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Uber Lie-Ringe von Gruppen und ihre universellen Enveloppen

von F. BACHMANN und L. GRUNENFELDER

Einleitung

Sei G eine Gruppe und JG das Augmentationsideal des Gruppenrings ZG. Die
Potenzen von JG filtrieren ZG; wir schreiben grZG fiir den zugehorigen graduierten
Ring. Die Bestimmung von grZG bei gegebener Gruppe G ist im allgemeinen ein
recht schwieriges Problem. Sei G=G,>G,>:-- die absteigende Zentralreihe von G
und ULG die universelle Enveloppe des Lie-Rings

LG = @ G/Gi;.

iz1

Auf natiirliche Weise ldsst sich ein Morphismus von graduierten Ringen,
ULGE grzG,

definieren. In dieser Arbeit suchen wir Gruppen G, fiir die ¢ ein Isomorphismus ist.
Der erste Abschnitt ist einigen allgemeinen Eigenschaften von ¢, gewidmet. Zum

Beispiel ist @ fiir jede Gruppe G surjektiv. Weiter ist ¢ in folgenden beiden Fillen
bijektiv:

a) LG ist frei als abelsche Gruppe

b) G/G, ist eine teilbare abelsche Gruppe vom Rang < 1.

Im zweiten Abschnitt wenden wir uns einigen endlich erzeugten, nilpotenten
Gruppen zu. Es zeigt sich, dass fiir eine endliche p-Gruppe ¢, genau dann ein Iso-
morphismus ist, wenn G zyklisch ist. Dann beschéiftigen wir uns mit der Gruppe

G=<a, b,c|ac=ca, bc=ch,[a, b]=c?).

G ist endlich erzeugt, torsionsfrei und nilpotent. Fiir solche Gruppen wird die
Berechnung von grZG ein wenig einfacher, da man eine Methode von S. A. Jennings
und Ph. Hall (z. B. [3]) zur Verfiigung hat. Damit kénnen wir zeigen, dass ¢ bijektiv
ist. Wir hoffen, die Klasse der torsionsfreien, nilpotenten Gruppen in einer spéteren
Arbeit zu untersuchen.

Schliesslich beweisen wir im dritten Teil den folgenden Satz: Sei G eine endlich
erzeugte, abelsche Gruppe. ¢ ist genau dann ein Isomorphismus, wenn G von der
Form Z"@Z(m) ist.

Wir danken Robert Sandling und Urs Stammbach fiir wertvolle Hinweise und
dem Forschungsinstitut fiir Mathematik in Ziirich fiir seine Gastfreundschaft.
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1. Der Morphismus ¢;: ULG — grZG

1.1. Sei G eine Gruppe und G=G,;>G,>G;>--- ihre absteigende Zentralreihe.
Die abelsche Gruppe LG=®;>, G;/G;,, ist auf natiirliche Weise ein graduierter
Lie-Ring: Das Klammerprodukt zweier Elemente aus LG wird durch den Kommutator
in G induziert. Schreibt man Gr (bzw. Lie) fiir die Kategorie der Gruppen (bzw.
Lie-Ringe), so gibt diese Konstruktion einen Funktor L:Gr— Lie.

Sei nun ZG der Gruppenring von G iiber Z, JG das Augmentationsideal in
Z2G.JG wird bekanntlich als abelsche Gruppe frei erzeugt durch die Elemente
{(x—1)| xeG}. Wir schreiben

grZG = @ JG*JG**1,

k20

grZG ist ein graduierter Ring.

Die Dimensionsuntergruppen D,(G) (n>1) von G sind wie folgt definiert:
D,(G)={xeG | (x—1)eJG"}. Dies gibt eine Filtrierung ([4]) auf G; also gilt G, <= D, (G)
fiir alle n>1. Damit haben wir einen Morphismus abelscher Gruppen LG-%grZG,
der die Restklasse % (x€G,) in x—1€JG"/JG"*! iiberfithrt. Man weist leicht nach,
dass Y [, ]=yx-yy—yy-yx gilt. Also induziert  einen Morphismus graduierter
Ringe

ULGS grZG.

Hier ist ULG die universelle Enveloppe des Lie-Rings LG.

LEMMA. Sei F die freie Gruppe iiber der Menge S. Dann ist @y ein Isomorphismus.

