Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 47 (1972)

Artikel: Zur Dualitatstheorie kompakt erzeugter und lokalkonvexer Vektorraume
Autor: Frohlicher, Alfred / Jarchow, Hans

DOl: https://doi.org/10.5169/seals-36368

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-36368
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

289

Zur Dualititstheorie kompakt erzeugter und lokalkonvexer
Vektorriume?)

ALFRED FROLICHER und HANS JARCHOW

Einleitung

Der Dualraum eines lokalkonvexen Raumes ldsst sich auf viele Arten topologi-
sieren. Fiir eine Kategorie lokalkonvexer Radume, die auch nicht-normierbare Riaume
enthilt, ist es jedoch nicht moglich, diese Topologisierung in funktorieller Weise
derart vorzunehmen, dass die Evaluationsabbildung stetig wird.

Kompakt erzeugte Vektorrdume verhalten sich in dieser Beziehung wesentlich
angenehmer. Unter den kompakt erzeuten Topologien auf dem Dualraum eines
kompakt erzeugten Vektorraumes E gibt es eine, welche nicht nur die Evaluation
stetig macht, sondern ausserdem durch eine universelle Eigenschaft ausgezeichnet ist.
Den mit ihr versehenen Dualraum von E bezeichnen wir mit £*. Aus der erwdhnten

universellen Eigenschaft folgt, dass auch die kanonische lineare Abbildung ES E**
stetig ist. Aus diesem Grunde erhélt man fiir kompakt erzeugte Vektorrdume eine in
mancher Hinsicht bessere Dualitédtstheorie als fiir lokalkonvexe Ridume.

Die dabei auftretenden Fragen sind zunichst die folgenden: Wann ist die kano-

nische Abbilding E 5 E** injektiv? Wann ist sie bijektiv? Wann ist E einbettbar, d.h.
wann ist die Topologie von E durch jene von E** im Sinne der kompakt erzeugten
Riume induziert? Und wann ist schliesslich e ein Homdomorphismus von E auf E**?

Um diese Fragen in §4 beantworten zu kénnen, werden nach einigen einleitenden
Bemerkungen (§1) in §2 zunédchst Zusammenhinge zwischen kompakt erzeugten und
lokalkonvexen Vektorrdumen nidher untersucht. Dabei zeigt sich insbesondere, dass
die beiden betreffenden Kategorien zueinander isomorphe Unterkategorien besitzen,
deren Objekte wir aus spéter ersichtlichen Griinden als kc-Rdume bzw. als ck-Rdume
bezeichnen. Die erwdhnten Beziehungen erlauben es, fiir die in § 3 beginnendenUnter-
suchungen iiber Dualrdume Ergebnisse aus der Theorie der lokalkonvexen Riume
anzuwenden. In §4 werden nicht nur die bereits angedeuteten Fragen beziiglich der

Abbildung E= E** vollstindig beantwortet, sondern es wird ausserdem gezeigt, dass
die Klasse der einbettbaren kompakt erzeugten Vektorrdume sehr schéne Eigen-
schaften besitzt: Mit den stetigen linearen Abbildungen als Morphismen bildet sie
eine vollstindige und covollstindige Kategorie, die ein Tensorprodukt besitzt; mit

1) Diese Arbeit entstand wéhrend eines Aufenthaltes des erstgenannten Autors am Forschungs-
institut fiir Mathematik der Eidgendssischen Technischen Hochschule Ziirich.
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allen stetigen Abbildungen als Morphismen erhélt man eine kartesisch abgeschlossene
Kategorie.

Wie sich zeigen wird, sind die einbettbaren kompakt erzeugten Vektorriume
gerade die oben erwidhnten kc-Ridume. Da diese umkehrbar eindeutig den ck-Riumen
entsprechen, erhalten wir so eine schon aus diesem Grunde interessante Klasse lokal-
konvexer Rdume. In §5 leiten wir einige Eigenschaften dieser Rdume ab, die sie fiir die
allgemeine Theorie wichtig erscheinen lassen. ck-Rdume konnen analog zu den
bornologischen Rdumen definiert werden, und es zeigt sich, dass jeder bornologische
Raum ein ck-Raum ist. Ein Montelraum z.B. ist genau dann vollstindig bzw. ein
ck-Raum, wenn sein starker Dualraum ein ck-Raum bzw. vollstdndig ist. Die von den
bornologischen Rdumen her bekannten ,,unangenehmen‘‘ Erscheinungen bei der Pro-
duktbildung treten hier nicht auf: Jedes lokalkonvexe Produkt von ck-Rdumen ist ein
ck-Raum. Insbesondere ist jedes lokalkonvexe Produkt bornologischer Riume ein
ck-Raum.

In §6 geben wir schliesslich einige Beispiele und Gegenbeispiele zur hier entwickel-
ten Theorie.

§ 1. Kompakt erzeugte Riume

Einem beliebigen separierten topologischen Raum X kann man einen topologi-
schen Raum kX wie folgt zuordnen: kX hat dieselbe unterliegende Menge wie X und
tragt die durch die Inklusionen der kompakten Teilmengen von X coinduzierte To-
pologie. Die identische Abbildung 1:kX — X ist dann stetig, so dass auch kX separiert
ist. Da ferner aus der Stetigkeit einer Abbildung f : X — Y zwischen separierten Riu-
men immer jene von f : kX — kY folgt, erhilt man einen Endofunktor

kH-H

der Kategorie H der Hausdorff-Ridume. Es gilt ko k=Fk, weil X und kX stets dieselben
kompakten Teilmengen besitzen.

Ein separierter topologischer Raum X heisst kompakt erzeugt oder ein k-Raum,
cf. [71, [9], [16], [18], wenn X =kX gilt. Die von den kompakt erzeugten Riumen ge-
bildete volle Unterkategorie von H bezeichnen wir mit KE. Der Funktor k:H—H
faktorisiert sich jetzt folgendermassen: :

HSKESH.

Dabei bezeichnet i den Inklusionsfunktor. Aus ko k=£k ergibt sich koi=1, und aus der
Stetigkeit der identischen Abbildung kX — X fiir jedes XeH folgt, dass der Funktor
k:H—-KE zu i :KE — H adjungiert ist. KE ist also eine sogenannte reflektive Unter-
kategorie von H.
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Man schliesst hieraus, dass k£ mit Limites und i mit Colimites kommutiert, und
dass die Kategorie KE vollstindig und covollstdndig ist. Dabei berechnen sich die
Colimites wie in H: der in H gebildete Colimes von k-Rdumen ist kompakt erzeugt
und damit auch Colimes in KE. Limites in KE erhdlt man dagegen, indem man auf die
entsprechenden, in H gebildeten Limites den Funktor £ anwendet. Insbesondere ist
das in H gebildete Produkt Y; x ¥, bzw. X;.; Y; von k-Rdumen nicht immer kom-
pakt erzeugt. Man erhdlt aber das KE-Produkt Y; I1 Y, bzw. [];.; Y; gemiss
Y I Y,=k(Y,xY,) bzw. [[ic1 Yi=k(X;c1 Y3)-

Der wesentliche Vorteil der Kategorie KE gegeniiber der Kategorie H liegt in der
kartesischen Abgeschlossenheit von KE, cf. [7], [18], Dies bedeutet, dass es einen
Bifunktor

%:KE” x KE - KE

mit der Eigenschaft gibt, dass fiir jedes YeKE der Funktor ¢ (Y, —) zum Funktor
—II Y adjungiert ist. Fiir Z eKE ist dabei € (Y, Z) die Menge C (Y, Z) aller stetigen
Abbildungen von Y in Z, versehen mit einer kompakt erzeugten Topologie, so dass
fiir jedes X eKE gilt: Eine Abbildung f : X —» % (Y, Z) ist genau dann stetig, wenn die
durch £ (x, y):= f (x) (») definierte Abbildung f:X IT Y- Z stetig ist.

