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Dberdeckungen mit konvexen Mengen imd nichtlineare

Gleichungssysteme

von Friedrich Wille

Einleitung

Uberdeckungssàtze und Aussagen tiber die Lôsbarkeit nichtlinearer Gleichungssysteme

sind eng miteinander verknûpft, wie das Beispiel des Lebesgueschen Pflaster-
satzes und des Brouwerschen Fixpunktsatzes zeigt ([1], S. 376-379), oder auch der
Satz von Ljusternik-Schnirelmann-Borsuk und sein Zusammenhang mit dem Bor-
sukschen Antipodensatz ([1], S. 483-487; [3], Satz I und Satz III; oder [9], Satz 1

und Korollar 1).

In der vorliegenden Arbeit werden Oberdeckungen betrachtet, bei denen die Rân-
der beschrànkter Mengen im Rn in den Vereinigungen endlich vieler konvexer abge-
schlossener Mengen liegen. Die Durchschnittseigenschaften dieser Oberdeckungen
sind denen verwandt, die in Antipodensàtzen fur die Sphàre vorkommen.

Aus diesem Grunde gelangt man, âhnlich wie bei den Antipodensàtzen, von den

tiberdeckungen zu Lôsbarkeitskriterien fur nichtlineare Gleichungssysteme, die ge-
wisse Konvexitâtseigenschaften besitzen. Zum Beispiel erhâlt man Nullstellensâtze
fur spezielle konvexe Abbildungen, das sind Abbildungen im Rn, die komponenten-
weise konvex sind.

Besonders an den Anwendungen (§4) erkennt man, dass man mit den gewonnenen
Sâtzen auch Nullstellen gerader Abbildungen nachweisen kann, was ja mit dem Bor-
sukschen Antipodensatz und dem damit verwandten Brouwerschen Fixpunktsatz
nicht môglich ist.

Verallgemeinerungen dieser Ergebnisse auf konvexe Operatoren in Banachrâumen,
vor allem auf Integralgleichungen, werden in [12,13,14] angegeben.

Die Beweise in der vorliegenden Schrift benutzen hauptsâchlich elementare Me-
thoden der Konvexgeometrie. Sie erfordern daher keine speziellen Yorkenntnisse.
Nur vereinzelt werden Ergebnisse der kombinatorischen Topologie herangezogen.

§1. Analogien bei Ùberdeckungssàtzen

In diesem Abschnitt werden tfberdeckungssâtze fur beschrànkte Mengen
angegeben, die einen analogen Aufbau besitzen wie bekannte Oberdeckungssâtze fur die

Sphâre. Die Analogie soll zunâchts am folgenden Satz 1 gezeigt werden.
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jR" sei stets ein n-dimensionaler reeller Vektorraum, in dem ein inneres Produkt
(x, y) fur x, yeR" erklârt ist. Mit \x\=^/(x, x) wird die euklidische Norm von
xeRn bezeichnet und mit dM der Rand einer Menge M aus Rn. Damit gilt

SATZ 1. Vberdecken n konvexe abgeschlossene Mengen At aus Rn den Rand einer

beliebigen beschrânkten Menge MaR", so uberdecken sie sogar die ganze Menge M.
Man kann den Satz auch in folgender Form schreiben.
Uberdecken n abgeschlossene Mengen Ai aus Rn den Rand einer beschrânkten Menge

MczRn9 wird M jedoch nicht vollstândig von den Ai ùberdeckt, so ist wenigstens eins der

At nicht konvex.

In dieser Gestalt lâdt der Satz zum Vergleich mit dem Antipodensatz von Ljuster-
nik-Schnirelmann-Borsuk ([1], S. 487; [3, 5,6,9]) ein. Es sei

die n-dimensionale Einheitskugel und ihr Rand

die (n—l)-dimensionale Einheitssphâre. Ein Antipodenpaar besteht aus zwei Punkten

x und —x aus ôKn. Eine Teilmenge von dKn heisst antipodenfrei, wenn sie kein
Antipodenpaar enthâlt. Damit gilt

SATZ 1 * (Ljusternik-Schnirelmann-Borsuk). Vberdecken n abgeschlossene Mengen

AiC:dKndie Sphâre dKn, so enthâlt wenigstens ein At ein Antipodenpaar.
Offenbar geht Satz 1, zweite Fassung, in Satz 1* ûber, wenn man die beschrânkte

Menge M durch Kn ersetzt, ferner die Voraussetzungen 3Mcz(J"si A{ und

M\(J?=i^0 durch 8Kn=zUUi^i ersetzt und statt ,,konvex" ,,antipodenfrei"
schreibt.

An einem zweiten Satzpaar wird die Analogie noch deutlicher. cl A bedeutet dabei

die abgeschlossene Huile und convoi die konvexe Huile einer Menge AaRn. intA ist
das Innere von A.