Beweis. ULF ldsst sich einfach beschreiben: Es stimmt iiberein mit der Tensor-
algebra T(F|F,) der freien abelschen Gruppe F/F,([8]). Der bekannte Isomorphis-
mus F/F,~JF|JF? zeigt nun, dass ¢ im Grad n durch die Multiplikation JF/JF*®---
- @JF|JF*— JF"|JF"*1 gegeben ist. Diese Abbildung ist ein Isomorphismus, weil
JF ein freier F-Modul ist.

1.2. Frage: Fiir welche Gruppen G ist ¢ ein Isomorphismus? Quillen bewies in
[7] das folgende Resultat:

Fiir jede Gruppe G ist 9®;Q: ULGRQ - grZG®Q ein Isomorphismus grad-
uierter Q-Algebren.

Er beniitze dabei den Satz von Poincaré-Birkhoff-Witt fiir die Q-Lie-Algebra
LG®Q. Dieser Satz steht uns iiber Z im allgemeinen nicht zur Verfiigung, da der
Lie-Ring LG nur in Ausnahmefillen ein freier Z-Modul sein wird. Es gibt denn auch
viele Gruppen G, fiir die ¢ kein Isomorphismusist: Siehe Abschnitte 2 und 3. Immerhin
gilt ganz allgemein
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SATZ. Fiir jede Gruppe G ist ¢g surjektiv

. . P . s . .. . . .
Beweis. Sei F-» G eine freie Prisentierung von G. Dies induziert ein kommutatives
Quadrat

ULG 25 ¢rZG
p*
ULF 25 grZF

Wegen 1.1. ist ¢y bijektiv; weiter gibt p eine Surjektion ZF-»ZG, die JF auf JG
abbildet. Also ist auch p, surjektiv. Daraus folgt die Surjektivitidt von ¢g.

1.3. Das obige Resultat von Quillen ergibt einen einfachen Beweis fiir den

SATZ. Sei LG frei als Z-Modul. Dann ist ¢ ein Isomorphismus.
Beweis. Nach Poincaré-Birkhoff-Witt ist auch ULG ein freier Z-Modul. Dies
bedeutet, dass im kommutativen Diagramm (alle Tensorprodukte iiber Z)

ULG 25 grZG

| |

ULG® Q222 51726 ® Q

die Abbildung a injektiv ist. Also ist wegen der Bijektivitit von ¢;®Q auch ¢g4
injektiv.

BEISPIELE. (a) Freie abelsche Gruppen: fiir jede abelsche Gruppe G ist
LG =G mit trivialer Klammerbildung.

(b) Gruppen G mit H?(G, M)=0 fiir jeden trivialen G-Modul M: Daraus folgt
die Existenz einer freien Gruppe F und einer Injektion F—G, so dass F/F,—G/G,
fiir alle k=1 (z.B. [1]). Dies wiederum heisst LF~LG. Da LF ein freier Z-Modul ist
(z.B. [8]), ldsst sich obiger Satz anwenden. Zum Beispiel hat die Gruppe
G={a, b|a*=b*) triviale cohomologische Dimension 1 (z.B. [1]). Also ist ¢ ein
Isomorphismus.

(c) Sei n>2 und sei G die Gruppe aller n x n-Matrizen iiber Z, die in der Haupt-
diagonale nur Einsen und darunter nur Nullen haben. Bekanntlich ([5]) sind dann
die Matrizen in G, von der Form E+ 4, wo E die Einheitsmatrix ist und 4 in den
ersten k oberen Diagonalen nur Nullen hat. G ist also nilpotent: es gilt G,=1.

LEMMA. G,/G, ., ist torsionsfrei fiir alle k> 1

Beweis. Sei C eine Matrix in G, mit Elementen {c;;}. Die erste nichttriviale
Diagonale in C ist ¢y y415 C3,5+25++» Cy—k,n- ISt s €ine Zahl >0, so hat C* in der-
selben Diagonale die Elemente s:¢y z41, 5°C5 342077 8*Cyep,ne Wire C°eGyq, s0
miissten alle diese Elemente verschwinden. Also wire C schon in G ;. Da G endlich
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erzeugbar ist, ist jedes G,/Gy 4, eine endlich erzeugte, torsionsfreie abelsche Gruppe,
also frei.

1.4. Wir untersuchen nun Gruppen G, fiir die G/G, vom Rang <1 und teilbar
ist; eine abelsche Gruppe A heisst teilbar, falls zu jedem aeA und zu jeder Zahl
n#0 ein xe A existiert mit nx=a.

LEMMA. Sei A eine teilbare abelsche Gruppe vom Rang <1 und seinen x und y
Elemente von A. Dann gilt xQy=y®x in AQA.

