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Uberdeckungen mit konvexen Mengen und nichtlineare
Gleichungssysteme

von FRIEDRICH WILLE

Einleitung

Uberdeckungssitze und Aussagen iiber die Losbarkeit nichtlinearer Gleichungs-
systeme sind eng miteinander verkniipft, wie das Beispiel des Lebesgueschen Pflaster-
satzes und des Brouwerschen Fixpunktsatzes zeigt ([1], S. 376-379), oder auch der
Satz von Ljusternik-Schnirelmann-Borsuk und sein Zusammenhang mit dem Bor-
sukschen Antipodensatz ([1], S. 483-487; [3], Satz I und Satz III; oder [9], Satz 1
und Korollar 1).

In der vorliegenden Arbeit werden Uberdeckungen betrachtet, bei denen die Rin-
der beschriankter Mengen im R” in den Vereinigungen endlich vieler konvexer abge-
schlossener Mengen liegen. Die Durchschnittseigenschaften dieser Uberdeckungen
sind denen verwandt, die in Antipodensétzen fiir die Sphire vorkommen.

Aus diesem Grunde gelangt man, dhnlich wie bei den Antipodensitzen, von den
Uberdeckungen zu Losbarkeitskriterien fiir nichtlineare Gleichungssysteme, die ge-
wisse Konvexitdtseigenschaften besitzen. Zum Beispiel erhdlt man Nullstellensitze
fiir spezielle konvexe Abbildungen, das sind Abbildungen im R", die komponenten-
weise konvex sind.

Besonders an den Anwendungen (§4) erkennt man, dass man mit den gewonnenen
Sdtzen auch Nullstellen gerader Abbildungen nachweisen kann, was ja mit dem Bor-
sukschen Antipodensatz und dem damit verwandten Brouwerschen Fixpunktsatz
nicht moéglich ist.

Verallgemeinerungen dieser Ergebnisse auf konvexe Operatoren in Banachrdumen,
vor allem auf Integralgleichungen, werden in [12, 13, 14] angegeben.

Die Beweise in der vorliegenden Schrift benutzen hauptséchlich elementare Me-
thoden der Konvexgeometrie. Sie erfordern daher keine speziellen Vorkenntnisse.
Nur vereinzelt werden Ergebnisse der kombinatorischen Topologie herangezogen.

§1. Analogien bei Uberdeckungssitzen

In diesem Abschnitt werden Uberdeckungssitze fiir beschrinkte Mengen ange-
geben, die einen analogen Aufbau besitzen wie bekannte Uberdeckungssitze fiir die
Sphire. Die Analogie soll zundchts am folgenden Satz 1 gezeigt werden.
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R” sei stets ein n-dimensionaler reeller Vektorraum, in dem ein inneres Produkt
(x, y) fiir x, yeR" erklédrt ist. Mit |x|=./(x, x) wird die euklidische Norm von
x€R" bezeichnet und mit 0M der Rand einer Menge M aus R". Damit gilt

SATZ 1. Uberdecken n konvexe abgeschlossene Mengen A; aus R" den Rand einer
beliebigen beschrinkten Menge M < R", so iiberdecken sie sogar die ganze Menge M.

Man kann den Satz auch in folgender Form schreiben.

Uberdecken n abgeschlossene Mengen A; aus R" den Rand einer beschriinkten Menge
M c R", wird M jedoch nicht vollstindig von den A; tiberdeckt, so ist wenigstens eins der
A; nicht konvex.

In dieser Gestalt 14dt der Satz zum Vergleich mit dem Antipodensatz von Ljuster-
nik-Schnirelmann-Borsuk ([1], S. 487; [3, 5, 6, 9]) ein. Es sei

K'={xeR"||x| <1}, n2z1,
die n-dimensionale Einheitskugel und ihr Rand
0K"=S"""'={xeR"||x| =1}

die (n—1)-dimensionale Einheitssphdre. Ein Antipodenpaar besteht aus zwei Punkten
x und —x aus 0K". Eine Teilmenge von 0K" heisst antipodenfrei, wenn sie kein Anti-
podenpaar enthilt. Damit gilt

SATZ 1* (Ljusternik-Schnirelmann-Borsuk). Uberdecken n abgeschlossene Mengen
A;<=0K"die Sphire 0K", so enthdlt wenigstens ein A; ein Antipodenpaar.

Offenbar geht Satz 1, zweite Fassung, in Satz 1* iiber, wenn man die beschrinkte
Menge M durch K" ersetzt, ferner die Voraussetzungen oM <|Ji-; 4; und
M\ UJi-i4;#0 durch 0K"=J{.;4; ersetzt und statt , konvex“ ,antipodenfrei‘
schreibt.

An einem zweiten Satzpaar wird die Analogie noch deutlicher. cl 4 bedeutet dabei
die abgeschlossene Hiille und convA die konvexe Hiille einer Menge A<= R". int 4 ist
das Innere von 4.