Der Bifunktor € ist hierdurch bis auf Isomorphie eindeutig festgelegt. Er ldsst sich
wie folgt konstruieren:

€(Y,Z)=kC. (Y, Z).

Dabei ist C,, der wohlbekannte Bifunktor, den man erhilt, wenn man C (Y, Z) mit
der kompakt-offenen Topologie versieht.

Hat man einen Morphismus f : Y — X von KE mit der Eigenschaft, dass eine Ab-
bildung g:Z — Y einer k-Raumes Z nach Y genau dann stetig ist, wenn f og: Z > X
stetig ist, so sagt man, die Topologie von Y sei die durch die Abbildung f : Y — X in-
duzierte KE-Topologie (Y ist dabei die Y zugrunde liegende Menge.) Ist f injektiv,
so sagt man auch, Y sei mittels f ein KE-Teilraum von X. Wir bemerken dazu folgen-
des: Ein topologischer Teilraum 7 eines kompakt erzeugten Raumes X ist i.a. nicht
wieder kompakt erzeugt. Wenn allerdings 7" in X abgeschlossen (trivialer Fall) oder
offen (cf. [7]) ist, so gilt bereits T=kT. Gemdss dem folgenden, leicht zu beweisenden
Satz existiert fiir jede injektive Abbildung f : M — X einer Menge M in einen kompakt
erzeugten Raum X die durch fauf M induzierte KE-Topologie, und diese wird erhalten,
indem man auf die induzierte Topologie den Funktor k ausiibt.

1.1 SATZ. Sind X und Y separierte topologische Rdume und ist die Topologie von Y
die durch eine Abbildung f : Y — X induzierte Topologie, so ist die Topologie von kY die
durch f . Y — kX induzierte KE-Topologie.
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§ 2. Kompakt erzeugte und lokalkonvexe Vektorriume

Wir betrachten nur Vektorrdume iiber dem festen Korper I, wobei K entweder
den Korper R der reellen Zahlen oder den Korper C der komplexen Zahlen bezeich-
net. Wir denken uns K stets mit der euklidischen Topologie versehen.

Ein kompakt erzeugter Vektorraum oder linearer k-Raum (liber ) E ist ein mit
einer kompakt erzeugten Topologie versehener Vektorraum E (liber K), fiir welchen
die algebraischen Operationen + :E Il E— E und - :K IT E— E stetig sind. Die von
diesen Rdumen und ihren stetigen linearen Abbildungen gebildete Kategorie be-
zeichnen wir mit KEV. Nicht jeder kompakt erzeugte Vektorraum E ist ein topolo-
gischer Vektorraum, weil aus der Stetigkeit von + : E IT E— E nicht notwendig jene
von + :E x E— E folgt. Fiir ein Gegenbeispiel verweisen wir auf [16]. Umgekehrt ist
aber auch nicht jeder separierte topologische Vektorraum ein linearer k-Raum, siehe
(6.1) oder [6]. Ist allerdings F ein separierter topologischer Vektorraum, so ist KF ein
linearer k-Raum. Wir bekommen so einen ebenfalls mit k bezeichneten Funktor

k:LCV->KEV,

wobei wit mir LCV die Kategorie der separierten lokalkonvexen Vektorriume be-
zeichnen.

In jedem linearen k-Raum E bilden die konvexen Nullumgebungen eine Filter-
basis. Der davon erzeugte Filter ist der Nullumgebungsfilter einer wohlbestimmten
lokalkonvexen Topologie auf dem E zugrundeliegenden Vektorraum E. Wir bezeich-
nen den so erhaltenen lokalkonvexen Raum mit cE. Eine stetige lineare Abbildung
l.E, - E, zwischen linearen k-Rdumen E, und E, ist auch stetig als Abbildung von
cE, in cE,, so dass wir auf diese Weise einen Funktor

¢:KEV - LCV*

erhalten, wobei wir mit LCV* die Kategorie aller lokalkonvexen Rdume bezeichnen.
Fiir jedes E€KEYV ist 1: E— cE stetig. Ist ferner F e LCV*, so ist eine stetige lineare
Abbildung von E in F auch als Abbildung von c¢E in F stetig.

Fiir EeKEY ist cE nicht notwendig separiert. Wenn dies aber der Fall ist, nennen
wir E konvex-separiert. Die konvex-separierten linearen k-Riume bilden eine volle
Unterkategorie CSKEV von KEV, und c:KEV — LCV* induziert einen ebenfalls mit
¢ bezeichneten Funktor

¢:CSKEV - LCV.

Wir werden hiufig den leicht beweisbaren Satz aus [16] benutzen:
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2.1 SATZ. Der Funktor c¢:CSKEV - LVC ist zu dem von k induzierten Funktor
k:LCV — CSKEV coadjungiert, und es gelten

cokoc=c¢c und kocok=k.

Wir nennen im folgenden einen konvex-separierten linearen k-Raum E einen
kc-Raum, wenn

E = kcE
gilt. Ein separierter lokalkonvexer Raum F, fiir den
F = ckF

gilt, heisst ein ck-Raum. Wie wir in den nidchsten Abschnitten sehen werden, spielen
kc-Raume und ck-Réume eine wichtige Rolle. Zwischen beiden Raumklassen besteht
ein eineindeutiger Zusammenhang:

2.2 SATZ. Mit den stetigen linearen Abbildungen als Morphismen bilden die kc-
Rdume und die ck-Rdume isomorphe Kategorien.

Beweis. Dies folgt sofort aus (2.1): Die Restriktionen der Funktoren ¢ und k&
liefern den Isomorphismus bzw. dessen Umkehrung.

Solange uns nur stetige lineare Abbildungen interessieren, konnen wir uns wegen
(2.2) auf die Untersuchung der ck-Rdume beschrinken und die erhaltenen Resultate
auf die ihnen entsprechenden kc-Rdume iibertragen. Das hat den Vorteil, dass wir
die umfangreiche Theorie der lokalkonvexen R&ume als Hilfsmittel heranziehen
konnen. Muss man aber, wie zum Beispiel in der Differentialrechnung, auch nicht-
lineare Abbildungen betrachten, so weisen die kc-Rdume gegeniiber den ck-Rédumen
Vorteile auf. Die aus den kc-Rdumen und allen stetigen Abbildungen als Morphismen
gebildete Kategorie ist fiir einen allgemeinen Differentialkalkiil sehr geeignet, cf. [16].
Will man analog zu (2.2) zur entsprechenden Kategorie der ck-Rédume iibergehen,
so muss man dort als Morphismen alle Abbildungen nehmen, die stetig sind auf
Kompakta.

Wie in [16] gezeigt wird, ist die Kategorie KEV vollstindig und covollstindig.
Wir bezeichnen Produkte und Coprodukte in KEV mit ,,IT* bzw, ,,I1*.

Fiir eine Familie (F;);., in LCV gilt nun nicht nur die aus der Adjungiertheit von
k folgende Identitit

HkFi=k><Fis

iel iel

sondern auch
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2.3 LEMMA. Fiir jede Familie (F;);.; in LCV gilt | [;c; kFi=k®;; F;.

Beweis. 1:kF;— F; ist stetig Viel. Also ist 1:][[;c; kF;>k @, F; stetig. Zu
zeigen bleibt, dass die Umkehrung stetig ist auf allen Kompakta. Dies folgt aber
leicht, da jede kompakte Teilmenge von @;.; F; in einer endlichen Summe kom-
pakter Teilmengen gewisser F; enthalten ist, cf. [15], p. 103.