SATZ 2. Aus dMa^JlZl Ai9 MczR» beschrânkt, n^29 M\\Jïïî A^Q und

At c= Rn abgeschlossen und konvexfur aile i 1,..., n +1 folgt :

Je n der At und Q o\{M\XJitl At) besitzen einen gemeinsamen Punkt, wâhrend

der Durchschnitt aller n+lAt leer ist.

ZUSATZ. Qn{Ji*kA besteht aus genau einem Punkt xk (fc=l,..., h+1), und

es gilt Qczcon\{xu..., xn+1}.
Fur die Sphâre gilt dagegen, s.[l], S. 487, Satz X.
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SATZ 2*. Aus dKn={JÏ={ Ai9 w^2, At abgeschlossen und antipodenfrei fur aile

l,...,n+l9folgt:
Je n der At besitzen einen gemeinsamen Punkt, wâhrendder Durchschnitt aller n +1 At

leer ist.
Die Sâtze 1 und 1* wie auch 2 und 2* haben also die gleiche Form bezûglich der

folgenden Analogie.

ANALOGIE 1.

(a) MczRnbeschrânkt

(b) dMcz |jr=i Au M\tjr=i A

(c) konvex

(d) xGg cl(M\Uf=1 y4j)

//eg/ in n Mengen At

entspricht

l,. ^0 entspricht

entspricht

> entspricht

Kn(Einheitskugel).

dKn=\JT=iA
antipodenfrei

x Hegt in n Mengen At

Oberdeckt man dM bzw. dKn mit einer beliebigen endlichen Anzahl abgeschlossener

Mengen Ai9 so erhâlt man, etwas abweichend von der beschriebenen Analogie, folgen-
des Satzpaar.

SATZ 3. Aus dM^yjT=iAh MaRn beschrànkt, n^2, M\(JJLMi*0 und

AtczRn abgeschlossen und konvex fur aile i 1,..., mfolgt :

g cl(M\(J?Li At) enthâlt einen Punkt, der in n Mengen Av Hegt, wâhrend der

Durchschnitt aller At leer ist.

SATZ 3*(s. [10], Satz 2). Aus dKn={J?=iAi> n^2> wobei jedes At abgeschlossen

ist und in einer ojfenen Hemisphâre von dKnliegttfolgt:
Es existiert ein Punkt in dKn, der in n Mengen At Hegt. Ferner gilt p|!T= i At 0.

Eine offene Hemisphâre von dKn hat dabei die Gestalt H={xedKn \ (x, a)>0},

Die beiden Sâtze entsprechen sich bezûglich (a), (b), (d) in Analogie 1, wâhrend

(c) abgewandelt werden muss zu

(cr) At konvex entspricht At Hegt in einer ojfenen Hemisphâre.

Eine Verschârfung dieser oder âhnlicher Art lâsst sich nicht vermeiden, da Satz 3*

falsch wird, wenn man ,,At Hegt in einer ojfenen Hemisphâre" durch ,,At antipodenfrei'9
ersetzt.

Betrachtet man dagegen symmetrische Vberdeckungen, d.s. Ùberdeckungen, bei

denen mit At stets auch —At eine ûberdeckende Menge ist, so lâsst sich eine vollstân-

dige Analogie erreichen. Man hat Analogie 1 nur in folgender Weise sinngemâss abzu-

wandeln.
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ANALOGIE 2.

(a^ MaRn beschrânkt mit OeM entspncht Kn(Einheitskugel).

(c) konvex entspricht antipodenfrei

liegt in n Mengen Atu — At)

Analogie 2 unterscheidet sich von Anologie 1 also dadurch, dass anstelle von A
die Menge Atv( —At) steht und OeM vorausgesetzt wird. Folgende Satzgruppen
gehen durch Analogie 2 ineinander ûber.

VORAUSSETZUNG. Es sei M eine beschrànkte Menge des Rn, n^2, mit OeM.
Ferner gelte

dMc=\J [A,v(-Aj],
1=1

wobei jedes AtaRn abgeschlossen und konvex ist und Aln( — Al) 0 (d.h. 0$At) er-

fûllt. Fur

gilt also 0 e Q # 0. Damitfolgt

SATZ4. m^n.

SATZ 5. Aus m n ergibt sich

Qn 0^0.i=i

SATZ 6. Injedem Fall enthâlt Q einen Punkt, der in n Mengen At\j — Av) liegt.
Fur die Sphâre gilt dagegen folgendes.

VORAUSSETZUNG. Es sei

ÔKn= U [^uC-O], n^2,
i=i

wobei jedes Ax abgeschlossen und antipodenfrei ist {also auch Aln( — Al) 9 erfiillt).
Damitfolgt
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SATZ 4* (Ljusternik-Schnirelmann). m^n. ([6], S. 42, Corollaire; [5], Satz II)

SATZ5*. Ausm=nfolgt

(A. Granas [4], S. 83, Lemma 14)

SATZ 6*. In jedem Fall existiert ein Punkî in dKn, der in n Mengen Atu — At) liegt
(H.Hadwiger[5],SatzI)

Das Merkwûrdige ist, dass sich die Sâtze 6 und 6* vôllig entsprechen, wâhrend dies

fur die âhnlich gebauten Sâtze 3 und 3* nicht gilt.
Analogien der beschriebenen Art sind vor allem deswegen nûtzlich, weil man durch

sie zu neuen Vermutungen und Ergebnissen gelangen kann. Dazu sei Folgendes be-
merkt.

