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Homotopy Groups of H-Spaces I
by John R. Harper1)

Introduction

This paper is devoted to a study of the structure of the homotopy groups of H-
spaces (Hopf spaces) having the homotopy type of finite CW complexes. The principal
motivation is the discovery, beginning with Hilton and Roitberg [14] of "new" H-
spaces. The prolifération of further such examples constructed by means of localiza-
tion techniques naturally leads one to ask if the homotopy groups show any regular
features. A secondary motivation is the désire to understand the structure of the

homotopy groups of Lie groups by means of algebraic topology. In this respect, we

are following a trail initially discovered by Hopf [5].
Before describing the new results, it is worthwhile to mention a few earlier

contributions along thèse lines. In this paragraph X will always dénote an H-space having
the homotopy of a finite CW complex. First, the Cartan-Serre theorem [18] relates the
rank of TIn(X) to the rational homology H* (X; Q) by means of the Hurewicz homo-
morphism. The rational homology is known, Hopf [15]. The Cartan-Serre theorem

yields that n2n(X) is a finite group. Second, there is a theorem of W. Browder [5] that

n2(X) Q. For Lie groups this fact is due to E. Cartan. Third, there is a resuit of
A. Clark [9] that for simply connected associative X, 7J3(Ar)#0 and in fact has an
infinité cyclic direct summand. This resuit is related to a theorem of Bott [3] that for
compact simply connected Lie groups G, IJ3 (G) is free abelian. A notable feature in
the proofs of the results for H-spaces is the rôle played by the Hurewicz homomor-
phism. In much of this paper we continue to focus our attention on the Hurewicz map,
but study it in the context of the exact séquence of J. H. C. Whitehead [27].

In a subséquent paper we obtain further results by use of a spectral séquence of
Massey and Peterson [21] extending into the unstable range the techniques of Adams

[1]. An announcement of some of this work is [11].
This work was initiated while the author was on leave from the University of

Rochester, visiting Pontificia Universidade Catôlica in Rio de Janeiro. It is a pleasure

to acknowledge the friendly réception by my colleagues there and especially the efforts

of Professors Alberto Azevedo and Joâo Pitombeira de Carvalho who made my visit
most pleasant.

x) Research supported by grants from CAPES (Brazil) and NSF (U.S.A.).
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1. Statement of Results

We assume our spaces are connectée. We call an H-space finite if it has the

homotopy type of a finite CW complex. In some of the results we refer to a direct
sum of cyclic groups. We do not rule out the case that the sum is zéro, but avoid
further mention of this. We shall also make use of the following well known resuit
[2], [5]. Let X be a finite H-space, and X the fibre of the canonical map

then X is a finite H-space. In the theorems stated below, X always dénotes a finite
H-space.

THEOREM 1.1. n4(X) is a direct sum of cyclic groups of order 2; furthermore

dim i74 (X) dim ker Sq2 : H3 (X : Z2) -» H5 (X : Z2).

We shall say a space Y is torsion free if H* (Y; Z) is torsion free. For simply
connected finite H-spaces X with QX torsion free, 1.1 is contained in Bott-Samelson

[4].

THEOREM 1.2 Let X be simply connected and suppose II3(X) is torsion free.
The following séquence is exact:

Moreover, if QX is torsion free, kerh5 torsll5 (X).
Hère h5 dénotes the Hurewicz map and torsv4 refers to the torsion subgroup of

A. The other maps are defined in section 2.

THEOREM 1.3. Suppose 773 (X) is torsion free. Let p be a prime. Ifp>5, TI6 (X)
is p-torsion free. The 3-torsion of II6 (X) is of order at most 3 and the 2-torsion of
order at most 4.