Fiir unsere Untersuchungen spielen Volistdndigkeitsfragen eine wichtige Rolle.
Da aber der Nullumgebungsfilter eines linearen k-Raumes ausser in speziellen Féllen
nicht in der iiblichen Weise eine uniforme Struktur erzeugt, arbeiten wir mit Vorteil
mit dem zugehorigen lokalkonvexen Raum.

Mit F oder (F)~ bezeichnen wir die (iibliche) Vervollstindigung eines lokalkon-
vexen Raumes F. Das Vervollstdndigen ist bekanntlich funktoriell: Jede stetige lineare
Abbildung I: F, - F, besitzt genau eine stetige lineare Erweiterung I: F, —» F,, F, und
F, aus LCV. Auf die Vervollstindigung von ck-Rdumen kommen wir in §5 zuriick.
Hier beweisen wir:

2.4 SATZ. Fiir jeden separierten lokalkonvexen Raum F ist ckF in natiirlicher
Weise ein Unterraum von ck(ckF)~. Ist F volistindig, so kann man ckF mit einem
komplementdren Unterraum von ck (ckF)~ identifizieren.

Beweis. Die erste Behauptung folgt daraus, dass die kanonische Inklusion i: ckF —
(ckF)~ auch als Abbildung von ckF in ck(ckF)~ stetig ist. Sei F vollstindig. Da
1: ckF— F stetig ist, ergibt sich die Stetigkeit von 1:(ckF)~ — F und von 1:ck (ckF)~
— ckF. Es ist 1 eine stetige Retraktion zur Inklusion i:ckF— ck(ckF)~, d.h. ckF
ist komplementir in ck (ckF)~.

§ 3. Dualriume

Ist E ein topologischer oder kompakt erzeugter Vektorraum, so bezeichnen wir
mit LE den Vektorraum der stetigen (IK-wertigen) Linearformen auf E und mit L E
den mit der kompakt-offenen Topologie versechenen Raum LE. Dann ist fiir jeden
kompakt erzeugten Vektorraum E der Raum L E ein Objekt in LCV. Da fiir jeden
k-Raum X der Raum C,, (X, K) in kanonischer Weise als ein projektiver Limes von
Banach-Rdumen dargestellt werden kann, ist L E als abgeschlossener Teilraum von
C., (E, K) fiir jeden linearen k-Raum E vollstindig.

Fiir jeden solchen Raum F setzen wir zur Abkiirzung

E*:=kL.E.

Die Zuordnung Ews E* ist natiirlich funktoriell, und die Struktur von E* ist cha-
rakterisiert durch folgende universelle Eigenschaft: Ist Z ein kompakt erzeugter
Raum, so ist eine Abbildung f: Z — E* genau dann stetig, wenn die durch f(z, x):=
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f (2) (x) definierte Abbildung f:Z IT E— K stetig ist. In diesem Sinne ist also E* der
natiirliche Dualraum von E in KEV,
Gemass obiger Bemerkung gilt:

3.1 SATZ. Fiir jeden linearen k-Raum E ist E* ein kc-Raum von der Form E*=kF,
wobei F ein vollstindiger lokalkonvexer separierter Raum ist.

Beweis. F:= L E ist in LCV und vollstindig, und es gilt E*=kF. Aus (2.1)
ergibt sich kcE* =kckF=kF=E*.

Wir bendtigen im folgenden héufig

3.2 SATZ. Fiir jeden separierten lokalkonvexen Raum F gilt
L. ,ckF = L_kF.

Insbesondere ist L.,ckF also vollstindig.

Beweis. Wie schon in §2 bemerkt, gilt LckF=LkF. Weil F und kF dieselben
kompakten Teilmengen besitzen, gilt dasselbe auch fiir ckF und kF. Es ist also
L ckF=L  kF. Wir haben aber schon gesehen, dass L kF vollstindig ist.

Dual dazu gilt:

3.3 SATZ. Ist F ein volistindiger separierter lokalkonvexer Raum, so ist L F ein
ck-Raum.

Beweis. Mit L,Fbezeichnen wir den Raum LF, versehen mit der feinsten Topologie
v, welche auf jeder gleichstetigen Teilmenge von LF mit der von der schwachen
Topologie induzierten Topologie zusammenfillt. Man sieht, dass L F ein kompakt
erzeugter Raum ist, cf. [10], §21.8. Weil F vollstindig ist, bilden die konvexen unter
den Nullumgebungen von L F eine Nullumgebungsbasis von L F, cf. [10], §21.9.
Da die Topologie von kL F grober ist als die von L, F, folgt hieraus ckL, F=L,F.

Wenn die relativkompakten Teilmengen von L, F mit den gleichstetigen zusammen-
fallen, ist L F offenbar sogar ein linearer k-Raum. Wir wissen aber nicht, ob L, F
immer ein linearer k-Raum ist.

3.4 KOROLLAR. Mit F ist auch L_F ein vollstindiger ck-Raum.
Wir beweisen jetzt den folgenden Darstellungssatz fiir den zu einem konvex-
separierten linearen k-Raum F assoziierten lokalkonvexen Raum cE:

3.5 SATZ. Sei E ein konvex-separierter linearer k-Raum. Dann ist die durch die
kanonische Injektion e: E— L L. E auf E induzierte Topologie mit derjenigen von cE
identisch: cE kann also mit einem linearen Teilraum von L L E identifiziert werden.

Beweis. Die durch e(x) (/):=1(x) definierte Abbildung e:E— L L. E ist nach
dem Satz von Hahn-Banach, angewendet auf cE, injektiv. Aus der universellen Eigen-
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schaft der in KE verwendeten Funktionenraumtopologie folgt die Stetigkeit von e: E
- E*¥*=kL kL. E Weill:kL kL E— L. kL_E stetigistund L L_,ETeilraum von
L kL Eist, folgt die Stetigkeit vone: E— L. L. Eund damit die von e:cE— L L, E.
Die vermoge e auf E induzierte Topologie ist also grober als die von cE. Um zu
zeigen, dass das Umgekehrte auch gilt, betrachten wir eine abgeschlossene, absolut-
konvexe Nullumgebung U in cE. Dann ist die Polare U°:= {le LE=LcE | |I(x)|<1,

VxeU} in L ,cE kompakt, cf. [10], §21.6. Aus der Stetigkeit von E>cE folgt jene

von LcocE—1> L E, also ist U° auch kompakt in L E. Damit ist die in LL_FE gebildete
Polare V von U° eine Nullumgebung in L. L. E. Also ist U=¢' (V) (Bipolarensatz!)
Nullumgebung beziiglich der induzierten Topologie.

3.6 KOROLLAR.

(a) Fiir jeden ck-Raum F ist F Teilraum von L L F.

(b) Fiir jeden konvex-separierten linearen k-Raum E ist kcE ein KE-Teilraum von
E**,

Beweis. Der Beweis von (a) ergibt sich aus der Anwendung von (3.5) auf kF und
aus (3.2). In (b) ist cE nach (3.5) Teilraum von L L E, und L L_FE ist Teilraum
von L kL E. Die Behauptung folgt damit aus (1.1).

Wir haben allerdings noch kein Beispiel eines konvex-separierten linearen k-
Raumes E, fiir den E# kcE gilt.

Wir sagen, ein separierter lokalkonvexer Raum F habe die Ascoli-Eigenschaft,
wenn gilt:

A < LF gleichstetig <> A = L F relativkompakt .

In diesem Falle gilt offenbar kL _F= L F, wobei v wie in (3.3) die feinste Topologie
auf LF ist, welche auf allen gleichstetigen Teilmengen von LF mit der von der
schwachen Topologie induzierten Topologie tibereinstimmt. L, F ist also inbesondere
ein linearer k-Raum.