SATZ 2. Aus OMc\Ji2! A, McR* beschrinkt, n=2, M\\UZ! 4;#0 und
A;= R" abgeschlossen und konvex fiir allei=1, ..., n+1 folgt:

Je n der A, und Q=cl(M\\J}Z! A4,) besitzen einen gemeinsamen Punkt, wihrend
der Durchschnitt aller n+ 1 A, leer ist.

ZUSATZ. Qn\UJ;«x 4; besteht aus genau einem Punkt x, (k=1,...,n+1), und
es gilt Qcconv{xy, ..., Xp41}-
Fiir die Sphire gilt dagegen, s.[1], S. 487, Satz X.
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SATZ 2*. Aus 0K"=\J!2X1 A,, n=2, A, abgeschlossen und antipodenfrei fiir alle
=1,...,n+1, folgt:
Je n der A; besitzen einen gemeinsamen Punkt, wéihrend der Durchschnitt allern+1 A4,
leer ist.
Die Sitze 1 und 1* wie auch 2 und 2* haben also die gleiche Form beziiglich der
folgenden Analogie.

ANALOGIE 1.
(a) M cR"beschrinkt entspricht K" (Einheitskugel).
(b) IMcUj=; 4;, M\ Ui~ 4;#0  entspricht oK"=\JL | 4;
(c) konvex entspricht antipodenfrei
(d) xeQ=cd(M\ Ui, 4,) : of i
liegt inn Mengen A, entspricht . xliegtinn Mengen A,

Uberdeckt man dM bzw. K" mit einer beliebigen endlichen Anzahl abgeschlossener
Mengen A,;, so erhilt man, etwas abweichend von der beschriebenen Analogie, folgen-
des Satzpaar.

SATZ 3. Aus oM <\ JiL;A4;, M cR" beschrinkt, n=2, M\ izi4;#0 und
A;=R" abgeschlossen und konvex fiir alle i =1,..., m folgt :

Q=cl(M\\UI~ 4;) enthdlt einen Punkt, der in n Mengen A; liegt, wihrend der
Durchschnitt aller A, leer ist.

SATZ 3*(s. [10], Satz 2). Aus 0K"=\J/L4,, n=2, wobei jedes A; abgeschlossen
ist und in einer offenen Hemisphdre von 0K" liegt, folgt:

Es existiert ein Punkt in 0K", der in n Mengen A, liegt. Ferner gilt ( \i=, A;=0.

Eine offene Hemisphire von 0K™ hat dabei die Gestalt H={xedK" | (x, a)>0},
aeR”, a+#0.

Die beiden Sitze entsprechen sich beziiglich (a), (b), (d) in Analogie 1, wihrend
(c) abgewandelt werden muss zu

(c') A; konvex entspricht A, liegt in einer offenen Hemisphdre.

Eine Verschirfung dieser oder dhnlicher Art ldsst sich nicht vermeiden, da Satz 3*
falsch wird, wenn man ,,A; liegt in einer offenen Hemisphdre’ durch ,,A4; antipodenfrei”’
ersetzt.

Betrachtet man dagegen symmetrische Uberdeckungen, d.s. Uberdeckungen, bei
denen mit A, stets auch — 4; eine liberdeckende Menge ist, so lisst sich eine vollstén-
dige Analogie erreichen. Man hat Analogie 1 nur in folgender Weise sinngemiss abzu-
wandeln.
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ANALOGIE 2.

(a;) M < R"beschrinkt mit 0e M entspricht K" (Einheitskugel).
(b)) oM=L 1[40 (—4)]

und MU 1[40 (— 4,)] #9
(c) konvex entspricht antipodenfrei

(dy) xeQ@=cl(M\Uix:[4;0(—4,)])
liegt inn Mengen A;u (— A;)

} entspricht 0K"= ()i~ [4;0 (—4,)]

} entspricht x liegt in n Mengen A;0 (— A,)

Analogie 2 unterscheidet sich von Anologie 1 also dadurch, dass anstelle von 4
die Menge A;U(—A4;) steht und 0e M vorausgesetzt wird. Folgende Satzgruppen
gehen durch Analogie 2 ineinander iiber.

VORAUSSETZUNG. Es sei M eine beschrinkte Menge des R", n=2, mit 0e M.
Ferner gelte

oM = U [4,0 (- 4)],

wobei jedes A;= R" abgeschlossen und konvex ist und A;n(—A;)=0 (d.h. 0¢ 4,) er-
fullt. Fir

0 et (M\U [4,u (- 42])
gilt also 0e Q #0. Damit folgt
SATZ 4. m=n.

SATZS5. Aus m=n ergibt sich

Qn () 4;#0.
i=1

SATZ 6. Injedem Fall enthdlt Q einen Punkt, der in n Mengen A;0 (— A,) liegt.
Fiir die Sphére gilt dagegen folgendes.

