verschiedenen Scharen hochstens einmal
schneiden. Wir zeigen: Je zwei Kurven aus verschiedenen Scharen schneiden sich
mindestens einmal. Es seien ndmlich ¢, eine Kurve der ersten Schar, k, eine Kurve der
zweiten Schar, die sich in O schneiden. P sei ein Punkt, der nicht auf ¢, oder k, liegt;
¢, k, seien die Kurve der ersten, bez. der zweiten Schar durch P. ¢p schneide &, in Q.
Behauptung: Dann schneidet auch kpc, in einem Punkt S. Man kann ndmlich
0.B.d.A. annehmen, dass alle Kurven k. durch Punkte P’, die auf ¢, zwischen Q und
P liegen, c, schneiden. (P,) sei eine gegen P konvergente Folge, so dass die Bogen-

Y i !
lingen QP, auf ¢, monoton zunehmen. S, seien die Schnittpunkte von kp. mit c,. Die

Lingen é;’,,’ und ES; sind gleich, also ist OS, <QP. Wegen der Vollstindigkeit von
M konvergiert die Folge S, gegen einen Punkt S, und wegen der Regularitidt der
zweiten Schar schneiden sich kp und c¢p in S.

A sei die Menge der Punkte P ¢ M, fiir welche ¢, und kpk,, bez. ¢, schneiden. 4
ist wegen der Regularitdt der beiden Scharen offen. Es sei R ein Haufungspunkt von
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A. In einer geniigend kleinen Umgebung von R kann man dann ein Netzviereck und
einen Punkt P ¢4 finden, so dass P und R Ecken dieses Netzviereckes sind. Aus dem
vorher Bewiesenen folgt, dass R ¢4, d.h. A=M (vgl. Bieberbach [9] und fiir einen
etwas allgemeineren Fall Efimov [7]).

Bemerkung. Auf Grund des bewiesenen Satzes kann man auf M globale T-Para-
meter u, v einfiihren, indem man die eine Schar isometrisch auf die Parallelen zur
u-Achse und die andere Schar isometrisch auf die Parallelen der v-Achse abbildet.

1.3. Auf den Flichen (mindestens dreimal stetig differenzierbar) mit negativer
Gauss’scher Kriimmung K im dreidimensionalen Euklidischen Raum ist das durch
den zweiten Fundamentaltensor (L;;) definierte Netz das Netz der Asympotenlinien.
Wenn K=const. <0 ist, bilden die Asymptotenlinien nach Satz 2 ein T-Netz, da ja

_ et (Ly;)
~ det (gi;)

und 1// — K(L;;) fiir konstantes (und nur fiir konstantes) K die Codazzigleichungen
erfillt.

Es sei jetzt F eine Fliche (Differenzierbarkeitsklasse C%, ¢>3) mit K= —1; u, v
seien lokale Parameter, so dass die Parameterlinien die Asymptotenlinien sind: es ist
also L,;=L,,=0. Aus (1.6) folgt unter Berlicksichtigung von (1.2): L;, = +sinw. Fiir
die zweite Fundamentalform erhélt man also:

(1.6)

II: +2sinwdudv. (1.7)

Sowohl die erste (1.2) als auch die zweite (1.7) Fundamentalform sind also nur von
der einen Grosse w abhingig, welche Losung der aus (1.3) folgenden Gleichung

W,y = SN (1.8)
ist und der Nebenbedingung
O<w<m (1.9)

geniigt. Hierauf beruht der folgende Satz:

SATZ 4. In einem einfach zusammenhdngenden, offenen Gebiet G der u, v-Ebene
sei die Funktion ®:G—R(C?"2, q=3) Lisung der Gleichung (1.8) und geniige der
Nebenbedingung (1.9). Dann gibt es bis auf Bewegung genau eine Fliche F (C?) mit
der Gauss’schen Kriimmung K= —1, so dass o (u, v) der Winkel zwischen den Asympto-
tenlinien ist.

Beweis. Man definiere die Fundamentalformen gemiss (1.7) und (1.2). Wegen (1.9)
ist g41 82, — &>, >0. Die Behauptung folgt nun aus dem Fundamentalsatz der Flichen-
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theorie zusammen mit einer Monodromieiiberlegung; die Integrabilitdtsbedingungen
sind mit (1.8) erfiillt.

2. Der Satz von Holmgren und der Fortsetzungssatz

2.1. Die Gleichung (1.3) ist bei gegebener Gauss’scher Kriimmung K (4, v) eine qua-
silineare hyperbolische Differentialgleichung fiir w. Die Charakteristiken sind die Ge-
raden u=const. und v=const.

Wir betrachten nun eine etwas allgemeinere Gleichung vom selben Typ:

@y, = g(u, v) f () (2.1)

und beweisen den folgenden, im Falle der Gleichung (1.8) von Holmgren stammenden
Satz iiber die Losungen in einem charakteristischen Streifen S=[a, b] xR.

SATZ 5.

Voraussetzungen. — f:R — R sei eine mindestens einmal stetig differenzierbare Funk-
tion mit der Eigenschaft f(t)#0 fir te (0, =),

— g: S — R sei eine mindestens einmal stetig differenzierbare Funktion mit g (u, v) >
1/(co+ ¢y |v]), wobei c, eine positive, ¢, eine nicht negative, reelle Zahl ist,

— :S— R sei eine Losung von (2.1) mit w(u, 0)e(0, n) fiir a < u < b.

Behauptung. Das Supremum

o = sup{|v|, w(u,v)e(0,n) fir (u,v)ela,b] x [0, v],veR}

ist endlich, d.h. w hat im Streifen S mindestens eine 0-oder 7-Stelle.

Beweis. u, sei eine beliebige Stelle in [a, b]. Es sind drei Fille zu unterscheiden,
je nachdem, ob die erste partielle Ableitung w, (g, 0) >, < oder =0 ist.

1. @,(uy, 0)>0. Es gibt dann ein u, enthaltendes Intervall [a’, '], in welchem
o, (4, 0)>0 ist. Wir zeigen, dass die Beschrinkung von w auf den Streifen S’ = [d’, b']
x R in S’ eine 0- oder eine n-Stelle hat. [a”, b"] sei ein in [4’, "] enthaltenes Intervall,
so dass @' <a”"<b"<b'. Es gilt:

O<w(@,0)<w(@,0)<w(’,0)<w(d,0)<m. (2.2)

& sei die kleinere der beiden Zahlen w(a”,0)—w(a’,0) und w(b’, 0)—w(d", 0).
Nach Voraussetzung ist f (¢)20 fiir € (0, #). Wir nehmen zuerst f (¢)>0 an und
bezeichnen

o' =sup{v|w(u,v)e(0,n) fir (u,v)ela’,d]x[0,v],v>0}.