Bei Satz 5 kann man vermuten, dass ôn0"=i ^i aus genau einem Punkt besteht,
da dies bei dem àhnlich gebauten Satz 2 erfûllt ist, s. Zusatz. Doch konnte dies bisher
weder bewiesen noch widerlegt werden.

§2. Beweise zu den Ùberdeckungen mit konvexen Mengen

Wegen der Âhnlichkeit der Oberdeckungen mit konvexen Mengen einerseits und

antipodenfreien Mengen andererseits kann man vermuten, dass die Sâtze k sich aus
den bekannten Sâtzen A:* herleiten lassen.

Tatsâchlich kann man auch Satz 1 und 4 aus Satz 1* und 4* mûhelos gewinnen,
wobei Satz 1 in der zweiten Form zu betrachten ist. Man hat lediglich in M eine Kugel
zu wâhlen, die von keinem At bzw. Atu( — At) geschnitten wird. Dièse Kugel kann

man ohne Beschrânkung der Allgemeinheit als Einheitskugel Kn annehmen. Durch

/(x) x/\x| (xeRn, x^O) wird jede konvexe Ùberdeckungsmenge A{ oder — At in eine

antipodenfreie Menge aufdKn ûbergefûhrt. Damit folgen aus Satz 1 * und 4* die Sâtze 1

und 4.

Bei den ùbrigen Sâtzen ist eine âhnliche Herleitung nicht ohne weiteres môglich.
Aus diesem Grunde sollen fur die Sâtze k, k^5, direkte Beweise angegeben werden,
die nur Methoden der analytischen Géométrie und der Konvexgeometrie benutzen.

Zu diesem Zweck formulieren wir einen allgemeineren Satz 7.

SATZ 7. Es sei M eine beschrânkte Menge im Rn, n^2, und

m

dMcz{J Ai
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eine Vberdeckung von ôM mit m abgeschlossenen konvexen Mengen Au die nicht die

ganze Menge M uberdecken, d.h.

ist nicht leer. Bezeichnet man mit P die Schnittpunktmenge

P={x\xeQ und x liegt im Durchschnitt von wenigstens n Mengen At} so folgt:

(I) m^n + l,
(II) Q c convP, also P i= 0,

(III) fT=i^ 0.

Der Satz fusst auf folgendem

LEMMA 1. Es sei M eine beschrânkte Menge im Rn, En ein offener Halbraum in Rn9

ÔM nEncz\J At,
i=l

eine Vberdeckung mit abgeschlossenen konvexen Mengen Ai^zR" und

Q cl(MnEn\\J a\ï®.
\ i=i /

Damit folgt:
Unter den xeQ existiert ein x0 mit maximalem Abstand von dEn, welches in n

Mengen A{ liegt.
Beweis. Zunâchst zeigen wir, dass in Qr\En ein x0 liegt, welches n Mengen At

angehôrt.
Ohne Beschrânkung der Allgemeinheit sei OeôEn. En hat also die Form

En {xeRn | (x, q) > 0}, qeRn, \q\ 1.

Wegen Q ^0 gibt es ein xx e int Q mit

a (xuq)>0. (1)

Zu den Ai betrachten wir die Parallelmengen

\

yeAt

wobei e>0 so klein gewâhlt wird, dass xt keinem A\ angehôrt.
Die Menge M sei durch die Zahl r>0 beschrânkt, d.h. \x\^r fur aile xeM.
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Damit definieren wir den Punkt

r2
p — q>

a

Aus Kompaktheitsgrûnden existiert ein Punkt xe in

Qs cl(MnEn\\jAi)
\ i=l /

mit

\xe -p\ max \x - p\. (2)
xeQB

Wir zeigen, dass xE in En und im Durchschnitt von wenigstens n Mengen A\ liegt.
x8 liegt in is" aus folgendem Grunde : Es gilt einerseits

l*£ - P\2 ^ |*i - P\2 l*i -uq + aq- p\2

r2\2 r4
I*! - <xq\2 + |oc<? - p\2 ^ \ocq - p\2 a H 1 > -^ + 2r2

V a/ a2

und andererseits

l*c ~ P\2 l*8 - (*e5 ^?) ^? + (*£5 q) q - />|2

1*8 - (*e> ^?) ^fl2 + I(*b> ^f) ^f - /^l2 ^ r2

Zusammengenommen folgt

r2

r4 r2 r4
-2 + 2r2 < r2 + 2 - (x£5 «) + -^
OC (X OC

und damit

(*.«)>£• (3)

Daraus folgt insbesondere: xeeEn.

xe gehôrt « Mengen A\ an, was folgendermassen bewiesen wird.

xe liegt in mindestens einem A\, da x£ Randpunkt von Qe ist. xe sei, nach geeigneter

Umnumerierung,iny4j, ...,Aes enthalten, jedoch nicht in A\ mit i>s. Wir nehmen s<n
an und fûhren dies zum Widerspruch.