VORAUSSETZUNG. Es sei
0K"=J [4v(—4)], nz2,
i=1

wobei jedes A; abgeschlossen und antipodenfrei ist (also auch A;~(—A;)=0 erfiillt).
Damit folgt
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SATZ 4* (Ljusternik-Schnirelmann). m>n. ([6], S. 42, Corollaire; [5], Satz II)

SATZ 5*. Aus m=n folgt
N A; #0.
i=1
(A. Granas [4], S. 83, Lemma 14)

SATZ 6*. In jedem Fall existiert ein Punkt in 0K", der in n Mengen A,0 (— 4;) liegt
(H. Hadwiger [ 5], Satz 1)

Das Merkwiirdige ist, dass sich die Sitze 6 und 6* vollig entsprechen, wihrend dies
fiir die dhnlich gebauten Sitze 3 und 3* nicht gilt.

Analogien der beschriebenen Art sind vor allem deswegen niitzlich, weil man durch
sie zu neuen Vermutungen und Ergebnissen gelangen kann. Dazu sei Folgendes be-
merkt.

Bei Satz 5 kann man vermuten, dass Qn()i=; 4; aus genau einem Punkt besteht,
da dies bei dem dhnlich gebauten Satz 2 erfiillt ist, s. Zusatz. Doch konnte dies bisher
weder bewiesen noch widerlegt werden.

§2. Beweise zu den Uberdeckungen mit konvexen Mengen

Wegen der Ahnlichkeit der Uberdeckungen mit konvexen Mengen einerseits und
antipodenfreien Mengen andererseits kann man vermuten, dass die Sétze k sich aus
den bekannten Sdtzen k* herleiten lassen.

Tatsdchlich kann man auch Satz 1 und 4 aus Satz 1* und 4* miihelos gewinnen,
wobei Satz 1 in der zweiten Form zu betrachten ist. Man hat lediglich in M eine Kugel
zu wihlen, die von keinem A4; bzw. A;u (—A4;) geschnitten wird. Diese Kugel kann
man ohne Beschrinkung der Allgemeinheit als Einheitskugel K" annehmen. Durch
f(x)=x/|x|(xeR", x+#0) wird jede konvexe Uberdeckungsmenge 4; oder — 4, in eine
antipodenfreie Menge auf 0K, iibergefiihrt. Damit folgen aus Satz 1* und 4* die Sétze 1
und 4.

Bei den iibrigen Sitzen ist eine dhnliche Herleitung nicht ohne weiteres moglich.
Aus diesem Grunde sollen fiir die Sitze k, k #5, direkte Beweise angegeben werden,
die nur Methoden der analytischen Geometrie und der Konvexgeometrie benutzen.
Zu diesem Zweck formulieren wir einen allgemeineren Satz 7.

SATZ 7. Es sei M eine beschrinkte Menge im R", n=2, und

oM < | 4,
i=1
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eine Uberdeckung von M mit m abgeschlossenen konvexen Mengen A,, die nicht die
ganze Menge M iiberdecken, d.h.

o-a(n)

ist nicht leer. Bezeichnet man mit P die Schnittpunktmenge
P={x|xeQ und x liegt im Durchschnitt von wenigstens n Mengen A;} so folgt:

(I mzn+l,
(I) Q<convP, also P#0,
(D) (L1 4;=0.

Der Satz fusst auf folgendem

LEMMA 1. Essei M eine beschrinkte Menge im R", E" ein offener Halbraum in R",
OM N E" c Q A;,
1=
eine Uberdeckung mit abgeschlossenen konvexen Mengen A;c R" und
Q =cl (M A E”\_CJ1 Ai> #0.

Damit folgt:

Unter den xeQ existiert ein x, mit maximalem Abstand von OE", welches in n
Mengen A, liegt.

Beweis. Zunidchst zeigen wir, dass in QN E” ein x, liegt, welches n Mengen A4,
angehort.

Ohne Beschrinkung der Allgemeinheit sei 0edE". E" hat also die Form

E"= {xeR”] (x,q9)>0}, geR*, |q|=1.

Wegen Q #0 gibt es ein x, € int Q mit
a=(x,,q)>0. €))
Zu den A, betrachten wir die Parallelmengen

A= U {xeR"||x -y L¢},

yeA;

wobei £>0 so klein gewidhlt wird, dass x; keinem A4; angehort.
Die Menge M sei durch die Zahl »>0 beschrinkt, d.h. |x| <r fiir alle xe M.
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Damit definieren wir den Punkt

p=——4q.
o

Aus Kompaktheitsgriinden existiert ein Punkt x, in

Q°=cl (M N E™\ U A‘;)
i=1
mit

|x; — p| = max |x — p|. 2

xe Q&

Wir zeigen, dass x, in E" und im Durchschnitt von wenigstens » Mengen A} liegt.
x, liegt in E” aus folgendem Grunde: Es gilt einerseits

Ix, — pI* 2 |xy — p|* = |x; — ag + ag — p|?