Weil ein separierter lokalkonvexer Raum F genau dann die Ascoli-Eigenschaft
hat, wenn die Inklusion e: F— L L F stetig ist, folgt aus (3.6):

3.7 KOROLLAR. Jeder ck-Raum hat die Ascoli-Eigenschaft.

Fiir einen ck-Raum F ist L. F nach (3.2) ausserdem vollstindig. Unter welchen
Bedingungen folgt umgekehrt aus dieser und der Ascoli-Eigenschaft die Zugehorigkeit
zu den ck-Riumen? Die Beantwortung dieser Frage wird fiir uns in §5 niitzlich sein;
in §4 bendtigen wir die Aussagen (3.8)—(3.10) noch nicht. Wir beginnen mit der
folgenden Verschiarfung des bekannten Satzes von Krein (cf. [10], §24.5):

3.8 THEOREM. Sei K eine kompakte Teilmenge des separierten lokalkonvexen
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Raumes F, und seien K, bzw. K, die abgeschlossene (absolut-) konvexe Hiille von K
in F bzw. in ckF. Die folgenden Aussagen sind dquivalent:

(1) K, ist kompakt in F.

(2) K, ist kompakt in ckF.

(3) K, ist 1(F, LckF)-vollstindig?).

(4) K, ist 1(F, LckF)-volistindig.

Beweis. (1)<>(2) ist einfach einzusehen; ebenso, dass in diesem Falle K, =K, gilt.
(2)<>(4) ist die Aussage des Satzes von Krein, angewendet auf ckF. Es gilt (4) = (3),
denn in diesem Falle gilt ja K, =K,. Wir zeigen noch (3) =(4): K, ist Teilmenge von
K, und abgeschlossen in ckF. Als konvexe Menge ist K, dann auch ©(F, LckF)-
abgeschlossen und damit 7 (F, LckF)-vollstindig.

Die Aussagen von (3.8) gelten insbesondere, wenn F oder ckF quasivollstindig
sind, und das ist der uns interessierende Fall. Wir zeigen:

3.9 LEMMA. Sei FeELCV, und sei F oder ckF quasivollstindig. Dann ist L F ein
dichter Unterraum von L ,ckF.

Beweis. Weil F und ckF dieselben kompakten Teilmengen haben, bilden (wegen
der Quasivollstindigkeit) die Polaren K° der in F absolutkonvexen kompakten Men-
gen K eine Nullumgebungsbasis in L ,ckF. Ist Yy eLckF, so ist Y/K fiir jedes unserer
K stetig. Nach dem Approximationslemma, prop. 1, 3. §11 in [8], gibt es ein pxelF
mit pgey + K°.

3.10 SATZ. Sei F ein separierter lokalkonvexer Raum. Ist F oder ckF quasivoll-

stindig, so sind folgende Aussagen dquivalent:
(1) F=ckF.
(2) L. F ist vollstindig, und F hat die Ascoli-FEigenschaft.

Beweis. Zu zeigen ist noch (2)=(1). Aus der Vollstandigkeit von L F und (3.9)
folgt L. ,F=L ckF und damit L L F=L L.ckF. Weil F die Ascoli-Eigenschaft
besitzt, erhalten wir mit Hilfe von (3.6) wie behauptet F=ckF.

Wir kommen nun zu dem folgenden wichtigen

3.11 THEOREM. Fiir jeden konvex-separierten linearen k-Raum E ist e(E) dicht
in L, kL E.

Beweis. Sei yeLkL E. Es geniigt zu zeigen, dass (y+ W)ne(E) fir jedes W
aus einer Nullumgebungsbasis von L_kL_E nicht leer ist. Wegen der Vollstindigkeit
von L F geniigt es, I alle Polaren A° der absolutkonvexen kompakten Teilmengen
A von L E durchlaufen zu lassen. Es bezeichne L ,E den Raum LE unter der relativ
zu E schwachen Topologie. Nach Voraussetzung ist { stetig auf den Kompakta von

2) ©(F, LckF) ist die Mackey-Topologie von E beziiglich LckF.
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L E. Sei AcL E absolutkonvex und kompakt. Auf 4 stimmen die kompakt-
offene und die schwache Topologie tiberein. Nach dem Approximationslemma, prop.
1, 3. §11 in [8], gibt es ein ¢ ,eLLE mit ¢,ey+A°. Wegen LL Ece(E) folgt
W +4°)ne(E)#£0.

3.12 KOROLLAR. Sei F ein ck-Raum. Dann ist e(F) dicht in L. ckL F. Genau
dann ist e: F— L ,ckL, F ein Homoomorphismus (auf), wenn F vollstindig ist.

Beweis. Die erste Aussage ergibt sich nach (3.2), wenn man (3.11) auf kF an-
wendet. Die zweite erhdlt man unter zusitzlicher Verwendung von (3.6).

Bemerkungen.

(1) Der Beweis von (3.11) kann natiirlich auch mit Hilfe des Grothendieckschen
Vollstandigkeitskriteriums gefiihrt werden, zu dem das erwdhnte Approximations-
lemma eine vorbereitende Aussage ist.

(2) (3.10) findet sich in anderer Schreibweise bereits bei Buchwalter [3]. Die dort
untersuchten lokalkonvexen ,,Kelley-Rdume” fallen unter den in (3.10) genannten
Bedingungen mit den ck-Rdumen zusammen.

§ 4. Bidualriume und Tensorprodukte

Wie schon im letzten Abschnitt erwdhnt wurde, ist fiir jeden kompakt erzeugten
Vektorraum E die kanonische lineare Abbildung e: E— E** stetig. Auf Grund des
Satzes von Hahn-Banach ist sie ferner genau dann injektiv, wenn E konvex-separiert
ist. Ist e bijektiv, so nennen wir E halbreflexiv. Ist E mittels e ein KE-Teilraum von
E** (siehe (1.1)), so nennen wir E einbettbar. Ist E halbreflexiv und einbettbar, sind
also E und E** vermdge e homdomorph, so sagen wir, E sei reflexiv. Wir geben
in diesem Abschnitt fiir jede dieser Eigenschaften Bedingungen an, die notwendig
und hinrechend sind und zeigen, dass insbesondere die Kategorie der einbettbaren
linearen k-Riume durch schone Eigenschaften ausgezeichnet ist.

Wir beginnen mit

4.1 SATZ. Fiir jeden halbreflexiven linearen k-Raum E ist E* reflexiv.

Beweis. Seien e: E— E** und f: E* —» E*** die kanonischen Abbildungen. Weil
,,¥ ein Funktor ist, ergibt sich sofort, dass die durch e* (/) := Y oe definierte Ab-
bildung e* von E*** nach E* stetig ist. Unmittelbar aus den Definitionen erhélt man
e*o f=15, so dass e* surjektiv ist. e* ist aber auch injektiv, denn e war als surjektiv
vorausgesetzt. e* und f sind also invers zueinander, und f ist ein Homdomor-
phismus.

Es ist unmittelbar klar, dass mit E auch E* reflexiv ist. Ob die Voraussetzung
in (4.1) aber wirklich schwicher ist, wissen wir nicht, weil wir kein Beispiel eines
halbreflexiven linearen k-Raumes haben, der nicht reflexiv ist.
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4.2 THEOREM. Fiir jeden konvex-separierten linearen k-Raum FE sind folgende
Aussagen dquivalent:

(1) E ist halbreflexiv.

(2) cE ist vollstindig.

(3) e:kcE— E** ist ein Homéomorphismus.

(4) kcE ist reflexiv.

Beweis. (1) =(2)=>(3) =(1) erhilt man unmittelbar mit Hilfe von (3.5) und (3.11).
getzt man (3) voraus, so folgt aus der Halbreflexivitit von E die Reflexivitit von
E* und E**, siche (4.1). Wegen unserer Voraussetzung (3) ist kcE also reflexiv; damit
haben wir (3) =>(4). Aus (4) folgt zunéichst die Halbreflexivitidt von kcE. Benutzt man
(1)=>(2), so hat man die Vollstindigkeit von ckcE=cE. Damit ist auch (4)=(2)
bewiesen.

