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Homotopy Groups of H-Spaces I

by JouN R. HARPER)

Introduction

This paper is devoted to a study of the structure of the homotopy groups of H-
spaces (Hopf spaces) having the homotopy type of finite CW complexes. The principal
motivation is the discovery, beginning with Hilton and Roitberg [14] of “new’ H-
spaces. The proliferation of further such examples constructed by means of localiza-
tion techniques naturally leads one to ask if the homotopy groups show any regular
features. A secondary motivation is the desire to understand the structure of the
homotopy groups of Lie groups by means of algebraic topology. In this respect, we
are following a trail initially discovered by Hopf [5].

Before describing the new results, it is worthwhile to mention a few earlier contri-
butions along these lines. In this paragraph X will always denote an H-space having
the homotopy of a finite CW complex. First, the Cartan-Serre theorem [18] relates the
rank of IT,(X) to the rational homology H, (X; Q) by means of the Hurewicz homo-
morphism. The rational homology is known, Hopf [15]. The Cartan-Serre theorem
yields that IT,,(X) is a finite group. Second, there is a theorem of W. Browder [5] that
IT,(X)=0. For Lie groups this fact is due to E. Cartan. Third, there is a result of
A. Clark [9] that for simply connected associative X, IT;(X)+0 and in fact has an
infinite cyclic direct summand. This result is related to a theorem of Bott [3] that for
compact simply connected Lie groups G, IT; (G) is free abelian. A notable feature in
the proofs of the results for H-spaces is the role played by the Hurewicz homomor-
phism. In much of this paper we continue to focus our attention on the Hurewicz map,
but study it in the context of the exact sequence of J. H. C. Whitehead [27].

In a subsequent paper we obtain further results by use of a spectral sequence of
Massey and Peterson [21] extending into the unstable range the techniques of Adams
[1]. An announcement of some of this work is [11].

This work was initiated while the author was on leave from the University of
Rochester, visiting Pontificia Universidade Catdlica in Rio de Janeiro. It is a pleasure
to acknowledge the friendly reception by my colleagues there and especially the efforts
of Professors Alberto Azevedo and Jodo Pitombeira de Carvalho who made my visit
most pleasant.

1) Research supported by grants from CAPES (Brazil) and NSF (U.S.A.).
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1. Statement of Results

We assume our spaces are connected. We call an H-space finite if it has the
homotopy type of a finite CW complex. In some of the results we refer to a direct
sum of cyclic groups. We do not rule out the case that the sum is zero, but avoid
further mention of this. We shall also make use of the following well known result
[2], [5]. Let X be a finite H-space, and X the fibre of the canonical map

X->K(I,(X),1);

then X is a finite H-space. In the theorems stated below, X always denotes a finite
H-space.

THEOREM 1.1. I1,(X) is a direct sum of cyclic groups of order 2; furthermore
dimIT,(X) = dimkerSq*: H*(X:Z,) > H*(X: Z,).

We shall say a space Y is torsion free if H,(Y; Z) is torsion free. For simply
connected finite H-spaces X with QX torsion free, 1.1 is contained in Bott-Samelson

[4].

THEOREM 1.2 Let X be simply connected and suppose I1(X) is torsion free.
The following sequence is exact:

0 I, (X)5 s (X) S Hy (X5 2) 3 11, (X) ® 2,5 M, (X) - 0.

Moreover, if QX is torsion free, ker hs=torsIls(X).
Here h5 denotes the Hurewicz map and tors A refers to the torsion subgroup of
A. The other maps are defined in section 2.

THEOREM 1.3. Suppose I1,(X) is torsion free. Let p be a prime. If p=5, II5(X)
is p-torsion free. The 3-torsion of Iz (X) is of order at most 3 and the 2-torsion of
order at most 4.

THEOREM 1.4. Suppose either QX is torsion free or X is p-torsion free. Let p
be an odd prime. Then

a) if n<2p, I1,(X) is p-torsion free

b) the p-torsion of I1,,(X) has order at most p

¢) dimIT,,(X)®Z,=dim ker#*: H*(X; Z,)» H**(X; Z,)

d) IT,,.,(X) is p-torsion free.
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The final result is aimed at understanding the structure of torsIT,(X). As a crude
approximation we make the following definition. Given an integer n, let P(n) denote
the set of primes p such that IT,(X) has non-zero p-torsion for some X. Then parts
(a) and (d) of 1.4 assert that for X satisfying the hypotheses of 1.4.

peP(n) implies n>2p
pEP(2p +1).