2\2 4
r
=|x1—och2+laq—plzglaq—-p|2=(a+;) >O7+2"2

und andererseits

X, — pI* = |x, — (%, ) 4 + (% 9) ¢ — pI* ,

2
r r
= lxa'—(xe’ Q)QIZ‘I‘ I(xg, q)q—p12§r2+2;(xe’ CI)+;§-

Zusammengenommen folgt

4 2 4
r r r
—+2rP <P +2—(x,9)+—
a2t L (X q)+

und damit
o
(xe 4) > - 3)

Daraus folgt insbesondere: x,€ E".

x, gehort n Mengen A} an, was folgendermassen bewiesen wird.

x, liegt in mindestens einem 4;, da x, Randpunkt von Q°ist. x, sei, nach geeigneter
Umnumerierung, in 45, ..., A: enthalten, jedoch nicht in 4} mit i>s. Wir nehmen s<n
an und fiihren dies zum Widerspruch.

Da x,e Q° von dM n E" mindestens den Abstand >0 hat, ist x, innerer Punkt von
M n E". Es gibt also eine Umgebung U< M n E” von x,, die kein A; mit i>s schneidet.
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In x, errichte man an jedes A} mit i <s eine Stiitzhyperebene H; und bilde

V liegt ganz in Q% denn kein Punkt von ()i~ H, ist innerer Punkt von A4;, i<s, und
kein Punkt von U liegt in A4;, i>s. Da die Dimension von (-, H; grosser oder
gleich n—s2=1 ist, enthilt ¥ wenigstens eine Strecke, die x, als inneren Punkt enthélt.
Auf dieser Strecke existiert aber ein Punkt z mit |z—p|>|x,—p|. Da ze V< Q° gilt, ist
(2) verletzt. Also folgt s=n, d.h. x, ist in wenigstens » Mengen A; enthalten.

Mit ¢ — 0 erhidlt man aus Kompaktheitsgriinden und wegen (3): Es gibt mindestens
ein x,€Q N E", welches in n Mengen A, liegt.

Damit gibt es aber auch ein x,€ Q N E”, welches

(x0, q) = max (x,q)=§ (4)

erfiilit und n Mengen A4; angehort. Definiert man ndmlich die Halbrdume

E; eR"| (x,q) > . Br, k=1,2,3
=4X X, T 4 s =1, 4,9, ...,
g U7

so folgt aus dem eben Bewiesenen, dass in jedem QN E;’ ein x, existiert, welches n
Mengen A; angehort. Jeder Hiufungspunkt x, der Folge {x,} gehort dann » Mengen
A; an. Ausserdem besitzt x, maximalen Abstand von 0E", womit alles bewicsen ist.

Beweis des Satzes 7. (I). Angenommen, es ist m<n. x, sei ein Punkt in M, der
keinem A, angehort. Dann existiert nach dem Trennungssatz ([8], S. 37, Satz 2.14)
ein offener Halbraum E"< R” mit x, e E", der A, nicht schneidet. In E" n M muss es
nach Lemma 1 einen Punkt x, geben, der n Mengen A; angehdrt. Das ist aber un-
moglich, da E” von héchstens n—1 Mengen A; geschnitten wird.

(IT). Essei 0 =M\ \J™ 14,, also Q=cl. Zu zeigen ist § = conv P, dann ist auch
QOcconvP erfiillt, da convP, ebenso wie P, kompakt ist. Angenommen, es gilt
0 ¢convP. Dann gibt es ein x, €0, x, ¢convP, zu dem ein offener Halbraum E"< R"
existiert mit x; € E" und convP n E"=0. In E" existiert aber nach Lemma 1 ein Punkt
aus P, also folgt convPn E"#0 und damit ein Widerspruch.

(IIT). Schliesslich beweisen wir (., 4,=0. Es sei z,e(. Angenommen, es gibt
einen Punkt x,, der in allen 4, liegt. Dann trifft die von x, ausgehende Halbgerade
durch z, den Rand d M in einem Punkt y, ausserhalb der Strecke [x,, zo ] =conv{x,, z}.
Da y, in einem A, liegt, und x, ebenfalls in diesem A4;, so gehort auch zye[xo, yo]
zu A;, was z,e€Q widerspricht.

Damit ist Satz 7 bewiesen.
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Satz 1 ist gleichbedeutend mit (I) in Satz 7, Satz 3 und Satz 6 erhilt man aus (II), (III).

Beweis des Satzes 2. Es geniigt zu zeigen, dass Q n(i=; 4; aus genau einem Punkt
besteht.

Zunichst beweisen wir, dass Q n(\=; 4; nicht leer ist. Es existiert ein x; € Q und
ein Halbraum E"c R" mit x, € E", E"n A, ; =0. Mit Lemma 1 folgt damit die Existenz
eines Punktes x,e E"n Q@ n(i=, 4,

Q n(i=1 4, besteht nur aus einem Punkt x,. Nimmt man ndmlich an, es existiert
ein weiterer Punkt z,# x, in QN (")i=; 4;, so kann man z, durch eine Folge {z, | k=
1,2,...} aus =M\ 2] 4; approximieren. Die Gerade durch x, und z, schneidet
OM in einem Punkt y,, der z;e[x,, yi ] erfullt (k=1, 2, 3,...). Damit folgt y,e4,4;,
denn y,e0M liegt in wenigstens einem A;. Aus y,eA; mit i <n wiirde wegen x,€4;
aber z, €4, folgen, was z,eQ widerspricht.

