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Zur Dualitâtstheorie kompakt erzeugter iind lokalkonvexer

Vektorrâume1)

Alfred Frôlicher und Hans Jarchow

Einleitung

Der Dualraum eines lokalkonvexen Raumes lâsst sich auf viele Arten topologi-
sieren. Fur eine Kategorie lokalkonvexer Râume, die auch nicht-normierbare Râume

enthâlt, ist es jedoch nicht môglich, dièse Topologisierung in funktorieller Weise

derart vorzunehmen, dass die Evaluationsabbildung stetig wird.
Kompakt erzeugte Vektorrâume verhalten sich in dieser Beziehung wesentlich

angenehmer. Unter den kompakt erzeuten Topologien auf dem Dualraum eines

kompakt erzeugten Vektorraumes E gibt es eine, welche nicht nur die Evaluation
stetig macht, sondera ausserdem durch eine universelle Eigenschaft ausgezeichnet ist.
Den mit ihr versehenen Dualraum von E bezeichnen wir mit E*. Aus der erwâhnten

universellen Eigenschaft folgt, dass auch die kanonische lineare Abbildung E-^+E**

stetig ist. Aus diesem Grunde erhàlt man fur kompakt erzeugte Vektorrâume eine in
mancher Hinsicht bessere Dualitâtstheorie als fur lokalkonvexe Râume.

Die dabei auftretenden Fragen sind zunâchst die folgenden : Wann ist die

kanonische Abbilding E-^E** injektiv? Wann ist sie bijektiv? Wann ist E einbettbar, d.h.

wann ist die Topologie von E durch jene von £** im Sinne der kompakt erzeugten
Râume induziert? Und wann ist schliesslich e ein Homôomorphismus von isauf E**t

Um dièse Fragen in §4 beantworten zu kônnen, werden nach einigen einleitenden

Bemerkungen (§1) in §2 zunâchst Zusammenhânge zwischen kompakt erzeugten und
lokalkonvexen Vektorrâumen nâher untersucht. Dabei zeigt sich insbesondere, dass

die beiden betreffenden Kategorien zueinander isomorphe Unterkategorien besitzen,
deren Objekte wir aus spâter ersichtlichen Grûnden als A:c-Râume bzw. als cfc-Râume

bezeichnen. Die erwâhnten Beziehungen erlauben es, fur die in §3 beginnendenUnter-
suchungen ûber Dualrâume Ergebnisse aus der Théorie der lokalkonvexen Râume
anzuwenden. In §4 werden nicht nur die bereits angedeuteten Fragen bezûglich der

Abbildung E^*E** vollstândig beantwortet, sondera es wird ausserdem gezeigt, dass

die Klasse der einbettbaren kompakt erzeugten Vektorrâume sehr schône Eigen-
schaften besitzt: Mit den stetigen linearen Abbildungen als Morphismen bildet sie

eine vollstândige und covollstândige Kategorie, die ein Tensorprodukt besitzt; mit

*) Dièse Arbeit entstand wâhrend eines Aufenthaltes des erstgenannten Autors am Forschungs-
institut fiir Mathematik der Eidgenôssischen Technischen Hochschule Zurich.
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allen stetigen Abbildungen als Morphismen erhâlt man eine kartesisch abgeschlossene

Kategorie.
Wie sich zeigen wird, sind die einbettbaren kompakt erzeugten Vektorrâume

gerade die oben erwâhnten A:c-Râume. Da dièse umkehrbar eindeutig den c&-Râumen

entsprechen, erhalten wir so eine schon aus diesem Grunde intéressante Klasse lokal-
konvexer Râume. In §5 leiten wir einige Eigenschaften dieser Râume ab, die sie fur die

allgemeine Théorie wichtig erscheinen lassen. cfc-Râume kônnen analog zu den

bornologischen Râumen definiert werden, und es zeigt sich, dass jeder bornologische
Raum ein c&-Raum ist. Ein Montelraum z.B. ist genau dann vollstândig bzw. ein
cA>Raum, wenn sein starker Dualraum ein c/c-Raum bzw. vollstândig ist. Die von den

bornologischen Râumen her bekannten ,,unangenehmen" Erscheinungen bei der Pro-
duktbildung treten hier nicht auf : Jedes lokalkonvexe Produkt von cA>Râumen ist ein
cfc-Raum. Insbesondere ist jedes lokalkonvexe Produkt bornologischer Râume ein
c£-Raum.

In §6 geben wir schliesslich einige Beispiele und Gegenbeispiele zur hier entwickel-
ten Théorie.

§ 1. Kompakt erzeugte Râume

Einem beliebigen separierten topologischen Raum X kann man einen topologi-
schen Raum kX wie folgt zuordnen: fcX hat dieselbe unterliegende Menge wie X und

tràgt die durch die Inklusionen der kompakten Teilmengen von X coinduzierte To-
pologie. Die identische Abbildung 1 :£X-*Xist dann stetig, so dass auch ^Zsepariert
ist. Da ferner aus der Stetigkeit einer Abbildung/ :X-+ Fzwischen separierten Râumen

immer jene von/ : fcX-+ HY folgt, erhâlt man einen Endofunktor

der Kategorie H der Hausdorff-Râume. Es gilt £<>£=£, weil Zund £Xstets dieselben

kompakten Teilmengen besitzen.

Ein separierter topologischer Raum X heisst kompakt erzeugt oder ein k-Raum,
cf. [7], [9], [16], [18], wenn Z=^Argilt. Die von den kompakt erzeugten Râumen ge-
bildete voile Unterkategorie von H bezeichnen wir mit KE. Der Funktor £:H-»H
faktorisiert sich jetzt folgendermassen :

Dabei bezeichnet i den Inklusionsfunktor. Aus £ o £ £ ergibt sich k o / 1, und aus der

Stetigkeit der identischen Abbildung £Z-> X fur jedes ZeH folgt, dass der Funktor
Jfc:H->KE zu /rKE-^H adjungiert ist. KE ist also eine sogenannte reflektive
Unterkategorie von H.
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Man schliesst hieraus, dass k mit Limites und / mit Colimites kommutiert, und
dass die Kategorie KE vollstândig und covollstândig ist. Dabei berechnen sich die
Colimites wie in H: der in H gebildete Colimes von &-Râumen ist kompakt erzeugt
und damit auch Colimes in KE. Limites in KE erhâlt man dagegen, indem man auf die

entsprechenden, in H gebildeten Limites den Funktor k anwendet. Insbesondere ist
das in H gebildete Produkt Y± x Y2 bzw. X»ej Ytvon &-Râumen nicht immer kompakt

erzeugt. Man erhàlt aber das KE-Produkt Y1U Y2 bzw. fita Yi gemâss

Y± n Y2^k(Yx x Y2) bzw. Uui Yt k(Xiei Tt).
Der wesentliche Vorteil der Kategorie KE gegenûber der Kategorie H liegt in der

kartesischen Abgeschlossenheit von KE, cf. [7], [18], Dies bedeutet, dass es einen

Bifunktor

#:KEopx KE-»KE

mit der Eigenschaft gibt, dass fur jedes YeKE der Funktor ^(Y, — zum Funktor

-II Fadjungiert ist. Fur ZeKE ist dabei ^(7, Z) die Menge C (Y, Z) aller stetigen

Abbildungen von Y in Z, versehen mit einer kompakt erzeugten Topologie, so dass

fur jedes ifeKE gilt: Eine Abbildung/ :X->^( 7, Z) ist genau dann stetig, wenn die

durch f(x,y):=f (x) (y) definierte Abbildung/:XII 7->Z stetig ist.

