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Ûber Lie-Ringe von Gruppen und ihre universellen Enveloppen

von F. Bachmann und L. Grûnenfelder

Einleitung

Sei G eine Gruppe und JG das Augmentationsideal des Gruppenrings ZG. Die
Potenzen von JG filtrieren ZG; wir schreiben grZG fur den zugehorigen graduierten
Ring. Die Bestimmung von grZG bei gegebener Gruppe G ist im allgemeinen ein

recht schwieriges Problem. Sei G G1^>G2^- die absteigende Zentralreihe von G

und ULG die universelle Enveloppe des Lie-Rings

LG=

Auf natiirliche Weise lâsst sich ein Morphismus von graduierten Ringen,

ULG^grZG,

definieren. In dieser Arbeit suchen wir Gruppen G, fur die cpG ein Isomorphismus ist.

Der erste Abschnitt ist einigen allgemeinen Eigenschaften von çG gewidmet. Zum
Beispiel ist cpG fur jede Gruppe G surjektiv. Weiter ist <pG in folgenden beiden Fâllen

bijektiv:
a) LG ist frei als abelsche Gruppe
b) G/G2 ist eine teilbare abelsche Gruppe vom Rang ^ 1.

Im zweiten Abschnitt wenden wir uns einigen endlich erzeugten, nilpotenten
Gruppen zu. Es zeigt sich, dass fur eine endliche ^-Gruppe cpG genau dann ein

Isomorphismus ist, wenn G zyklisch ist. Dann beschâftigen wir uns mit der Gruppe

G <a, b,c\ac ca, bc cb, [a, &] c2>.

G ist endlich erzeugt, torsionsfrei und nilpotent. Fur solche Gruppen wird die

Berechnung von grZG ein wenig einfacher, da man eine Méthode von S. A. Jennings
und Ph. Hall (z. B. [3]) zur Verfûgung hat. Damit kônnen wir zeigen, dass (pG bijektiv
ist. Wir hoffen, die Klasse der torsionsfreien, nilpotenten Gruppen in einer spâteren
Arbeit zu untersuchen.

Schliesslich beweisen wir im dritten Teil den folgenden Satz: Sei G eine endlich

erzeugte, abelsche Gruppe. cpG ist genau dann ein Isomorphismus, wenn G von der

FormZ(0eZ(m)ist.
Wir danken Robert Sandling und Urs Stammbach fur wertvolle Hinweise und

dem Forschungsinstitut fur Mathematik in Zurich fur seine Gastfreundschaft.
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1. Der Morphismus cpG\ ULG^grZG

1.1. Sei G eine Gruppe und G G1^G2^>G3id-' ihre absteigende Zentralreihe.
Die abelsche Gruppe LG=®i^i GtjGi+1 ist auf natiirliche Weise ein graduierter
Lie-Ring : Das Klammerprodukt zweier Elemente aus LG wird durch den Kommutator
in G induziert. Schreibt man Gr (bzw. Lie) fur die Kategorie der Gruppen (bzw.
Lie-Ringe), so gibt dièse Konstruktion einen Funktor L\Gr-+Lie.

Sei nun ZG der Gruppenring von G uber Z, JG das Augmentationsideal in
ZG. JG wird bekanntlich als abelsche Gruppe frei erzeugt durch die Elemente

{(x — 1) | xeG}. Wir schreiben

grZG= 0 JGk/JGk+1.

grZG ist ein graduierter Ring.
Die Dimensionsuntergruppen Dn(G) (n^l) von G sind wie folgt definiert:

Dn (G) {x e G | (x -1 e JGn}. Dies gibt eine Filtrierung [4]) auf G ; also gilt Gn c:Dn(G)
fur aile n^\. Damit haben wir einen Morphismus abelscher Gruppen LG-^grZG,
der die Restklasse x (xeGn) in x—leJGnjJGn+1 ûberfuhrt. Man weist leicht nach,
dass \jf\_x, y] ^x-il/y — \l/y'il/x gilt. Also induziert \j/ einen Morphismus graduierter
Ringe

ULG^grZG.

Hier ist ULG die universelle Enveloppe des Lie-Rings LG.