Da die Folge {y,} beschrinkt ist, besitzt sie einen Hiufungspunkt y,, der z, e[ x,,
¥o] und y,€4, ., erfiillt. Fiihrt man die gleiche Uberlegung noch einmal durch, wobei
X, und z, ihre Rollen tauschen, so erhilt man die Existenz eines y, € 4, ,; mit x, €[z,
¥1]- Also liegen x, und z, auf der Strecke [y,, ¥,], d.h. xq, zo€A4,+1. X, ist somit in
allen A, enthalten. Das ist aber nach Satz 7 (III) unméglich.

Damit ist Satz 2 samt Zusatz bewiesen.

Beweis des Satzes 4. Angenommen, es ist m <n. Es sei H, eine Hyperebene durch 0
mit 4;~ H;=0, also wegen H,= —H, auch (—4,)nH;=0, i=1,..., m. Der lineare
Unterraum (/L H; besitzt mindestens die Dimension n—m 2= 1. Er enthilt also eine
Gerade durch 0, die kein A4; schneidet. Das kann nicht sein, da die Gerade wegen
0eM den Rand oM trifft, der von den A4, iiberdeckt wird.

Zum Beweise von Satz 5 ziehen wir ein Hilfsmittel aus der kombinatorischenTopo-
logie heran, nimlich das folgende Lemma von Sperner. Unter einem n-dimensionalen
euklidischen Simplex A" verstehen wir dabei die konvexe Hiille von n+1 Punkten
Xo, ..., X, des R" die nicht alle in einer Hyperebene liegen. Das Simplex 4" wird von
den n+1 (n—1)-dimensionalen Seiten S;=conv{x, | k #i} berandet. Damit lautet das
Spernersche Lemma:

LEMMA 2 ([1], S. 378, Satz B). Uberdeckt man A" mit abgeschlossenen Mengen
By, B, ..., B,, wobei B, S;=0 fiir alle i=0, 1, ..., nerfiillt ist, so folgt

N B +0.
i=0

Beweis des Satzes 5. Zu zeigenist Q N[ )i=1 4; #0.
Zu jedem A, existiert wegen 0¢ A; eine Hyperebene durch 0, die 4; nicht schneidet

und folglich auch — 4, nicht trifft. Es gibt also zu jedem 4, einen Halbraum

E; = {XERn (x, qi)>0}’ |Qil =1,
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mit A;cE;, —A;nclE;=0. Die Punkte g¢,,..., g, sind linear unabhiingig. Wéren sie
nidmlich linear abhingig, so enthielte (-, 0E; mindestens eine Gerade durch 0.
Diese Gerade trife kein 4; oder — A4,, also auch keinen Punkt aus 0 M, was nicht sein
kann.

Aus diesem Grunde sind auch die Geraden

g=(\9E;, k=1,..,n,

i#k

linear unabhiingig, d.h. ihre konvexe Hiille bildet den ganzen Raum R". Man wihle nun
auf jeder Geraden g, einen Punkt x, mit x, € E,, so dass M im Inneren des ,,Hyperok-
taeders” conv{x;, —X;, X;, —Xa,..., X,, —X,} liegt. Wir betrachten nun das n-dimen-
sionale euklidische Simplex A"=conv{0, x;, X,,..., X,} und versuchen darauf das
Spernersche Lemma anzuwenden.

Die Mengen B;, i=1,..., n, werden folgendermassen aus den 4; gewonnen. Man
wihle zu jedem A; eine Parallelmenge A4}, ¢>0, die ebenso wie 4; in E; liegt. Ferner
sei C; der von A, aufgespannte Kegel

C; = {Ax I xed;, A=0}.
Damit bildet man

B;=Ajucl(C\M) fir i=1,..,n,
und

By =cl (M\igjl [42 U (— A*’;-)]).

Die B,, i=0, 1,..., n, erfiillen beziiglich 4" die Voraussetzungen des Spernerschen
Lemmas. Es gibt also ein x,, welches im Durchschnitt aller B; liegt. Da B, im Inneren
von M liegt, ist auch x, ein Punkt von M. Mit ¢ — 0 folgt aus der Kompaktheit von clM :
Es gibt ein x,e Q=cl(M\ U}-[4;u (—4,)]), welches in allen 4, i=1, ..., n, ent-
halten ist.

Damit ist Satz 5 bewiesen.