Der Bifunktor fé7 ist hierdurch bis auf Isomorphie eindeutig festgelegt. Er lâsst sich

wie folgt konstruieren:

Dabei ist Cco der wohlbekannte Bifunktor, den man erhâlt, wenn man C (Y, Z) mit
der kompakt-offenen Topologie versieht.

Hat man einen Morphismus/ : Y-+X von KE mit der Eigenschaft, dass eine

Abbildung g:Z-+ Y einer &-Raumes Z nach Y genau dann stetig ist, wenn/ og:Z->X
stetig ist, so sagt man, die Topologie von Fsei die durch die Abbildung/ : Y~*Xin-
duzierte JŒ-Topologie (Y ist dabei die Y zugrunde liegende Menge.) Ist / injektiv,
so sagt man auch, Fsei mittels/ein KE-Teilrawn von X. Wir bemerken dazu folgen-
des: Ein topologischer Teilraum T eines kompakt erzeugten Raumes X ist i.a. nicht
wieder kompakt erzeugt. Wenn allerdings T in X abgeschlossen (trivialer Fall) oder

offen (cf. [7]) ist, so gilt bereits T=kT. Gemâss dem folgenden, leicht zu beweisenden

Satz existiert fur jede injektive Abbildung/ :M-+X einer Menge M in einen kompakt
erzeugten Raum Zdie durch/auf M induzierte KE-Topologie, und dièse wird erhalten,
indem man auf die induzierte Topologie den Funktor k ausûbt.

1.1 SATZ. SindXund Y separierte topologische Râume und ist die Topologie von Y
die durch eine Abbildungf : J'->X induzierte Topologie, so ist die Topologie von kYdie
durchf : Y~* kX induzierte KE-Topologie.
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§ 2. Kompakt erzeugte und lokalkonvexe Vektorràume

Wir betrachten nur Vektorràume ûber dem festen Kôrper (K, wobei IK entweder
den Kôrper M der reellen Zahlen oder den Korper C der komplexen Zahlen bezeich-
net. Wir denken uns IK stets mit der euklidischen Topologie versehen.

Ein kompakt erzeugter Vektorraum oder linearer k-Raum (ûber IK) E ist e'm mit
einer kompakt erzeugten Topologie versehener Vektorraum E (ûber K), fur welchen
die algebraischen Operationen + :EH E^E und • : IK II E-+ E stetig sind. Die von
diesen Râumen und ihren stetigen linearen Abbildungen gebildete Kategorie be-

zeichnen wir mit KEV. Nicht jeder kompakt erzeugte Vektorraum E ist ein topolo-
gischer Vektorraum, weil aus der Stetigkeit von + :E II E-+E nicht notwendig jene
von + :Ex E->Efo\gt. Fur ein Gegenbeispiel verweisen wir auf [16]. Umgekehrt ist
aber auch nicht jeder separierte topologische Vektorraum ein linearer &-Raum, siehe

(6.1) oder [6]. Ist allerdings F ein separierter topologischer Vektorraum, so ist kF tin
linearer fc-Raum. Wir bekommen so einen ebenfalls mit k bezeichneten Funktor

fc:LCV-»KEV,

wobei wit mir LCV die Kategorie der separierten lokalkonvexen Vektorràume be-

zeichnen.

In jedem linearen &-Raum E bilden die konvexen Nullumgebungen eine Filter-
basis. Der davon erzeugte Filter ist der Nullumgebungsfilter einer wohlbestimmten
lokalkonvexen Topologie auf dem E zugrundeliegenden Vektorraum E. Wir bezeich-

nen den so erhaltenen lokalkonvexen Raum mit cE. Eine stetige lineare Abbildung
l:E1-+E2 zwischen linearen A>Râumen Ex und E2 ist auch stetig als Abbildung von
cE1 in cE2, so dass wir auf dièse Weise einen Funktor

c:KEV->LCV*

erhalten, wobei wir mit LCV* die Kategorie aller lokalkonvexen Ràume bezeichnen.

Fur jedes 2s eKEV ist 1 :E-> cE stetig. Ist ferner F eLCV*, so ist eine stetige lineare

Abbildung von Ein F auch als Abbildung von cE in F stetig.

Fur EeKEV ist cE nicht notwendig separiert. Wenn dies aber der Fall ist, nennen
wir E konvex-separiert. Die konvex-separierten linearen &-Râume bilden eine voile
Unterkategorie CSKEV von KEV, und c: KEV-?LCV* induziert einen ebenfalls mit
c bezeichneten Funktor

c : CSKEV -> LCV.

Wir werden hàufig den leicht beweisbaren Satz aus [16] benutzen:
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2.1 SATZ. Der Funktor c : CSKEV-? LVC ist zu dem von k induzierten Funktor
£:LCV-> CSKEV coadjungiert, und es gelten

cokoc c und k ° c ° k k.

Wir nennen im folgenden einen konvex-separierten linearen fc-Raum E einen

kc-Raum, wenn

E kcE

gilt. Ein separierter lokalkonvexer Raum F, fur den

F ckF

gilt, heisst ein ck-Raum. Wie wir in den nâchsten Abschnitten sehen werden, spielen
&c-Râume und cA>Râume eine wichtige Rolle. Zwischen beiden Raumklassen besteht

ein eineindeutiger Zusammenhang :

2.2 SATZ. Mit den stetigen linearen Abbildungen als Morphismen bilden die kc-
Ràume und die ck-Râume isomorphe Kategorien.

Beweis. Dies folgt sofort aus (2.1): Die Restriktionen der Funktoren c und k
liefern den Isomorphismus bzw. dessen Umkehrung.

Solange uns nur stetige lineare Abbildungen interessieren, kônnen wir uns wegen
(2.2) auf die Untersuchung der cfc-Râume beschrânken und die erhaltenen Resultate
auf die ihnen entsprechenden fcc-Râume ùbertragen. Das hat den Vorteil, dass wir
die umfangreiche Théorie der lokalkonvexen Râume als Hilfsmittel heranziehen
kônnen. Muss man aber, wie zum Beispiel in der Differentialrechnung, auch nicht-
lineare Abbildungen betrachten, so weisen die fcc-Râume gegenûber den c&-Râumen

Vorteile auf. Die aus den &oRâumen und allen stetigen Abbildungen als Morphismen
gebildete Kategorie ist fur einen allgemeinen Differentialkalkùl sehr geeignet, cf. [16].

Will man analog zu (2.2) zur entsprechenden Kategorie der cA:-Râume ûbergehen,

so muss man dort als Morphismen aile Abbildungen nehmen, die stetig sind auf
Kompakta.

Wie in [16] gezeigt wird, ist die Kategorie KEV vollstândig und covollstândig.
Wir bezeichnen Produkte und Coprodukte in KEV mit ,,n" bzw, ,,U".

Fur eine Familie (Ft)i€l in LCV gilt nun nicht nur die aus der Adjungiertheit von
k folgende Identitât

iel tel

sondern auch
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2.3 LEMMA. Fùrjede Familie {Ft)ieI in LCV gilt ]JieI kFt k@ieI Ft.
Beweis. r.feF,-*F, ist stetig V/eJ. Also ist l:]JieIkFi->k@ieIFi stetig. Zu

zeigen bleibt, dass die Umkehrung stetig ist auf allen Kompakta. Dies folgt aber
leicht, da jede kompakte Teilmenge von ®ieiFt in einer endlichen Summe kom-
pakter Teilmengen gewisser Ft enthalten ist, cf. [15], p. 103.

Fur unsere Untersuchungen spielen Vollstândigkeitsfragen eine wichtige Rolle.
Da aber der Nullumgebungsfilter eines linearen A;-Raumes ausser in speziellen Fâllen
nicht in der ûblichen Weise eine uniforme Struktur erzeugt, arbeiten wir mit Vorteil
mit dem zugehôrigen lokalkonvexen Raum.