Da xe e Qe von dMn En mindestens den Abstand e > 0 hat, ist xs innerer Punkt von
Mr\En. Es gibt also eine Umgebung UcMc\En von x89 die kein A\ mit / > s schneidet.



280 FRIEDRICH WILLE

In xe errichte man an jedes A\ mit /gs eine Stûtzhyperebene Ht und bilde

i=l

F liegt ganz in Qz, denn kein Punkt von P|*=i Ht ist innerer Punkt von Aei9 i^s, und
kein Punkt von U liegt in A\9 i>s. Da die Dimension von p|f=i ^» grôsser oder

gleich n — s^. 1 ist, enthâlt F wenigstens eine Strecke, die xe als inneren Punkt enthâlt.
Auf dieser Strecke existiert aber ein Punkt z mit \z—p\ > \xE—p\. Da ze Va Qe gilt, ist
(2) verletzt. Also folgt s^n, d.h. xe ist in wenigstens n Mengen A\ enthalten.

Mit s -* 0 erhâlt man aus Kompaktheitsgrùnden und wegen (3) : Es gibt mindestens

ein xoeQnEn, welches in n Mengen At liegt.
Damit gibt es aber auch ein xoeQnEn, welches

(x0, q) max(x,q) p (4)
xeQ

erfûllt und n Mengen At angehôrt. Definiert man nàmlich die Halbrâume

Enk LeRn | (x, q) > ^- /j|, fe 1, 2, 3,...,

so folgt aus dem eben Bewiesenen, dass in jedem Q n E£ ein xk existiert, welches n

Mengen At angehôrt. Jeder Hâufungspunkt jc0 der Folge {xk} gehôrt dann n Mengen
At an. Ausserdem besitzt x0 maximalen Abstand von dEn, womit ailes bewicsen ist.

Beweis des Satzes 7. (I). Angenommen, es ist m^n. x1 sei ein Punkt in M, der

keinem^ angehôrt. Dann existiert nach dem Trennungssatz ([8], S. 37, Satz 2.14)
ein offener Halbraum EncRn mit x1eEn, der At nicht schneidet. In En nMmuss es

nach Lemma 1 einen Punkt x0 geben, der n Mengen Ai angehôrt. Das ist aber un-
môglich, da En von hôchstens n—\ Mengen At geschnitten wird.

(II). Es sei Q M\\J?=±Ai9 also g clg. Zu zeigen ist gcconvP, dann ist auch

gcconvP erfùllt, da convP, ebenso wie P, kompakt ist. Angenommen, es gilt
gcjiconvP. Dann gibt es ein xleQi jq^convP, zu dem ein offener Halbraum EnaRn
existiert mit x^eE" und convPr\En=$. In En existiert aber nach Lemma 1 ein Punkt
aus P, also folgt convPn£w^0 und damit ein Widerspruch.

(III). Schliesslich beweisen wir (~)1L1Ai 0. Es sei zoeQ. Angenommen, es gibt
einen Punkt x0, der in allen At liegt. Dann trifft die von x0 ausgehende Halbgerade
durch z0 den Rand dMin einem Punkty0 ausserhalb der Strecke [jc0, z0] conv{x0, z0}.

Da y0 in einem At liegt, und x0 ebenfalls in diesem At, so gehôrt auch zoe\_xo, yo~]

zu Ai9 was zoeQ widerspricht.
Damit ist Satz 7 bewiesen.
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Satz 1 ist gleichbedeutend mit (I) in Satz 7, Satz 3 und Satz 6 erhàlt man aus (II), (III).
Beweis des Satzes 2. Es genûgt zu zeigen, dass Q n H?= î A aus genau einem Punkt

besteht.
Zunàchst beweisen wir, dass gnp|"=1 At nicht leer ist. Es existiert ein xxeQ und

ein Halbraum EnaRn mit xx eEn,EnnAn+1 0. Mit Lemma 1 folgt damit die Existenz
eines Punktes xoeEnnQnf)ni=1 Ai9

ônn?=i 4-i besteht nur aus einem Punkt x0. Nimmt man nàmlich an, es existiert
ein weiterer Punkt z0 ^ x0 in Q n P|"= x A b so kann man z0 durch eine Folge {zk | A:

1,2,...} aus 2 ^\U"=i ^î approximieren. Die Gerade durch xQ und zfc schneidet
dM in einem Punkt j&, der zfee[x0,;^] erfûllt (fc=l, 2, 3,...). Damit folgt ykeAn+i,
denn ykedM liegt in wenigstens einem At. Aus ykeAt mit f^« wùrde wegen x0Gy4f
aber zfcey4j folgen, was zkeQ widerspricht.