THEOREM 1.4. Suppose either QX is torsion free or X is p-torsion free. Let p
be an odd prime. Then

a) ifn<2p, IIn{X) isp-torsion free
b) the p-torsion ofn2p(X) has order at most p
c) dimiI2p(Z)®Zp dim ker^iH^X; Zp)-+H2p+1(%; Zp)
d) n2p+i(X) is p-torsion free.
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The final resuit is aimed at understanding the structure of torsi7n(Z). As a crude

approximation we make the foliowing définition. Given an integer n, let P(n) dénote
the set of primes p such that II n (X) has non-zero /^-torsion for some X. Then parts
(a) and (d) of 1.4 assert that for X satisfying the hypothèses of 1.4.

peP(n) implies n^2p

THEOREM 1.5. Let p be an odd prime. Then peP(2p + 2m) andpeP(4p-
for ail m^O.

The values of n for which the question "does /?eP(«)" is open (for X with QË
torsion free) are the p — 3 odd numbers

2/7 + 3, 2/? + 5, ...,4p- 5; p odd

and apparently large values of n for p 2. Using S3 x S1 and results of Toda [25]

we hâve 2eP{n) for 4<«<26.
The reader will hâve noted the fréquent use of the hypothesis "QX is torsion

free". This seems essential in many of our proofs. It is a theorem of Bott [3] that
for compact simply connected Lie groups G, QG is torsion free. Whether or not
Bott's resuit extends to finite H-spaces seems an especially sensitive point at which
to study the relation of finite H-spaces with Lie groups.

2. The Whitehead Séquence

In this section we prove the first three results of section 1. The focal point of
our arguments is the exact séquence of J. H. C. Whitehead [27]. We also cite Hilton
[12] as a source for many useful facts about this séquence and related homotopy
theory. The séquence is :

where we assume Y is simply connected, and a CW complex. The group Fn(Y) is

defined by

where Yk is the fc-skeleton. The map Xn is induced by the inclusion Yn<^Y, hn is

the Hurewicz map and vn is a certain Connecting homomorphism. The following fact
is useful :
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LEMMA 2.1 ([12], [27]). If Y is n-l-connected, then rn+i(Y)^Hn(Y:Z2) and

vn+i is the composition

where r is réduction mod2, and Sql is adjoint to Sq1.

For the structure of the low dimensional groups, we need:

LEMMA 2.2. Let Xbe a simply connectedfinite YL-space; then H4(X:Z) 0.

Proof. We assume Zis a CW complex. From Browder [5] we hâve Ar2-connected.
Let xeH4(X:Z) be non-zero. From Hopf [15] we hâve xetorsH4. Hence there is

a primep and non-zero éléments yeH4(X:Zp), zeH5(X:Zp) with

in the homology Bockstein spectral séquence of X. But {y} is primitive fo rdimensional
reasons. Thus by Theorem 6.1 of [5], {y} has infinité implications contradicting the
finiteness of X.

We remark that 2.2 is an immédiate corollary of a resuit of Weingram [26].
Weingram proves that for finite H-spaces, h2n is the 0 map. This will certainly be

one of the useful tools for studying the structure of the higher homotopy groups.
In this work we try to avoid using it, because it is interesting to see how this fact
is conséquence of other properties of H-spaces, at least in low dimensions. We

say some more along thèse lines in the last section.
We now prove Theorem 1.1. Applying 2.2 to X yields:

From 2.1 we get II4 as a direct sum of cyclic groups of order 2 and

dim II4 dim coker v4.

From 2.2 it foliows that r is epic in the composition for v4, hence

dim coker v4 dim coker Sql dim ker Sq2.

We now turn to the détails of Theorem 1.2. We let

dénote the essential map. By means of the Hurewicz Theorem and 2.1 we identify
r4 with II3®Z2 for 2-connected spaces. This explains the maps in the séquence of
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1.2. We need some lemmas. For the remainder of this section we assume that II3 (X)
is torsion free. In view of Bott's results this does not exclude any Lie group. Moreover,
it is a property of ail known finite H-spaces. It is also understood that X is a finite
H-space.

LEMMA 2.3. The 5-skeleton X5 is a bouquet of types S3, S3u^3e5:55.
Proof. Inspection of Hilton [12] p. 129.

For 1.2 the relevant segment of the Whitehead séquence is

V6 X5 hs V4 A4

h6 -> rs -> n5 ->¦ hs -> r4 -> nx -? 0.