LEMMA. Sei Fdiefreie Gruppe uber der Menge S. Dann ist (pF ein Isomorphismus.
Beweis. ULF lâsst sich einfach beschreiben : Es stimmt ùberein mit der Tensor-

algebra T(F/F2) der freien abelschen Gruppe F/F2([8]). Der bekannte Isomorphismus

F/F2 ^ JF/JF2 zeigt nun, dass cpF im Grad n durch die Multiplikation JFjJF2 ® • • •

~®JFIJF2-*JFnIJFn+1 gegeben ist. Dièse Abbildung ist ein Isomorphismus, weil
JF ein freier F-Modul ist.

1.2. Frage: Fur welche Gruppen G ist (pG ein Isomorphismus? Quillen bewies in
[7] das folgende Résultat:

Fur jede Gruppe G ist (pG®zQ'- ULG®Q->grZG®Q ein Isomorphismus
graduierter Q-Algebren.

Er benùtze dabei den Satz von Poincaré-Birkhoff-Witt fiir die Q-Lie-Algebra
LG®Q. Dieser Satz steht uns ûber Z im allgemeinen nicht zur Verfûgung, da der

Lie-Ring LG nur in Ausnahmefâllen ein freier Z-Modul sein wird. Es gibt denn auch

viele Gruppen G, fur die cpG kein Isomorphismus ist : Siehe Abschnitte 2 und 3. Immerhin

gilt ganz allgemein
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SATZ. Furjede Gruppe G ist <pG surjektiv
p

Beweis. Sei F-» G eine freie Prâsentierung von G. Dies induziert ein kommutatives
Quadrat

ULG -^ grZG

î i-
ULF -^> grZF

Wegen 1.1. ist çF bijektiv; weiter gibt p eine Surjektion ZF-»ZG, die JF auf JG
abbildet. Also ist auch p* surjektiv. Daraus folgt die Surjektivitât von cpG.

1.3. Das obige Résultat von Quillen ergibt einen einfachen Beweis fur den

SATZ. Sei LGfrei als Z-Modul. Dann ist (pG ein Isomorphismus.
Beweis. Nach Poincaré-Birkhoff-Witt ist auch ULG ein freier Z-Modul. Dies

bedeutet, dass im kommutativen Diagramm (aile Tensorprodukte ûber Z)

ULG

®Qg®Q
die Abbildung a injektiv ist. Also ist wegen der Bijektivitât von q>G®Q auch cpG

injektivinjektiv.

BEISPIELE. (a) Freie abelsche Gruppen: fur jede abelsche Gruppe G ist
LG=G mit trivialer Klammerbildung.

(b) Gruppen G mit H2 (G, M) 0 fur jeden trivialen G-Modul M: Daraus folgt
die Existenz einer freien Gruppe F und einer Injektion F>-+G, so dass F/Ffc-^G/Gk
fur aile k^l (z.B. [1]). Dies wiederum heisst LFczLG. Da LF éin freier Z-Modul ist
(z.B. [8]), lâsst sich obiger Satz anwenden. Zum Beispiel hat die Gruppe
G (a, b | a3=b2y triviale cohomologische Dimension 1 (z.B. [1]). Also ist cpG ein

Isomorphismus.
(c) Sei «^2 und sei G die Gruppe aller n x n-Matrizen ûber Z, die in der Haupt-

diagonale nur Einsen und darunter nur Nullen haben. Bekanntlich ([5]) sind dann
die Matrizen in Gk von der Form E+A, wo E die Einheitsmatrix ist und A in den

ersten k oberen Diagonalen nur Nullen hat. G ist also nilpotent: es gilt Gn=\.
LEMMA. GJGk+i ist torsionsfrei fur aile k^l
Beweis. Sei C eine Matrix in Gk mit Elementen {cfj}. Die erste nichttriviale

Diagonale in C ist c1>k+1, c2jfc+2,..., cB_fcjW. Ist s eine Zahl >0, so hat Cs in der-
selben Diagonale die Elemente s-cîtk+u S'C2fk+2,-~9s-cn-.ktn. Wâre CseGk+l9 so

mûssten aile dièse Elemente verschwinden. Also wâre C schon in Gk+i. Da G endlich
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erzeugbar ist, ist jedes Gk/Gk+1 eine endlich erzeugte, torsionsfreie abelsche Gruppe,
also frei.

1.4. Wir untersuchen nun Gruppen G, fur die GjG2 vom Rang <1 und teilbar
ist; eine abelsche Gruppe A heisst teilbar, falls zu jedem aeA und zu jeder Zahl
«#0 ein xeA existiert mit nx — a.