Integriert man (2.1) iiber das Rechteck mit den Ecken (@', 0), (¢, 0), (@, v), (@', v),
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0<wv<o’ so erhidlt man

w(@,v)—w(d,v)=w(@",0)—w(d,0)+ f f g(u, v') f(w(u,v)) du dv'
a 0
woraus folgt:

w(a’,v)>34. (2.3)

Entsprechend erhdlt man durch Integration iiber das Rechteck mit den Ecken (5", 0),
(®',0), (b, v), (b", v)

o, v)<n-94. (2.4)

A sei die Menge: [a”, b"] x [0, ¢’).
Fiir (4, v)eA folgt aus (2.1):
o, (u, v) = w,(u, 0) + f g(u,v") f(w(u,v))d' > w,(u,0)>0.
0

Dies ergibt zusammen mit (2.3) und (2.4) fiir (u, v)e 4
d<w(@,v)<o(v)<o(d’v)<n-9. (2.5)

Es sei p=min {f (¢) | te[, n—5]}.
Wir integrieren nun (2.1) iiber das Rechteck mit den Ecken (@, 0), (b", 0), (5", v),
(a”, v), wobei v<o’ ist und schitzen die rechte Seite nach unten ab:

[w(d",v) — w(a", v)] — [w(d",0) — w(a”, 0)]

b v b’ v
' ; ' J , > (2.6)
=\||guv) flo(u,v)) dud' > du dv' .
a0 2 0

co + ¢yt
Hieraus folgt:
o " n 1 cl
fir ¢;,>0: 7> u((d"—a")—log{1l+—v
€1 Co
bll — all
fiir ¢; =0: 7z>EL———-——-v
Co
und weiter
c Ry 4 ]
fiir c; >0: v< ;3 [exp(m) - 1]
. —
2.7
fii 0 - Tico @7
ire;=0: v<————r.
Cl ”(bll — al/)
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Falls f(¢) <0, fithren wir die folgende Koordinatentransformation durch: u=4, v=
— 0. Wir setzen w(u, v)=w(u, —d)=a(d, 0). Es folgt: @;(d, )= —w, (i, —D)=
—f (@7, ©))g, — ).

Die Funktionen f(@w)=—f(®) und g4, v)=g (@, —¥) erfiillen die Vorausset-
zungen des Satzes 8, und es ist @;(u,, 0)>0 und f (@)> 0. Diesen Fall haben wir aber
soeben behandelt.

2. w,(u,, 0)<0. Diesen Fall fithren wir durch die Koordinatentransformation
u= —1, v="0 auf 1. zuriick.

3. @,(ug, 0)=0. Wegen (0/0v) o, (ug, v)=g (ug, v) f( (g, v)) #0 ist fiir eine
geniigend kleine positive Zahle w, (uq, ) #0. Durch die Transformation =u, t=v+¢
wird auch dieser Fall auf 1. zuriickgefiihrt.

Bemerkung. Entsprechend dem Lemma II Amsler [2] folgt auch hier aus dem
Bewiesenen die Existenz einer Niveaulinie w =7 oder w=0, deren Steigung im Streifen
[a’, 8] xR von Null verschieden ist.

2.2 Der Fortsetzungssatz

Wir gehen aus von der Gleichung

wuv = f(w) * (28)

Uber die Funktion f:R — R setzen wir jetzt folgendes voraus: f gehore zur Differen-
zierbarkeitsklasse C"(r=1, 2,..., ©), f und die erste Ableitung f” seien beschrinkt
und das Supremum M von f sei positiv. Wir fithren noch einige Bezeichnungen ein:
a, B, & seien drei reelle Zahlen mit a<f, >0, so dass f(7)>0 fir te[«—8, f+8];
A sei das charakteristische Rechteck [0, a] x [0, #] in der u, v-Ebene, a, 5>0, A* das
charakteristische Rechteck [0, a* ] x [b, b+b*], wobeia*=a/2,b*= (f—a)/aM (d.h.
A* hat den Fldcheninhalt a*b* = (f—«)/2M).
Nun beweisen wir den folgenden Fortsetzungssatz:

SATZ 6. Voraussetzung: w sei eine CI-Losung (2<q<r+1) von (2.8) in A, die der
folgenden Fortsetzungsbedingung geniigt: Es gibt eine Funktion ¢: A — R, pe C*, so dass
(1) |o(u, v)—@(u, v)| <9, (i) o(u, v)e[a, B],
(iii) |(0/0u)qp(u, V)| <(B—)/a, (iv) |(0/0v)q(u, v)| <(B—)/b.

Behauptung. o hat eine Fortsetzung & auf AU A* in folgendem Sinne: In A* gibt
es eine CU-Losung w* — R von (2.8), so dass folgendes gilt:
1) o* IAnA*=a) IAnA"
2) die Funktion &, definiert durch & l 4=0, & I 4+=0%* gehort zur Klasse C4.
3) w* geniigtin A* der Fortsetzungsbedingung, d.h. es gibt eine Funktion p*:A* —» R,
P*eCl () |o* D) —g*w, 0l<d,  (ii)* ¢*(u, v)e[o, B,
(iii)* |(9/0u)p*(u, v)| <(B—a)fa*,  (iv)* |(0/0v)@*(u, v)| <(B—)/b*.
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Folgerung. Die Funktion & geniigt der Gleichung (2.8), und es gilt & (u, v)e (-4,
B+9).

Beweis. Es sei u, eine Stelle, so dass

¢ (1o, b) = min {¢ (u, b) | ue [0, a/2]}, und es sei
6* =4 {miné — |o (u, b) — ¢ (u, b)| | ue[0, a/2 >7}0.

Da f und f' beschriankt sind, ldsst sich das charakteristische Anfangswertproblem
der Gleichung (2.8) fiir jedes vorgegebene Rechteck 16sen; insbesondere gibt es genau
eine in ganz A * definierte Losung w * der Gleichung (2.8) mit den folgenden Anfangs-
werten:

o*(u, b) =0 (u, b), uel0,a*]
2 l:*b [0 + Muyb* — ¢ (ug, b)] (2.9)

+o(v), wve[b, b+ b*].

o* (g, v) = @ (ug, b) +

Dabei ist g:[b, b+b*]— R eine C%Funktion, fiir welche |g (v)|<d* und die so be-
schaffen ist, dass ¢ (b)=0 und 0"w*/dv" =0"w/dv" ist fiir (u, v)= (uy, b) und 1<n<gq.
Die Existenz einer derartigen Funktion fiir g= co folgt aus einem Satz von E. Borel,
wonach es zu jeder beliebigen unendlichen Folge von reellen Zahlen {ay, ay, ... a,,...}
eine in einer Umgebung von b definierte C*-Funktion gibt, deren »n-te Ableitung an
der Stelle » den Wert a, annimmt. Unmittelbar aus (2.9) und den Eigenschaften von ¢
folgen die Punkte 1) und 2) der Behauptung.