Mit F oder (F)~ bezeichnen wir die (ûbliche) Vervollstândigung eines lokalkonvexen

Raumes F. Das Vervollstândigen ist bekanntlich funktoriell : Jede stetige lineare

Abbildung l\F1-±F2 besitzt genau eine stetige lineare Erweiterung 1:F1-*F2, Ft und
F2 aus LCV. Auf die Vervollstândigung von cA;-Râumen kommen wir in §5 zurûck.
Hier beweisen wir:

2.4 SATZ. Fur jeden separierten lokalkonvexen Raum F ist ckF in natiirlicher
Weise ein Unterraum von ck(ckF)~. Ist F vollstândig, so kann mon ckF mit einem

komplementâren Unterraum von ck(ckF)~ identifizieren.
Beweis. Die erste Behauptung folgt daraus, dass die kanonische Inklusion /: ckF-*

{ckFy auch als Abbildung von ckF in ck{ckFy stetig ist. Sei F vollstândig. Da
1 : ckF-* F stetig ist, ergibt sich die Stetigkeit von 1 : (ckFy -> F und von 1 : ck (ckFy
->ckF. Es ist ï eine stetige Retraktion zur Inklusion i:ckF-*ck(ckF)~, d.h. ckF
ist komplementâr in ck(ckF)~.

§ 3. Dualraume

Ist E ein topologischer oder kompakt erzeugter Vektorraum, so bezeichnen wir
mit LE den Vektorraum der stetigen (K-wertigen) Linearformen auf E und mit LCOE

den mit der kompakt-offenen Topologie versehenen Raum LE. Dann ist fur jeden
kompakt erzeugten Vektorraum E der Raum LCOE ein Objekt in LCV. Da fur jeden
&-Raum X der Raum Cco (X, K) in kanonischer Weise als ein projektiver Limes von
Banach-Râumen dargestellt werden kann, ist LC0E als abgeschlossener Teilraum von
Cco (E, K) fur jeden linearen &-Raum E vollstândig.

Fur jeden solchen Raum E setzen wir zur Abkûrzung

£*:=fcLC0E.

Die Zuordnung E\->E* ist natûrlich funktoriell, und die Struktur von E* ist cha-

rakterisiert durch folgende universelle Eigenschaft: Ist Z ein kompakt erzeugter
Raum, so ist eine Abbildung/: Z-*E* genau dann stetig, wenn die durch/(z, x) :
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/(z) (x) definierte Abbildung/:Z II E-* K stetig ist. In diesem Sinne ist also E* der
natùrliche Dualraum von E in KEV.

Gemâss obiger Bemerkung gilt :

3.1 SATZ. Fùrjeden linearen k-Raum E ist E* ein kc-Raum von der Form E*=kF,
wobei F ein vollstândiger lokalkonvexer separierter Raum ist.

Beweis. F: LC0E ist in LCV und vollstândig, und es gilt E* kF. Aus (2.1)
ergibt sich kcE* kckF=kF=E*.

Wir benôtigen im folgenden hâufig

3.2 SATZ. Fùrjeden separierten lokalkonvexen Raum F gilt

LcockF LcokF.

Insbesondere ist LcockF also vollstândig.
Beweis. Wie schon in §2 bernerkt, gilt LckF=LkF. Weil F und kF dieselben

kompakten Teilmengen besitzen, gilt dasselbe auch fur ckF und kF. Es ist also

LcockF=LcokF. Wir haben aber schon gesehen, dass LcokF vollstândig ist.
Dual dazu gilt :

3.3 SATZ. Ist F ein vollstândiger separierter lokalkonvexer Raum, so ist LC0F ein

ck-Raum.
Beweis. Mit LvFbezeichnen wir den Raum LF, versehen mit der feinsten Topologie

v, welche auf jeder gleichstetigen Teilmenge von LF mit der von der schwachen

Topologie induzierten Topologie zusammenfâllt. Man sieht, dass LXF ein kompakt
erzeugter Raum ist, cf. [10], §21.8. Weil F vollstândig ist, bilden die konvexen unter
den Nullumgebungen von LVF eine Nullumgebungsbasis von LCOF, cf. [10], §21.9.
Da die Topologie von kLC0F grôber ist als die von LVF, folgt hieraus ckLC0F=LC0F.

Wenn die relativkompakten Teilmengen von LVFmit den gleichstetigen zusammen-
fallen, ist LVF offenbar sogar ein linearer fc-Raum. Wir wissen aber nicht, ob LVF
immer ein linearer A:-Raum ist.

3.4 KOROLLAR. Mit F ist auch LCOF ein vollstândiger ck-Raum.

Wir beweisen jetzt den folgenden Darstellungssatz fur den zu einem konvex-

separierten linearen &-Raum E assoziierten lokalkonvexen Raum cE:

3.5 SATZ. Sei E ein konvex-separierter linearer k-Raum. Dann ist die durch die

kanonische Injektion e:E-*LcoLcoE auf E induzierte Topologie mit derjenigen von cE
identisch: cE kann also mit einem linearen Teilraum von LCOLCOE identifiziert werden.

Beweis. Die durch e(x) (l): l(x) definierte Abbildung e:E-+LcoLCQE ist nach
dem Satz von Hahn-Banach, angewendet auf cE, injektiv. Aus der universellen Eigen-
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schaft der in KE verwendeten Funktionenraumtopologie folgt die Stetigkeit von e:E
-* E** kLcokLcoE. Weil 1 : kLcokLcoE^ LcokLcoE stetig ist und LCOLCO£ Teilraum von
LcokLcoE ist, folgt die Stetigkeit von e : E -» LCQLC0E und damit die von e\cE-+ LCOLCOE.

Die vermôge e auf E induzierte Topologie ist also grôber als die von cE. Um zu
zeigen, dass das Umgekehrte auch gilt, betrachten wir eine abgeschlossene, absolut-
konvexe Nullumgebung U in cE. Dann ist die Polare U° : {leLE=LeE | |/(x)| < 1,

VxeC/} in LcocE kompakt, cf. [10], §21.6. Aus der Stetigkeit von E^> cE folgt jene

von LcocE^> LC0E, also ist U° auch kompakt in LC0E. Damit ist die in LLC0E gebildete
Polare F von U° eine Nullumgebung in LCOLCOE. Also ist U=ê1(V) (Bipolarensatz!)
Nullumgebung bezûglich der induzierten Topologie.

3.6 KOROLLAR.
(a) Fur jeden ck-Raum F ist F Teilraum von LCOLGOF.

(b) Fur jeden konvex-separierten linearen k-Raum E ist kcE ein KE-Teilraum von

E**.
Beweis. Der Beweis von (a) ergibt sich aus der Anwendung von (3.5) auf kF und

aus (3.2). In (b) ist cE nach (3.5) Teilraum von LCOLCOE, und LCOLCOE ist Teilraum
von LcokLcoE. Die Behauptung folgt damit aus (1.1).

Wir haben allerdings noch kein Beispiel eines konvex-separierten linearen k-
Raumes E, fur den E^kcE gilt.

Wir sagen, ein separierter lokalkonvexer Raum F habe die Ascoli-Eigenschaft,
wenn gilt:

A a LF gleichstetigoA a LC0F relativkompakt.