§3. Gleichungssysteme mit Konvexitiitseigenschaften

Wie kann man nun die bewiesenen Uberdeckungssitze ausnutzen, um iiber die
Lo6sungen von reellen Gleichungssystemen

Ffil(xgs X253 %)) =0, i=1,2,...,n,  Xq,....X, reell, ®)

etwas auszusagen, wobei die Funktionen f;: M — R', M = R*, im allgemeinen als nicht-
linear vorausgesetzt werden?
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Man geht im Prinzip so vor, dass man die Mengen
A ={xeM | fi(x)Z£0} fir i=1,2,...,n,
und
Ay ={xeM| fi(x)=0 firalle i=1,..,n}

bildet. Besitzen die Mengen A, i=1,..., n+1, aufgrund eines Uberdeckungssatzes
einen gemeinsamen Punkt x=(x, ..., x,) so ist dieser Punkt L&sung des Gleichungs-
systems (5).

Um diese Methode, méglicherweise leicht abgewandelt, mit den bewiesenen Uber-
deckungssidtzen zusammen anwenden zu kdnnen, miissen die Gleichungssysteme ge-
wisse Konvexitdtseigenschaften besitzen.

Das einfachste wire, wenn alle f; konvexe Funktionen wiren, d.h. wenn fiir jedes
Tripel x, y, z aus M mit y=Ax+(1—1) z, 0<Ai<1, die Ungleichung f,(y) < Af;(x)+
+(1—24) fi(z) gelten wiirde. Die durch f=(f,,..., f,) definierte Abbildung f: M — R"
heisst dann eine spezielle konvexe Abbildung.

Man kommt aber meistens mit der Bedingung aus, dass

4;= {xeMl fi(x) =0}

aus einer oder mehreren Zusammenhangskomponenten besteht, die konvex bzgl. M
sind. Dabei heisst eine Menge A < R" konvex bzgl. M = R", wenn mit x, yeA auch
[x, Y] M zu A gehort, wobei [x, y] wie iiblich die Verbindungsstrecke von x und y
ist.

Die oben genannte Bedingung ist z.B. fiir die Funktion fj(x)=x,-x,+1 (x, X,
reell) erfiillt, obwohl f; keineswegs eine konvexe Funktion ist.

Im Folgenden sei in R" eine feste Basis gewdhlt, beziiglich der jeder Vektor xeR"
n reelle Komponenten x;, x5, ..., X, besitzt und jede Abbildung f: M — R" in Kompo-
nenten f;: M — R* zerfillt: f=(f1, f3, ..., f,). Mit R bezeichnen wir im Folgenden den
natiirlichen Kegel

R% = {x = (%1, X3, ..., X,)€R" | x, 2 0 fiiralle k=1,..., n}

SATZ 8. Es sei f=(fy, f2,.-.,/u) eine stetige Abbildung einer abgeschlossenen be-
schrinkten Menge M < R™ in den R", n <m, wobei Folgendes gilt:

(a) Es gibt ein o> 0, so dass die Mengen {xe M | fi(x)< —é} fiir alle 0<e<e, und
i=1,..., nkonvex bzgl. M sind,

(b) f(OM)N R =0.

Damit folgt: f besitzt keine Nullstelle in M. Allgemeiner gilt f(M) N R’ =0.

Beweis. Man wihle ein ¢, 0 <& <¢,, welches kleiner als der Abstand zwischen f(0M)



284 FRIEDRICH WILLE

und R’, ist, bilde die Mengen

g
A; = conv {xeM|ﬁ(x)§—§} fir i=1,...,n,
A;=0 fir i=n+1,....,m (falls n<m),

und verifiziere fiir sie die Voraussetzungen von Satz 1 (mit m statt n). Aus Satz 1 folgt
dann f(M)n R, =0.

SATZY. Esseif=(f,f3,..., /) eine stetige Abbildung einer abgeschlossenen Menge
M < R" in den R", wobei Folgendes gilt

(a) Die Anzahl der Zusammenhangskomponenten der Mengen {xeM | f,(x)<0},
i=1,..., n, ist endlich. Jede dieser Zusammenhangskomponenten ist konvex bzgl. M,

(b) es gibt einen offenen Halbraum E< R", fiir den M n E beschrdnkt, f(0M ncl E)N
AR =Qund f(M N E)nint R, #0 ist.

Damit folgt: f besitzt eine Nullstelle inint M N E.

ZUSATZ. Gilt anstelle von (a):

() Fiir jedes i€{l,...,n} ist B;={xeM | f,(x)<0} konvex bzgl. M und f;(x)<0
Jiir alle xeint B,

so folgt mit den iibrigen Voraussetzungen von Satz 9: f besitzt genau eine Nullstelle
in M. Sie liegt inint M N E.

Dazu sei Folgendes bemerkt: Ist f eine spezielle konvexe Abbildung, d.h.: sind
alle f; konvexe Funktionen, so ist unter den Voraussetzungen von Satz 9 die Bedin-
gung (a’) im Zusatz automatisch erfiillt. Man hat also in diesem Falle die eindeutige
Losbarkeit der Gleichung f(x)=0. Damit wird ein Satz von G. J. Rieger ([7], §7,
Satz 6) verallgemeinert (Dort wird eine Funktion f konvex genannt, wenn —f konvex
in unserem Sinne ist).