LEMMA 2.4. TorsH6 {1 : Z)=0.
Proof. Suppose not. Then there is a primep and non-zero éléments xeH6(X:Zp),

yeH7(X:Zp)mth

Since 773 is torsion free, we hâve H4 (X : Zp) 0, hence {y} is primitive for dimensional

reasons. The differential yields infinité implications, a contradiction.

LEMMA 2.5. v6 is monic, hence /z6 0.

Proof. Since 176 is finite, this follows from 2.4.

LEMMA 2.6. A5/75^i74.
Proof From 2.3 we obtain X4 is a bouquet of sphères S3. We write

A formula of Chang [8] or [13] gives

n

where [S3, S3] dénotes an infinité cyclic group generated by a Whitehead product
in II5 (S3 v S3). From 2.4, 2.5, the fact that II5 (S3) is finite and that A5 annihilâtes
Whitehead products we obtain

us

Now ns(S3)=Z2 generated by rj3or]49 hence A5r5 is a direct sum of groups Z2,
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one summand for each sphère Sf on which a 5-cell is not attached. Since S3vrj3e5
carries Sq2 non-trivially, the lemma follows from the dimension formula in 1.1.

We also note that the above argument yields

LEMMA 2.7. The inclusion 0-» ÀF5 ->i75 is the monomorphism 0->i74—»775.

LEMMA 2.8. The identification T^T!3®Z2 yields the commutative diagram

Proof. Since X* X3 and rj3 générâtes i74(53), the resuit is immédiate.
At this point we hâve obtained the exact séquence of 1.2. We now look at ker/z5.

Of course by Cartan-Serre [18] we hâve

Remark 2.9. ker^nctorsJ7rt. Thus we are interested in the opposite inclusion for
n 5. Essentially the argument is that if h5 maps a torsion élément in a non-zero
manner, then QX is not torsion free. The following lemma is useful.

LEMMA 2.10. Let Xbe simply connectedandQXtorsionfree. Then QH6(X; Z2)
0 and

Sq1!!5 (X: Z2) Sq3H3 (X: Z2).

Proof. Since /f* (QX; Q) is a polynomial algebra on even dimensional generators,
the hypothesis on QX implies H* (QX; Z2) is 0 in odd dimensions. Let xeH6 (X; Z2).
In the Serre spectral séquence for QX-+PX-+ X, x can only be hit by a differential

3*
3, 2 v 176, 0

Since E2 E3 we obtain x=yd3 (z) for someyeH3 (X; Z2) and zeH2 (QX; Z2). Now
let ueH5(X; Z2). Dimensional considérations imply u is primitive. Hence Sq1u is

primitive and decomposable. It follows that Sq1ueSq3H3. The opposite inclusion
Sq3H3c:Sq1H5 follows from the Adem relation Sq3 Sq1Sq2.

LEMMA 2.11. Under the hypothèses of 2.10, the 2-torsion ofH6 (X; Z is oforder
at most 2.

Proof. Suppose not. Then there are éléments xeH5(X; Z2) and yeH6(X; Z2)
related by a higher order Bochstein fi by

y pxmodSq1!!5.
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Since x is primitive, y is primitive modulo

Sq1H5(X x X,X v X;Z2)

which is easily seen to be 0. From 2.10 we obtain

y Sq3z Sq1Sq2z.

Thus Oefix, a contradiction.
Before giving the next lemma, we quote a resuit which is used not only in its

proof but frequently in other parts of this paper.

THEOREM 2.12 (Browder [6]). Suppose X is simply connected and QX is torsion

free, then Ht(X; Zp) is p-torsion free for i^2p, p a prime.
In fact Browder proves much more in this direction, but 2.12 suffices for our

needs.

In view of 2.9, the rest of 1.2 will follow from

LEMMA 2.13. IfX is simply connected and QX torsion free, thenh5 tors775(Z) 0.

Proof Combining 2.11 and 2.12 we see that torsi/5 is a direct sum of cyclic

groups of order 2. Suppose aetorsJ75 with /j5(a)^0. Then h5{on) générâtes some

cyclic subgroup of H5 of order 2. Hence we can find éléments xeH5(X:Z2), ye
H6(X:Z2) such that

and

x mod 2 image of h5 (a).