Zu 3). y:A* >R sei die durch y(u, v)=]} [, f(0* (@, v')) du' dv' definierte
Funktion. Fiir die gemischte Ableitung gilt:

Vo = Opy -
Hieraus folgt:

o* (u, v) = 0* (u, b) + ©* (ug, v) — @* (4o, b) + ¥ (u, v).
Nach Einsetzen der Anfangswerte (2.9) erhidlt man:

aM

B—a
o

_aaM+Muo)+lll(u, v).

o* (u, v) = 0 (u, b) + ¢ (v) — (v — b)

4 (uO’ b)
L (2.10)

+ (v — b) (ﬁ‘
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Die Funktion ¢ * definieren wir nun folgendermassen:
@* (u, v) = @* (u, v) — 0 (u, b) — 0 (v) + ¢ (u, b). (2.11)
Hieraus folgt, dass ¢ * die Eigenschaft (i) * hat, denn:

0™ (1, v) — ¢ (u, v)| < lo (4, b) — @ (u, B)| + e ()|
<16 —28% +6*=6-5%<0.

Um die Eigenschaft (ii) * nachzuweisen, zeigen wir, dass die Mengen

V={voe[b, b+ b*]| 0" (u,v)e[a, B] fir (u,v)e[0,a/2]x [b,v,]}
und
W = {v,e[b, b + b*] | o* (u,v)e(a—6, B+ 8) fir (u,v)e[0,a/2] x [b, v]}

gleich sind. Hieraus folgt ndmlich, dass V= [b, b+b*], weil offensichtlich W offen
in [b,b+b*] und V abgeschlossen und nicht leer ist. ¥'= W folgt unmittelbar aus
(1)*. Um zu zeigen, dass W<V, setzen wir zunédchst (2.10) in (2.11) ein. Nach einer
einfachen Umformung erhalten wir:

‘P*(u,v)=(p(u, b)[l -(v—b)%]_*_ (v — b)ﬂaM

X [ (u, b) — ¢ (ug, b)] + M (v — b)(l—;_-a—;+ u0>+l//(u, v).

4

(2.12)

Es sei nun vye W; wir schitzen ¢ * (, v) fiir alle (, v) mit ve[b, v, | nach unten und
nach oben ab, indem wir in (2.12) jeden Summanden einzeln wie folgt abschétzen:

Fiir den ersten Summanden erhalten wir, da nach Voraussetzung (i) ¢ (4, v)e[a, f],
und da (v—>b)<b*= (f—a)/aM, die eckige Klammer also >0 ist, die Abschdtzung:

aaM
B—a

<o t)[1-0-8 2 |<p-G-0pmr. @13

a—(v—b) -

Zweiter Summand: Einerseits ist [¢ (4, b)) — @ (49, )] >0 gemiss der Definition
von u,; andererseits gilt nach dem Mittelwertsatz und der Voraussetzung (iii):

[ (1, B) — @ (s, BY] < I — gl =2,

Es seien u, =min (u, u ), u, =max (u, u, ) fir ue[0, a/2].
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Dann ist |ug—u| =u, —u,. Fiir den zweiten Summanden folgt:

0< (v b) ;% [0 (4, B) — @ (g, BY] < M (0 — B) (3 — uy)- (2.14)
Vierter Summand: Da 0< f(0*)< M fiir o*e(ax—9, f+9), gilt:
M(u; —ugy) < }f(w* (u'sv)) du’ < M (uy — uy) (2.15)
und folglich auch "’
M((v—>b)(uy —uy) < f f f(o* @', v)) du dv' (2.16)
b o

=y (u,v) <M (v~ b) (uz — uo).

Setzen wir (2.13), (2.14) und (2.16) in (2.12) ein, so erhalten wir einerseits ¢ * (u, v) >
a+M(v—>b) u;=>a und andererseits @*(u, v)<B+M((v—>) [—a+2u,—u; <
B—2M(v—>) [a/2—u, |<B fir v<v,.

Damit ist gezeigt, dass auch W<V, also V=W.

Um (iii)* und (iv)* nachzuweisen, differenzieren wir (2.12) nach u, bez. nach v:
on (u,v) = @, (u, b) + ff(a)* (u, v")) av’.
b
Unter Beriicksichtigung von (iii) folgt:

l(P:‘(u’ U)I < |(ou(u’ b)l + ff(w*(u, U’)) av' <lt.;_f.‘+ Mb* = ﬁ_;a.
b

a
Fiir die Ableitung nach v erhélt man aus (2.12):

M u
. a(P(uo,b)+M(ﬁ%+uo>+jf(a)*(u',v))du’.

(P:‘(u’ U) =

Mit Hilfe von (2.15) und der Voraussetzung (ii) erhalten wir:

B—a

— Ma + Mu; < ¢; (u,v) < Mu, < Ma = o

folglich |@* (u, v)| < (B—a)/b*. Damit ist der Fortsetzungssatz bewiesen.
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Bei der Konstruktion und beim Nachweis der Fortsetzungseigenschaft von w*
haben wir nur Eigenschaften der Restriktionen von w und ¢ auf die linke Hilfte von
A benutzt. Durch analoge Uberlegungen fiir die rechte Hilfte von A erhilt man eine
der Fortsetzung w* entsprechende Fortsetzung w** von @ auf das Rechteck 4** =
[a/2, a] x [b, b+b*].

Bemerkungen:

1. Wir geben nun noch eine Lésung von (2.8) an, die den Voraussetzungen des
Fortsetzungssatzes gentigt.

A, sei das Quadrat [ —a/2, a/2] x [ —a/2, a/2] mit der Seitenldnge

p—a
T

a= _|[2

(2.17)

Behauptung. Die Losung w, die auf den Koordinatenachsen v=0, u=0 den Wert
(a+ B)/2 annimmt, erfiillt in A, die Voraussetzungen des Fortsetzungssatzes.
Beweis. Ay sei die obere Hilfte des Quadrates A,:

o =1[—a/2,a/2] x [0,a2].