In diesem Falle gilt offenbar kLcoF=LvF, wobei v wie in (3.3) die feinste Topologie
auf LF ist, welche auf allen gleichstetigen Teilmengen von LF mit der von der
schwachen Topologie induzierten Topologie ûbereinstimmt. LVF ist also inbesondere

ein linearer fc-Raum.
Weil ein separierter lokalkonvexer Raum F genau dann die Ascoli-Eigenschaft

hat, wenn die Inklusion e:F->LcoLcoF stetig ist, folgt aus (3.6):

3.7 KOROLLAR. Jeder ck-Raum hat die Ascoli-Eigenschaft.
Fur einen cfc-Raum F ist LCOF nach (3.2) ausserdem vollstândig. Unter welchen

Bedingungen folgt umgekehrt aus dieser und der Ascoli-Eigenschaft die Zugehorigkeit
zu den cfc-Râumen? Die Beantwortung dieser Frage wird fur uns in §5 nûtzlich sein;

in §4 benôtigen wir die Aussagen (3.8)—(3.10) noch nicht. Wir beginnen mit der

folgenden Verschârfung des bekannten Satzes von Krein (cf. [10], §24.5):

3.8 THEOREM. Sei K eine kompakte Teilmenge des separierten lokalkonvexen
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Raumes F, und seien K^ bzw K2 die abgeschlossene {absolut-) konvexe Huile von K
inFbzw in ckF Die folgenden Aussagen sind aquivalent

(1) Kt ist kompakt in F
(2) K2 ist kompakt in ckF
(3) Kt ist t(F, LckF)-vollstandig2)
(4) K2 ist x(F, LckF)-vollstandig
Beweis (l)<s>(2) ist einfach einzusehen, ebenso, dass in diesem Falle Kt — K2 gilt

(2)o(4) ist die Aussage des Satzes von Krein, angewendet auf ckF Es gilt (4) =>(3),
denn in diesem Falle gilt ja Kt =K2 Wir zeigen noch (3) =>(4) K2 ist Teilmenge von
Kt und abgeschlossen in ckF Als konvexe Menge ist K2 dann auch t (F, LckF)-
abgeschlossen und damit x (F, Lc£F)-vollstandig

Die Aussagen von (3 8) gelten insbesondere, wenn F oder ckF quasivollstandig
sind, und das ist der uns interessierende Fall Wir zeigen

3 9 LEMMA Sei FeLCV, und sei F oder ckF quasivollstandig Dann ist LCOF ein
dichter Unterraum von LcockF

Beweis Weil F und ckF dieselben kompakten Teilmengen haben, bilden (wegen
der Quasivollstandigkeit) die Polaren K° der in F absolutkonvexen kompakten Men-

gen j^eine Nullumgebungsbasis in LcockF Ist ij/eLckF, so ist ijj/Kfuv jedes unserer
ATstetig Nach dem Approximationslemma, prop 1,3 §11 in [8], gibt es ein q>KeLF

m\i

3 10 SATZ Sei F ein sepanerter lokalkonvexer Raum Ist F oder ckF quasivollstandig,

so sindfolgende Aussagen aquivalent
(1) F=ckF
(2) LCOF ist vollstandig, und F hat die Ascoh-Eigenschaft

Beweis Zu zeigen ist noch (2)=>(1) Aus der Vollstandigkeit von LC0F und (3 9)

folgt LcoF=LcockF und damit LcoLcoF=LcoLcockF Weil F die Ascoh-Eigenschaft
besitzt, erhalten wir mit Hilfe von (3 6) wie behauptet F= ckF

Wir kommen nun zu dem folgenden wichtigen

3 11 THEOREM Fur jeden konvex-sepanerten hnearen k-Raum E ist e(E) dicht

in LcokLcoE
Beweis Sei \j/eLkLcoE Es genugt zu zeigen, dass (\j/+W)ne(E) fur jedes W

aus emer Nullumgebungsbasis von LcokLC0E nicht leer ist Wegen der Vollstandigkeit
von LCOE genugt es, W aile Polaren A° der absolutkonvexen kompakten Teilmengen
A von LC0E durchlaufen zu lassen Es bezeichne LSE den Raum LE unter der relativ
zu E schwachen Topologie Nach Voraussetzung ist xj/ stetig auf den Kompakta von

2) t(F, LckF) ist die Mackey-Topologie von Fbezughch LckF
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LC0E. Sei AaLcoE absolutkonvex und kompakt. Auf A stimmen die kompakt-
offene und die schwache Topologie ûberein. Nach dem Approximationslemma, prop.
1, 3. §11 in [8], gibt es ein cpAeLLsE mit çAeij/ + A0. Wegen LLsEae(E) folgt

3.12 KOROLLAR. Sei F ein ck-Raum. Dann is!t e{F) dicht in LcockLcoF. Genau

dann ist e:F-+LcockLcoF ein Homôomorphismus {auf), wenn F vollstândig ist.
Beweis. Die erste Aussage ergibt sich nach (3.2), wenn man (3.11) auf kF an-

wendet. Die zweite erhâlt man unter zusâtzlicher Verwendung von (3.6).
Bernerkungen.

(1) Der Beweis von (3.11) kann natûrlich auch mit Hilfe des Grothendieckschen

Vollstândigkeitskriteriums gefûhrt werden, zu dem das erwâhnte Approximationslemma

eine vorbereitende Aussage ist.

(2) (3.10) findet sich in anderer Schreibweise bereits bei Buchwalter [3]. Die dort
untersuchten lokalkonvexen ,,Kelley-Râume" fallen unter den in (3.10) genannten
Bedingungen mit den c&-Ràumen zusammen.

§ 4. Bidualrâume und Tensorprodukte

Wie schon im letzten Abschnitt erwâhnt wurde, ist fur jeden kompakt erzeugten
Vektorraum E die kanonische lineare Abbildung e:E-*E** stetig. Auf Grund des

Satzes von Hahn-Banach ist sie ferner genau dann injektiv, wenn E konvex-separiert
ist. Ist e bijektiv, so nennen wir E halbreflexiv. Ist E mittels e ein KE-Teilraum von
E** (siehe (1.1)), so nennen wir E einbettbar. Ist E halbreflexiv und einbettbar, sind
also E und £** vermôge e homoomorph, so sagen wir, E sei reflexiv. Wir geben
in diesem Abschnitt fur jede dieser Eigenschaften Bedingungen an, die notwendig
und hinrechend sind und zeigen, dass insbesondere die Kategorie der einbettbaren
linearen &-Ràume durch schône Eigenschaften ausgezeichnet ist.

Wir beginnen mit

4.1 SATZ. Fur jeden halbreflexiven linearen k-Raum E ist E* reflexiv.
Beweis. Seien e:E-+E** und f:E*-+E*** die kanonischen Abbildungen. Weil

„*" ein Funktor ist, ergibt sich sofort, dass die durch e*(\j/):=\l/°e definierte
Abbildung e* von 2s*** nach E* stetig ist. Unmittelbar aus den Definitionen erhâlt man

e*o/= \E^ so dass e* surjektiv ist. e* ist aber auch injektiv, denn e war als surjektiv
vorausgesetzt. e* und / sind also invers zueinander, und / ist ein Homôomorphismus.

Es ist unmittelbar klar, dass mit E auch E* reflexiv ist. Ob die Voraussetzung
in (4.1) aber wirklich schwâcher ist, wissen wir nicht, weil wir kein Beispiel eines

halbreflexiven linearen fc-Raumes haben, der nicht reflexiv ist.
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4.2 THEOREM. Fur jeden konvex-separierten linearen k-Raum E sind folgende
Aussagen âquivalent:

(1) E ist halbreflexiv.
(2) cE ist vollstândig.
(3) eikcE^E** ist ein Homôomorphismus.
(4) kcE ist reflexiv.
Beweis. (1) =>(2) =>(3) =>(1) erhâlt man unmittelbar mit Hilfe von (3.5) und (3.11).