THEOREM 1.5. Let p be an odd prime. Then pe P (2p+2m) and pe P (4p — 4+ m)
Jfor all m>0.

The values of n for which the question “does peP(n)” is open (for X with QX
torsion free) are the p —3 odd numbers

2p+3, 2p+5,...,4p—5; p odd

and apparently large values of n for p=2. Using S x S7 and results of Toda [25]
we have 2eP(n) for 4<n<?26.

The reader will have noted the frequent use of the hypothesis “QX is torsion
free’’. This seems essential in many of our proofs. It is a theorem of Bott [3] that
for compact simply connected Lie groups G, QG is torsion free. Whether or not
Bott’s result extends to finite H-spaces seems an especially sensitive point at which
to study the relation of finite H-spaces with Lie groups.

2. The Whitehead Sequence

In this section we prove the first three results of section 1. The focal point of
our arguments is the exact sequence of J. H. C. Whitehead [27]. We also cite Hilton
[12] as a source for many useful facts about this sequence and related homotopy
theory. The sequence is:

s Hy o (Y3 2) 3 T,(Y) 3 1,(Y) S H, (Y3 Z) -

where we assume Y is simply connected, and a CW complex. The group I',(Y) is
defined by

I, (Y)=imIT,(Y""") > IT,(¥")

where Y* is the k-skeleton. The map A, is induced by the inclusion Y"cY, A, is
the Hurewicz map and v, is a certain connecting homomorphism. The following fact
is useful:
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LEMMA 2.1 ([12], [27)). If Y is n—1-connected, then T, (Y)=H,(Y:Z,) and
V,+1 I8 the composition

Hn+2(Y§Z):’Hn+2(YQZz)“Si:Hn(Y: Z,)

where r is reduction mod?2, and Sq? is adjoint to Sq>.
For the structure of the low dimensional groups, we need:

LEMMA 2.2. Let X be a simply connected finite H-space; then H,(X:Z)=0.

Proof. We assume X is a CW complex. From Browder [5] we have X 2-connected.
Let xe H,(X:Z) be non-zero. From Hopf [15] we have xetors H,. Hence there is
a prime p and non-zero elements ye H,(X:Z,), ze Hs (X: Z,) with

d"{z} = {y}

in the homology Bockstein spectral sequence of X. But { y} is primitive fo rdimensional
reasons. Thus by Theorem 6.1 of [5], {y} has infinite implications contradicting the
finiteness of X.

We remark that 2.2 is an immediate corollary of a result of Weingram [26].
Weingram proves that for finite H-spaces, %,, is the 0 map. This will certainly be
one of the useful tools for studying the structure of the higher homotopy groups.
In this work we try to avoid using it, because it is interesting to see how this fact
is consequence of other properties of H-spaces, at least in low dimensions. We
say some more along these lines in the last section.

We now prove Theorem 1.1. Applying 2.2 to X yields:

I4(X)5 11, (X)-0.

From 2.1 we get II, as a direct sum of cyclic groups of order 2 and
dim IT, = dim cokerv,.

From 2.2 it follows that r is epic in the composition for v,, hence
dim coker v, = dim coker Sq? = dim ker Sq>.
We now turn to the details of Theorem 1.2. We let
n:S**15 8% k>3

denote the essential map. By means of the Hurewicz Theorem and 2.1 we identify
r, with I1;,®Z, for 2-connected spaces. This explains the maps in the sequence of
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1.2. We need some lemmas. For the remainder of this section we assume that IT; (X)
is torsion free. In view of Bott’s results this does not exclude any Lie group. Moreover,
it is a property of all known finite H-spaces. It is also understood that X is a finite

H-space.

LEMMA 2.3. The 5-skeleton X ° is a bougquet of types S3, S®u,,e’:S>.
Proof. Inspection of Hilton [12] p. 129.
For 1.2 the relevant segment of the Whitehead sequence is

Ve is hs v4 Ag
H¢-»TI's—»Ms—->Hs->T,—>1,-0.

LEMMA 2.4. Tors Hg(X:Z)=0.
Proof. Suppose not. Then there is a prime p and non-zero elements xe Hg ()? 1 Z)),

yeH,(X:Z,) with

d"{y} = {x}.