Durch eine dhnliche Uberlegung wie beim Beweis des Fortsetzungssatzes beweisen
wir, dass w (u, v)e[a, ] fir (v, v)e Ay, indem wir zeigen, dass die Mengen

V ={ve[0,a/2] | w(u,v')e[a, ] fiir (u,v")e[~a[2,a/2] x [0, 0]}
und
W = {ve[0, a/2] | w (u,v')e(x — 6, B+ 8) fir (u,v)e[— a/2,a/2] x [0, r]}

gleich sind. Hieraus folgt, dass V'=[0, a/2] ist.
Offensichtlich ist ¥ < W. Es sei jetzt ve W. Fiir alle ue[ —a/2, a/2] gilt dann die
folgende Ungleichung:

2 2

a
_.M%g_MMugj‘jf(w(u’,v'))du’dv'<M|u|v<MZ.
00

Aus (2.8) erhidlt man unter Beriicksichtigung der Anfangswerte:

a4+ B

o () -7 = f f flo, o) du dv .
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Setzen wir dies oben ein, so folgt:

2 2
a o+
_...M—4—<CO(U,U)'— B\MZ

Nach Einsetzen von (2.17) erhalten wir: w(u, v)e[a, ], d.h. es ist ve V also folgt
w=V.

Wegen o (—u, —v)=w(u, v)ist o (u, v)e[a, B] fiir alle (u, v)e 4,. Wir setzen nun
@ (u, v)=w (u, v). Die Bedingungen (i) und (ii) des Fortsetzungssatzes sind dann sicher
erfiillt. (iii) folgt aus der Abschitzung:

19w (1, 0)] = [0 (1, 0)] = | f £ (@ (u, v)) dv'|
ﬁ—a p—a
M
<t \/ /3—oc

Entsprechend weist man (iv) nach. Damit ist die Behauptung bewiesen.

Es sei noch bemerkt, dass die Restriktion von w auf ein kleineres in A, enthaltenes,
charakteristisches Rechteck die Fortsetzungsbedingungen ebenfalls erfiillt.

2. Im Abschnitt 4 werden wir den Fortsetzungssatz auf den folgenden Spezialfall
anwenden: f(w)=sinw, [a, f] = [n/4, 3n/4], 0 ist eine beliebige Zahl aus dem Inter-
vall (0, m/4).

In diesem Fall ist M =1 und der Inhalt des Rechteckes A * ist 7/4.

3. T-Netze auf Mannigfaltigkeiten, deren Kriimmung von 0 verschieden ist

SATZ 7. M sei eine mindestens dreimal stetig differenzierbare, orientierbare, zwei-
dimensionale, vollstdndige Riemannsche Mannigfaltigkeit, deren Kriimmung festes Vor-
zeichen habe: K >0 oder K <0. Wenn es auf M ein globales T-Netz gibt, dann ist

inf|K| =0 und sup|gradl/K|=

Wir beweisen den Satz 7 indirekt, d.h. wir nehmen an, es gebe ein globales T-Netz
und es sei 1) entweder inf |K|>0 oder 2) sup Igradl/K |=q<oo und zeigen, dass
beide Fille zu einem Widerspruch mit Satz 5 fiihren.

M sei die universelle Ueberlagerung von M. Dem T-Netz auf M entspricht ein
T-Netz auf M, das nach Satz 3 global kartesisch ist. Wir fithren entsprechend der
Bemerkung zu Satz 3 globale T-Parameter (v, v) ein. Zwischen der Kriimmung und
dem Winkel w zwischen den Parameterlinien besteht die Beziehung (1.3), wobei w
noch die Nebenbedingung (1.9) erfiillt.
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Wir betrachten, wie in 2.1 einen charakteristischen Streifen .S = [¢, ] x R. Im Fall
1) geniigen die Funktionen g(u, v)=|K (4, v)| und f(w)= —sig(K)sinw der Vor-
aussetzung des Satzes 5. w hat folglich in S eine 0- oder n-Stelle. Dies widerspricht
aber (1.9).

2) Wir setzen k=1/K. Fiir den Gradienten von k erhalten wir:

1

(gradk)® = —— [kZ — 2 coswk,k, + k2].
w

sin
Zusammen mit der Voraussetzung erhalten wir hieraus
k2 —2coswkk, + k2 < g% sin*w. (3.1)

Wir bezeichnen mit S” den Streifen [a”, "] x R, wobei a”, b” die gleiche Bedeu-
tung haben wie im Beweis des Satzes 5. Es folgt wie in jenem Beweis, dass im oberen
oder unteren Halbstreifen von S” die Ungleichungen (2.5) gelten. Im Halbstreifen, in
dem dies zutrifft, gilt fiir den kleineren Eigenwert 1 —|cosw| der Matrix

1 —cosw\ .. .
(-cosm ) ) die Ungleichung

1 —|cosw|>1—cosé.
Aus (3.1) folgt nun

k? — 2k k, cosw + k2 q>
1 —cosd <2 e ° < ;
k2 + k2 kZ + k2

weiter folgt:

q2

B+
w T K 1—cosé

und somit

Ik, < (3.2)

1
\/ 1 —cosd
Wir bezeichnen:

q
1 —cosd

Durch Integration von (3.2) folgt fiir den betrachteten Halbstreifen:

ey = und ¢, = max{|k(u,0)|,a" <u<b"}.

k] <co + ¢y vl d.h. |[K| > —-.
Co + ¢4 0]
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Hieraus folgt wie im Beweis des Satzes 5, dass w im betrachteten Halbstreifen von
S” eine 0- oder n-Stelle hat; dies steht aber im Widerspruch zur Ungleichung (1.9).
Damit ist Satz 7 bewiesen.

Bemerkungen.

1. Der Satz von Hilbert iiber die Nichtexistenz vollstindiger Fldchen mit kon-
stanter negativer Gauss’scher Kriimmung folgt aus Satz 7, denn der Satz von Hilbert
ist ja aequivalent zu der Aussage, dass es in der hyperbolischen Ebene keine globalen
T-Netze gibt.

2. Beispiele fiir vollstdndige Flichen im Raum mit einem globalen T-Netz und
mit K #0 sind das Rotationsparaboloid z=x?+ y? mit K >0 und das hyperbolische
Paraboloid z=x*— y? mit K <0. Diese beiden Flichen sind Spezialfille der Schieb-
flichen: X (u, v)=d (u)+b(v); % (u, v) ist der Ortsvektor der Fliche, @ (u), b(v) sind
die Ortsvektoren zweier glatter, sich schneidender Raumkurven. Auf allen Schieb-
flichen bilden die Parameterlinien ein T-Netz.

4. Existenz einer Fldche mit konstanter, negativer Gauss’scher Kriimmung und abzihlbar
unendlich vielen Randpunkten

SATZ 8. Es existiert eine zweidimensionale Riemannsche C® — Mannigfaltigkeit
M mit folgenden Eigenschaften:

1) M hat konstante, negative Kriimmung K = — 1

2) M hat abzdihlbar unendlich viele Randpunktel)

3) Es gibt eine isometrische C* —Immersion von M in den dreidimensionalen

Euklidischen Raum.