4.3 THEOREM. Fiir jeden linearen k-Raum E sind folgende Aussagen dquivalent:

(1) E ist einbettbar.

(2) Es existiert ein ck-Raum G, so dass E=kG.

(3) Es existiert ein separierter lokalkonvexer Raum F, so dass E=kF.

(4) E ist ein kc-Raum.

Beweis. (2)=(3)=>(4)=(1): Dies erhilt man unmittelbar mit Hilfe von (2.1) und
(3.6).

(1)=>(2): Aus der Injektivitit von e folgt, wie schon erwihnt, die Separiertheit
von cE. Da e:cE— L _kL_E ferner ein Teilraum ist, s. (3.5), ist e:kcE—~ kL kL E=
E** ein KE-Teilraum. Aus (1) folgt somit E=kcE. Setze G=cE.

Fiir jeden linearen k-Raum E ist E* folglich einbettbar. Wegen (2.2) ist ferner die
Kategorie der einbettbaren linearen k-Rdume isomorph zur Kategorie der ck-Riume.

Durch Kombination der dquivalenten Bedingungen in (4.2) und (4.3) bekommt
man jetzt eine ganze Reihe von Kriterien fiir die Reflexivitdt linearer k-R&dume. Ins-
besondere hat man:

4.4 THEOREM. Fiir jeden linearen k-Raum E sind folgende Aussagen dquivalent:

(1) E ist reflexiv.

(2) Es gibt einen volistindigen ck-Raum G mit E=kG.

(3) E ist ein halbreflexiver kc-Raum.

(4) Es gibt einen halbreflexiven linearen k-Raum E, mit E=E?.

(5) E ist ein kc-Raum, und cE ist vollstindig.

Bemerkung. Die Kategorie der reflexiven linearen k-Rédume ist also isomorph zur
Kategorie der vollstindigen ck-Rdume, siehe (2.2).

Wir wenden uns jetzt einigen besonderen Eigenschaften der Kategorie EKEV der
einbettbaren linearen k-Ridume mit den stetigen linearen Abbildungen als Morphis-
men zu:
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4.5 THEOREM. Die Kategorie EKEV ist vollstindig und covollstindig.

Beweis. Nach (2.2) miissen wir nur die Vollstindigkeit und die Covollstindigkeit
der Kategorie CK der ck-Rdume zeigen. Aber CK ist eine reflektive Unterkategorie
von LCV, denn der Funktor ck:LCV — CK st ein zum Inklusionsfunktori: CK - LCV
adjungierter Retraktionsfunktor. Aus der bekannten Vollstindigkeit und Covoll-
stindigkeit von LCYV folgt daher jene von CK.

Genauer gilt folgendes: Der Colimes in CK eines Diagramms von ck-Rdumen
stimmt mit dem in LCV gebildeten Colimes iiberein, wihrend man den Limes in CK
erhilt, indem man auf den in LCV gebildeten Limes den Funktor ck ausiibt. Wie wir
allerdings spater sehen werden, cf. (5.6), kann man sich beim Spezialfall der Produkt-
bildung die Anwendung von ck sparen: Die in LCV gebildeten Produkte von ck-
Réumen sind stets wieder ck-Riume.

Leicht ergibt sich ferner der

4.6 SATZ. Jeder in KEV gebildete Limes von einbettbaren linearen k-Rdumen ist
einbettbar. Jeder lineare KE-Unterraum eines einbettbaren linearen k-Raumes ist
einbettbar.

Sind E,, ..., E, und E kompakt erzeugte Vektorrdume, so bezeichnen wir mit

L (Ey, ..., E,; E)

den mit der universellen (d.h. durch die Inklusion in den Raum ¥ (E(Il...I1E,, E)
induzierten) kompakt erzeugten Struktur versehenen Vektorraum L(E,,..., E,; E)
der stetigen multilinearen Abbildungen von E,Il...IIE, in E. Es ist also

Z(E,....E,; Ey=kL(E;,....,E,; E),

wobei der Index ,,co* wieder auf die kompakt-offene Topologie hinweisen soll. Es
folgt sofort aus der universellen Eigenschaft der Funktionenraumstruktur, dass
FL(Eys..c Eyy; L(E,; E)) und Z(Ey,..., E,; E) in kanonischer Weise homdo-
morph sind. Insbesondere kann man also immer % (E;; E;) und £ (E,; ET) mit-
einander identifizieren.

Entsprechende Funktoren . und kanonische Isomorphismen erhélt man auch
fiir die Kategorie EKEV, denn es gilt der

4.7 SATZ. Ist von den linearen k-Riumen E,,..., E,, E der Raum E einbettbar,
so ist auch ¥ (E,, ..., E,; E) einbettbar.

Der Beweis ergibt sich unmittelbar aus (4.3) und der Separiertheit von L. (Ey, ...,
E,; E), denn es ist ja £ (E,,..., E,; E)=kL(Ey,..., E,; E).

Wir beweisen jetzt:
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4.8 THEOREM. Die Kategorie EKEV der einbettbaren kompakt erzeugten Vek-
torrdume besitzt beziiglich £ ein Tensorprodukt ®. Fiir E und F aus EKEV ist dabei
der EQF zugrunde liegende Vektorraum EQF das algebraische Tensorprodukt EQF,
und die Topologie von EQF ist die zu der natiirlichen Injektion é: EQF »% (E, F; K)*
gehorende KE-Teilraumstruktur. Ferner ist EQF (vermoge €) dicht in L .. (E, F; K).

Beweis. Fiir jedes (x, y)€E x F erhilt man eine durch e, ,(b) := b(x, y) definierte
stetige lineare Abbildung

., L (E,F; K)-K.
Daraus ergibt sich in natiirlicher Weise die Abbildung
e:EIIF > Z(E F; K)*:(x, y)—e, ,;

und es ist unmittelbar klar, dass e bilinear und stetig ist.
Sei nun

tExF>E®F

,,das‘‘ algebraische Tensorprodukt. Dann erhilt man die durch e=é-¢ charakterisierte
lineare Abbildung

EG:EQF->LZ(E F;K)=%(E,F; K)*

Wir zeigen, dass € injektiv ist. Sei dazu 0#zeE® F, wobei wir z schreiben als z=
Y i1 t(x; y;) mit linear unabhédngigen x,,..., x, aus E und linear unabhingigen
P1s---» Vu @us F. Da E und F konvex-separiert sind, existieren nach dem Satz von
Hahn-Banach stetige Linearformen u:E— K und v: F— K mit (x;)=v(y;)=1 und
u(x;)=v(y;)=0 Vie{2,..., n}. Definiert man be% (E, F; K) durch b(x, y):=u(x)-
-v(y), so folgt (éz) (b)=1 und damit éz#0.

Wegen der Injektivitdt von é kdnnen wir nach (1.1) den Raum E®F mit der
KE-Teilraumstruktur von .2 (E, F; IK)* versehen. Der so erhaltene kompakt erzeugte
Vektorraum E®F ist nach (4.6) einbettbar. Aus der Stetigkeit von e=¢é-¢ folgt die
Stetigkeit von ¢: EIIF—- EQF.

Um die universelle Eigenschaft nachzuweisen, miissen wir nur zeigen, dass fiir
einen beliebigen einbettbaren linearen k-Raum G aus der Stetigkeit einer bilinearen
Abbildung b: E I1 F — G die Stetigkeit der durch b= bo ¢ eindeutig bestimmten linearen
Abbildung b: EQ F— G folgt. Dazu betrachten wir die durch b(w):= wob definierte
Abbildung

b:G* - Z(E, F; K).