Since 1 is torsion free, we have H, (X:Z,)=0, hence {y} is primitive for dimensional
reasons. The differential yields infinite implications, a contradiction.

LEMMA 2.5. v is monic, hence hg=0.
Proof. Since Il is finite, this follows from 2.4.

LEMMA 2.6. AITs=11,.
Proof. From 2.3 we obtain X* is a bouquet of spheres S3. We write

X’*4 — vn S? ,
i=1
A formula of Chang [8] or [13] gives

D9 = Y M)+ T [sh5]]

1<i<j<n

where [S3, 3] denotes an infinite cyclic group generated by a Whitehead product
in IT15(S®v S3). From 2.4, 2.5, the fact that IT5(S?) is finite and that A5 annihilates

Whitehead products we obtain
veHe = iZ.[S?s S:}] .
9’ J

Now IT5(S3)=Z, generated by n;0n,, hence AsI's is a direct sum of groups Z,,
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one summand for each sphere S; on which a 5-cell is not attached. Since S3 u,,e’
carries Sq* non-trivially, the lemma follows from the dimension formula in 1.1.
We also note that the above argument yields

LEMMA 2.7. The inclusion 0 — AI' s — Il 5 is the monomorphism 0 — II 4"—4: I1,.

LEMMA 2.8. The identification I' y=11,® Z, yields the commutative diagram

p4___fi_.,1]4

\ /‘?I"‘s
I, ® 2,

Proof. Since X*=X?3 and 5, generates IT,(S?), the result is immediate.
At this point we have obtained the exact sequence of 1.2. We now look at ker 4.

Of course by Cartan-Serre [18] we have

Remark 2.9. kerh,ctorsIl,. Thus we are interested in the opposite inclusion for
n=35. Essentially the argument is that if #s maps a torsion element in a non-zero
manner, then QX is not torsion free. The following lemma is useful.

LEMMA 2.10. Let X be simply connected and QX torsion free. Then QH® (X; Z,)=
0 and

Sq'H?(X:Z,) = Sq*°H*(X: Z,).

Proof. Since H* (QX; Q) is a polynomial algebra on even dimensional generators,
the hypothesis on QX implies H* (2X; Z,) is 0 in odd dimensions. Let xe H® (X; Z,).
In the Serre spectral sequence for QX — PX — X, x can only be hit by a differential

3,2 6,0
d3.E3 ")E3 .

Since E, = E; we obtain x=y-d, (z) for some ye H*(X; Z,)and ze H* (QX; Z,). Now
let ue H?(X; Z,). Dimensional considerations imply u is primitive. Hence Sq'u is
primitive and decomposable. It follows that Sq'ueSq>H?>. The opposite inclusion
Sq*H?3 < Sq'H? follows from the Adem relation Sq*=Sq'Sq>.

LEMMA 2.11. Under the hypotheses of 2.10, the 2-torsion of H® (X; Z) is of order

at most 2.
Proof. Suppose not. Then there are elements xe H* (X; Z,) and ye H(X; Z,)

related by a higher order Bochstein f by

y = Bx mod Sq*H*.
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Since x is primitive, y is primitive modulo
Se'H> (X x X, X v X; Z,)
which is easily seen to be 0. From 2.10 we obtain
y =8¢’z = Sq'Sq*z.

Thus Oefx, a contradiction.
Before giving the next lemma, we quote a result which is used not only in its
proof but frequently in other parts of this paper.

THEOREM 2.12 (Browder [6]). Suppose X is simply connected and QX is torsion
free, then H,(X; Z,) is p-torsion free for i<2p, p a prime.

In fact Browder proves much more in this direction, but 2.12 suffices for our
needs.

In view of 2.9, the rest of 1.2 will follow from

LEMMA 2.13. If X is simply connected and QX torsion free, then hs torsII 5 (X )=0.