Wir beweisen diesen Satz, indem wir die Mannigfaltigkeit M konstruieren. Die der
Mannigfaltigkeit M zugrunde liegende topologische Mannigfaltigkeit, die wir eben-
falls mit M bezeichnen, definieren wir rekursiv: M, sei das Quadrat[ —1, 1]x[-1, 1]
in der x, y-Ebene; die Seiten von M, seien die acht abgeschlossenen Hilften der
Quadratseiten. M,_,, n €N, und die Seiten von M,_, seien schon definiert.

Mit M, bezeichnen wir dann die Vereinigung von M,_, mit den gleichschenkligen
Trapezen, die eine Seite von M,_, als lingere Grundlinie haben, deren Schenkel mit
dieser Seite den Winkel n/2"*2 bilden, deren kiirzere Grundlinie gleich lang wie die
Schenkel ist und deren Inneres ausserhalb von M,_, liegt.

Als Seiten von M, definieren wir die abgeschlossenen Hilften der Schenkel und
der kiirzeren Grundlinie.

Nun definieren wir M =|J;>, M,, wobei M, das Innere von M, bedeutet. Wir
bezeichnen noch M =\ J;-, M,und W= M — M. W besteht aus den Eck- bzw. Seiten-
mittelpunkten der Trapeze, enthilt also abzéhlbar unendlich viele Punkte; wir nennen

1) Zur Definition der Randpunkte siche Einleitung Seite 349.
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sie Windungspunkte. Der Mannigfaltigkeit M geben wir auf folgende Weise eine dif-
ferenzierbare Struktur: A sei das System der Teilmengen A< M, die Vereinigung
zweier lings einer ganzen, bzw. halben Seite aneinandergrenzender Trapeze sind.
Dabei betrachten wir auch M, als Trapez. 4 bezeichne das Innere der Menge A ; das
System U der Mengen A ist eine offene Uberdeckung von M. ¢ sei eine Abbildung von
M in die Euklidische u, v-Ebene mit folgenden Eigenschaften:

1) Jede Menge 4 €U wird homdomorph auf zwei aneinandergrenzende Recht-
ecke je mit dem Fldcheninhalt n/4 abgebildet, so dass die Seiten, bzw. Halbseiten der
Trapeze von A4 in die Seiten, bzw. Halbseiten der Rechtecke iibergehen (siche Bemer-
kung 2 im Abschnitt 2.2).

2) ¢(M,) ist das Quadrat mit achsenparallelen Seiten, Inhalt 7/4 und dem Null-
punkt als Mittelpunkt.

Bemerkungen:

1. Eine solche Abbildung kann man leicht konstruieren, indem man z.B. die
Trapeze geeignet in Dreiecke zerlegt und simplizial auf die entsprechend unterteilten
Rechtecke abbildet. Vgl. Fig. 1.

$/a

—_—

A #(A)
Fig. 1

2. Die Restriktionen ¢, von ¢ auf M, sind stetig, ebenfalls die Restriktion ¢ von
@ auf M. @ ist stetig beziiglich der auf M durch das Aneinandersetzen der Trapeze
definierten Identifizierungstopologie. Diese Topologie ist feiner als die durch die
Topologie der Euklidischen Ebene induzierte. Beide Topologien induzieren jedoch
auf M und auf den Mengen M, dieselbe Topologie. Bei den folgenden Uberlegungen
beziehen wir uns auf die Identifizierungstopologie.

Wir iibertragen nun mittels ¢ die Riemannsche Metrik der Euklidischen u, v-Ebene
auf M. Die zugehorige innere Metrik bezeichnen wir mit 9. Nun erweitern wir ¢ zu
einer Metrik g auf M (Zu dieser Erweiterung vgl. man H.-J. Kowalsky, Top. Rdume,
Seite 195, Satz 32.3).

LEMMA 1. M ist als metrischer Raum vollstindig.
Folgerung. Die Windungspunkte sind die einzigen Randpunkte von M.

Bevor wir dieses Lemma beweisen, stellen wir zwei Hilfsbetrachtungen an.
1. Die Gesamtheit der Trapeze, die in einem Windungspunkt w zusammenstossen,
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besteht aus einem Trapez T, und zwei Folgen (T;);cn> (7 )ien von Trapezen, die
langs einer Seite bzw. Halbseite aneinandergrenzen. Dabei bilden die Halbseiten von
T,, die in w zusammenstossen, die lingere Grundseite von 7 bzw. T;. Die Rechtecke
é(T,,) und ¢(T3;), i =1, sind kongruent zu ¢ (7,); die Rechtecke @ (Ty;44), i =1,
sind unter sich kongruent, ebenso die Rechtecke ¢ (75;.). Hieraus folgt, dass die
Windungspunkte isoliert sind.

2. Es sei a die Seitenlidnge des Quadrates ¢ (M,). Ist das Trapez T'in M, enthalten,
so hat das Rechteck ¢ (T') Seitenlingen >a/2". Nun sei T ein Trapez, so dass die
Linge einer Seite des Rechteckes @ (T') kleiner als a/2"*! ist.

Behauptung. Dann gilt fiir den Abstand zwischen T und M0 (T, M,)>a2".

Beweis. Wir betrachten die eindeutig bestimmte Folge T, Ti,..., Ty= T anein-
andergrenzender Trapeze, die M, mit T verbindet, d.h. T, M, ,—M,,,_,,0<i<N.

Die kiirzere Seitenldnge des Rechteckes ¢ (7;)=R, sei a;; s;, s; seien parallele
Seiten von R; mit der Linge a;. Da alle Rechtecke flichengleich sind, ist ¢;<a und die
andere Seitenldnge von R, ist b, =a?/a;. Dabei ist a,>a/2" und ay<a/2"*? nach Vor-
aussetzung iiber 7. k sei der kleinste Index, so dass @, <ay; k ist = 2. Wir zeigen, dass
die Rechtecke R, und R, _, mit R,_; an den kiirzeren parallelen Seiten s,_,, 53—
zusammenstossen; daraus folgt dann a,=14,_, und

a? a?  a?

(T, M) 20(Ti-2, i) = by =——=_— 2 —>a2".

-1 2a, 2ay
Zunichst ergibt sich, dass R,_,; und R, an der kiirzeren Seite s, zusammenstossen:
anderfalls hitte nimlich R, die Seitenlingen 1b,_;=ad*/2a,_, und 2a,_,; wegen
a,_,>a, miisste a,=a*/2a,_, sein; daraus wiirde wegen a,_; <a folgen g, >a/2 im
Widerspruch zu a,<ay<a/2. Somit ist a,_,; =2a, und b,_,; =a*/a,_,. Dann ist aber
R,_inR,_,=s5;_4, die zu s, parallele Seite, denn sonst wiren R, _, und R, kongruent,
also a,_,=a, im Widerspruch zur Definition von k. Damit ist die Behauptung
bewiesen.