Beweis. Sei tA die Torsionsuntergruppe von A. Wir haben eine exakte Folge

0->t4d>A—->A/tA-0,
wobei A[tA teilbar und torsionsfrei ist. Daraus folgt

AQA~AItAR A~ AltA® AJtA.

Wir beniitzen tA® A =0 (dies ist eine einfache Folgerung aus den Voraussetzungen).
Nun ist 4/tA isomorph zu Q oder 0, und das Lemma ist bewiesen.

SATZ. Sei G eine Gruppe, fiir die G/G, vom Rang <1 und teilbar ist. Dann ist
¢ ein Isomorphismus.

Beweis. (a) Sei TLG die Tensoralgebra (iiber Z) von LG. Wir setzen G=G/G,
und schreiben T, fiir die n-te Komponente in der durch LG induzierten Graduierung
von TLG. Zum Beispiel ist

T0=Z, T1=G, T2=(G®G)®62/G3,
T, = (C®G®G) @ (GO G,/G3) ® (G,/G3 ® G) @ Gs/Gy.
Sei J das von den Elementen {X®y—j®% — [X, 7]}, (¥, 7€ LG) erzeugte zweiseitige

Ideal in TLG. Dann gilt ULG=TLG/J. Aus dem obigen Lemma folgt G,/G; =J. Wir
zeigen mit Induktion, dass G,/Gy ., <J, k>2. Ein Erzeugendes von G,/G, ., ist von
der Form [%,y], x€Gy_;, yeG. Die kanonische Injektion LGSTLG bewirkt
m= jx, 7] =X®y—y®% modJ; wegen der Induktionsvoraussetzung liegt also
[x,y] in J.

Damit haben wir (auf Grund der Ideal-Eigenschaft von J) gezeigt: ULG~T(G).

(b) Analog wie im obigen Lemma schliesst man U,LG~T,(G/tG), n>1. U,LG,
die n-te Komponente von ULG, ist also isomorph zu Q oder 0, falls n>1. Sei
gr,ZG=JG"[JG"*!. Dann ist im kommutativen Diagramm

ULG —=» gr,ZG

U,LG® Q222 ¢r,ZGRQ
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a, fiir alle n>1 ein Monomorphismus. Fiir n=1 ist ¢; immer bijektiv. Also ist ¢4
in allen Graden ein Isomorphismus.
Bemerkung. Sei G=Hx K; falls H und K die Voraussetzung des obigen Satzes

erfiillen, so ist ¢; ein Isomorphismus.

BEISPIELE: (a) Teilbare abelsche Gruppen von endlichem Rang. (b) Mal’cev-
Gruppen G mit G/G, vom Rang 1. Die Mal’cev-vervollstindigung ([7]) der Gruppe
<a, b| [a, b]=>b) hat diese Eigenschaft.

2. FEinige nilpotente Gruppen

2.1. Endliche p-Gruppen. Sie G eine endliche p-Gruppe mit absteigender Zentral-
reihe G=G,>5G,>...0G,2G,,.;=1. Als abelsche Gruppe ist dann LG =
®;i-,G;/G;+, auch eine endliche p-Gruppe.

SATZ. g ist genau dann ein Isomorphismus, wenn G zyklisch ist.

Beweis. U,LG und damit gr,ZG sind fiir m>0 abelsche p-Gruppen von end-
lichem p-Rang. Der Beweis erfolgt durch Abzéhlen der zyklischen direkten Sum-
manden. Nach Poincaré-Birkhoff-Witt gilt

oo}

ULG®Z,=U(LGQZ,)= & Z{.

m=0

Dabei ist s, <s,,+, fiir jedes m>0. Gilt das Gleichheitszeichen fiir ein m>0, so gilt
es fiir alle. Letzteres ist genau dann der Fall, wenn G zyklisch ist. Da U,,LG (m>0)
eine endliche p-Gruppe ist, folgt

Z falls m=0

U,LG = { direkte Summe von s, zyklischen p-Gruppen falls m > 0

Also gelten folgende Ungleichungen fiir m>0:

s, =p-Rang U, LG < p-Rang U, {LG = 5,,,+ 1

Nach Lemma 3.1. geniigt es nun zu zeigen, dass der p-Rang von JG™/JG™*! (m>0)
eine beschrinkte Funktion von m ist. JG™ (m>0) ist eine freie abelsche Gruppe von
endlichem Rang r,,. Es existieren also ([2], p.78) eine Z-Basis e,..., e, von JG™ und
eine Z-Basis gy, ..., g, von JG™*! mit

a) g;=m; e, wobeimeZ (i=1,...,r1,)
b) mi_l Imi (i=2,..-, rm).
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Da JG™[JG™*! eine endliche p-Gruppe ist, muss m;=p" (i=1,...,r,) sein mit
0<k;<k,<--<k, . Daraus folgt r,,=|G|— 1 und p-Rang JG"/JG™" ! <|G|—1.