Proof. Combining 2.11 and 2.12 we see that tors Hs is a direct sum of cyclic
groups of order 2. Suppose actorsIls with hs(a)#0. Then hs(x) generates some
cyclic subgroup of Hs of order 2. Hence we can find elements xe Hs(X:Z,), ye
Hg(X:Z,) such that

Sqxy=x
and
x = mod 2 image of hs ().
This latter statement implies
Sqix =0

But SgZx=Sq;y by the Adem relations. Now let x’'e H>(X; Z,), y'e H®(X:Z,) be
elements such that

X', x)#0, y =8q'x.
By 2.10, there is ze H? (X: Z,) such that

Sq'x’ = Sq’z.
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Thus

0 # (x', xp = <{x', Sqsy> = {Sq*x', y)
= (Sq’z, y) = (z, Sgix),

which implies Sg2x#0, a contradiction.
We conclude this section with a proof of Theorem 1.3. Looking at the Whitehead
sequence and using 2.5 (since II; is assumed to be torsion free), we obtain

Ae
F6_)H6—)0'

The following information is contained in Hilton [12].

LEMMA 2.14. I1,(S3)=2Z,,, I (S*v,, ’)=Z4, and I1;(S°)=2Z,.

By 2.3 these are the only groups contributing to I'¢ via Al'g, since “‘cross terms”
in IT¢ (X %) are annihilated by ¢ in T4 (X °).

In greater detail we can proceed as follows. Choose the basepoint of X to be
the homotopy identity. Suppose that the k-skeleton X* can be expressed

X*=Yvz

where the wedge is at the identity. Then the inclusion X*< X determining 4 can be
factored through the folding map F

YvZ-%vXS2R.
Let m: X x X - X be the multiplication. Then we have a commutative diagram

0_)Hk+2(YXZ,YVZ)—')Hk+1(YVZ)—>Hk+1(YXZ)—")O

{ l
Hk+1(X~ \'% X)—)Hk.i.l(f X X)

A

.+, (X)

in which the top row is split exact. Thus A annihilates the “‘cross terms”’, those coming
from IT, , ,.

3. The 5-skeleton and dim IT,

In this section we consider some further details about the structure of IT,. The
first result is a Peterson-Stein formula which might be of use in applying 1.1. In
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fact, we use it to show that no principal SO (3) bundle over S° is an H-space. This
question was asked by G. Mislin in connection with his work on low dimensional
H-spaces. The second result of this section concerns imAs.

Recall that X was constructed so as to yield a fibration

25xikwm,).

Browder [7] uses this fibration to calculate the cohomology of X. For the group
Z,, he obtains (additively)

H*(X;Z,)=H*(X;Z,)/IQE

where I isthe ideal generated by im f* and E is a certain exterior algebra on generators
of dimension 2'—1, i>2. The explicit calculations of [7] along with the definition
of functional cohomology operations by means of universal examples, e.g. [22], yield

LEMMA 3.1. Let xe H* (X ; Z,), x not in imp*. Then there exists ye H* (X;
Z,) such that

xeSq*...8q%Sq; (y), k=2"1-1.

This fact is contained in Peterson-Stein [22].
Let ¢ be the stable secondary cohomology operation associated with the relation

Sq*(Sq*Sq*) =0.
Then a Peterson-Stein formula [22] immediately yields

PROPOSITION 3.2. Let xeH*(X; Z,), x not in imp*. Let ye H' (X:Z,) be the
element given by 3.1. Then

Sq*x = p*¢ (y) modulo p*Sq’H? (X ; Z,).
As an application of 3.2, we have

PROPOSITION 3.3. No principal SO (3)-bundle over S* is an H-space.

Proof. Such bundles are classified by aelIl ,(SO(3))=2Z,. Denote the total space
by E. If =0, then E~SO (3) x §° and is not an H-space. If a0, then the homotopy
exact sequence yields IT, (E)=0. Now, as algebras over Z,,

H* (E) = ZZ [xls x5]/(x‘1t’ xg)
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and

H* (E) = E[x3, p* (x5)]

where E denotes an exterior algebra and x; is determined by the relation x}=0.
Since I1,=0, we have Sq°x; =p* (x5). From 3.2 it follows that

x5 = @(x,) mod Sq*H*(E).

But Sq>H?(E)=0. Since ¢ is a stable operation and x, is primitive, this absence
of indeterminacy implies x5 is primitive. Thus H*(E) is primitively generated, so
a result of E. Thomas [23] yields

xs€Sq*H* (E)

a contradiction. Thus E is not an H-space.
We now turn to the exact sequence of Theorem 1.2 and particularly im /4.