Da die Folge {yk} beschrânkt ist, besitzt sie einen Hâufungspunkt y0, der zoe[xo,
yo~] und yoe>4w + 1 erfûllt. Fûhrt man die gleiche Ûberlegung noch einmal durch, wobei

x0 und z0 ihre Rollen tauschen, so erhâlt man die Existenz eines y1eAn+1 mit xoe[zo,
yt~\. Also liegen x0 und z0 auf der Strecke [y0, jx], d.h. x0, zoeAn + 1. x0 ist somit in
allen At enthalten. Das ist aber nach Satz 7 (III) unmôglich.

Damit ist Satz 2 samt Zusatz bewiesen.

Beweis des Satzes 4. Angenommen, es ist m<n. Es sei iff eine Hyperebene durch 0

mit y4fni^=0, also wegen Ht= — Ht auch — A^nH^Q, /=1,..., m. Der lineare

Unterraum fyp=i Ht besitzt mindestens die Dimension «—m^ 1. Er enthâlt also eine

Gerade durch 0, die kein At schneidet. Das kann nicht sein, da die Gerade wegen
0eM den Rand dM trifft, der von den At ûberdeckt wird.

Zum Beweise von Satz 5 ziehen wir ein Hilfsmittel aus der kombinatorischenTopo-
logie heran, nâmlich das folgende Lemma von Sperner. Unter einem n-dimensionalen

euklidischen Simplex An verstehen wir dabei die konvexe Huile von «+1 Punkten

x0,..., xn des Rn die nicht aile in einer Hyperebene liegen. Das Simplex An wird von
den n+l (n-l)-dimensionalen Seiten St conv{xk \k^i) berandet. Damit lautet das

Spernersche Lemma :

LEMMA 2 ([1], S. 378, Satz B). Uberdeckt man An mit abgeschlossenen Mengen

j?0, B1,..., Bn, wobei Bt n St Qfûr allei=0,l,...,n erfûllt ist, so folgt

Beweis des Satzes 5. Zu zeigen ist Q n p|?= î A #$•
Zu jedem At existiert wegen 0$At eine Hyperebene durch 0, die At nicht schneidet

und folglich auch -A% nicht trifft. Es gibt also zu jedem At einen Halbraum
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mit AtczEi9 — ^n cl 2^ 0. Die Punkte ql9...9 qn sind linear unabhângig. Wâren sie

nâmlich linear abhângig, so enthielte p)"=i dEt mindestens eine Gerade durch 0.

Dièse Gerade trâfe kein At oder — Ai9 also auch keinen Punkt aus dM, was nicht sein

kann.
Aus diesem Grande sind auch die Geraden

gk nSEi9 fc=l,...,n,

linear unabhângig, d.h. ihre konvexe Huile bildet den ganzen Raum Rn. Man wâhlenun
auf jeder Geraden gk einen Punkt xk mit xkeEk, so dass M im Inneren des ,,Hyperok-
taeders" conv^, — xl9 x2, —x2,..., xn, —xn} liegt. Wir betrachten nun das n-dimen-
sionale euklidische Simplex zT conv{0, xl9 x2,...,xn} und versuchen darauf das

Spernersche Lemma anzuwenden.
Die Mengen Bi9 i= 1,..., n, werden folgendermassen aus den At gewonnen. Man

wàhle zu jedem A{ eine Parallelmenge A\9 e>0, die ebenso wie At in Et liegt. Ferner
sei Ct der von At aufgespannte Kegel

Ct {Xx\ xeAi9 2^0}.
Damit bildet man

B, AI u cl(Ct\M) fur i 1,..., n,

und

Die Bi9 i=0, l,...,n, erfûllen bezûglich A" die Voraussetzungen des Spernerschen
Lemmas. Es gibt also ein xe9 welches im Durchschnitt aller Bt liegt. Da Bo im Inneren

von M liegt, ist auch xe ein Punkt von M. Mit e -* 0 folgt aus der Kompaktheit von clM :

Es gibt ein *oeô cK^\U"=i[^iu(—^/)])> welches in allen Ai9 i=l, ...,n, ent-
halten ist.

Damit ist Satz 5 bewiesen.

§3. Gleichungssysteme mit Konvexitâtseigenschaften

Wie kann man nun die bewiesenen Ûberdeckungssâtze ausnutzen, um ûber die

Lôsungen von reellen Gleichungssystemen

/i((*if *2>»'> xH)) 0, i 1,2,..., n, xu...,xH reell, (5)

etwas auszusagen, wobei die Funktionen/.rM-* R1, MczR", im allgemeinen als nicht-
linear vorausgesetzt werden?
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Man geht im Prinzip so vor, dass man die Mengen

4 {xeM|/,(*)£(>} fur f l,2,...,n,
und

An+1 {xeM\fi(x)^0 fur aile f l,...,n}
bildet. Besitzen die Mengen Ai9 i= 1 w+1, aufgrund eines Uberdeckungssatzes
einen gemeinsamen Punkt x=(xu..., xn) so ist dieser Punkt Losung des Gleichungs-
systems (5).