Beweis des Satzes 9. Man numeriere die Zusammenhangskomponenten der Men-
gen {xe M | fi(x) <0} fortlaufend durch: Z,, Z,, ..., Z,, und bilde die Mengen

A;=convZ; firalle i=12,...,m.

Lemma 1 ergibt dann die Behauptung von Satz 9.

Beweis des Zusatzes. Nach Satz 9 existiert eine Nullstelle x,eint M n E von f.
Angenommen, es existiert noch eine weitere Nullstelle x, in M. Dann trifft die Gerade
g durch x, und x, das Randstiick M N cl E. Sei x, ein Punkt aus gn0M nclE, der x,
am nichsten liegt, jedoch nicht zwischen x, und x,. Uberlegt man sich die moglichen
Lagen von x,, so findet man leicht, dass es einen solchen Punkt geben muss.

Wegen f(0M nclE)n R, =0 gilt f;(x,)<O fiir wenigstens ein i. Man wihle nun
ein x;eg nint M, welches nidher an x, liegt als x, und x,, und welches f;(x3)<0 er-
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fullt. Aus Stetigkeitsgriinden gibt es ein solches x;. x; ist also innerer Punkt von B,
Damit muss aber, wegen der Konvexitit von B;, einer der Punkte x, oder x, ebenfalls
im Inneren von B, liegen, was nach (a") wegen f;(x, ) =/;(x;) =0 nicht sein kann.

Damit ist der Zusatz bewiesen.

SATZ 10. Es sei M eine abgeschlossene beschrinkte Menge im R" mit 0e M und
S=f1>125 s Ju): M — R" eine stetige Abbildung mit folgenden Eigenschaften:

(a) Fiirjedesi=1,..., nist B;={xeM | f,(x) <0} konvex bzgl. M.

(b) f(0)eint R%

(c) Es existiert eine abgeschlossene Teilmenge D von OM mit OM =Dy (— D) und
f(D)A R, =0.

Daraus folgt: f besitzt eine Nullstelle in int M.

Beweis. Mit A;=conv B; und Satz 5 erhilt man sofort die Behauptung.

Ob man die Eindeutigkeit der Nullstelle beweisen kann, wenn man statt (a) die
Bedingung (a’) aus dem Zusatz zu Satz 9 voraussetzt, ist bisher unbekannt.

Wie schon erwihnt, sind (a) oder (a’) stets erfiillt, wenn f eine spezielle konvexe
Abbildung ist. Allgemeinere konvexe Abbildungen, vor allem in Banachrdumen,
werden in [ 12, 13, 14] behandelt.

§4. Anwendungen
Beispiele fiir die Nullstellensdtze lassen sich inbesondere unter Systemen mit Poly-
nomgleichungen leicht finden. Zur Demonstration seien einige einfache Systeme ange-

geben.

BEISPIEL 1. Betrachtet wird das Gleichungssystem

fi(x) = (xp — 1) + x5+ (x5 — ) -3
L(x)=(x—3) + (%2 — 1)+ x5 -3
f3(x) = xi +(x— 1) +(x3—1)° -3

0
0 (6)
0

mit x = (x,, X,, X3 ), X; reell.

Es soll gezeigt werden, das dieses Gleichungssystem in dem Wiirfel M mit den
Ecken P;,=(j, k, D), j, k, 1€{0, 1}, keine Losung x besitzt. Dazu wird Satz 8 benutzt.

Die Bedingung (a) in Satz 8 ist sicher erfiillt, da die f; als Summen einfacher kon-
vexer Funktionen konvex sind. Es soll dem Leser iiberlassen bleiben, die Bedingung
(b), f(dM) n R, =0, nachzuweisen. Man hat dazu lediglich die Werte der Funktionen
f; in den acht Ecken Pj, zu berechnen. Daraus erkennt man leicht, das jedes f; auf
zwei Seiten des Wiirfels M negativ ist, wodurch auf allen sechs Seiten (b) erfiillt ist.
Satz 8 ergibt dann die Unlosbarkeit von (6) in M.
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BEISPIEL 2. Gelost werden soll das Gleichungssystem

fi)=1—-4x} +x24+x3=0
f(x)=14+xF—4x24+x3=0 (7
f3(x)E%+%xi+%xg—x3=0

mit x=(x;, X,, X3), X; reell.

Mit Satz 9 ldsst sich zeigen: Das Gleichungssystem besitzt mindestens vier Losun-
gen in dem Quader M mit den Ecken P;,=(j, k, ), j, ke{l, —1}, I€{0, 1}.