PROPOSITION 3.4. Let X be a simply connected finite H-space with QX torsion
free. The following statements are equivalent:

a) imhs=2Hs(X; Z);

b) dimIl, (X)=dimH;(X; Z,)—dimHs(X; Z,);

c) the 5-skeleton of X is a bouquet of types S> and S v, €°;

d) H>(X; Z,)=Sq¢*H?*(X; Z,).

Proof. a)=>b): As in the proof of 2.13 we write

Hs(X Z)=F®T

where F is free and T is a direct sum of groups Z,. Then imhs=2F and Hs(X; Z,)=
FRZ,®T is mapped monomorphically by v,.

b)=>c): We are ruling out types S° in the 5-skeleton in view of 2.3. The only
way an S° could appear in a non-trivial way and be compatible with b) is by having
a 6-cell attached to X° by a map having odd degree on the S° in question. But this
yields odd torsion in Hs, contradicting 2.12.

¢)=>d): Immediate.

d)=>a): Asin 2.1 we have imhs=kerr=2H;.

CONIJECTURE 3.5. If X is 3-connected (and possibly require QX torsion free)
then X is 6-connected.

The statements of 3.4 are true if H*(X; Z,) is primitively generated by a result
of Thomas [23]. Then 3.5 is true as noted by Thomas in [24]. In a sequel to this
paper we intend to establish the truth of the statements in 3.4.
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4. Odd Torsion in the Homotopy Groups

In this section we supply proofs of 1.4 and 1.5. We make use of the technique
of localization as developed in [20] by Mimura, Nishida and Toda.

Since X is a finite H-space, it is enough to work only with simply connected
finite H-spaces to prove our assertions. Hence in this section X will always denote
a simply connected finite H-space. We use Q, to denote the integers localized at p
and continue to use Z, for Z/pZ. The space X, is X localized at p. Without explicit
mention to the contrary, p is assumed to be an odd prime.

Our program in this section is as follows. Given a suitable space X, there is a
space X, and a map

I: X-X,

with the property that the maps in homotopy and homology (with integer coefficients)
induced by [ localize these objects; that is

Lt M (X) > e (X))
and

ly: Ho (X3 Z) > Hy (X3 Z),
carry isomorphisms

M, (X)® 0, = I,(X,)
and

H,(X;Z)®Q,2Hy(X,; Z).

We obtain some specific information about the cohomology of X and X, in order
to build a few stages of the Postnikov system of X,. From this we can read off
information about the p-torsion in IT, (X). By this means 1.4 is obtained. Theorem
1.5 is proved by exhibiting examples. Here a simple application of the mixing method
is used.

We go to the details. First some analogues of 2.10 and 2.11 are needed. In Lemmas
4.1, 4.2 and 4.3 we assume QX is torsion free.

LEMMA 4.1. BH***1(X; Z,)=BP ' H?(X; Z,) modulo decomposables.
Proof. From 2.12 and universal coefficients we obtain that H ¢ (X; Z) is p-torsion
free for i<2p+1. Hence in dimensions <2p+1, H*(X; Z,) is isomorphic as an
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algebra to an exterior algebra on odd dimensional generators

E[xl, ceey xk] .

In the Serre spectral sequence for QX —PX— X we have elements y,e H*(QX; Z,)
transgressing to the x;. If x;,e H??*!(X; Z,) is decomposable, then fx=0 for dimen-
sional reasons. Thus we need consider the action of f only on algebra generators
in H*P*1 Let y, transgress to x,e H*?*! and assume Bx,#0. Since By, =0 we have
Bx; hit by some differential starting off the edge of the spectral sequence. However,
inspection of the spectral sequence shows that in the range we are considering, the
only non-edge transgressive elements are those given by the Kudo transgression
theorem [16], that is

dyp-1(— Yy lew)=p2'w
where

d,y=w, yeH?*(QX), weH?(X).
This gives the lemma.

LEMMA 4.2. The p-torsion of H***%(X; Z) has order at most p.
Proof. Suppose there is higher torsion. Then we have elements xe H*?*1 (X; Z,),
yeH?*P*2(X; Z ) such that in the cohomology Bockstein spectral sequence Ey (X)

{y} =d.{x}, some r>=2.

Since E, =E, in dimensions <2p and d, is a map of Hopf algebras, it follows that
{y} is primitive. Since {y} has degree 2p+2, the Milnor-Moore sequence [18] yields
that {y} is indecomposable. In terms of cohomology operations we have

y = B,x mod pH?*P*1

where B, is the r-th order Bockstein, and y is indecomposable. Since QX is torsion
free, H*(QX; Z,) is 0 in odd dimensions. Then the same argument as in 4.1 gives

y = B#'w mod decomposables.