Beweis des Lemmas 1: (p;);cn sei ein Cauchyfolge in M ; man kann o.B.d.A.
annehmen, dass jeder Punkt p; im Innern eines Trapezes T; liegt (Falls ein Punkt p;
nicht im Innern eines Trapezes liegt, kann man ihn durch einen im Innern eines
Trapezes liegenden Punkt p; ersetzen, so dass ¢ (p;, p;)<1/i ist).

Wie oben bezeichne a; die Linge der kiirzeren Seite des Rechteckes ¢ (7). Fiir
das Infimum é=inf{a;, ieN} gilt: 6>0. Anderfalls gibe es nimlich eine Teilfolge
{Pi[}ken mit a; ., <a/2™*1, wobein,= min{n, p,, €M,}. Eine Folge mit dieser
Eigenschaft ist aber nach der Hilfsbetrachtung 2 keine Cauchyfolge, denn es wire
APi> Pir+,)> a2k

N sei ein Index, so dass g(p;, px)<6/8 flr i, k> N.

In der abgeschlossenen 6/8-Umgebung U von py gibt es wegen der Hilfsbetrach-
tung 1 hochstens einen Windungspunkt w. Wir unterscheiden drei Fille:
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a) U enthilt keinen Windungspunkt. Die Restriktion ¢ | p ist dann eineindeutig;
@ (U) ist eine abgeschlossene Kreisscheibe, die in einem oder in zwei benachbarten
Rechtecken enthalten ist.

b) U enthilt einen Windungspunkt w und die Folge konvergiert gegen w.

¢) U enthilt einen Windungspunkt w, aber die Folge konvergiert nicht gegen w.
Wir fiihren diesen Fall auf a) zuriick, indem wir mit 6’ den Abstand zwischen w und
der Folge (p;) bezeichnen, mit N’ einen Index, so dass ¢ (p;, p,)<d'/2 fir j,k=N’.
Auf die abgeschlossene §’/2-Umgebung von py., konnen wir die Uberlegung a) anwen-
den. Damit ist gezeigt, dass die Cauchyfolge (p;) konvergiert, und das Lemma 1 ist
bewiesen.

Auf M definieren wir nun mit Hilfe des Fortsetzungssatzes rekursiv eine stetige
Funktion @: M — R mit den beiden Eigenschaften:

(I) n/4—d<w(p)<3n/4+35, wobei peM, 6 €(0, n/4).

D) w [ u ist eine C*-Funktion (k=2, 3,..., 00), so dass fiir jedes AeW gilt:
0%/ou dv(wod |1 1) (u, v)=sin(wo¢ |7 ' (u, v)).
': ¢ (M,)— R sei die Losung der Gleichung

w,, = sinw’ ™
mit den Anfangswerten o’ (1, 0)=7/2 und o’ (0, v)=m/2.

Fiir pe M, definieren wir nun @ (p)=w’ ¢ (p).

Aus der Bemerkung 1 zum Fortsetzungssatz (Seite 17) folgt, dass w’ in @ (M) die
Voraussetzungen des Fortsetzungssatzes erfiillt. @ kann daher auf M, erweitert werden
so dass fiir jedes Trapez T = M; — M, die Funktion w.¢ |7 ':¢ (T)— R der Gleichung
(*) geniigt und die Fortsetzungseigenschaft hat. Entsprechend erweitert man o
rekursiv auf ganz M. Dass w (I) und (II) erfiillt, folgt aus dieser Definition.

Mit w ist nun auf M eine Riemannsche Metrik mit konstanter, negativer Kriim-
mung K = —1 gegeben, nimlich durch den metrischen Tensor mit den Komponenten
(&)= (coslco clo S w) beziiglich des Atlas (21, ¢).
Wir bezeichnen die durch (g;;) induzierte Metrik mit 5

LEMMA 2. Eine Punktfolge in M ist genau dann eine Cauchyfolge bez. der
Metrik a, wenn sie beziiglich der Metrik ¢ eine Cauchyfolge ist.
Folgerung: Die Windungspunkte sind auch beziiglich der Metrik 5 die einzigen Rand-
punkte von M.

Beweis. Die Eigenwerte der Matrix (§;;) sind 1—|cosw| und 1+ |cosw|.

Da wegen (I) [cosw| <k <1, wobei k=cos(n/4—9), gilt:

du? + 2 cosw du dv + dv*
du? + dv?

1—-k<1-—]cosw| < <1+ cosw]<1+k.
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Fiir die Abstiande ¢ (p,, p,), E (p1» p2) zweier Punkte p,, p,e€M erhalten wir deshalb:

J1=ko(pi, p2) <a(ps, p2) <1 +ka(py, p2).

Hieraus folgt die Behauptung.

Die Existenz einer isometrischen C* —Immersion: I: M — R? folgt aus Satz 4.
Danach gibt es ndmlich zu jedem A€ eine bis auf Bewegung eindeutig bestimmte,
isometrische Immersion I,: 4 — R?; das heisst aber, dass es erstens eine Immersion
I,: M, — R gibt und dass es zweitens zu einer auf M, definierten Immersion eine ein-
deutig bestimmte Erweiterung auf M, gibt.

Bemerkung. Das Flichenstiick I (M,) ist ein Stiick der von Amsler in [2] dar-
gestellten Fliche.

Damit ist Satz 8 bewiesen.

5. T-Netze auf Rotationsflichen

5.1. F sei eine Rotationsfliche, die ihre Rotationsachse nicht schneidet. Wir
wihlen das Koordinatensystem (x, y, z) so, dass die z-Achse die Rotationsachse ist.
¢ sei der Drehwinkel, s die Bogenlidnge der Meridiankurve. Die Punkte der Fliche
sind dann gegeben durch:

F = (r(s) cos o, r(s) sing, z(s)).

Dabei sind r (s) und z(s) mindestens dreimal differenzierbare Funktionen, die auf
einem offenen Intervall (a, b) <R definiert sind; r (s) ist positiv.

5.2. SATZ 9. Jede durchzwei beliebige Parallelkreise begrenzte Zone ldsst sich durch
eine Schar von rotationssymmetrischen T-Netzen iiberdecken. Falls das Supremum
sup{r(s), se(a, b)} endlich ist, lisst sich sogar die ganze Fliche durch eine Schar von
rotationssymmetrischen T-Netzen iiberdecken.