This latter statement implies

Sqlx 0

But Sqlx=Sqly by the Adem relations. Now let x'eH5(X; Z2), y'eH6(X:Z2) be

éléments such that

By 2.10, there is zeH3(X:Z2) such that
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Thus

which implies £#*;*; #0, a contradiction.
We conclude this section with a proof of Theorem 1.3. Looking at the Whitehead

séquence and using 2.5 (since 773 is assumed to be torsion free), we obtain

The following information is contained in Hilton [12].

LEMMA 2.14. I16(S3) Z12, II6(S3un3 e5) Z6, andII6(S5) Z2.
By 2.3 thèse are the only groups contributing to F6 via ÂT6, since "cross terms"

in II6(X5) are annihilated by X6 in 176(X6).
In greater détail we can proceed as follows. Choose the basepoint of X to be

the homotopy identity. Suppose that the &-skeleton Xk can be expressed

where the wedge is at the identity. Then the inclusion XkaX determining X can be

factored through the folding map F

Y v Z-*X v X^>X.

Let m : X x X -> % be the multiplication. Then we hâve a commutative diagram

0->i7k+2(r x Z,7 v Z)->IIk+1(Y v Z)->nk+1(Y x Z)->0
4 i

in which the top row is split exact. Thus X annihilâtes the "cross terms", those coming
from nk+2-

3. The 5-skeleton and dim il4

In this section we consider some further détails about the structure of i74. The
first resuit is a Peterson-Stein formula which might be of use in applying 1.1. In
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fact, we use it to show that no principal SO(3) bundle over £5 is an H-space. This
question was asked by G. Mislin in connection with his work on low dimensional
H-spaces. The second resuit of this section concerns im/z5.

Recall that X was constructed so as to yield a fibration

Browder [7] uses this fibration to calculate the cohomology of X. For the group
Z2, he obtains (additively)

H*(X;Z2)*H*(X;Z2)II®E

where /is the idéal generated by im/* and £ is a certain exterior algebra on generators
of dimension 2*—1, i^2. The explicit calculations of [7] along with the définition
of functional cohomology opérations by means of universal examples, e.g. [22], yield

LEMMA 3.1. Let xeH21'1^; Z2), x not in im/?*. Then there exists yeHl{X\
Z2) such that

xeSqk...Sq2Sqlp(yl fc 2f~1~l.

This fact is contained in Peterson-Stein [22].
Let (p be the stable secondary cohomology opération associated with the relation

Sq2(Sq2Sq1) 0.

Then a Peterson-Stein formula [22] immediately yields

PROPOSITION 3.2. Let xeH3(X; Z2), x not in im/?*. Let yeHi(X:Z2) be the

élément given by 3.1. Then

Sq2x p*q> (y) modxxlop*Sq2H3 (X; Z2).

As an application of 3.2, we hâve

PROPOSITION 3.3. No principal SO(3)-bundle over S5 is an H-space.

Proof. Such bundles are classified by aeiI4(5O(3)) Z2. Dénote the total space

by E. If a 0, then E1^ SO (3) x S5 and is not an H-space. If a^ 0, then the homotopy
exact séquence yields II4(E)=0. Now, as algebras over Z2,
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and

where E dénotes an exterior algebra and x3 is determined by the relation x* 0.

Since 174=0, we hâve Sq2x3=p*(x5). From 3.2 it follows that

x5 <p(xx) mod Sq2H3(E).

But Sq2H3(E) 0. Since cp is a stable opération and jq is primitive, this absence

of indeterminacy implies x5 is primitive. Thus H* (E) is primitively generated, so

a resuit of E. Thomas [23] yields

x5eSq2H3(E)

a contradiction. Thus E is not an H-space.
We now turn to the exact séquence of Theorem 1.2 and particularly imh5.

