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Infinité Symplectîc Groups over Rings

George Maxwell

§0. Introduction

Let A be a commutative ring, M a free v4-module A(I\ for some infinité set /, and
R — EndA(M). In a previous paper [4], we proved that normal subgroups of the group
U(R) of units of R must lie in congruence layers determined by the ideals of A. We now
suppose that M possesses a nondegenerate alternate bilinear form •, • and prove a
similar resuit for the infinité symplectic group

Sp(R) {ueU(R)\(u(x)9u(y)) (x,y) for ail xjeM},

at least when \eA and the form (•, •) is "locally hyperbolic". The strategy of the

proof is again the one mapped out by Bass in [2] and [3]. When A is a field, our results
coïncide with those of Spiegel [6]. One should also note that Bak [1], Vaserstein [7]
and Vaserstein and Mihalev [8] hâve recently studied the orthogonal analogue of
Bass' results in the "stable" finite case.

§ 1. Locally Hyperbolic forms

A submodule N of M is called hyperbolic if M— N®N and N=N1®N2, where Nx

and N2 are totally isotropic and hâve bases {ej}jeJ and {ej}jeJ such that (ej9 ej)=l
for ail jeJ. The basis {ep eJ}jeJ is then called a hyperbolic basis of N. The form

•, • is called locally hyperbolic if every finitely generated submodule of M is con-
tained in a hyperbolic submodule. When A is a field, this condition is automatically
satisfied. In gênerai, it may be satisfied by assuming a priori the existence of a hyperbolic

basis for ail ofM.
(1.1.) Remark. If (s •) is locally hyperbolic, then for ail unimodular xeM there

exists a unimodular y eM such that (j, x) 1. For suppose TV is a hyperbolic submodule

of M containing x and {ej9 eJ}jeJ is a hyperbolic basis of N. If x=zYS?jaj +
+ eJaJ), there must exist a relation ]T(&/û/-|-fr7V)==l since x is unimodular. It
suffices to take y Yj{efi3 — eJbj)-

If q is an idéal of A, the form (•, •) induces, as usual, an alternate bilinear form
(•, *)q on the free ^4/q-module M ®Ay4/q^(^f/q)(/) which, in gênerai, need not be

nondegenerate. However, if (•, •) is locally hyperbolic, then (•, -)q is clearly locally
hyperbolic and is furthermore nondegenerate. For suppose jc®1 eM®AA/q is such

that (x® 1 ,y® 1 )q 0 for ail yeM. Let N be a hyperbolic submodule of M containing
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x and suppose {ej, ej}jeJ is a hyperbolic basis of N. If x Yj(ejaj + eJaJ% we

(x, ej) ûfj and (x, es) — aj so that ail as and aJ must be in q i.e. x® 1 0.

We hâve EndA/q(M®AA/q)^EndA/q{(Alqr^R/(q): where (q) {ueU(R)\
u(M)cM'q} is an idéal of R, The projection R->R/(q) induces a homomorphism
U(R) -* U(R/(q)) and, if we regard M<g>AA/q as being equipped with the form •, • )q,

a homomorphism Sp(R) -* &p(i?/(q)). The kernel of this homomorphism is denoted by
Sp(q) and the inverse image of the center of Sp(R/q) by Sp'(q).

§2. Preliminary Results

From now on, the form •, • is assumed to be locally hyperbolic. For every uni-
modular xeM and every a g A, the mapping t(#, x){m) m + X'a(m, x) belongs to
Sp(i£) and is called a transvection. The subgroup generated by ail transvections is

denoted by ESp(i?). If q is an idéal of A and a eq, r(a, x) is called a q-transvection : the

subgroup generated by ail q-transvections is denoted by ESp(q). If aeSp(R), the

formula

ax{a,x)a-1=r{a,a{x)) (2.1)

shows that ESp(q), and in particular ESp(R), is a normal subgroup of Sp(i?) for ail
ideals q. It is clear that ESp(q) ESp(q') only if q q'.

(2.2) PROPOSITION. The orbits o/ESp(q) operating on the unimodular éléments

of M are the congruence classes modAf-q. In particular, ESp(i?) opérâtes transitively.
Proof. Suppose x and y are unimodular éléments of M congruent modM-q. Since

•, • is locally hyperbolic, there exists a hyperbolic submodule N containing both x
and y. Let {ep ej}j€j be a hyperbolic basis of N. It is sufficient to show that a fixed

et g iVcan be mapped into any unimodular élément z et modM-q by an élément

of ESp(q). For then, applying this with q A, we first see that /3(x) et for some

/?eESp(i£). Since p(y) et modM-q, the same argument shows that y(^) ^(j) for
some y eESp(q). Therefore p-lyp(x)=y and P~~lyp eESp(q).