302 ALFRED FROLICHER UND HANS JARCHOW

Offenbar ist b stetig linear, und damit haben wir die stetig lineare adjungierte Ab-
bildung

b*: # (E, F; K)* - G**.

Es ergibt sich das folgende Diagramm:

b

EIlIF > G
N\ b
N /
l : JE®F -
d
Z(E,F; IK)* - — G**
b‘

Aus der Definition der betreffenden Abbildungen folgt zuniichst egob=>5h*oe, also
egobot=b*céot, und daraus egob=>h*-2. Da b* und é stetig sind, ist egob stetig,
und weil G einbettbar ist, folgt die Stetigkeit von b.

Die universelle Eigenschaft des Tensorproduktes ¢: E I1 F— EQF impliziert die
Adjungiertheit der Funktoren — ® F und # (F; — ), FEEKEYV. Daraus folgt

Y(EQF;G)~ ¥ (E; £(F; G)~ Z(E, F;G).
Fir G=[K hat man insbesondere
(EQF)*~ 2(E,F; K).

Da nun nach (3.11) EQFin L kL. ,(EQF)=L.(E®F)* dicht liegt, folgt, dass
E®F in L% (E, F; K) dicht liegt.

Nach [16] besitzt sogar KEV ein Tensorprodukt, jedoch fehlt hierfiir noch eine
analoge explizite Beschreibung.

Beziiglich der stetigen Abbildungen als Morphismen bilden die einbettbaren
kompakt erzeugten Vektorriume eine Kategorie EKEVs. Auch diese Kategorie
zeichnet sich durch eine Reihe schoner Eigenschaften aus. Zundchst gilt:

4.9 SATZ. Ist E ein einbettbarer linearer k-Raum, so gilt fiir jeden kompakt
erzeugten Raum Y:% (Y, E) ist einbettbar. Speziell ist also € (Y, K) fiir jedes YeKE
einbettbar.

Dies ist wieder eine einfache Konsequenz aus (4.3). Es folgt jedoch aus (4.9),
dass €:KE® x KE — KE einen Bifunktor

€ :EKEVs°® x EKEVs — EKEVs
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induziert. Gemadss (4.6) stimmt das Produkt in EKEVs mit jenem in KEV bzw. KE
iiberein. Ferner ist fiir lineare k-Réume E, F, G eine Abbildung f: E—% (F, G) genau
dann stetig, wenn f: E I F— G:(x, y)— f (x)(») stetig ist. Damit ergibt sich:

4.10 THEOREM. Die Kategorie EKEVs der einbettbaren kompakt erzeugten Vek-
torrdume mit den stetigen Abbildungen als Morphismen wird durch den Bifunktor €
kartesisch abgeschlossen.

Bemerkung: Wire, wie wir in [5] zundchst angekiindigt haben, fiir jeden sepa-
rierten, vollstdindigen lokalkonvexen Raum F auch ckF vollstindig, so hitten wir
den Aussagen (4.5)—(4.10) entsprechende Resultate auch tiir die Kategorie der
reflexiven linearen k-Rdume. Unser Beweis fiir die Vollstindigkeit von ckF weist
indessen eine Liicke auf, so dass diese Ergebnisse vorldufig nicht gesichert sind. Auf
der anderen Seite haben wir jedoch auch kein Beispiel eines vollstindigen Raumes
FeLCV, fiir den ckF nicht vollstindig ist. Vergleiche hierzu auch die Aussagen
(5.7)—(5.10) dieser Arbeit.

Hingegen ergibt sich leicht, dass FeLLCV genau dann folgenvollstindig ist, wenn
ckF diese Eigenschaft hat. Daher erhdlt man zu (4.5)—(4.10) analoge Aussagen auf
alle Fille fir die Kategorie derjenigen kc-Rdume E, fiir welche cE folgenvollstindig
ist. Diese Raume bilden, wie U. Seip gezeigt hat, eine fiir die Belange der Analysis
hervorragend geeignete Kategorie. Wir verweisen diesbeziiglich auf [16]; dort finden
sich auch die Beweise fiir die erwdhnten Aussagen. Was aus unseren Betrachtungen
zusitzlich folgt, ist die Einbettbarkeit dieser Rdume, sowie (4.12).

Fiir die Dualrdume von Coprodukten und von Produkten kompakt erzeugter
Vektorrdume gelten die folgenden Sétze:

4.11 SATZ. Fiir jede Familie (E,);. linearer k-Rdume gilt:

(LI E)* =T] E:.

iel el
Beweis. Da der Funktor KEV 3KEV® wegen % (E; E; )= (E,; E{) einen
Adjungierten, nimlich KEV°® 3 KEV besitzt, kommutiert er mit Colimites, also mit
Coprodukten. Das Coprodukt in KEV®? ist aber das Produkt in KEV.

Allgemeiner kann man zeigen: Fiir jeden linearen k-Raum E kommutiert der
Funktor £ (—; E):KEV — KEV®® mit Colimites, cf. Satz 16, p. 7 in [16].

4.12 SATZ. Fiir jede Familie (E;);. einbettbarer kompakt erzeugter Vektorriume
gilt:

([TE)* = 11E:.

iel iel
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Beweis. Wir schreiben E;=kF,;, wobei die F; ck-Rdume sind, Viel. In (5.6) werden
wir zeigen, dass dann auch X;_; F; ein ck-Raum ist. Insbesondere besitzt also
X1 F; die Ascoli-Eigenschaft. Ist daher K<L, X ; F; relativkompakt, so ist K
inL ;. Fi=@® ;. LF;gleichstetig und damit in einer endlichen Summe gleichstetiger
Teilmengen gewisser LF; ,,enthalten*‘. Daraus ergibt sich, dass K relativkompakt ,,in”
@icr LoF;ist, d.h. @;c; Lo F;und L, X F; haben ,,dieselben‘ relativkompakten
Teilmengen. Es gilt also

kL., X F;~k @ L.F;.

iel iel
Aus (2.3) und (3.2) folgt damit

HE:= [T (kF))* = T1 kLo F; =k @ L. F; = kL., X F;.

iel iel iel iel iel
Weil ;. F; ein ck-Raum ist, erhalten wir

[1E; = kL., )X F; = kL. k X F; = kL, [] kF; = (
iel

iel iel iel

TTE)*.
iel

Sind alle E; sogar reflexiv, so kénnen wir im Beweis von (4.12) die F; sogar
vollstindig wihlen. Dann ist X;.; F; ein vollstindiger ck-Raum, so dass wegen

[Tic: Ei=k X F; aus (4.4) folgt:

4.13 SATZ. Jedes KEV-Produkt von reflexiven linearen k-Rdumen ist reflexiv.
Viele der in der Funktionalanalysis wichtigen Ridume sind reflexive lineare k-

Rédume. So gilt z.B.:

4.14 SATZ. Ist F ein Fréchet-Raum, so ist sowohl F als auch L F ein reflexiver
kompakt erzeugter Vektorraum.

Beweis. Fir F folgt dies unmittelbar aus (4.4): F ist vollstindig und erfiillt als
metrisierbarer Raum F=kF. Daraus folgt, dass auch F*=kL_F ein reflexiver linearer
k-Raum ist. Aus dem Satz von Banach-Dieudonné (cf. [8] oder [10]) folgt aber leicht,
dass L .,F=kL_F gilt.

Etwas allgemeiner gilt: Fiir jeden metrisierbaren lokalkonvexen Raum F ist
L F ein reflexiver linearer k-Raum.