PROPOSITION 3.4. Let Xbe a simply connected finite H-space with QX torsion

free. The following statements are équivalent:
a) imh5 2H5(X; Z);
b) dimII4(X) dimH3(X; Z2)-dimH5(X; Z2);
c) the 5-skeleton of X is a bouquet of types S3 and S3un3e5\
d)H5(X;Z2) Sq2H3(X;Z2).
Proof a) =>b): As in the proof of 2.13 we write

H5(X Z) F@T

where Fis free and ris a direct sum of groups Z2. Then imh5 2Fand H5 (X; Z2)
F®Z2©ris mapped monomorphically by v4.

b)=>c): We are ruling out types S5 in the 5-skeleton in view of 2.3. The only
way an S5 could appear in a non-trivial way and be compatible with b) is by having
a 6-cell attached to X5 by a map having odd degree on the S5 in question. But this
yields odd torsion in H5, contradicting 2.12.

c)=>d): Immédiate.

d)=>a): As in 2.1 we hâve im/z5 kerr=2//5.

CONJECTURE 3.5. If X is 3-connected (and possibly require QX torsion free)
then X is 6-connected.

The statements of 3.4 are true if //*(X; Z2) is primitively generated by a resuit
of Thomas [23]. Then 3.5 is true as noted by Thomas in [24]. In a sequel to this

paper we intend to establish the truth of the statements in 3.4.
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4. Odd Torsion in the Homotopy Groups

In this section we supply proofs of 1.4 and 1.5. We make use of the technique
of localization as developed in [20] by Mimura, Nishida and Toda.

Since X is a finite H-space, it is enough to work only with simply connected

finite H-spaces to prove our assertions. Hence in this section X will always dénote

a simply connected finite H-space. We use Qp to dénote the integers localized at p
and continue to use Zp for ZjpZ. The space Xp is X localized at p. Without explicit
mention to the contrary, p is assumed to be an odd prime.

Our program in this section is as follows. Given a suitable space X, there is a

space Xp and a map

l:X->Xp

with the property that the maps in homotopy and homology (with integer coefficients)
induced by / localize thèse objects; that is

and

carry isomorphisms

and

We obtain some spécifie information about the cohomology of X and Xp in order

to build a few stages of the Postnikov System of Xp. From this we can read off
information about the /?-torsion in 17* (X). By this means 1.4 is obtained. Theorem

1.5 is proved by exhibiting examples. Hère a simple application of the mixing method

is used.

We go to the détails. First some analogues of 2.10 and 2.11 are needed. In Lemmas

4.1, 4.2 and 4.3 we assume QX is torsion free.

LEMMA 4.1. PH2p+1(X; Zp) p0>xH3(X; Zp) modulo decomposables.

Proof. From 2.12 and universal coefficients we obtain that Hl(X; Z) is/7-torsion
free for i^2p+l. Hence in dimensions <2/> + l, H*(X;Zp) is isomorphic as an
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algebra to an exterior algebra on odd dimensional generators

£[>!,..., xj.
In the Serre spectral séquence for QX-*PX-*X we hâve éléments yieH*(QX; Zp)
transgressing to the x(. If xteH2p+1(X; Zp) is decomposable, then px=0 for dimensional

reasons. Thus we need consider the action of P only on algebra generators
in H2p+1. Let yk transgress to xkeH2p+1 and assume Pxk^0. Since pyk 0 we hâve

pxk hit by some differential starting off the edge of the spectral séquence. However,
inspection of the spectral séquence shows that in the range we are considering, the

only non-edge transgressive éléments are those given by the Kudo transgression
theorem [16], that is

where

d2y w9 yeH2(QX)9 weH3(X).

This gives the lemma.

LEMMA 4.2. The p-torsion ofH2p+2(X; Z) has order at most p.
Proof. Suppose there is higher torsion. Then we hâve éléments xeH2p+1 (X; Zp),

yeH2p+2(X; Zp) such that in the cohomology Bockstein spectral séquence E*(X)

{y} dr{x}, some r^2.
Since El Eo0 in dimensions <2/? and dr is a map of Hopf algebras, it follows that
{y} is primitive. Since {y} has degree 2p+2, the Milnor-Moore séquence [18] yields
that {y} is indécomposable. In terms of cohomology opérations we hâve

y ftxmod fiH2p+1

where pr is the r-th order Bockstein, and y is indécomposable. Since QX is torsion
free, H*(QX; Zp) is 0 in odd dimensions. Then the same argument as in 4.1 gives

y p^w mod decomposables.