Wir beweisen den Satz mit Hilfe des Satzes 2, indem wir die Codazzigleichungen
fiir den Spezialfall der rotationssymmetrischen Netze 16sen.

E, F, G seien die ersten Fundamentalgrossen:
E=r1% F=0,G=1. 4, pu, v seien die Komponenten des Netztensors.
Die Gleichung des Netzes in der ¢, s-Ebene lautet somit:

Ado* +2udp ds+vds*=0. (5.1)

Der Tensor sei geméss Satz 2 normiert:
v —u?

m=—1, also p? —Av=r2, (5.2)
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Die Codazzigleichungen lauten:
r(As — py) = F(r’*v + 1) (5.3)
r(ps — vy) = — pr (5.4)
(- bedeutet d/ds).

Wir machen den Ansatz A,=0, x,=0, v,=0.
Aus 5.4 folgt dann: ru,+ uf =0, also ru=c, c=konst. und somit

p=t. (55
r

Setzen wir (5.5) in (5.2) ein, so erhalten wir fiir v:

ez —rt

= (5.6)

y =

(Im Fall A=0 folgt aus (5.2) und (5.4) r =const.; man erhilt die T-Netze auf der
Zylinderfliche, deren eine Schar die Parallelkreise sind). Finsetzen von (5.6) in (5.3)
ergibt nach einer kurzen Umformung:

d ., 2F 27
TN =202 - .
- (@) =- (=)

Dies ist eine lineare Gleichung fiir 4. Die Losung lautet:

A== (P =k +k* -, (5.7

wobei k eine positive Integrationskonstante ist mit k%> c?.
Setzen wir (5.7), (5.6) und (5.5) in (5.1) ein, so erhalten wir die Gleichung fiir das

T-Netz:

\/-—(rz——k)z+k2—c2d(p2+25d(pds
r
2 L (5.8)
- ds*=0.
2 2 2, .2_ .2
/- =k +k—c J

Bei gegebenen Konstanten k, c ist das Netz auf dem Teil der Flidche definiert, wo
der Radikand in (5.8) positiv ist, d.h. dort, wo

k—Jk -t <rr<k+ . Jk*-c. (5.9
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Die Losungen von (3.8) sind die beiden Kurvenscharen:
— ¢+ 72 (s)
- ds
r(s)/— (r2(s) — k) + k* = ¢*

[a’, b"]=(a, b) sei ein abgeschlossenes Intervall im Definitionsbereich der Funktion
r (s). R sei der grosste Parallelkreisradius in der Zone zwischen den Parallelkreisen
mit den Radien r (a') und r (b'): R=max{r (s), s€[a’, b']}. Setzen wir in (5.9) ¢=0,
so folgt, dass es zu jeder Konstanten k> R?/2 ein in der ganzen Zone definiertes
T-Netz gibt. (Wie weiter unten gezeigt wird, bedeutet ¢=0, dass die Meridiane die
Netzwinkel halbieren). Falls das Supremum der Parallelkreisradien der ganzen
Fliche, R,, endlich ist, so gibt es entsprechend zu jedem k> R?/2 ein auf der ganzen
Fliche definiertes T-Netz. Damit ist Satz 9 bewiesen.

Wir zeigen nun noch, dass man von einem rotationssymmetrischen T-Netz statt
der Konstanten ¢ und k die Winkel vorgeben kann, die die beiden Scharen mit einem
Parallelkreis bilden.

Die erste Schar des Netzes sei die Schar mit dem Pluszeichen in (5.10), die zweite
Schar die Schar mit dem Minuszeichen. ¥, (s) sei der Winkel zwischen der ersten
Schar und dem Parallelkreis an der Stelle s; die Richtungen seien so festgelegt, dass
fir die erste Schar ds>0 und fiir den Parallelkreis d¢ >0 ist. Entsprechend sei ¥, (s)
der Winkel zwischen der zweiten Schar und demselben Parallelkreis. Berechnet man
die Cosinus von {; und ¥, nach der iiblichen Formel, so erhilt man:

—c+ 7 (s) —c—7%(s) .
r(s)/2(k—c) r(s)\/Z(k+c)

Fiir ¢=0 folgt hieraus cosy/, = —cos,, also Y, =n—,; d.h. die Winkel zwischen
den beiden Scharen werden durch die Meridiane halbiert. (5.11) stellt fiir jeden Para-
meterwert s ein Gleichungssystem fiir ¢ und k& dar, dessen Losung folgendermassen
lautet:

do (5.10)

cosy, (s) = cosy, (s) = (5.11)

2 Sin (l//2 + ll’l)

ey I 2sinzl/12+sin2|ﬁ1

: ) r - .
sin (Y, — ¥4) sin’ (Y2 —¥y)
Dies ist leicht nachzupriifen, wenn man beachtet, dass

sin® , + sin® ¢, =1 — cos (Y, + Y1) cos (Y, — ¥y).

Damit ist die obige Behauptung bewiesen. Es sei noch bemerkt, dass es zu y; =0, ©
oder Y, =0, n ausser beim Zylinder kein T-Netz gibt.

5.3. Aus der Ungleichung (5.9) folgt, dass die Radien der Parallelkreise einer
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Fliche, auf der es ein globales T-Netz gibt, das Lésung von (5.8) ist, beschrinkt sind:
sup {r(s), se(a, b)} <co.

Allgemeiner gilt der

SATZ 10. Auf einer vollstindigen Rotationsfliche F, die die Rotationsachse nicht
schneidet und auf der es ein globales T-Netz gibt, sind die Radien der Parallelkreise
beschrinkt.

Bemerkung. Der Satz ist falsch, wenn die Fliche die Rotationsachse schneidet,
oder wenn sie nicht vollstdndig ist. Ein Beispiel fiir den ersten Fall ist das Rotations-
paraboloid z=x?+ y?, auf dem die Kurven x=const., y=const. ein T-Netz bilden;
ein Beispiel fiir den zweiten Fall ist dieselbe Fliache, wenn der Punkt z=0 herausge-
nommen wird.

Beweis. Auf F sei ein globales T-Netz gegeben; nach Satz 1 zerfillt das Netz also
global in zwei Kurvenscharen. Dem Netz auf F entspricht in der ¢, s-Ebene, der uni-
versellen Uberlagerung von F, ein gemiss Satz 3 global kartesisches T-Netz, das unter
den Decktransformationen D;, ndmlich den Translationen (¢, s)— (¢ +i2x, 5), i€Z,
in sich iibergeht. Wir nennen die eine Schar des Netzes in der ¢, s-Ebene die erste
Schar, die andere die zweite.

¢, sei Kurve der ersten Schar, die durch den Punkt (0, 0) geht.