2.2. Die folgende Gruppe ist endlich erzeugt, torsionsfrei und nilpotent von der
Klasse 2:

G=<a,b,c|ac=ca,bc=cb, [a, b] = c*).

Der zugehdrige Lie-Ring LG=G/G,®G, hat die Gestalt (ZQZDPZ,)PZ. Die
Erzeugenden von G/G,=Z@ZDZ, sind die Restklassen von a, b und c; das Er-
zeugende von G,=Z ist ¢*. LG ist demnach ein direktes Produkt von Lie-Ringen:
LG=L®L,=[(ZO®Z)DZL]DZ,. L, ist frei als abelsche Gruppe und L, hat triviale
Klammer. ULG ldsst sich also wie folgt schreiben: ULG=UL,®UL,, wobei
UL,=2Z®Z,®Z,®--- und UL, eine freie abelsche Gruppe ist, deren Komponenten
man nach Poincaré-Birkhoff-Witt berechnen kann. Man erhilt U,LG=Z‘"@®Z5™.
Dabei sind d(n) und s(n) gegeben durch die Formeln

n

d(m)=d(n=2)+(n+1), dO)=1, d(1)=2, s(m)=3 d(n—1).

i=

2.3. Zur Berechnung von grZG verwenden wir eine Methode von S. A. Jennings
und Ph. Hall ([3]): Sei S die Menge aller Tripel r=(r;, r,, r3) von ganzen Zahlen.
Ist M eine feste, positive ganze Zahl, so ordnen wir re S das Element u(r)=v, v, v,
aus ZG zu, wobei x, =a, x,=b, x3=c und

(1 —x)™ fallsr, >0
U, =
Tl = x )M xpx fallsr, <O.

Die Menge {u(r) | reS} bildet eine Z-Basis fiir ZG und die Menge {u(r)|0#reS}
eine Z-Basis fiir JG. Es ist vorteilhaft, diese Basiselemente mit einem Gewicht zu
versehen. Wir definieren

p(l=x)=p(l—x)=1, p(l—x;)=2

und

r{+r,+2r, fallsr>=0
H (u (r)) - {]\/II i ’ sonst.

Dabei schreiben wir >0 falls r,>0 (k=1, 2, 3). Natiirlich gilt u(u(r))>r +r,+r;
falls r>0.
Sei nun n>1 und M>2n.
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LEMMA. Definiert man
0 falls r>0 und pu(u(r))<n

3
=12"" " falls r>0 und plu(r))=n> )y r,
i=1

n,

1 sonst

so bildet die Menge B,={n,u(r)|0sreS} eine Z-Basis von JG"

Beweis. Zuerst zeigen wir, dass n,u(r)eJG".

(a) Fiir n,=1 ist dies klar.

Sei >0 und p(u(r))<n. Jedes Element von JG" ist als Linearkombination von
Basiselementen aus JG mit Gewicht >n darstellbar ([3]). Aus unseren Vorausset-
zungen und n,-u(r)eJG" folgt also n,=0.

(©) Sei p(u(r))=n>Y r. Dann ist p(u(r))—> ri=rs>0. p(u(r)) kann also
folgende Werte annehmen:

p@)=n+ry—i (i=1,..,r13)

Also liegt u(r) in JG"~*. Wegen 2 (1 —c)eJG? folgt 2*-u(r)eJG" mit i=n—)_ r;.

Man kann nun nachweisen, dass B, die abelsche Gruppe JG" erzeugt. Dies sieht
man durch Induktion iiber n. Es geniigt dabei, alle Produkte von Elementen aus
B,_, und B, zu betrachten. Wir verzichten auf diese Rechnungen und erwdhnen nur
die Formeln

1-b)(-a)=—(1=-a)(1-0)(Q-c?))+(1—-a)(1—-c"?)
+(1-d)(A=-cH+(A-a)l-0)-(1-c?)
l-c?)=(0N=-cPc?=2(1=c)c?
Q-cf e t=QQ=c)f e+ (Q=c)fc® (s=20,t2>1).