Since r>2, we obtain {y} is decomposable, a contradiction.

LEMMA 4.3. Let xe H***%(X; Z,) be indecomposable. Then x=p#'w mod de-
composables for some we H? (X; Z,).
Proof. From [5] we have fx=0. Since E,(X) in the cohomology Bockstein
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spectral sequence is an exterior algebra on odd dimensional generators, we have
{x} = X {u;} {v;}
in E_, and hence in E, by 4.2. Hence there is a ze H*?*! such that
Xx— Y up,=pz.

We now turn to the Postnikov system of X,. In the range of dimensions being
considered, the calculations are with simple (essentially) 2-stage systems. The argu-
ments proving 1.4 are pitched to the hypothesis that QX is torsion free. If X is p-
torsion free, then H* (X; Zp) is an exterior algebra on odd dimensional generators
and the problems (for which 4.1-4.3 are used) don’t arise.

We index the system as pictured, where £,* is an isomorphism in dimension <#
and a monomorphism in dimension n+1.

K(Hm n) —>E, ”—'———*K(Hrﬁ 11+ 2)

g E, ,——>K(I,, n+1)

fn—l l

f3
E3 -——'—'»K (H4, 5)

We need the following facts in our study of the k-invariants. Let G be an abelian
groups. From 2.12 and Hopf’s Theorem we obtain

H'(X;G)= H'(S" x--x S™;G) for i<2p, where n; isodd. 1)
Recall that G is p-local if G=GQ®Q,. If G is p-local and m odd we have
H'(Q,,m;G)=0 for m<i<m+2(p—1). )

Proof (2). We know H,,(Z,m; Z)=Z and H,(Z, m; Z)®Q,=0 for i as in (2).
Thus for i>m+1, (2) follows from the fact that

K(Q,, m)= K(Z, m),,
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the fundamental localization property and universal coefficients. When i=m+ 1, we
obtain

H™"1'(Q,, m; G) = Ext(Q,, G).
Let

O——)G—»A—)Qp—>0

be a representative extension. If we tensor the sequence with Q,, then the facts that
tensoring with Q, preserves exactness, and that G is p-local, along with the S5-lemma
yield that A4 is p-local, and hence a Q,-module. Thus the sequence splits, and we
obtain Ext(Q,, G)=0, giving (2).

We shall also need

H***'(0,,3;Z,)~Z, generated by #'1, 3)
e (Qp) 35 Zpe) Z, “4)
H**%(Q,,3;Z,)~Z, generated by f2"1;. (5)

These could be obtained as above. However, the following lemma yields them in-
stantly and is also useful for other purposes.

LEMMA 4.4. Let G be a finite abelian group. Then I:X - X, induces a natural
isomorphism H*(X,; G)=H*(X,; G®Q,)=H*(X; G®Q,). If G=Z,, the iso-
morphism is as algebras over the Steenrod algebra.

As this fact is probably well known, we defer a proof to the appendix.

We now construct part of the Postnikov system of X,.

LEMMA 4.5. For n<2p—1, E, is a product of K(Q,, n;) where the n;(<2p—1)
are as in (1).

Proof. The statement is true for n=3. We use induction on the height of the
system. Suppose n<2p—1 and E, decomposes as stated. From (2) and the fact that
the k-invariants are primitive, it follows that the k-invariant

E,—» K(,+y,n+2)

is trivial. Thus E,, ,~E,x K(II,,;,n+1), and f,% , is an isomorphism in dimension

n+1<2p, and monic in dimension n+2<2p. Thus (1) and 4.4 imply that IT,,, is

torsion free; that is, IT,, is a direct sum of groups Q,. The induction can proceed.
Note that 4.5 gives part (a) of 1.4, i.e. I, is p-torsion free for n<2p.
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Let F be the fibre of the map
91l3
K(Q,3)—K(Z, 2p+1).

LEMMA 4.6. E,, is a product of spaces of types K(Q,, n;) and F.
Proof. We decompose the k-invariant by expressing IT,, as a direct sum of cyclic
groups

ky
E2p—1 - XJK (Zpk, 2p + 1).