Um dièse Méthode, môglicherweise leicht abgewandelt, mit den bewiesenen Ûber-
deckungssâtzen zusammen anwenden zu konnen, mûssen die Gleichungssysteme ge-
wisse Konvexitâtseigenschaften besitzen.

Das einfachste wâre, wenn aile/; konvexe Funktionen wâren, d.h. wenn fur jedes
Tripel x9 y, z aus M mit y Xx+ (1 -X) z, 0<A< 1, die Ungleichung fi{y)ûWi(x) +
+ (l-A)/f(z) gelten wùrde. Die durch/= (/!,...,/„) definierte Abbildung/: M-?iÊ11
heisst dann eine spezielle konvexe Abbildung.

Man kommt aber meistens mit der Bedingung aus, dass

4 {xeÀf|/,(*)£<>}

aus einer oder mehreren Zusammenhangskomponenten besteht, die konvex bzgl. M
sind. Dabei heisst eine Menge AcRn konvex bzgl. MczRn9 wenn mit x, yeA auch

[x, y]nMz\x A gehôrt, wobei [x, y] wie ûblich die Verbindungsstrecke von x und y
ist.

Die oben genannte Bedingung ist z.B. fur die Funktion/i(x) x1-x2 + l {xu x2
reell) erfûllt, obwohl/- keineswegs eine konvexe Funktion ist.

Im Folgenden sei in Rn eine feste Basis gewâhlt, bezûglich der jeder Vektor xeRn
n réelle Komponenten xl9 x2,..., xn besitzt und jede Abbildung/:M-+Rn in Kompo-
nenten/f.M-^.R1 zerfâllt:/=(/i,/2, ...,/„). Mit R\ bezeichnen wir im Folgenden den

naturlichen Kegel

R\ {x (xi,x2,...9xn)eRn\xk^0 fur aile k l,...,n}

SATZ 8. Es sei f=(fl9 f29 --;fn) e^ne stetige Abbildung einer abgeschlossenen be-

schrânkten Menge MaRm in den Rn, n^m, wobeiFolgendesgilt:
(a) Es gibt ein so>0, so dass die Mengen {xeM \fi{x)^ —e} fur aile 0<£<e0 und

i= 1,...,« konvex bzgl. M sind,

(b)f(dM)nRtt+=0.
DamitfolgUfbesitzt keine Nullstelle in M. Allgemeinergiltf{M)nRn+=0.
Beweis. Man wâhle ein s, 0 < e < e0, welches kleiner als der Abstand zwischen/(3Af)
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und R + ist, bilde die Mengen

¦i,
fur i n -f 1,..., m (falls n < m),

i conv-jxeM | ft(x) ^ —> fur / 1,..., n,

und verifiziere fur sie die Voraussetzungen von Satz 1 (mit m statt ri). Aus Satz 1 folgt
dann/(M)nir+=O.

SATZ 9. Es seif= (f1,f2, •••>/«) eine stetige Abbildung einer abgeschlossenen Menge
MczRn in den Rn, wobei Folgendes gilt :

(a) Die Anzahl der Zusammenhangskomponenten der Mengen {xeM | fl(x)^0}9
/=1,..., n, ist endlich. Jede dieser Zusammenhangskomponenten ist konvex bzgl. M,

(b) es gib t einen offenen Halbraum EaRn, fur den MnE beschrânkt,f(dMn cl Ë) C\

nRn+=0 und f(MnE)n int R + ^ 0 ist.
Damitfolgt:fbesitzt eine Nullstelle in intMnE.

ZUSATZ. Gilt anstelle von (a) :

(a') Fur jedes ie{l,...,«} ist Bt {xeM |/t(x)g0} konvex bzgl. M undf(x)<0
fur aile xeintBl9

so folgt mit den ubrigen Voraussetzungen von Satz 9 : / besitzt genau eine Nullstelle
in M. Sie liegt in intMnE.

Dazu sei Folgendes bemerkt: Ist / eine spezielle konvexe Abbildung, d.h. : sind
aile f konvexe Funktionen, so ist unter den Voraussetzungen von Satz 9 die Bedin-

gung (ar) im Zusatz automatisch erfûllt. Man hat also in diesem Falle die eindeutige
Lôsbarkeit der Gleichung/(x) O. Damit wird ein Satz von G. J. Rieger ([7], §7,
Satz 6) verallgemeinert (Dort wird eine Funktion/konvex genannt, wenn —/konvex
in unserem Sinne ist).