Setzt man (3) voraus, so folgt aus der Halbreflexivitât von E die Reflexivitât von
E* und E**, siehe (4.1). Wegen unserer Voraussetzung (3) ist kcE also reflexiv; damit
haben wir (3) =>(4). Aus (4) folgt zunâchst die Halbrefiexivitàt von kcE. Benutzt man
(1)=>(2), so hat man die Vollstândigkeit von ckcE—cE. Damit ist auch (4)=>(2)
bewiesen.

4.3 THEOREM. Fur jeden linearen k-Raum E sind folgende Aussagen âquivalent:
(1) E ist einbettbar.

(2) Es existiert ein ck-Raum G, so dass E—kG.

(3) Es existiert ein separierter lokalkonvexer Raum F, so dass E=kF.
(4) E ist ein kc-Raum.
Beweis. (2)=>(3)=>(4)=>(1): Dies erhàlt man unmittelbar mit Hilfe von (2.1) und

(3.6).
(1)=>(2): Aus der Injektivitât von e folgt, wie schon erwâhnt, die Separiertheit

von cE. Da e:cE->LcokLcoEfermr ein Teilraum ist, s. (3.5), ist e:kcE-+kLcokLcoE=
E** ein KE-Teilraum. Aus (1) folgt somit E=kcE. Setze G=cE.

Fur jeden linearen fc-Raum E ist E* folglich einbettbar. Wegen (2.2) ist ferner die

Kategorie der einbettbaren linearen &-Râume isomorph zur Kategorie der cfc-Râume.

Durch Kombination der âquivalenten Bedingungen in (4.2) und (4.3) bekommt

man jetzt eine ganze Reihe von Kriterien fur die Reflexivitât linearer £-Râume. Ins-
besondere hat man:

4.4 THEOREM. Fur jeden linearen k-Raum E sindfolgende Aussagen âquivalent:
(1) E ist reflexiv.
(2) Es gibt einen vollstândigen ck-Raum G mit E=kG.
(3) E ist ein halbreflexiver kc-Raum.

(4) Es gibt einen halbreflexiven linearen k-Raum El mit E=Ef.
(5) E ist ein kc-Raum, und cE ist vollstândig.
Bemerkung. Die Kategorie der reflexiven linearen A>Râume ist also isomorph zur

Kategorie der vollstândigen c&-Râume, siehe (2.2).
Wir wenden uns jetzt einigen besonderen Eigenschaften der Kategorie EKEV der

einbettbaren linearen &-Râume mit den stetigen linearen Abbildungen als Morphis-
men zu:
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4.5 THEOREM. Die Kategorie EKEV ist vollstàndig und covollstàndig.
Beweis. Nach (2.2) mùssen wir nur die Vollstândigkeit und die Covollstândigkeit

der Kategorie CK der c&-Râume zeigen. Aber CK ist eine reflektive Unterkategorie
von LCV, denn der Funktor ck : LCV -> CK ist ein zum Inklusionsfunktor / : CK -> LCV
adjungierter Retraktionsfunktor. Aus der bekannten Vollstândigkeit und
Covollstândigkeit von LCV folgt daher jene von CK.

Genauer gilt folgendes: Der Colimes in CK eines Diagramms von cA>Râumen

stimmt mit dem in LCV gebildeten Colimes ùberein, wâhrend man den Limes in CK
erhâlt, indem man auf den in LCV gebildeten Limes den Funktor ck ausûbt. Wie wir
allerdings spàter sehen werden, cf. (5.6), kann man sich beim Spezialfall der Produkt-
bildung die Anwendung von ck sparen: Die in LCV gebildeten Produkte von ck-
Râumen sind stets wieder c&-Râume.

Leicht ergibt sich ferner der

4.6 SATZ. Jeder in KEV gebildete Limes von einbettbaren linearen k-Râumen ist
einbettbar. Jeder lineare lŒ-Unterraum eines einbettbaren linearen k-Raumes ist
einbettbar.

Sind El9..., En und E kompakt erzeugte Vektorrâume, so bezeichnen wir mit

<?(EU...,EH;E)

den mit der universellen (d.h. durch die Inklusion in den Raum fé?(is1II...ILEIll, E)
induzierten) kompakt erzeugten Struktur versehenen Vektorraum L(El9...9 En; E)
der stetigen multilinearen Abbildungen von 2£1II...IIEII in E. Es ist also

wobei der Index ,,co" wieder auf die kompakt-offene Topologie hinweisen soll. Es

folgt sofort aus der universellen Eigenschaft der Funktionenraumstruktur, dass

&(El9...,En-l\&(En\E)) und &(Eu...9En\E) in kanonischer Weise homôo-

morph sind. Insbesondere kann man also immer ^(E1; E*) und J?(E2; E*) mit-
einander identifizieren.

Entsprechende Funktoren J£ und kanonische Isomorphismen erhâlt man auch

fur die Kategorie EKEV, denn es gilt der

4.7 SATZ. Ist von den linearen k-Râumen Eu...9En9 E der Raum E einbettbar,

so ist auch &(EU...9 En\ E) einbettbar.

Der Beweis ergibt sich unmittelbar aus (4.3) und der Separiertheit vonL^^,...,
En; E\ denn es ist ja &(El9...9 En; E) kLC0(Eu..., En; E).

Wir beweisen jetzt:
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4.8 THEOREM. Die Kategorie EKEV der einbettbaren kompakt erzeugten Vek-
torrâume besitzt bezuglich J£ ein Tensorprodukt ®. Fur E und F aus EKEV ist dabei
der E®F zugrunde liegende Vektorraum E®F das algebraische Tensorprodukt E®F,
und die Topologie von E®F ist die zu der natûrlichen Injektion ë\ E®F^>J?(E, F; K)*
gehôrende lŒ-Teilraumstruktur. Ferner ist E®F (vermôge e) dicht in LC0J£(E, F; K).

Beweis. Fur jedes (x, y)eE x Ferhâlt man eine durch exy(b): b (x, y) definierte
stetige lineare Abbildung

exy.&(E9F;K)->K.

Daraus ergibt sich in natûrlicher Weise die Abbildung

e:EIlF-+S?(E9FiK)*:(x9y)\-+eXfy;

und es ist unmittelbar klar, dass e bilinear und stetig ist.
Sei nun

t\E x F->E®F

,,das" algebraische Tensorprodukt. Dann erhâlt man die durch e ë° t charakterisierte
lineare Abbildung

Wir zeigen, dass ë injektiv ist. Sei dazu 0^zeE®F, wobei wir z schreiben als z=
Yj=i t(xi>yi) m^ linear unabhângigen xl9...,xn aus E und linear unabhângigen

yi,.*.9yn aus F. Da E und F konvex-separiert sind, existieren nach dem Satz von
Hahn-Banach stetige Linearformen u:E-> K und v:F-* K mit u(xl)—v(yl)=l und

u(xi) v(yi) 0 Vie{2,...,«}. Definiert man be&(E,F; K) durch b(x,y):=u(x)-
'v(y), so folgt (ëz) (b)=l und damit ëz^O.

Wegen der Injektivitât von ë kônnen wir nach (1.1) den Raum E®F mit der
KE-Teilraumstruktur von ££{E, F; K)* versehen. Der so erhaltene kompakt erzeugte
Vektorraum E®F ist nach (4.6) einbettbar. Aus der Stetigkeit von e ëot folgt die

Stetigkeit von t:EIlF->E®F.
Um die universelle Eigenschaft nachzuweisen, mùssen wir nur zeigen, dass fur

einen beliebigen einbettbaren linearen &-Raum G aus der Stetigkeit einer bilinearen

Abbildung b : E H F-» G die Stetigkeit der durch b bot eindeutig bestimmten linearen

Abbildung b:E®F-+ G folgt. Dazu betrachten wir die durch b{w) :=wob definierte

Abbildung
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Offenbar ist b stetig linear, und damit haben wir die stetig lineare adjungierte Ab-
bildung

Es ergibt sich das folgende Diagramm :

EUF > G

\
& (E, F; K)* > G**

b*

Aus der Définition der betreffenden Abbildungen folgt zunâchst eGob b*oe, also

eGobot b*°ëot, und daraus eG°b b*oê. Da 5* und ë stetig sind, ist eGob stetig,
und weil G einbettbar ist, folgt die Stetigkeit von b.