LEMMA. Sei A eine teilbare abelsche Gruppe vom Rang < 1 und seinen x und y
Elemente von A. Dann gilt x®y=y®x in A®A.

Beweis. Sei tA die Torsionsuntergruppe von A. Wir haben eine exakte Folge

wobei AjtA teilbar und torsionsfrei ist. Daraus folgt

A ® A c* AjtA ®Acz AjtA ® AjtA.

Wir beniitzen tA®A 0 (dies ist eine einfache Folgerung aus den Voraussetzungen).
Nun ist AjtA isomorph zu Q oder 0, und das Lemma ist bewiesen.

SATZ. Sei G eine Gruppe, fur die G\G2 vom Rang < 1 und teilbar ist. Dann ist
cpG ein Isomorphismus.

Beweis. (a) Sei TLG die Tensoralgebra (ûber Z) von LG. Wir setzen G=G/G2
und schreiben Tn fur die «-te Komponente in der durch LG induzierten Graduierung
von TLG. Zum Beispiel ist

T0 Z, T^G, T2 (G®G)®G2/G3,
T3 (G®G®G)®(G® G2/G3) 0 (G2/G3 ®G)@ G3IG4.

Sei /das von den Elementen {x®y—y®x— [x, y~\}, (x, yeLG) erzeugte zweiseitige
Idéal in TLG. Dann gilt ULG TLG/J. Aus dem obigen Lemma folgt G2/G3czJ. Wir
zeigen mit Induktion, dass GkIGk+1czJ9 k>2. Ein Erzeugendes von Gk/Gk+1 ist von
der Form [Je, y], xeGk-u yeG. Die kanonische Injektion LG-^TLG bewirkt

[x,y]=j[x,y]=x®y—y®x modJ; wegen der Induktionsvoraussetzung liegt also

[x, y] in /.
Damit haben wir (auf Grund der Ideal-Eigenschaft von /) gezeigt: ULG^T(G).
(b) Analog wie im obigen Lemma schliesst man UnLG~Tn{GjtG), n>\. UnLG,

die «-te Komponente von ULG, ist also isomorph zu Q oder 0, falls n>\. Sei

grnZG=JGnIJGn+1. Dann ist im kommutativen Diagramm

UnLG -Ï2- grnZG

-i i
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an fur aile n>\ ein Monomorphismus. Fur n \ ist <pG immer bijektiv. Also ist cpG

in allen Graden ein Isomorphismus.
Bemerkung. Sei G HxK; falls H und K die Voraussetzung des obigen Satzes

erfûllen, so ist cpG ein Isomorphismus.

BEISPIELE: (a) Teilbare abelsche Gruppen von endlichem Rang, (b) Mal'cev-
Gruppen G mit GjG2 vom Rang 1. Die Mal'cev-vervollstândigung ([7]) der Gruppe
<#, b | [a, b~] b2} hat dièse Eigenschaft.

2. Einige nilpotente Gruppen

2.1. Endliche p-Gruppen. Sie G eine endliche /?-Gruppe mit absteigender Zentral-
reihe G G1=>G2^>...=>Gc=>Gc+1 l. Als abelsche Gruppe ist dann LG —

©/= i Gi/Gi +1 auch eine endliche /?-Gruppe.

SATZ. cpG ist genau dann ein Isomorphismus, wenn G zyklisch ist.

Beweis. UmLG und damit grmZG sind fur ra>0 abelsche ^-Gruppen von
endlichem /7-Rang. Der Beweis erfolgt durch Abzâhlen der zyklischen direkten Sum-
manden. Nach Poincaré-Birkhoff-Witt gilt

ULG®Zp=U(LG®Zp)= ®
m 0

Dabei ist 5*m<lym+1 fur jedes ra^O. Gilt das Gleichheitszeichen fur ein m>0, so gilt
es fur aile. Letzteres ist genau dann der Fall, wenn G zyklisch ist. Da UmLG (ra>0)
eine endliche ^-Gruppe ist, folgt