Beweis des Satzes 9. Man numeriere die Zusammenhangskomponenten der Mengen

{xeM \f(x)^0} fortlaufend durch: Zl9 Z2,..., Zm, und bilde die Mengen

Ax — conv Zt fur aile i 1, 2,..., m.

Lemma 1 ergibt dann die Behauptung von Satz 9.

Beweis des Zusatzes. Nach Satz 9 existiert eine Nullstelle xoeintMnE von/.
Angenommen, es existiert noch eine weitere Nullstelle jq in M. Dann trifft die Gerade

g durch x0 und xx das Randstûck ôMn cl E. Sei x2 ein Punkt aus g n dMnclE, der x0
am nàchsten liegt, jedoch nicht zwischen x0 und x±. Uberlegt man sich die môglichen
Lagen von xl9 so findet man leicht, dass es einen solchen Punkt geben muss.

Wegen f(dMn cl E) nR+ =0 gilt fl(x2)<0 fur wenigstens ein /. Man wâhle nun
ein x3egnintM, welches nâher an x2 liegt als x0 und xx, und welches ft(x3)<0 er-
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fûllt. Aus Stetigkeitsgrûnden gibt es ein solches x3. x3 ist also innerer Punkt von Bv
Damit muss aber, wegen der Konvexitât von Bh einer der Punkte x0 oder xt ebenfalls
im Inneren von Bt liegen, was nach (a') wegen/;(jco)=/;(x1) O nicht sein kann.

Damit ist der Zusatz bewiesen.

SATZ 10. Es sei M eine abgeschlossene beschrànkte Menge im Rn mit OeM und

/= (fuf2, •••?/«)• M -» Rn eine stetige Abbildung mitfolgenden Eigenschaften:
(a) Fùrjedes i 1,..., n ist Bt {xeM | ft(x) S 0} konvex bzgL M.
(b) /(0)sint*"+
(c) Es existiert eine abgeschlossene Teilmenge D von dM mit ôM=Dkj( — D) und

f(D)nRn+=Q.
Darausfolgt:fbesitzt eine Nullstelle in mi M.
Beweis. Mit At convi^ und Satz 5 erhâlt man sofort die Behauptung.
Ob man die Eindeutigkeit der Nullstelle beweisen kann, wenn man statt (a) die

Bedingung (a') aus dem Zusatz zu Satz 9 voraussetzt, ist bisher unbekannt.
Wie schon erwàhnt, sind (a) oder (a;) stets erfûllt, wenn / eine spezielle konvexe

Abbildung ist. Allgemeinere konvexe Abbildungen, vor allem in Banachrâumen,
werdenin [12,13,14] behandelt.

§4. Anwendungen

Beispiele fur die Nullstellensâtze lassen sich inbesondere unter Systemen mit Poly-
nomgleichungen leicht flnden. Zur Démonstration seien einige einfache Système ange-
geben.

BEISPIEL 1. Betrachtet wird das Gleichungssystem

W(
fi (*) (^i - if + (*2 - 1 )4 + ^ - f 0 (6)

mit x= (pcl9 x2, x3), xt reell.

Es soll gezeigt werden, das dièses Gleichungssystem in dem Wûrfel M mit den

Ecken Pjki (j, k, l),j, k, /e{0, 1}, keine Lôsung x besitzt. Dazu wird Satz 8 benutzt.

Die Bedingung (a) in Satz 8 ist sicher erfûllt, da die/, als Summen einfacher kon-

vexer Funktionen konvex sind. Es soll dem Léser ûberlassen bleiben, die Bedingung

(b),f(dM)nR3+ =0, nachzuweisen. Man hat dazu lediglich die Werte der Funktionen

fi in den acht Ecken Pjkl zu berechnen. Daraus erkennt man leicht, das jedes ft auf
zwei Seiten des Wûrfels M negativ ist, wodurch auf allen sechs Seiten (b) erfûllt ist.

Satz 8 ergibt dann die Unlôsbarkeit von (6) in M.
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BEISPIEL 2. Gelôst werden soll das Gleichungssystem

(7)

mit x= (xu x2, x3), xt reell.

Mit Satz 9 lâsst sich zeigen : Das Gleichungssystem besitzt mindestens vier Lôsun-

gen in dem Quader M mit den Ecken Pjki — {j, k, l),j, ke{\, — 1}, /e{0, 1}.
Es genûgt die Existenz einer Lôsung (xl9 x29 x3) sicherzustellen, weil damit offen-

bar — xl9 x2, x3), (xl9 — x2,x3) und — xl9 —x2, x3) ebenfalls Lôsugen sind, wobei

jq =£0 und x2¥:0 gilt. Letzteres stellt man durch Einsetzen inf1(x) O und/2(x) 0

sofort fest.

f± und/2 sind nicht konvex, was den Nachweis von (a) in Satz 9 etwas beschwer-

licher macht. Man erkennt jedoch: Die durch {xeR3 |/i(*) 0} beschriebene Flâche
ist ein zweischaliges Hyperboloid. Ax {xeR3 |/1(x)^0} stellt daher die beiden Scha-

len mit ,,Fûllung" dar und zerfâllt somit in zwei konvexe Zusammenhangskompo-
nenten. Das gleiche gilt fûr/2. Da ferner/3 konvex ist, gilt Bedingung (a) in Satz 9.