§ 5. Weitere Aussagen iiber ck-Ridume

In diesem Abschnitt leiten wir einige weitere Eigenschaften der ck-Rdume ab,
welche sie fiir die allgemeine Theorie der lokalkonvexen Rdume interessant erscheinen
lassen.
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Ist FeLCV, so konnen wir ckF auch beschreiben als denjenigen lokalkonvexen
Raum, den wir erhalten, wenn wir den unterliegenden linearen Raum F mit der
feinsten lokalkonvexen Topologie versehen, welche dieselben kompakten Teilmengen
wie F liefert. Dies legt die Frage nach Beziehungen zu anderen Klassen lokalkonvexer
Riume nahe, die eine analoge Beschreibung gestatten. Wir denken dabei insbesondere
an die bornologischen Rdume und beweisen:

5.1 SATZ. Jeder bornologische Raum ist ein ck-Raum.

(5.1) ist eine einfache Konsequenz und sogar gleichwertig mit der folgenden
Aussage, deren Beweis ein Argument benutzt, welches man z.B. bei Buchwalter [4]
findet. Wir fiihren es der Vollstindigkeit halber an.

Mit F* bezeichnen wir den zu FeLCV assoziierten bornologischen Raum. Eine
Nullumgebungsbasis von F* wird gebildet von allen absolutkonvexen Teilmengen von
F, welche die beschrinkten Mengen in F absorbieren.

5.2 SATZ. Fiir jeden separierten lokalkonvexen Raum F gilt
F* = (ckF)".

Beweis. Sei U eine absolutkonvexe Nullumgebung in (ckF)*. Dann absorbiert U
jede beschrinkte Menge in ckF und insbesondere jede relativkompakte Teilmenge
von F. Aber U absorbiert sogar jede beschrdnkte Menge in F. Denn wire das fiir
eine beschrinkte Menge A in F nicht der Fall, so gibe es zu jedem neN ein x,e 4
mit x,¢n*-U. Es wire dann (1/n-x,),.n eine Nullfolge in F, welche als relativ-
kompakte Menge in F nicht von U absorbiert wiirde: Widerspruch. U ist also eine
Nullumgebung in F*.

Ein anderer Beweis findet sich in der soeben erschienen Arbeit [20] von H. Porta.

Nicht jeder ck-Raum ist indessen bornologisch. In (6.2) geben wir ein Beispiel
eines vollstindigen ck-Raumes, dessen Topologie nicht die Mackey-Topologie ist.
Es gibt weiter vollstindige ck-Rdume mit Mackey-Topologie, die nicht tonneliert
sind, und es gibt tonnelierte und vollstdndige ck-Rdume, die nicht bornologisch sind,
cf. (6.3).

Aus (5.1) und (5.2) erhélt man mit Hilfe von [10], §18.4:

5.3 KOROLLAR. Fiir jedes FELCV ist L, F Unterraum von LyckF, und L,ckF
ist vollstandig.

Mit ,,b¢ beschreiben wir die Topologie der beschrinkten Konvergenz. — Eine
weitere Folgerung ist

5.4 KOROLLAR. FeLCV ist genau dann ein semi-Montel-Raum (s. [8]), wenn
ckF diese Eigenschaft hat.
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Denn F und ckF haben dieselben beschrinkten Mengen, und diese sind in F bzw.
ckF relativkompakt.

Aber selbst in diesem speziellen Fall konnen F* und ckF verschieden sein, wie
wir in (6.2) sehen werden.

Fiir Montel-Ridume ergibt sich das folgende Vollstindigkeitskriterium:

5.5 THEOREM. Es seien F ein Montel-Raum und L,F sein starker Dualraum.

(1) F ist genau dann volistindig, wenn LF ein ck-Raum ist.

(2) F ist genau dann ein ck-Raum, wenn L,F vollstdndig ist.

Beweis. L F ist ebenfalls ein Montel-Raum. Aus der Reflexivitit der Montel-
Réume folgt, dass (1) und (2) sogar dquivalente Aussagen sind. Wir beweisen (2):

Aus F=ckF folgt die Vollstindigkeit von L,F nach (5.3). Sei umgekehrt L, F
vollstindig. Als Montel-Raum ist F quasivollstdndig. Ferner haben wir F~L,L,F=
L L. F. Also hat F die Ascoli-Eigenschaft, und wir bekommen F=ckF nach (3.10).

Auf Konsequenzen aus (5.5) kommen wir im ndchsten Abschnitt zuriick.

Jetzt beschiftigen wir uns noch mit ,,Permanenzeigenschaften* der ck-Raume.
Fiir Produkte ist die Situation besser als z.B. bei den bornologischen Rdumen:

5.6 SATZ.

(a) Jeder Colimes in LCV von ck-Rdumen ist wieder ein ck-Raum. Insbesondere
sind also die in LCV gebildeten Quotienten, direkten Summen und induktiven Limites
von ck-Rdumen wieder ck-Rdume.

(b) Das in LCY gebildete Produkt jeder Familie von ck-Rdumen ist ein ck-Raum.

Beweis.

(a) Dies ergibt sich unmittelbar daraus, dass der zugehorige Inklusionsfunktor
einen Adjungierten, ndmlich ck, besitzt.

(b) Eindirekter Beweis fiir diese Behauptung findet sich in der soeben erschienenen
Note [20] von H. Porta. Unter Verwendung eines allgemeinen Satzes von M. de Wilde
(cf. Cor. 1.1 in [19]) kann der Beweis etwas eleganter aber auch so gefiihrt
werden:

Ist zunichst (F;);.; eine Familie vollstindiger ck-Rdume, so konnen wir nicht
nur X;ey LeoLooF; und L@ ;. L F;, sondern auch @;.; L, F; und L, X, F;
miteinander identifizieren, cf. z.B. [15], pp. 103-104. Es ist X;.; F; vollstindig und
hat die Ascoli-Eigenschaft wegen ;.1 F;i X;ey LeoLeoF; 2 LeoLeo Xier Fi. Ferner
impliziert die Vollstindigkeit aller L F; die Vollstindigkeit von L., ;.1 Fi= @i
L F;, so dass aus (3.10) die Behauptung ck X;.; Fi=)X; F;folgt. Vergleiche hierzu
auch mit [3].

Ist jetzt (F;); eine beliebige Familie von ck-Riumen, so ist fir x=(x;);c ;€ Xie1
F; mit x;#0, Viel, insbesondere Y ; [x;]= K’ ein ck-Raum. Dabei bezeichnen wir
den von x; in F; erzeugten linearen Teilraum mit [x;]. Die Voraussetzungen von Cor.
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1.1 in [19] sind damit erfiillt, d.h. die Topologie von ck ;. F; ist grober als jene
von X;.; F;;  qeed.

Aus (5.6) folgt sofort, dass jedes Produkt in LCV von bornologischen Rdumen
wenigstens immer ein ck-Raum ist.

Unter der induzierten Topologie ist ein linearer Unterraum eines ck-Raumes
allerdings nicht notwendig wieder ein ck-Raum, auch dann nicht, wenn er abge-
schlossen ist. Man kann schliesslich jeden separierten lokalkonvexen Raum in ein
Produkt von Banach-Ridumen, also in einen ck-Raum einbetten. Konkrete Beispiele
werden wir in (6.1) und (6.4) angeben.

Insbesondere ist nicht jeder LCV-Limes von ck-Rdumen wieder ein ck-Raum.

Offen ist die Frage, ob fiir jeden separierten lokalkonvexen Raum F die Beziehung

(ckF)™ = ck(ckF)~

gilt. Eine positive Antwort wiirde implizieren, dass ckF fiir vollstindiges FeLCV
stets vollstdndig ist. Vergleiche hierfiir die Bemerkung im Anschluss an (4.10) sowie
(2.4).