Die universelle Eigenschaft des Tensorproduktes t:EVLF^E®F impliziert die

Adjungiertheit der Funktoren - ®F und Se(F\ -), FeEKEV. Daraus folgt

\ G)) s X(E, F; G).

Fur G!= K hat man insbesondere

Da nun nach (3.11) E®Fin LCQkLCQ(E®F) LCQ(E®F)* dicht liegt, folgt, dass

E®Fin LC0&(E, F; K) dicht liegt.
Nach [16] besitzt sogar KEV ein Tensorprodukt, jedoch fehlt hierfûr noch eine

analoge explizite Beschreibung.
Bezûglich der stetigen Abbildungen als Morphismen bilden die einbettbaren

kompakt erzeugten Vektorrâume eine Kategorie EKEVs. Auch dièse Kategorie
zeichnet sich durch eine Reihe schôner Eigenschaften aus. Zunâchst gilt:

4.9 SATZ. Ist E ein einbettbarer linearer k-Raum, so gilt fur jeden kompakt
erzeugten Raum Y:V(Y9 E) ist einbettbar. Speziell ist also «if (Y, K) fur jedes FeKE
einbettbar.

Dies ist wieder eine einfache Konsequenz aus (4.3). Es folgt jedoch aus (4.9),
dass # : KEop x KE -> KE einen Bifunktor

^ : EKEVsop x EKEVs -» EKEVs
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induziert. Gemâss (4.6) stimmt das Produkt in EKEVs mit jenem in KEV bzw. KE
ùberein. Ferner ist fur lineare fc-Râume E, F, G eine Abbildung/:J£I~><^?(F, G) genau
dann stetig, wenn /:2s II F-> G:(x, y)t-+f(x)(y) stetig ist. Damit ergibt sich:

4.10 THEOREM. Die Kategorie EKEVs der einbettbaren kompakt erzeugten Vek-

torràume mit den stetigen Abbildungen als Morphismen wird durch den Bifunktor *€

kartesisch abgeschlossen.

Bemerkung: Wâre, wie wir in [5] zunâchst angekûndigt haben, fur jeden sepa-
rierten, vollstândigen lokalkonvexen Raum F auch ckF vollstândig, so hâtten wir
den Aussagen (4.5)-(4.10) entsprechende Resultate auch fur die Kategorie der
reflexiven linearen fc-Râume. Unser Beweis fur die Vollstândigkeit von ckF weist
indessen eine Lûcke auf, so dass dièse Ergebnisse vorlâufig nicht gesichert sind. Auf
der anderen Seite haben wir jedoch auch kein Beispiel eines vollstândigen Raumes

FeLCV, fur den ckF nicht vollstândig ist. Vergleiche hierzu auch die Aussagen
(5.7)-(5.10)dieser Arbeit.

Hingegen ergibt sich leicht, dass FëLCV genau dann folgenvollstândig ist, wenn
ckF dièse Eigenschaft hat. Daher erhâlt man zu (4.5)-(4.10) analoge Aussagen auf
aile Fàlle fur die Kategorie derjenigen fcoRâume E, fur welche cE folgenvollstândig
ist. Dièse Râume bilden, wie U. Seip gezeigt hat, eine fur die Belange der Analysis
hervorragend geeignete Kategorie. Wir verweisen diesbezûglich auf [16]; dort finden
sich auch die Beweise fur die erwàhnten Aussagen. Was aus unseren Betrachtungen
zusàtzlich folgt, ist die Einbettbarkeit dieser Râume, sowie (4.12).

Fur die Dualrâume von Coprodukten und von Produkten kompakt erzeugter
Vektorrâume gelten die folgenden Sàtze:

4.11 SATZ. Fûrjede Familie (Ei)isI linearer k-Râume gilt:

iel iel

Beweis. Da der Funktor KEV4>KEV0p wegen &&; El)^Se(E2\ E\) einen

Adjungierten, nâmlich KEVop4>KEV besitzt, kommutiert er mit Colimites, also mit
Coprodukten. Das Coprodukt in KEVop ist aber das Produkt in KEV.

Allgemeiner kann man zeigen: Fur jeden linearen £>Raum E kommutiert der
Funktor &(- ; £):KEV-*KEVop mit Colimites, cf. Satz 16, p. 7 in [16].

4.12 SATZ. Fûrjede Familie (Et)ieI einbettbarer kompakt erzeugter Vektorrâume

gilt:

(rwiiiel iel
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Beweis. Wir schreiben E{ kFu wobei die Ft cA>Râume sind, Vïe/. In (5.6) werden
wir zeigen, dass dann auch Xîei Ff em ck-R&um ist. Insbesondere besitzt also

Xfe/^i die Ascoli-Eigenschaft. Ist daher KaLC0^ieJ Ft relativkompakt, so ist K
inLXi6i^i ®iej LFtgleichstetigunddamitineinerendlichenSummegleichstetiger
Teilmengen gewisser LFt ,,enthalten". Daraus ergibt sich, dass K relativkompakt ,,in"
®iei LC0Ft ist, d.h. ®ieI LcoFi und Lco y^ieI Ft haben ,,dieselben" relativkompakten
Teilmengen. Es gilt also

/cLcoX^ keLcoiv
iel iel

Aus (2.3) und (3.2) folgt damit

II E\ U {kFt)* U kLcoFt k® LcoFt s kLco X F,.
iel iel iel iel iel

Weil X»ei Ff ein c/:-Raum ist, erhalten wir

U K s fcLC0 X F« fcLcofc X F i Mco FI fcF. II £0* •

16/ 16/ tel 16/ 16/

Sind aile £"f sogar reflexiv, so kônnen wir im Beweis von (4.12) die Ft sogar
vollstândig wâhlen. Dann ist y^ieiFi ein vollstândiger cfc-Raum, so dass wegen

Ilui^^XieiF, aus (4.4) folgt:

4.13 SATZ. Jedes KEV-Produkt von reflexiven linearen k-Râumen ist reflexiv.
Viele der in der Funktionalanalysis wichtigen Râume sind reflexive lineare k-

Râume. So gilt z.B. :

4.14 SATZ. Ist F ein Fréchet-Raum, so ist sowohl F aïs auch LCOF ein reflexiver
kompakt erzeugter Vektorraum.

Beweis. Fur F folgt dies unmittelbar aus (4.4) : F ist vollstândig und erfûllt als

metrisierbarer Raum F=kF. Daraus folgt, dass auch F* kLC0Fein reflexiver linearer
£-Raum ist. Aus dem Satz von Banach-Dieudonné (cf. [8] oder [10]) folgt aber leicht,
dass LcoF=kLcoF gilt.

Etwas allgemeiner gilt: Fur jeden metrisierbaren lokalkonvexen Raum F ist
LCOF ein reflexiver linearer fc-Raum.