Behauptung. Entweder sind die Kurven c;=Dc, der ersten Schar, die durch die
Punkte (i2n,0), i€Z, gehen, alle voneinander verschieden, oder sie fallen alle mit c,
zusammen.

Zum Beweis nehmen wir an, es gebe eine Zahl m > 1 so, dass ¢,,= ¢, ist. Wir bewei-
sen, dass dann ¢, =c¢, ist, also alle ¢; zusammenfallen. Da c; bei der Translation D,, in
sich libergeht, besteht ¢, aus dem Teilbogen ¢, von (0, 0) bis (m2n, 0) und den aus
co durch Translation in @-Richtung entstehenden Bégen D,,,c; fir neZ (c, ist also in
der ¢, s-Ebene periodisch). Daraus folgt, dass ¢ auf c, das Intervall (— oo, 4 o0)
durchlduft und s ein abgeschlossenes Intervall [s,, s,]. ¢, liegt also ganz in dem
Streifen S': 5, <s<s, der ¢, s-Ebene und enthilt einen Teilbogen cg, der zwei Punkte
(@1, 51), (@,, 5,) verbindet. Auf der Kurve ¢, =D, ¢, durchlduft ¢ ebenfalls alle Werte
von — oo bis + 00 ; da ¢, den Streifen S zerlegt, haben ¢, und ¢, einen Punkt gemein-
sam, und da beide Kurven zu derselben Schar gehoren, ist ¢, =c;.

Wir bezeichnen nun entsprechend den ¢; mit k; die Kurven der zweiten Schar durch
die Punkte (i2x, 0). Nach obigem geniigt es, den Satz 11 fiir folgende zwei Fille zu
beweisen:

(a) alle ¢;, ieZ, und alle k; sind verschieden

(b) die ¢; sind verschieden, die k; fallen alle zusammen.

Der Fall ¢,=c¢, und k,=k; kann nicht auftreten, da dann c,, k, wegen der Trans-
lationsinvarianz mehr als einen Schnittpunkt hétten.
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Fall (a). P;; sei der Schnittpunkt von c; und k;. Wir fiihren noch die folgende
Bezeichnung ein: Liegen zwei Punkte P, Q auf einer Netzlinie, so bezeichnen wir die

Linge des Bogens zwischen P und Q mit lfé Die Lingen P iPiiv1, I€Z, sind alle
gleich lang, da die Bogen durch die Decktransformationen ineinander iibergehen;

hieraus folgt, dass fiir alle jeZ POJPO ,+1-—-PooPo1 ist, denn wegen der Tschebyscheff—
elgenschaft des Netzes ist POJPO 1= PUPj j+1- Entsprechend ist P,OP,HO—

P00P10- Zwei aufeinanderfolgende Kurven k;, k;,, schneiden also auf ¢, fir alle j
Bogen gleicher Lange aus; entsprechend schneiden c;, ¢;,, auf k, gleiche Lingen aus.
Hieraus folgt, dass das Gitter, das durch die Kurven c;, k; gebildet wird, die ganze
@, s-Ebene liberdeckt (man beachte, dass die Kurven c,, k, isometrisch den Koordi-
natenachsen der Tschebyscheff-Parameterebene entsprechen). Fiir jede Masche des
Gitters gilt:

— die Liangen gegeniiberliegender Seiten sind gleich lang und zwar sind sie entwe-
der gleich [, = Py, Py, oder gleich I,= Py, Po;

— die beiden Eckpunkte P;;, P, j+; liegen auf einer Parallelen zur ¢-Achse. Die
beiden Punkte iiberlagern denselben Punkt von F.

Wir betrachten das Bild 4 einer beliebigen Masche — gebildet von ¢;, ¢;4 4, &,
kj+; — unter der Uberlagerungsabbildung. Die Bilder der Eckpunkte P;;, P;;.1,
P;i1j+1> Pisq; scien der Reihe nach T, U, V, W. Es ist T=V. Die Boégen TUV und
VWT sind also geschlossen; sie haben die Linge /=/,+1,. r, sei das Minimum der
Radien der Parallelkreise, die mit A Punkte gemeinsam haben, r, das Maximum. Die
normale Projektion p des Bogens TUVW in die x, y-Ebene liegt innerhalb des Kreis-
ringes, dessen innerer Randkreis den Radius r, und dessen dusserer Randkreis den
Radius r, hat. Beide Randkreise haben mit p mindestens einen Punkt gemeinsam.
Die Differenz der Radien ist folglich kleiner als die Lange von p, die nicht grosser als
die Linge des Bogens TUVW ist, d.h. ry—r,<2l, also

ry<ry+2l. (5.12)
Nun ist aber der Umfang des innern Randkreises nicht grosser als die Linge der
Projektion des geschlossenen Bogens 77UV, wie man leicht sieht, wenn man das Bogen-

element in der x, y-Ebene in Polarkoordinaten darstellt. Es folgt: 2ar, <I. Zusammen
mit (5.12) erhalten wir:

1
r,<—+2I. (5.13)
2

Da [ fiir alle Maschen gleich ist und da jeder Punkt der Fliche Fin einer Masche liegt,
ist mit (5.13) der Satz 10 fiir den Fall (a) bewiesen.
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Fall (b). Die Kurven c; sind verschieden und die Kurven k; fallen mit der Kurve
k, zusammen.

Die Schnittpunkte P;, der Kurven ¢; mit k, sind die Punkte (i2n, 0). Py, sei
ein beliebiger Punkt auf ¢y, k; die Kurve der zweiten Schar durch P,,‘P;; seien
die Schnittpunkte der ¢; mit k;. Wegen der Tschebyscheffeigenschaft sind die Bogen
Py, Py, und P;, P;, gleich lang; da die c; durch Translation in ¢-Richtung auseinander
hervorgehen, liegen die Punkte P;, folglich auf der Parallelen zur ¢-Achse durch P,,,
liberlagern also denselben Punkt von F. k; iiberlagert also wie k, eine geschlossene
Kurve. Da P,, beliebig war, folgt: Die Kurven der zweiten Schar auf F sind alle ge-
schlossen und haben wegen der Tschebyscheffeigenschaft des Netzes die gleiche Liange.

Fiir eine beliebige Kurve k der zweiten Schar auf F bezeichnen wir entsprechend
zum Fall (a) mit r, das Minimum der Radien derjenigen Parallelkreise, die mit k min-
destens einen Punkt gemeinsam haben, mit r, das Maximum dieser Radien. Wie in (a)
erhdlt man die Ungleichungen r;y —r, </, 2nr, </ und hieraus r, </+1/2n wobei / die
Linge von k ist.

Damit ist der Satz auch fiir den Fall (b) bewiesen.
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