We first observe that no k;=0, for if so, then the factor K(Z,, 2p) in E,, would
yield via £}, an indecomposable

X = f;;’(llp)EHzp(Xp; Zp)

in violation of (1) and 4.4. Suppose there is some k;#0 associated with k> 1. Then
from (2) we see that k;e H***' (E3; Z,«). Applying (4) we see that H*?*!(E;; Z )
is a direct sum of groups Z,. Hence there is an element

yeH?® (E,,; Z )

restricting to pi,, in the fibre. Thus y is indecomposable, yielding a contradiction
as above. Thus k=1 and (3) yields k;=2"1; by making a change of basis in H*(E,,—,;
Z,) if necessary.

This lemma gives parts (b) and (c) of 1.4. The proof of 1.4 is concluded by

LEMMA 4.7. TorsIl,,.,(X,)=0.
Proof. We decompose the k-invariant by:

E;p— K(zpyy, 20 +2) = K(tors I, 4 1, 2p + 2)
and express the composite
kj
Eyp— XK (Zp 20 +2).
If some k;=0, we obtain via f5,,,, an element
xeH?** 1 (X, Z %)

with non-zero k-th order Bockstein, B, x#0. Applying 4.1, 4.2 and 4.3 we obtain
k=1 and

Bx = BP'y + decomposables, yeH’(X,;Z,).
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Let i:K(Z,; 2p)— F be the inclusion of the fibre. Since p is odd, a simple calculation
yields

i*H***?(F;Z,)=0.

(This would break down if p=2; we could have Sg?*1,eimi*). Thus using (2), (5)
and 4.6 we see that if some k;#0 and we compute with Z -coefficients, then we
obtain

xeH***2(Eyp113 Z,)

restricting to Bi,,,, in the fibre. Applying f5,.;, we obtain an indecomposable
element

fz’;+1 (x)eH2p+2 (Xp; Zp)

which is not in the image of any Bockstein. This contradicts 4.3 (using 4.4).

We remark that the reader familiar with the Massey-Peterson spectral sequence
[21] can see that essentially what we are proving is that E,=FE in the range being
considered. Lemmas 4.1-4.3 provide enough information so that 1.4 is a consequence
of calculating the Ext for this spectral sequence. The absence of differentials is
essentially for dimensional reasons.

We now prove 1.5. Recall that P(n) is the set of primes p such that IT,(X) has
p-torsion for some finite H-space X. We show that for odd primes p

(a) if n=p, then peP(2n),

(b) if n>4p—3, then peP(n).

These yield 1.5. Recall [19] that

pH2m+2p(Szm+3) = Zp
and
pH2m+4p—3 (S2m+3) = Zp

for all m>0. Hence mixing SU(m+2) localized at all primes except p with S? x
% 8% - x §2™*3 Jocalized at p yields (a) and (b).

5. The Hurewicz Map and Finite H-Spaces

In this section we return briefly to the theme of the second section, that the
Hurewicz map has a fundamental influence on the structure of the homotopy groups
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of a finite H-space. We denote the map by
h,:1I,(X)—>H,(X; Z).
First we quote a result of Weingram referred to earlier.

THEOREM [26]. Let X be a finite H-space. Then kerh,,=torsII,,(X).
Note that we are combining the earlier statement of Weingram’s result with the
Cartan-Serre result that I1,, is finite.

It is our feeling that this result is part of a more general phenomenon and make

CONIJECTURE 5.1. Let X be a simply connected finite H-space with QX torsion
free. Then ker h,=torsII,(X).

Of course for n=3 there is no content. For n=35 it is proved in 2.13. To prove
5.1 for n=7 we have only to check the prime 2 because 1.4 rules out odd torsion
in IT,. In the remainder of this section X is as in 5.1.

LEMMA 5.2. QH®(X; Z,)=0.

Proof. Since QX is torsion free, H* (QX; Z,) is 0 for odd dimensions, and in the
Serre spectral sequence for QX — PX — X we have E, = E;. Thus the only terms from
which E¥ © can be hit are

E3% and E3*.

If u®veE3 2, then
d; (u®v)=u-d;(v)

a decomposible in H®(X). We shall prove
E¥*=0.