§ 5. Weitere Aussagen iïber cA>Râume

In diesem Abschnitt leiten wir einige weitere Eigenschaften der cfc-Râume ab,
welche sie fur die allgemeine Théorie der lokalkonvexen Râume intéressant erscheinen

lassen.
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Ist FeLCV, so konnen wir ckF auch beschreiben als denjenigen lokalkonvexen
Raum, den wir erhalten, wenn wir den unterliegenden linearen Raum F mit der
feinsten lokalkonvexen Topologie versehen, welche dieselben kompakten Teilmengen
wie Fliefert. Dies legt die Frage nach Beziehungen zu anderen Klassen lokalkonvexer
Râume nahe, die eine analoge Beschreibung gestatten. Wir denken dabei insbesondere

an die bornologischen Râume und beweisen :

5.1 SATZ. Jeder bornologische Raum ist ein ck-Raum.

(5.1) ist eine einfache Konsequenz und sogar gleichwertig mit der folgenden
Aussage, deren Beweis ein Argument benutzt, welches man z.B. bei Buchwalter [4]
findet. Wir fûhren es der Vollstândigkeit halber an.

Mit Fx bezeichnen wir den zu FeLCV assoziierten bornologischen Raum. Eine

Nullumgebungsbasis von Fx wird gebildet von allen absolutkonvexen Teilmengen von
F, welche die beschrânkten Mengen in F absorbieren.

5.2 SATZ. Fur jeden separierten lokalkonvexen Raum F gilt

Fx (ckF)x.

Beweis. Sei U eine absolutkonvexe Nullumgebung in (ckF)x. Dann absorbiert U
jede beschrânkte Menge in ckF und insbesondere jede relativkompakte Teilmenge

von F. Aber U absorbiert sogar jede beschrânkte Menge in F. Denn wâre das fur
eine beschrânkte Menge A in F nicht der Fall, so gâbe es zu jedem neN ein xneA
mit xn$n2-U. Es wâre dann (l/n-xn)neN eine Nullfolge in F, welche als

relativkompakte Menge in F nicht von U absorbiert wûrde : Widerspruch. U ist also eine

Nullumgebung in F*.
Ein anderer Beweis findet sich in der soeben erschienen Arbeit [20] von H. Porta.
Nicht jeder cA>Raum ist indessen bornologisch. In (6.2) geben wir ein Beispiel

eines vollstândigen cfc-Raumes, dessen Topologie nicht die Mackey-Topologie ist.

Es gibt weiter vollstândige c&-Râume mit Mackey-Topologie, die nicht tonneliert
sind, und es gibt tonnelierte und vollstândige c&-Râume, die nicht bornologisch sind,
cf. (6.3).

Aus (5.1) und (5.2) erhâlt man mit Hilfe von [10], §18.4:

5.3 KOROLLAR. Fur jedes FeLCV ist LbF Unterraum von LbckF9 und LbckF
ist vollstândig.

Mit ,,è" beschreiben wir die Topologie der beschrânkten Konvergenz. - Eine

weitere Folgerung ist

5.4 KOROLLAR. FeLCV ist genau dann ein semi-Montel-Raum (s. [8]), wenn

ckF dièse Eigenschaft hat.
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Denn F und ckF haben dieselben beschrânkten Mengen, und dièse sind in F bzw.
ckF relativkompakt.

Aber selbst in diesem speziellen Fall kônnen Fx und ckF verschieden sein, wie
wir in (6.2) sehen werden.

Fur Montel-Râume ergibt sich das folgende Vollstândigkeitskriterium:

5.5 THEOREM. Es seien F ein Montel-Raum und LbF sein starker Dualraum.
(1) F ist genau dann vollstândig, wenn LbF ein ck-Raum ist.

(2) F ist genau dann ein ck-Raum, wenn LbF vollstândig ist.
Beweis. LbF ist ebenfalls ein Montel-Raum. Aus der Reflexivitât der Montel-

Râume folgt, dass (1) und (2) sogar àquivalente Aussagen sind. Wir beweisen (2):
Aus F=ckF folgt die Vollstândigkeit von LbF nach (5.3). Sei umgekehrt LbF

vollstândig. Als Montel-Raum ist F quasivollstândig. Ferner haben wir F^LbLbF=
LCOLCOF. Also hat F die Ascoli-Eigenschaft, und wir bekommen F— ckF nach (3.10).

Auf Konsequenzen aus (5.5) kommen wir im nâchsten Abschnitt zurûck.
Jetzt beschâftigen wir uns noch mit ,,Permanenzeigenschaften" der cfc-Râume.

Fur Produkte ist die Situation besser als z.B. bei den bornologischen Râumen:

5.6 SATZ.
(a) Jeder Colimes in LCV von ck-Râumen ist wieder ein ck-Raum. Insbesondere

sind also die in LCV gebildeten Quotienten, direkten Summen und induktiven Limites
von ck-Râumen wieder ck-Râume.

(b) Das in LCV gebildete Produkt jeder Familie von ck-Râumen ist ein ck-Raum.
Beweis.

(a) Dies ergibt sich unmittelbar daraus, dass der zugehôrige Inklusionsfunktor
einen Adjungierten, nâmlich ck, besitzt.

(b) Ein direkter Beweis fur dièse Behauptung findet sich in der soeben erschienenen

Note [20] von H. Porta. Unter Verwendung eines allgemeinen Satzes von M. de Wilde
(cf. Cor. 1.1 in [19]) kann der Beweis etwas eleganter aber auch so gefûhrt
werden:

Ist zunâchst (Fi)ieI eine Familie vollstândiger cA>Râume, so kônnen wir nicht
nur y^ieILcoLcoFi und Lco@ieILcoFh sondern auch ®ieILcoFi und £0X^1^
miteinander identifizieren, cf. z.B. [15], pp. 103-104. Es ist Xfe/^ vollstândig und
hat die Ascoli-Eigenschaft wegen Xiei^i=Xiei A^o^i=^0^0 X*e/^ Ferner

impliziert die Vollstândigkeit aller LcoFt die Vollstândigkeit von £C0Xfei Fi ®iei
LcoFi9 so dass aus (3.10) die Behauptung ck X*6i^=X»*eiFi folgt. Vergleiche hierzu
auch mit [3].

Ist jetzt (Ft)ieI eine beliebige Familie von cfc-Râumen, so ist fur *=(*0ie JGXfei
Fi mit x,#0, Vie/, insbesondere X*ei [*i] ^J ein cfc-Raum. Dabei bezeichnen wir
den von xt in Ft erzeugten linearen Teilraum mit [xt]. Die Voraussetzungen von Cor.
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1.1 in [19] sind damit erfûllt, d.h. die Topologie von cky^iGl Ft ist grôber als jene

Aus (5.6) folgt sofort, dass jedes Produkt in LCV von bornologischen Râumen

wenigstens immer ein cfc-Raum ist.

Unter der induzierten Topologie ist ein linearer Unterraum eines cfc-Raumes

allerdings nicht notwendig wieder ein cA:-Raum, auch dann nicht, wenn er abge-
schlossen ist. Man kann schliesslich jeden separierten lokalkonvexen Raum in ein

Produkt von Banach-Râumen, also in einen cfc-Raum einbetten. Konkrete Beispiele
werden wir in (6.1) und (6.4) angeben.