Damit ist das Lemma bewiesen.

Wir behaupten nun, dass fiir unsere Gruppe G, ¢¢ ein Isomorphismus ist.

(a) Die Anzahl der unendlich zyklischen direkten Summanden in JG"[JG"* 1 ist
gleich der Anzahl der Basiselemente von JG mit dem Gewicht », also gleich d(n).

(b) Die Anzahl der Z,-Komponenten in JG"/JG"*! ist gleich der Anzahl der
Basiselemente u(r) von JG mit pu(u(r))=n+1>) r;. Sei z(n) diese Anzahl. Unsere
Behauptung folgt nun aus dem

LEMMA. z(n)=)7., d(n—i)=s(n).

Beweis. Ist u(r) ein Basiselement aus JG, das den obigen Ungleichungen geniigt,
so kann u(r) folgende Gewichte annehmen: pu(u(r))=n+1, n+2,...,2n. Man
zdhlt nun ab, dass es genau (n—i+1)+(n—i—1)+(@m—i—3)+..-=d(n—i) Basis-
elemente u(r) mit u(u(r))=n+i gibt. Also ist z(n)=Y 5" d(n—i)=s(n).
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3. Abelsche Gruppen

3.1. Ist G eine abelsche Gruppe, so wird das Problem einfacher: Erstens ist
LG =G und zweitens hat man die bekannten Struktursitze fiir abelsche Gruppen
zur Verfiigung. Wir konnen denn auch diejenigen endlich erzeugten, abelschen
Gruppen, fiir die ¢, bijektiv ist, charakterisieren (3.2.). Von grossem Nutzen
ist uns dabei eine Arbeit von I. B. S. Passi ([6]); mit grossem Rechenaufwand werden
dort verschiedene Resultate {iber Potenzen von Augmentationsidealen hergeleitet.

LEMMA. Sei G eine zyklische Gruppe. Dann ist g ein Isomorphismus

Beweis. Fir G=Z siehe 1.1. oder 1.3. Sei also G=Z(m). Fur abelsche Lie-
Algebren stimmt die universelle Enveloppe mit der symmetrischen Algebra iiberein.
In unserem Fall ist LG=2Z(m), also ULG=S(Z(m))=T(Z(m)). Die zweite Gleich-
heit gilt, weil Z (m) ein zyklischer Z-Modul ist. Es folgt

UZ(m)=Z, UZ(m)=Z(m) n>=1.
Fiir grZG erhélt man ([6]) dieselben Werte. Damit ist das Lemma bewiesen.

3.2. Wir benétigen einen einfachen Hilfssatz:

LEMMA. Sei G eine abelsche Gruppe, so dass @ ein Isomorphismus ist. Dann gilt
() @zaq ist ein Isomorphismus

(ii) Ist H ein direkter Summand in G, so ist @y ein Isomorphismus

Beweis. (i) Wir schreiben wieder S fiir die symmetrische Algebra. Es gilt

U(Z®G)=S(Z®G)=S(Z)®S(G)~S(Z)®grZG.

Setzt man gr,ZG=Q,G, so folgt U,(Z®G)=Z@Q,(G)PD---®Q, (G). Dies stimmt
mit Q,(Z@®G) iiberein ([6]).
(ii) Dies folgt aus dem kommutativen Diagramm

ULG 25 grZG

b 11

ULH 25 grZH

o ist ein Monomorphismus wegen f-o=1y;4.

SATZ. Sei G eine endlich erzeugte, abelsche Gruppe. @ ist genau dann ein
Isomorphismus, wenn G von der Form
ZV®Z(m) t,m=0

ist.
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Beweis. Ist G von obiger Form, so ist ¢ bijektiv wegen 3.1. und 3.2.
Umgekehrt sei nun G eine endlich erzeugte, abelsche Gruppe. G ldsst sich dar-
stellen als

G=Z@Z(pY)®-®L(py),

wo die p; Primzahlen, >0 und die s;,> 0 sind. Wir behaupten, dass alle p; verschieden
sind, falls ¢ bijektivist: Ware zum Beispielp, =p, =p, soenthielte G eine nichtzyklische
endliche p-Gruppe H als direkten Summanden, fiir die ¢4 ebenfalls bijektiv sein
miisste (3.2.). Dies ist nicht mdglich (2.1.). Also folgt

G=Z9®Z(m), m= )Y p§.
i=1
Damit ist der Satz bewiesen.
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