We define elements o, and f, in H*(QX) corresponding to ye H*(X). Given
yeH?(X), a, is the element in H? (QX) such that

ds (“y) =Y.
If y>=0, then there is an element B, in H*(2X) such that

ds (ﬂy) =y®°‘y'
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A Z,-basis for H*>(QX) is {«,} as y runs over H*(X). A Z,-basis for E3
consists of

{yRa}, V@03, y®B,, ¥ ®B,, ¥y Quya,}

where y’#y, y” arbitrary.
Note that for some y, cxf =0 is possible. Then we have

d3 (o ) =y @0y
ds (“3) =yQ 063
d; (V' Q@a,0)=y"y Qa,+y'y®a, #0
dy (@' ®B,)=yy®@a,#0
ds (a8, + ) =y ® B,.
Hence E3' *=0.

Conjecture 5.1 for n=7 now follows from

LEMMA 5.3. H,(X; Z) is 2-torsion free.
Proof. If not, then H® has 2-torsion and there are elements

xeH (X;2Z,), yeH®(X;Z,)

such that
d,{x} = {}

in the cohomology Bockstein spectral sequence. However, from 5.2 we can write
y= Z u;v;

and since H*(X; Z,)=0, y is not a square and thus {y} is not primitive. But {x}
is primitive for dimensional reasons, hence d, {x} is primitive, a contradiction.

Appendix: Localization and Cohomology

Here we supply a proof of lemma 4.4.
A routine use of the localization formula and universal coefficients yields (for G
finitely generated)

H,(X,;G)2H,(X;G®0Q,) Al
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The situation for cohomology is not as simple. Consider Sy, the sphere localized
at 0. Then

H"(S3; Z) *Hom (Q,Z) =0.

Wilder things can happen as shown by Filenberg and MacLane [10] or [17], p. 76.
However cohomology does enjoy the analogue of A.1, if G is small. We prove

A.2. Let G be finite and p a prime. Then the localization maps 1: X — X, and
A:G— GQRQ, yield isomorphisms

Ax o » .
H*(Xp; G) 2 H*(X,:G®0,) 2 A*(X;6®0,).

If G=Z,, then the isomorphism is as algebras over the Steenrod algebra.
Proof. Since G is finite we can write

G=2GRQp®PH
where H® Q,=0. Since H, (X,; Z) is p-local, we have
A*(Xp; H) =0,

hence A4 is an isomorphism. Let B=G®Q,. From universal coefficients we obtain
the following commutative diagram

0> Ext(Hy(X,; Z), B)—» H*(X,; B) > Hom (H, (X,; Z), B) > 0

ls P i
0 — Ext(H,(X; Z), B)» H*(X; B) > Hom (H, (X, Z), B) » 0

where o and f are induced by /. We also have the following commutative diagram:

Hy(X;Z)>Ho(X;Z)® 05
lh lh@l
H, (X, Z)‘;H* (X,;2)®Q,

where /,®1 is an isomorphism, and j(x)=x®1. Thus if we show that j induces an
isomorphism of the Hom and Ext factors, it follows that a and § are isomorphisms.
Then [* is an isomorphism by the 5-lemma, giving A.2.

Since H,(X; Z) is a graded abelian group whose components are finitely ge-
nerated, it suffices to prove the statements below. Let A be finitely generated and
B be finite and P-local. Then j* induces isomorphisms

Hom (4 ® Q,, B) » Hom (4, B), A3,
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Ext(4 ® Q,, B) - Ext (4, B). A.4.
Proof. Define k:Hom (4, B)—»Hom (A®Q,, B) by

k() (a®4q)=f(a)q
acd, qe€Q,.

Then using the fact that elements of Hom(4®Q,, B) are right Q,-maps, a direct
computation shows k is a two sided inverse to j* in A.3.
Using the fact that A is finitely generated, we write

A FR T, ® Ty
where F is free, Tp is p-local and T ®Q,=0. Then j splits as a sum of maps
j1:F-F®Q,

J2:Tp-»Tp®0Q,=Tp
J3: TR Tr®Q,x0.

Hence j* is a sum of maps
ji:Ext(F®Q,, B) > Ext(F, B) = 0
j3 : Ext(T, ® Q,, B) > Ext (T, B)
which is an isomorphism, and
j3:Ext(Tr ® Q,, B) - Ext (T, B) =0,
which is trivially an isomorphism (of 0-groups). Since B is p-local
Ext(F®Q,, B)=0

(as in the argument for (2) of section 4). Hence j* is an isomorphism and the proof
of A.2 is complete.
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