Since r^2, we obtain {y} is decomposable, a contradiction.

LEMMA 4.3. Let xeH2p+2(X; Zp) be indécomposable. Then x=p^w mod
decomposables for some weH3(X; Zp).

Proof. From [5] we hâve /fo=0. Since E00(X) in the cohomology Bockstein
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spectral séquence is an exterior algebra on odd dimensional generators, we hâve

{*} £{«,¦}{»,¦}

in E^ and hence in E2 by 4.2. Hence there is a zeH2p+1 such that

We now turn to the Postnikov system of Xp. In the range of dimensions being
considered, the calculations are with simple (essentially) 2-stage Systems. The
arguments proving 1.4 are pitched to the hypothesis that QX is torsion free. If X is /?-

torsion free, then H* (X; Zp) is an exterior algebra on odd dimensional generators
and the problems (for which 4.1-4.3 are used) don't arise.

We index the System as pictured, where// is an isomorphism in dimension <«
and a monomorphism in dimension n +1.

K(nnin)

We need the following facts in our study of the fc-invariants. Let G be an abelian

groups. From 2.12 and Hopf's Theorem we obtain

H1 (X ; G) £ H1 (Sni x - • • x Snk ; G) for i < 2p, where ^ is odd. (1)

Recall that G is p-local if G^G®Qp. If G is/>-local and m odd we hâve

Hi(Qp9m;G)^0 for m < i < m + 2(p - 1). (2)

Proof(2). We know Hm(Z, m; Z)=Z and Ht(Z, m; Z)®Qp=0 for i as in (2).

Thus for i>m+1, (2) foliows from the fact that

K(Qp9tn)*K(Z,m)p9
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the fundamental localization property and universal coefficients. When z m +1, we
obtain

Hm+1(Qp9m;G)^Ext(Qp9G).

Let

0-»G-+A-*Qp->0

be a représentative extension. If we tensor the séquence with Qp9 then the facts that
tensoring with Qp préserves exactness, and that G is /?-local, along with the 5-lemma
yield that A is p-local, and hence a gp-module. Thus the séquence splits, and we
obtain Ext(Qp9 G) 0, giving (2).

We shall also need

H2p+ x
(Qp9 3;Zp)^ Zp generated by ^i3 (3)

H2p+1(Qp93;Zpk)c*Zp (4)

H2p+2 (Qp, 3 ; Zp) s Zp generated by /fc?1 i3. (5)

Thèse could be obtained as above. However, the following lemma yields them in-
stantly and is also useful for other purposes.

LEMMA 4.4. Let G be a finite abelian group. Then l:X-+Xp induces a natural
isomorphism ff*(Xp; G)^H*(Xp; G®Qp)?éH*(X; G®Qp). If G Zp> the iso-

morphism is as algebras over the Steenrod algebra.
As this fact is probably well known, we defer a proof to the appendix.
We now construct part of the Postnikov System of Xp.

LEMMA 4.5. For n^lp-1, En is a product of K(Qp, nt) where the n

are as in (1).

Proof The statement is true for n 3. We use induction on the height of the

System. Suppose n<2p—l and En décomposes as stated. From (2) and the fact that
the A>invariants are primitive, it follows that the ^-invariant

is trivial. Thus En+1~EnxK(IIn+1, n+ 1), and/J^. t is an isomorphism in dimension

n + l<2p, and monic in dimension « + 2<2p. Thus (1) and 4.4 imply that I7n+1 is

torsion free; that is, 17n+1 is a direct sum of groups Qp. The induction can proceed.
Note that 4.5 gives part (a) of 1.4, i.e. IIn is /7-torsion free for n<2p.
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Let F be the fibre of the map

K(Qp,3)^ÏK(Zp, 2/7 + 1).

LEMMA 4.6. E2p is a product of spaces of types K(Qp, nt) and F.