Es geniigt die Existenz einer Losung (X,, X,, X3) sicherzustellen, weil damit offen-
bar (—%,, %5, X3), (X3, —%,, %3) und (—X,, —X,, X3) ebenfalls Losugen sind, wobei
%, #0 und X, #0 gilt. Letzteres stellt man durch Einsetzen in f;(x)=0 und f,(x)=0
sofort fest.

f; und £, sind nicht konvex, was den Nachweis von (a) in Satz 9 etwas beschwer-
licher macht. Man erkennt jedoch: Die durch {xe R? | f;(x)=0} beschriebene Fliche
ist ein zweischaliges Hyperboloid. 4, ={xeR? | f,(x) <0} stellt daher die beiden Scha-
len mit ,,Fiillung” dar und zerféllt somit in zwei konvexe Zusammenhangskompo-
nenten. Das gleiche gilt fiir £,. Da ferner f; konvex ist, gilt Bedingung (a) in Satz 9.

Wihlt man zum Nachweis von (b) in Satz 9 den Halbraum E={xe R? I x3>0}, so
erkennt man die Giiltigkeit von (b) durch Berechnung der Werte von f; in den Ecken
P;,; und in 0. Satz 9 liefert damit die gesuchte Losungsexistenz.

J
Zum Schluss betrachten wir noch zwei allgemeinere Beispiele.

BEISPIEL 3. Es soll das Gleichungssystem

fi(x) =Y alx; + Y )y bi)xi—c¢,=0
2k (8)
l,...n, n=2, x=(Xg,...,%,)ER%,

untersucht werden, wobei a”, b} und ¢, nichtnegative reelle Zahlen sind, die die Un-
gleichungen

S m
0< Y b << Y aPn™’ )
i=1 i1

firallej=1,...,nund k=1,..., nerfiillen.

Mit dem Zusatz zu Satz 9 soll gezeigt werden, dass (8) in R, genau eine Lésung
besitzt.

Die Funktionen f; sind simtlich konvex. Es ist also, wie im Anschluss an den Zu-
satz in § 3 bemerkt wurde, nur die Voraussetzung (b) im Satz 9 zu verifizieren.

Esist M= R" . Man wihle einen Halbraum Ec R", der aus R’, eineuklidisches Sim-
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plex herausschneidet, und zwar das Simplex A", dessen Ecken die Einheitsvektoren
und der Ursprung 0 sind:

| 1 1
E={xeR"|(x,p) <lpl’} mit p= ( ...,«).
n’n’n

Aus den Vorzeichen der Werte der Funktionen f; in p und in den Ecken von 4"= M n
nclE erkennt man, dass (b) in Satz 9 gilt. Also folgt: Das Gleichungssystem (8) be-
sitzt genau eine Losung x in R, .

Weitere Beispiele zu Satz 9 findet man bei G. J. Rieger [7].

Schliesslich soll Satz 10 angewendet werden.

BEISPIEL 4. Gelost werden soll das Gleichungssystem

fi(x) = Z (1 = x ) af? + Z Z bl xi— ¢, =0,
k=1,...,n, n=2,
wobei x = (Xy,...,X,) in dem Wiirfel

W={xeR"|0<x,<1 firalle k}

variiert. Dabei gelte ay’ >0, ¢, >0, b0 >0, af"’ >0 fiir alle k, j und alle i >2, sowie

Z Z Z bl <a< Y a’ = Y |by| firalle k. (14)
=2 ]*k J?ﬁk =1 ..;:i:

Ji wird zu einer konvexen Funktion

fi(x) = Z 1 =x) a® + Z Z b 1x,1F + Z by x; — ¢

i=2 j=
J=/=k 1¢k

auf den Einheitswiirfel M={xeR"||x, |<1 fiir alle k} erweitert. Die Abbildung
f=(fi,-.., f,), definiert auf M, soll mit Satz 10 untersucht werden. Dabei sei

= | {xeM|xk=1}
k=1

woraus 0M = Du (— D) folgt: Aus (14) folgt
f(0)eintR%: und f(D)nR%L =0,
denn auf {xe M | x, =1} gilt offenbar 7, (x) <0 fiir alle k.
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Durch Anwendung von Satz 10 wird damit die Existenz einer Nullstelle x,eM von
f geliefert. x, liegt in W, da aus (14) folgt, dass fiir xe M, x¢ W, also x, <O fiir ein £,
die Ungleichung f,(x)> 0 gilt. Also folgt:

Das System (13) besitzt eine Losung in W.

Zum Schluss sei bemerkt, dass man bei speziellen konvexen Abbildungen, die die
Voraussetzungen von Satz 9 befriedigen, die Losung auch konstruktiv gewinnen kann.
Von Rieger [7] ist gezeigt worden, dass das Regula-falsi-Verfahren stets die Nullstelle
liefert, wenn die Voraussetzungen von Satz 9 gelten und M ein n-dimensionales eu-
klidisches Simplex ist. Unter den gleichen Voraussetzungen hat B. Bongers [2] ge-
zeigt, dass auch das schnellere Newton-Verfahren zur Nullstelle fiihrt. Dabei ist das
Newton-Verfahren in sinnvoller Weise sogar auf stetige nichtdifferenzierbare Abbil-
dungen ausgedehnt worden. Es ist eine offene Frage, ob man die Nullstellen in Satz 10
in dhnlicher Weise gewinnen kann.
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