U LG iZ
m 1 direkte Summe von sm zyklischen /?-Gruppen falls m > 0

Also gelten folgende Ungleichungen fur m>0:

sm /7-Rang VJLG < p-Rang Um+1LG sm+1

Nach Lemma 3.1. genûgt es nun zu zeigen, dass der/7-Rang von JGm/JGm+1 (m>0)
eine beschrânkte Funktion von m ist. JGm (m>0) ist eine freie abelsche Gruppe von
endlichem Rang rm. Es existieren also ([2], p.78) eine Z-Basis eu...,erm von JGm und
eine Z-Basis gu..., grm von JGm+1 mit

a) gi mrei9 wobeimfeZ (i=l,..., rm)

b) m,-! | m{ (i 2,..., rm).
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Da JGm/JGm+1 eine endliche p-Gruppe ist, muss mt=pki (i l,...,rM) sein mit
ï-<fcrm. Darausfolgtrw=|G|-l undp-Rang JGmIJGm+1 <\G\-\.

2.2. Die folgende Gruppe ist endlich erzeugt, torsionsfrei und nilpotent von der
Klasse2:

G <a, b,c\ac ca, bc cb, [a, b] c2>.

Der zugehôrige Lie-Ring LG G/G2®G2 hat die Gestalt (Z©Z©Z2)©Z. Die
Erzeugenden von G/G2 Z©Z©Z2 sind die Restklassen von a, b und c\ das Er-
zeugende von G2 Z ist c2. LG ist demnach ein direktes Produkt von Lie-Ringen:
LG L1®L2= [(Z©Z)©Z]©Z2. Lx ist frei als abelsche Gruppe und L2 hat triviale
Klammer. ULG lâsst sich also wie folgt schreiben: ULG=ULl®UL2, wobei

£/L2-=Z®Z2©Z2©--- und ULl eine freie abelsche Gruppe ist, deren Komponenten
man nach Poincaré-Birkhoff-Witt berechnen kann. Man erhâlt UnLG Zd(n)®Zs2(n\

Dabei sind d(n) und s(n) gegeben durch die Formeln

2.3. Zur Berechnung von grZG verwenden wir eine Méthode von S. A. Jennings
und Ph. Hall ([3]): Sei S die Menge aller Tripel r={ru r2, r3) von ganzen Zahlen.

Ist M eine feste, positive ganze Zahl, so ordnen wir reS das Elément u(r) v1 -v2-v3
aus ZG zu, wobei x1=a, x2 b, x3 c und

— xk)rk falls rk ^ 0

-xk)M'xkk falls r&<0.

Die Menge {u(r) | reS} bildet eine Z-Basis fiir ZG und die Menge {u(r) \ O^reS}
eine Z-Basis fiir JG. Es ist vorteilhaft, dièse Basiselemente mit einem Gewicht zu
versehen. Wir definieren

und

rx + r2 + 2r3 falls r ^ 0

M sonst.

Dabei schreiben wir r>0 falls rk>0 (k=l, 2, 3). Naturlich gilt j"(w(r))>r1
falls r>0.

Sei nun «^1 und M>2n.
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LEMMA. Definiert man

0 falls r > 0 und jj,(u (r)) < n

2n-j:ri falls r>0 und i*(u(r))> n> £ rt
i=i

1 sonst

so bildet die Menge Bn={nr-u(r)\O=£reS} eine Z-Basis von JGn

Beweis. Zuerst zeigen wir, dass nr-u(r)eJGn.
(a) Fur nr= 1 ist dies klar.
Sei r>0 und ii(u{r))<n. Jedes Elément von JGn ist als Linearkombination von

Basiselementen aus JG mit Gewicht >« darstellbar ([3]). Aus unseren Vorausset-

zungen und nr-u(r)eJGn folgt also «r=0.
(c) Sei fi(u(r))^n>YJri. Dann ist ju(«(r))-£ rt r3>0. n(u(r)) kann also

folgende Werte annehmen:

Also liegt u(r) in JGn~K Wegen 2(1 -c)eJG2 folgt 2i-w(r)e/Glï mit /=h-£ rf.
Man kann nun nachweisen, dass jBw die abelsche Gruppe JGn erzeugt. Dies sieht

man durch Induktion ûber n. Es genûgt dabei, aile Produkte von Elementen aus

Bn^1 und Bx zu betrachten. Wir verzichten auf dièse Rechnungen und erwâhnen nur
die Formeln

(1 - <T2) (1 - c)2-c~2 - 2(1 - c) c~2

(i _cy-'-c" (i -cy-'-c-**1 + (i - cy-c~s (^o, *> i).
Damit ist das Lemma bewiesen.