Insbesondere ist nicht jeder LCV-Limes von ck-Râumen wieder ein c£-Raum.
Offen ist die Frage, ob fur jeden separierten lokalkonvexen Raum F die Beziehung

(ckF)~ ck(ckF)~

gilt. Eine positive Antwort wûrde implizieren, dass ckF fur vollstândiges FeLCV
stets vollstândig ist. Vergleiche hierfùr die Bernerkung im Anschluss an (4.10) sowie

(2.4).
Wir beschâftigen uns jetzt noch kurz mit der oben gestellten sowie einigen ver-

wandten Fragen und beginnen mit

5.7 SATZ. Fur jeden separierten lokalkonvexen Raum F hat (ckF)~ die Ascoli-
Eigenschaft, und es gilt ckLcockF—Lco (ckFy.

Beweis. Wir identifizieren L(ckF)~ und LckF. Aus der Stetigkeit der Inklusion

ckF-+{ckF)~ folgt, dass LC0(ckF)~-^>LCQckF stetig ist. Ist also A eine relativkom-
pakte Teilmenge in LC0{ckF)~', so auch in LcockF. Es folgt, dass A in LckF und
damit in L(ckF)~ gleichstetig ist, cf. (3.7). Also besitzen LcockF und LC0(ckF)~
dieselben relativkompakten Teilmengen, nâmlich die gleichstetigen. Weil aber nach

(3.3) Lco(ckF)~ ein cfc-Raum ist, erhalten wir Lco(ckF)~ — ckLcockF.
Zusammen mit (3.10) folgt:

5.8 KOROLLAR. Die Vervollstândigung F eines ck-Raumes F ist genau dann ein

ck-Raum, wenn LCOF vollstândig ist.

Dualzu (5.8) gilt:

5.9 SATZ. Sei F ein volUtândiger separierter lokalkonvexer Raum. Genau dann ist
ckF vollstândig, wenn LcockFein ck-Raum ist.

Beweis. Ist ckF vollstândig, so ist LcockF dn cfc-Raum nach (3.3). Sei umgekehrt
LcockF ein cfc-Raum. Dann folgt die Behauptung wegen (ckF)~ =LckLcockF=

Analog zur Situation bei den bornologischen Râumen (cf. [10], §28) hat man das

folgende Kriterium :
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5.10 SATZ. Die f ervollstândigung F eines ck-Raumes F ist genau dann ein ck-
Raum, wennfolgendes gilt :

VleLckF:l/F 0=>l 0. (*)

Beweis. Ist F ein c&-Raum, so ist (*) trivialerweise erfûllt. Es gelte also (*). Sei

l'eLckF. Dann ist l: l'/FeLF und besitzt eine wohlbestimmte stetige lineare Er-
weiterung ïeLF. Es ist V —leLckF und (lf—l)/F=0. Wegen (*) erhalten wir damit
/'=/. Es ist also LF=LckF, d.h. LCOF ist wegen (3.2) vollstândig. Aus (5.8) folgt
F=ckF

Wir hâtten auch (2.4) benutzen kônnen.
Wie schon erwâhnt, fehlt uns ein konkretes Beispiel eines vollstàndigen Raumes

FeLCY, fur den ckF nicht vollstândig ist. Ebenso fehlt uns ein Beispiel eines cfc-Rau-

mes F, dessen Vervollstândigung F kein ck-Raum ist.

§ 6. Beispiele

Fur einen separierten lokalkonvexen Raum F bezeichnen wir mit Fo den Raum F,
versehen mit der feinsten Schwartz-Topologie, welche grober ist als die Topologie von
F. Die Topologie von Fo liegt zwischen der Topologie von Fund der schwachen Topologie

a (F, LF). Insbesondere haben F und Fo dieselben beschrânkten Mengen. Wir
nennen Fo den zu F assoziierten Schwartz-Raum. Dièse Râume sind zuerst in [14] und
[2] nâher untersucht worden. Wir wenden die dort erhaltenen Resultate fur zwei

Spezialfàllean:

6.1. In [10], §31.5, findet sich ein Beispiel eines Fréchet-Montel-Raumes F, der
einen abgeschlossenen linearen Teilraum G besitzt, so dass der Quotientenraum F/G
kein Fréchet-Montel-Raum mehr ist. Unter Verwendung des Korollars zur Proposition

7 in 3. §15 von [8] sieht man sofort, dass F kein Schwartz-Raum sein kann; F und
Fo sind also verschieden. Nach [2] ist Fo in diesem Fall jedoch vollstândig und damit
insbesondere ein semi-Montel-Raum, cf. [8]. Da .F ein Montel-Raum ist und da F und
Fo dieselben beschrânkten Mengen besitzen, folgt, dass beide Râume auch dieselben

kompakten Mengen haben mûssen, dass also F=ckF0 und sogar F=kF0 gelten muss.
Damit haben wir:

Ist F ein Fréchet-Montel-Raum und kein Schwartz-Raum, so ist der zu F assoziierte
Schwartz-Raum Fo kein ck-Raum.

Aber Fo ist in natûrlicher Weise ein abgeschlossener Unterraum eines Produktes

von Banach-Râumen, nach (5.6) also eines cfc-Raumes.

6.2. Die Situation ândert sich, wenn wir einen unendlichdimensionalen reflexiven



Zur Dualitâtstheorie von Vektorrâumen 309

Banach-Raum F betrachten. Wie Raïkov in [14] gezeigt hat, gilt fur den assoziierten

Schwartz-Raum Fo diesmal

F0*LcoLbF.

Als Banach-Raum ist LbF ein vollstândiger cfc-Raum. Nach (3.4) ist also auch Fo ein

vollstândiger cA>Raum. Weil F unendlichdimensional ist, gilt F^F0> Also haben wir:
Der zu einem unendlichdimensionalen reflexiven Banach-Raum F assoziierte

Schwartz-Raum Fo ist ein vollstândiger ck-Raum, dessen Topologie nicht die Mackey-
Topologie ist.

Fo ist also insbesondere nicht quasitonneliert und erst recht nicht bornologisch.

6.3. Sei k ein vollkommener Folgenraum mit a-Dual k*. Dann ist k unter seiner

Mackey-Topologie t(A, k*) vollstândig, cf. [10], §30.5, und darstellbar in der Form
LCOF, wobei F den Raum k* unter seiner normalen Topologie bezeichnet, cf. [10],
§30.6. Aus §30.1 und §30.5 in [10] folgt, dass Febenfalls vollstândig ist. Nach (3.3) ist
deshalb k unter x (k, k* ein vollstândiger cfc-Raum.

Dieser Raum muss nicht tonneliert sein, cf. [10], §30,7, und wenn er tonneliert ist,
braucht er noch nicht bornologisch zu sein; fur ein Beispiel verweisen wir auf [11]. In
diesem Beispiel ist ûbrigens k unter x(k, k*) sogar darstellbar als Vervollstândigung
eines bornologischen Raumes.

Es gibt also vollstândige nicht-tonnelierte ck-Râume mit Mackey-Topologie, und es

gibt vollstândige tonnelierte ck-Ràume, die nicht bornologisch sind.

6.4. Ist F ein quasivollstândiger ck-Raum, aber nicht vollstândig, so ist LCOF kein

ck-Raum.
Die Topologie von LCOF ist in diesem Fall nach dem Satz von Mackey-Arens

nâmlich grôber als die Mackey-Topologie x(LF, F), wir haben also F^LLC0F. Nach

(3.5) und (3.11) ist jedoch F^LckLcoF, so dass LCOF und ckLC0F nicht einmal den-

selben Dualraum liefern.

6.5. In [12] und [1] gaben Kômura und Amemiya Beispiele nichtvollstândiger
Montel-Râume. Fur jeden deratigen Raum F ist LbF nach (5.5) ein Beispiel eines

Montel-Raumes, der kein ck-Raum ist. Insbesondere ist LbF dann nicht bornologisch,
so dass man auf dièse Weise zusâtzlich zu den bekannten Beispielen in [11], [13], [17]
tonnelierte Râume erhâlt, die nicht bornologisch sind.

Allerdings liefern die nicht-vollstândigen Montel-Râume Fin [1] und [12] auch

schon solche Beispiele. Nach Konstruktion sind ihre beschrânkten Mengen nâmlich
endlichdimensional, es ist also Fx ckF, und daraus folgt, dass F nicht einmal ein
cfc-Raum ist. Also ist auch LdFein unvollstândiger Montel-Raum.
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