Wâhlt man zum Nachweis von (b) in Satz 9 den Halbraum E= {xeR3 | x3 >0}, so

erkennt man die Gûltigkeit von (b) durch Berechnung der Werte von/J in den Ecken

Pjkl und in 0. Satz 9 liefert damit die gesuchte Lôsungsexistenz.
Zum Schluss betrachten wir noch zwei allgemeinere Beispiele.

BEISPIEL 3. Es soll das Gleichungssystem

j
mit fe l,..., n, w^2, x (xl9..., xn)eRn+

(8)

untersucht werden, wobei a(kl\ b(kl] und ck nichtnegative réelle Zahlen sind, die die Un-
gleichungen

0<t frg/<c*<îfli')-n-' (9)

fur alley= 1,..., n und k= 1,..., n erfùllen.
Mit dem Zusatz zu Satz 9 soll gezeigt werden, dass (8) in Rn+ genau eine Lôsung

besitzt.
Die Funktionen/k sind sâmtlich konvex. Es ist also, wie im Anschluss an den

Zusatz in §3 bemerkt wurde, nur die Voraussetzung (b) im Satz 9 zu verifizieren.
Es ist M=Rn+. Man wâhle einen Halbraum Ec Rn, der aus Rn+ ein euklidisches Sim-
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plex herausschneidet, und zwar das Simplex An, dessen Ecken die Einheitsvektoren
und der Ursprung 0 sind :

E= {xeRn\(x,p)<\p\2} mit /> (-,-,...,-).
\n n nj

Aus den Vorzeichen der Werte der Funktionen ft inp und in den Ecken von An Mn
nclE erkennt man, dass (b) in Satz 9 gilt. Also folgt: Das Gleichungssystem (8) be-

sitzt genau eine Lôsung x in R\.
Weitere Beispiele zu Satz 9 findet man bei G. J. Rieger [7].
Schliesslich soll Satz 10 angewendet werden.

BEISPIEL 4. Gelôst werden soll das Gleichungssystem

m s n
r i \ V1 /"1 __ -y. V, /j(O J_ \^" \7 VS-Î} • v* /* (\Jk V**v La V k) uk ' Zj Z-u kj *j ^k ^5

(13)

wobei x fa,..., xn) in dem Wûrfel

PF {xeK"|0<xfc^l fur aile k}

variiert. Dabei gelte a£° >09ck>0, b{jl ^0, aj1} ^0 fur aile A:,7 und aile 1 ^2, sowie

I I 6^+ I lCl<«*< I ai0- I 1^1 fûra»e fc. (14)
i=2j=l 7=1 i=l j=l

fk wird zu einer konvexen Funktion

Art* i ii-*ti'a«+ £ £ ^ix,r+ £ c-x,-Ct
t=l i=2j=l j=lj*k j*k

auf den Einheitswûrfel M={xeRn\ \xk\^l fur aile k} erweitert. Die Abbildung
/= (/1, ...,/„), definiert auf M, soll mit Satz 10 untersucht werden. Dabei sei

D= (j {xeM\xk l}
k=l

woraus 5M=Du (-D) folgt: Aus (14)folgt

/(0)eintRn+ und f(D)nRtt+=09

denn auf {xeM \ xk 1} gilt oflfenbary^x) < 0 fur aile k.
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Durch Anwendung von Satz 10 wird damit die Existenz einer Nullstelle xoeM von
/geliefert. x0 liegt in W, da aus (14) folgt, dass fur xeM, x$ W, also xk<0 fur ein k,
die Ungleichung fk{x) > 0 gilt. Also folgt :

Das System (13) besitzt eine Lôsung in W.

Zum Schluss sei bemerkt, dass man bei speziellen konvexen Abbildungen, die die

Voraussetzungen von Satz 9 befriedigen, die Lôsung auch konstruktiv gewinnen kann.
Von Rieger [7] ist gezeigt worden, dass das Regula-falsi-Verfahren stets die Nullstelle
liefert, wenn die Voraussetzungen von Satz 9 gelten und M ein «-dimensionales eu-
klidisches Simplex ist. Unter den gleichen Voraussetzungen hat B. Bongers [2]
gezeigt, dass auch das schnellere Newton-Verfahren zur Nullstelle fùhrt. Dabei ist das

Newton-Verfahren in sinnvoller Weise sogar auf stetige nichtdifferenzierbare
Abbildungen ausgedehnt worden. Es ist eine offene Frage, ob man die Nullstellen in Satz 10

in âhnlicher Weise gewinnen kann.
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