Wir behaupten nun, dass fur unsere Gruppe G, cpG ein Isomorphismus ist.

(a) Die Anzahl der unendlich zyklischen direkten Summanden in JGn/JGn+1 ist

gleich der Anzahl der Basiselemente von JG mit dem Gewicht n, also gleich d(n).
(b) Die Anzahl der Z2-Komponenten in JGn/JGn+1 ist gleich der Anzahl der

Basiselemente w(r) von JG mit ju(w(r))^«+1 >£ rt. Sei z(n) dièse Anzahl. Unsere

Behauptung folgt nun aus dem

LEMMA. z(n) Y,Uid(n-i)=:s(n).
Beweis. Ist u(r) ein Basiselement aus JG, das den obigen Ungleichungen genûgt,

so kann u(r) folgende Gewichte annehmen: /i(w(r))=«+l, « + 2,...,2«. Man
zâhlt nun ab, dass es genau (n — z+1)+ («--/— \) + {n—i—3)H— d(n — i)
Basiselemente u{r) mit /i(«(r))=n+/ gibt. Also ist z(n)=Yfin) d(n-i)=s(n).



Ûber Lie-Ringe von Gruppen 339

3. Abelsche Gruppen

3.1. Ist G eine abelsche Gruppe, so wird das Problem einfacher: Erstens ist
LG — G und zweitens hat man die bekannten Struktursâtze fiir abelsche Gruppen
zur Verfûgung. Wir kônnen denn auch diejenigen endlich erzeugten, abelschen

Gruppen, fur die cpG bijektiv ist, charakterisieren (3.2.). Von grossem Nutzen
ist uns dabei eine Arbeit von I. B. S. Passi ([6]); mit grossem Rechenaufwand werden

dort verschiedene Resultate ùber Potenzen von Augmentationsidealen hergeleitet.
LEMMA. Sei G eine zykîische Gruppe. Dann ist (pG ein Isomorphismus
Beweis. Fur G Z siehe 1.1. oder 1.3. Sei also G Z(m). Fur abelsche Lie-

Algebren stimmt die universelle Enveloppe mit der symmetrischen Algebra ûberein.
In unserem Fall ist LG Z(m), also ULG S(Z(m)) T(Z(m)). Die zweite Gleich-
heit gilt, weil Z (m) ein zyklischer Z-Modul ist. Es folgt

U0Z(m) Z, UnZ(m) Z(m) n > 1.

Fur grZG erhâlt man ([6]) dieselben Werte. Damit ist das Lemma bewiesen.

3.2. Wir benôtigen einen einfachen Hilfssatz:
LEMMA. Sei G eine abelsche Gruppe, so dass <pG ein Isomorphismus ist. Dann gilt
(0 <PzeG ÎM em Isomorphismus

(ii) Ist H ein direkter Summand in G, so ist cpH ein Isomorphismus
Beweis. (i) Wir schreiben wieder S fiir die symmetrische Algebra. Es gilt

U(Z© G) S(Z0 G) S(Z)® S(G) ^ S(Z)® grZG.

Setzt man grnZG QnG, so folgt t/n(Z©G) Z©gII(G)©---eg1(G). Dies stimmt
mit gn(Z©G) ùberein ([6]).

(ii) Dies folgt aus dem kommutativen Diagramm

ULG-^grZG

ULH-^grZH

a ist ein Monomorphismus wegen P'Oc=lULH.

SATZ. Sei G eine endlich erzeugte, abelsche Gruppe. çG ist genau dann ein

Isomorphismus, wenn G von der Form

Z(0©Z(m) t9 m>0
ist.
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Beweis Ist G von obiger Form, so ist çG bijektiv wegen 3 1 und 3 2

Umgekehrt sei nun G eine endlich erzeugte, abelsche Gruppe G lasst sich dar-
stellen als

© ez(pj-),

wo diept Pnmzahlen, t^O und die st>0 sind Wir behaupten, dass ailepx verschieden

sind,falls (pGbijektivist Ware zumBeispiel/?! =p2 =p, soenthielte Geine nichtzykhsche
endhche j?-Gruppe H als direkten Summanden, fur die cpH ebenfalls bijektiv sem

musste (3 2) Dies ist nicht moglich (2 1 Also folgt

G Z«)0Z(m), m=ttil

Damit ist der Satz bewiesen
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