Wir beschéftigen uns jetzt noch kurz mit der oben gestellten sowie einigen ver-
wandten Fragen und beginnen mit

5.7 SATZ. Fiir jeden separierten lokalkonvexen Raum F hat (ckF)~ die Ascoli-
Eigenschaft, und es gilt ckL.,ckF=L,(ckF)"~.
Beweis. Wir identifizieren L(ckF)~ und LckF. Aus der Stetigkeit der Inklusion

ckF— (ckF)~ folgt, dass L., (ckF )~—-1->LcockF stetig ist. Ist also 4 eine relativkom-
pakte Teilmenge in L. (ckF)~, so auch in L ckF. Es folgt, dass 4 in LckF und
damit in L(ckF)~ gleichstetig ist, cf. (3.7). Also besitzen L.ckF und L. (ckF)~
dieselben relativkompakten Teilmengen, ndmlich die gleichstetigen. Weil aber nach
(3.3) L., (ckF)~ ein ck-Raum ist, erhalten wir L., (ckF)~ =ckL,.ckF.

Zusammen mit (3.10) folgt:

5.8 KOROLLAR. Die Vervolistindigung F eines ck-Raumes F ist genau dann ein
ck-Raum, wenn L_F vollstindig ist.
Dual zu (5.8) gilt:

5.9 SATZ. Sei F ein volistindiger separierter lokalkonvexer Raum. Genau dann ist
ckF vollstindig, wenn L ,ckF ein ck-Raum ist.

Beweis. Ist ckF vollstindig, so ist L ,ckF ein ck-Raum nach (3.3). Sei umgekehrt
L ,ckF ein ck-Raum. Dann folgt die Behauptung wegen (ckF)~ =LckL ckF=

=LL,ckFxL(L F)”~LL F=F

Analog zur Situation bei den b_[)rnologischen Réumen (cf. [10], §28) hat man das
folgende Kriterium:
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5.10 SATZ. Die Vervollstindigung F eines ck-Raumes F ist genau dann ein ck-
Raum, wenn folgendes gilt

VieLckF:lJF =0=1=0. *)

Beweis. Ist F ein ck-Raum, so ist (*) trivialerweise erfiillt. Es gelte also (*). Sei
l'e LckF. Dann ist [:=1'/FeLF und besitzt eine wohlbestimmte stetige lineare Er-
weiterung [e LF. Es ist I'—le LckF und (I'—1)/F=0. Wegen (*) erhalten wir damit
I'=1. Es ist also LF=LckF, d.h. L_F ist wegen (3.2) vollstindig. Aus (5.8) folgt
F=ckF.

Wir hitten auch (2.4) benutzen kénnen.

Wie schon erwihnt, fehlt uns ein konkretes Beispiel eines vollstindigen Raumes
FeLCV, fiir den ckF nicht vollstdndig ist. Ebenso fehlt uns ein Beispiel eines ck-Rau-
mes F, dessen Vervollstindigung Fkein ck-Raum ist.

§ 6. Beispiele

Fiir einen separierten lokalkonvexen Raum F bezeichnen wir mit F, den Raum F,
versehen mit der feinsten Schwartz-Topologie, welche grober ist als die Topologie von
F. Die Topologie von F, liegt zwischen der Topologie von F und der schwachen Topo-
logie o (F, LF). Insbesondere haben F und F, dieselben beschrinkten Mengen. Wir
nennen F, den zu F assoziierten Schwartz-Raum. Diese Rdume sind zuerst in [14] und
[2] ndher untersucht worden. Wir wenden die dort erhaltenen Resultate fiir zwei
Spezialfille an:

6.1. In [10], §31.5, findet sich ein Beispiel eines Fréchet-Montel-Raumes F, der
einen abgeschlossenen linearen Teilraum G besitzt, so dass der Quotientenraum F/G
kein Fréchet-Montel-Raum mehr ist. Unter Verwendung des Korollars zur Proposi-
tion 7 in 3.§15 von [8] sieht man sofort, dass F kein Schwartz-Raum sein kann; F und
F, sind also verschieden. Nach [2] ist F,, in diesem Fall jedoch vollstdindig und damit
insbesondere ein semi-Montel-Raum, cf. [8]. Da F ein Montel-Raum ist und da F und
F, dieselben beschrinkten Mengen besitzen, folgt, dass beide Rdume auch dieselben
kompakten Mengen haben miissen, dass also F=ckF, und sogar F=kF, gelten muss.
Damit haben wir:

Ist F ein Fréchet-Montel-Raum und kein Schwartz-Raum, so ist der zu F assoziierte
Schwartz-Raum F, kein ck-Raum.

Aber F, ist in natiirlicher Weise ein abgeschlossener Unterraum eines Produktes
von Banach-Rdumen, nach (5.6) also eines ck-Raumes.

6.2. Die Situation dndert sich, wenn wir einen unendlichdimensionalen reflexiven
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Banach-Raum F betrachten. Wie Raikov in [14] gezeigt hat, gilt fiir den assoziierten
Schwartz-Raum F;, diesmal

Fo~L, LF.

Als Banach-Raum ist L,F ein vollstindiger ck-Raum. Nach (3.4) ist also auch F, ein
vollstdndiger ck-Raum. Weil F unendlichdimensional ist, gilt F# F,, Also haben wir:
Der zu einem unendlichdimensionalen reflexiven Banach-Raum F assoziierte
Schwartz-Raum F, ist ein vollstindiger ck-Raum, dessen Topologie nicht die Mackey-
Topologie ist.
F, ist also insbesondere nicht quasitonneliert und erst recht nicht bornologisch.

6.3. Sei A ein vollkommener Folgenraum mit «-Dual A*. Dann ist A unter seiner
Mackey-Topologie 7 (4, A¥) vollstidndig, cf. [10], §30.5, und darstellbar in der Form
L. F, wobei F den Raum A* unter seiner normalen Topologie bezeichnet, cf. [10],
§30.6. Aus §30.1 und §30.5 in [10] folgt, dass F ebenfalls vollstdndig ist. Nach (3.3) ist
deshalb A unter 7 (4, 1*) ein vollstindiger ck-Raum.

Dieser Raum muss nicht tonneliert sein, cf. [10], §30,7, und wenn er tonneliert ist,
braucht er noch nicht bornologisch zu sein; fiir ein Beispiel verweisen wir auf [11]. In
diesem Beispiel ist iibrigens A unter t(4, A*) sogar darstellbar als Vervollstindigung
eines bornologischen Raumes.

Es gibt also vollstindige nicht-tonnelierte ck-Rdume mit Mackey-Topologie, und es
gibt volistindige tonnelierte ck-Rdaume, die nicht bornologisch sind.

6.4. Ist F ein quasivollstindiger ck-Raum, aber nicht vollstindig, so ist L F kein
ck-Raum.

Die Topologie von L_F ist in diesem Fall nach dem Satz von Mackey-Arens
ndmlich grober als die Mackey-Topologie t(LF, F), wir haben also F~ LL_F. Nach
(3.5) und (3.11) ist jedoch F~LckL F, so dass L. F und ckLF nicht einmal den-
selben Dualraum liefern.

6.5. In [12] und [1] gaben K6mura und Amemiya Beispiele nichtvollstindiger
Montel-Riume. Fiir jeden deratigen Raum F ist L F nach (5.5) ein Beispiel eines
Montel-Raumes, der kein ck-Raum ist. Insbesondere ist L,F dann nicht bornologisch,
so dass man auf diese Weise zusétzlich zu den bekannten Beispielen in [11], [13], [17]
tonnelierte Rdume erhilt, die nicht bornologisch sind.

Allerdings liefern die nicht-vollstindigen Montel-Rdume F in [1] und [12] auch
schon solche Beispiele. Nach Konstruktion sind ihre beschrinkten Mengen nédmlich
endlichdimensional, es ist also F*=ckF, und daraus folgt, dass F nicht einmal ein
ck-Raum ist. Also ist auch L,F ein unvollstindiger Montel-Raum.
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