Proof We décompose the ^-invariant by expressing Iîlp as a direct sum of cyclic
groups

E2p^k-iXjK(Zpk, 2/7 + 1).

We first observe that no kj=O, for if so, then the factor K(Zpk, 2p) in E2p would
yield via/2^ an indécomposable

in violation of (1) and 4.4. Suppose there is some kj^O associated with k>\. Then
from (2) we see that kjeH2p+1(E3; Zpk). Applying (4) we see that H2p+1(E3; Zpk)
is a direct sum of groups Zp. Hence there is an élément

yeH2p(E2p;Zpk)

restricting to pi2p in the fibre. Thus y is indécomposable, yielding a contradiction
as above. Thus k 1 and (3) yields ki 0>1i3by making a change of basis in H3 (E2p.l ;

Zp) if necessary.
This lemma gives parts (b) and (c) of 1.4. The proof of 1.4 is concluded by

LEMMA 4.7.

Proof We décompose the A:-invariant by:

E2p-+K(II2p+l9 2/7 + 2)->K(torsJI2p+1, 2/7 + 2)

and express the composite

E2pk-iXjK(ZPk,2p + 2).

If some kj 0, we obtain via/2*p+1 an élément

xeH2p+i(Xp9Zpk)

with non-zero k-th order Bockstein, />V*:#0. Applying 4.1, 4.2 and 4.3 we obtain

k=l and

fix p^y + decomposables, y e H3 (Xp; Zp).
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Let i:K(Zp; 2p)-+Fb$ the inclusion of the fibre. Since/? is odd, a simple calculation
yields

i*H2>+2 (F; ZPk) 0.

(This would break down if p 2; we could hâve Sq2i4eimi*). Thus using (2), (5)
and 4.6 we see that if some fcy#0 and we compute with Zp-coefficients, then we
obtain

xeH2>+2(E2p+1;Zp)

restricting to f}i2p+i in the fibre. Applying f*p+i9 we obtain an indécomposable
élément

which is not in the image of any Bockstein. This contradicts 4.3 (using 4.4).
We remark that the reader familiar with the Massey-Peterson spectral séquence

[21] can see that essentially what we are proving is that E2 Eo0 in the range being
considered. Lemmas 4.1-4.3 provide enough information so that 1.4 is a conséquence
of calculating the Ext for this spectral séquence. The absence of differentials is

essentially for dimensional reasons.
We now prove 1.5. Recall that P(n) is the set of primes p such that nn(X) has

/7-torsion for some finite H-space X. We show that for odd primes p
(a) if n^p, then peP(2n),
(b) if n^4p-3, then peP(n).

Thèse yield 1.5. Recall [19] that

and

pu2m+4p-3 V3 ^P

for ail m^O. Hence mixing SU (m+ 2) localized at ail primes except p with *S3x

x £5 x--« x s2m+3 localized at p yields (a) and (b).

5. The Hurewicz Map and Finite H-Spaces

In this section we return briefly to the thème of the second section, that the
Hurewicz map has a fundamental influence on the structure of the homotopy groups
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of a finite H-space. We dénote the map by

hn:nn(X)^Hn(X;Z).

First we quote a resuit of Weingram referred to earlier.

THEOREM [26]. LetXbe a finite R-space. Then terh2n tors II2n(X).
Note that we are combining the earlier statement of Weingram's resuit with the
Cartan-Serre resuit that n2n is finite.

It is our feeling that this resuit is part of a more gênerai phenomenon and make

CONJECTURE 5.1. Let X be a simply connectedfinite H-space with QX torsion

free. Then ker/*n torsTIn{X).
Of course for n 3 there is no content. For « 5 it is proved in 2.13. To prove

5.1 for n l we hâve only to check the prime 2 because 1.4 rules out odd torsion
in iJ7. In the remainder of this section X'\§ as in 5.1.

LEMMA5.2. QH8(X;Z2) 0.

Proof. Since QX is torsion free, H* (QX; Z2) is 0 for odd dimensions, and in the
Serre spectral séquence for QX-+PX->Xwq hâve E2=E3. Thus the only terms from
which El' ° can be hit are

El'2 and E35'4.

lîu®veE53'2, then

d3 (u®v)=u-d3(v)

a decomposible in H8 (X). We shall prove

We define éléments ay and py in H*(QX) corresponding to yeH3(X). Given

yeH3 (X), ocy is the élément in H2 (QX) such that

If ^2=0, then there is an élément Py in H*(QX) such that
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A Z2-basis for H2(QX) is {ay} as y runs over H3(X). A Z2-basis for E\'
consists of

{y ® *2y, y' ® <*2y, y ® Py, y' ® py9 y" ® ocyay}

where y'^y, y" arbitrary.
Note that for some y, oc2 0 is possible. Then we hâve

d3 {y" ® <v ocy) y"y' ® ay + j> ® ay,^ 0

a, # 0

Conjecture 5.1 for « 7 now follows from

LEMMA 5.3. Hn(X\ Z) is 2-torsionfree.
Proof. If not, then H8 has 2-torsion and there are éléments

xeH1(X;Z2), yeH8(X;Z2)

such that

in the cohomology Bockstein spectral séquence. However, from 5.2 we can write

y E uivt

and since H*(X; Z2) 0, y is not a square and thus {y} is not primitive. But {x}
is primitive for dimensional reasons, hence dr {je} is primitive, a contradiction.

Appendix: Localization and Cohomology

Hère we supply a proof of lemma 4.4.

A routine use of the localization formula and universal coefficients yields (for G

finitely generated)

A.l.
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The situation for cohomology is not as simple. Consider Sq, the sphère localized
at 0. Then

Wilder things can happen as shown by Eilenberg and MacLane [10] or [17], p. 76.

However cohomology does enjoy the analogue of A.l, if G is small. We prove
A.2. Let G be finite and p a prime. Then the localization maps l:X-+Xp and

yield isomorphisms

If G Zp, then the isomorphism is as algebras over the Steenrod algebra.
Proof. Since G is finite we can write

G s G <g> QP ® H

where H®Qp 0. Since H*(Xp; Z) is/?-local, we have

ff*(XP;H) 0,

hence X* is an isomorphism. Let B=G®QP. From universal coefficients we obtain
the following commutative diagram

0 -> Ext (H, (Xp; Z), B) -> H* (Xp; B) -> Hom (H* (Xp; Z), B) -> 0

;« 1" in
0 -> Ext (ff* (X; Z), B) -? H* (X; B) -» Hom (tf* (Jï, Z), B) -> 0

where a and /? are induced by /. We also have the following commutative diagram:

where /#®1 is an isomorphism, andj(x) x®l. Thus if we show thatj induces an

isomorphism of the Hom and Ext factors, it follows that a and P are isomorphisms.
Then /* is an isomorphism by the 5-lemma, giving A.2.

Since H*(X;Z) is a graded abelian group whose components are finitely ge-

nerated, it suffices to prove the statements below. Let A be finitely generated and

B be finite and P-local. Then j * induces isomorphisms

Hom (A ® Qp, B) -> Hom (A, B), A.3.
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Ext (A ® Qp, B) -* Ext (A, B). A.4.

Proof. Define k : Hom {A, B) -> Hom {A ® Qp, B) by

aeA, qeQp.

Then using the fact that éléments of Hom(A®Qp, B) are right Qp-ma,ps, a direct
computation shows k is a two sided inverse toj# in A.3.

Using the fact that A is finitely generated, we write

where Fis free, TP is/?-local and 7^02^ 0. Then/ splits as a sum of maps

Hencey# is a sum of maps

j* : Ext (F ® Qp, B) ^ Ext (F, B) s 0

jf : Ext (TP ® 2P, 5) -+ Ext (TP5 5)

which is an isomorphism, and

jf : Ext (TR ® Qp5 B) -» Ext (T^, B) 0,

which is trivially an isomorphism (of 0-groups). Since B is /?-local

(as in the argument for (2) of section 4). Hencey'# is an isomorphism and the proof
of A.2 is complète.
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