By enlarging N if necessary, we may assume that for a certain index keJ{k^ï),
both ek and ek occur with coefficient zéro in z. Suppose

Since z is unimodular, there exists a relation

«i(l + *i) + «V + Z (ajqj + aY) 1.
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Let

<*j T - 4i ~ 4J ~ Iji3' e') x - V1* «0 T W> e' + «0 T («j. e' + ej)

P x(-q.,ek-et + é - ek) x(qh ek - et) x{qt(1 + ql), el - ek) x(q\ e')

Vj T (Wp e1 + ek)x(- qta}, eJ) x(- qta}, ej + ek) x (qtaJ, e})

Then ô{et) z sincef]y^ fa7- adds Yjj* S^fli + eV)to eh P adds ef^ + eV at the expense
of subtracting ekqi and f|y±k jj removes the ekqt. ||

(2.3) COROLLARY. T^ «arwra/ homomorphism ESp(R) -> ESp(i?/(q)) w

Proof. Let r(â, Je) be a transvection in ESp(i£/(q)): x is unimodular in
but x need not be unimodular in M. Suppose N is a hyperbolic submodule of M con-
taining x with a hyperbolic basis {e,-, ej} jeJ. Applying (2.2) to M®^v4/q, we see that
x 5(^) for some /e/and 5 constructed as above; hence r(â, x) 5t(J, ë^S'1. How-
ever, each of the unimodular éléments of M®AA/q occurring in the transvections
composing S clearly cornes from a unimodular élément ofM. ||

(2.4) PROPOSITION.

[ESp(K),ESp(q)].

Proof. In view of (2.2) and (2.1), it is sufficient to prove that ail q-transvections
x{a, x) for some particular unimodular x eMarein [ESp(i£), ESp(q)]. Choose a hyperbolic

submodule N with a hyperbolic basis {ei9 ef}1<f<3. The easily verified identity

t (- a, e1 + e2 + e3) x (a, e1 + e2) x (a, ex + e3) x (a, e2 + e3)x(- a, ex).

t(-a, e2)x(-a,e3) l

can be written in the form

x (a, ex) [fi, x (- a, e2 + e3) x (a, e3j] [y, x (a, e2j],

where £ t(-l, e3) t(15 ^4-^) and y x(-l, e2) t(1, ^2 + ^) are in ESp(i?) and
hâve the effect, respectively, of sending e3 to e3 + ex and e2 to e2 + e1. ||

(2.5) PROPOSITION.

[ESp(K),Sp'(q)]
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Proof. We first show that [ESp(^), Sp(q)] cESp(q). If i(a, x) is any transvection
and <reSp(q), then by (2.2) g(x) P(x) for some ^eESp(q). Hence [t(û?, x), g]

t(û, x) t( — û a(x)) [r(a, x), ff\ eESp(q). Reducing modq, we see that [ESp(iÊ),
Sp'(q)]<=Sp(q); therefore [ESp(^), [ESp(/fy Sp'(q)]] <= ESp(q). The "3-subgroups"
lemma [5, p. 59] now imphes that [[ESp(fl), ESp(it)], Sp'(q)]<=ESp(q). However,
[ESp(i*), ESp(i?)] ESp(i?) by (2.4) so that [ESp(jR), Sp'(q)]cESp(q); the opposite
inclusion follows from (2.4). ||

§3. The Main Theorem

From now on, we assume that \ eA. In the foliowing propositions, G is a subgroup
of Sp(R) normalised by ESp(i^).

(3.1) PROPOSITION. //(x, <j(x)) 0for ail ggG and ail unimodular x eM, then

G is containedin the center ofSp(R).
Proof. Linearising the identity (x, a(x)) 0, we conclude that if x, y and x+y are

ail unimodular, then(x, (r(y)) + ((y, cr(x)) 0. Since every xeM can be wntten in the

form Yj eiai f°r some basis {et\ei of M, we conclude that (jc, v{x)) — Ya{ev °"(X)K2 +

^j( (j) (J )J
Therefore, for ail x, yeM, we hâve (x, <t(j))= —(y, a(x)) (a(x), y) (x, a'1 (y)).

Since •, • is nondegenerate, we conclude that a o~x for ail a e G, i. e. G is an abelian

group consisting of involutions.

If aeG and xeMis unimodular, [c, t(1, x)] t(1, cr(x)) t(— 1, x) 6G and is therefore

an involution. Moreover, t(1, g(x)) commutes with t(— 1, x) since (x, o-(x)) 0.

We conclude that t(2, (t(x)) t(2, x) i. e. 2(y, a(x))(j(x) 2(<y, x)x for ail yeM. In
view of (1.1), we can choose y such that {y, a(x))=l; since \eA, it follows that
o(x) xax for some axeA. If (eXei 1S a basis of M and o{e^) elal, then a{el-\-eJ)

(et + ej)atJ etat + e3ap so that at aXJ a} for / ^j. Hence ax is independent of x and

a is in the center. ||

(3.2) PROPOSITION. If G is not contained in the center ofSp(R), then G contains

a transvection t ^ 1
•

Proof By (3.1), (x, <r(x)) tf/0 for some ggG and some unimodular xeM. Then

g1 \g,t{\, x)] t(1, g{x)). t(— 1, x)gG. Let TV be a hyperbolic submodule of M
containing both x and g(x); suppose {ep eJ}jeJ is a hyperbolic basis of TV. Enlarging
N if necessary, we may assume that for some keJ, both ek and ek occur with zéro
coefficient in x and g(x). Then G contains <j2 [t(— 1, g(x)) t(1, ^fc + o-(x)), (Ji]

t(1, (7(x))t(-1, x + eka) t(1, x)t(-1, ct(x)) and hence g3 gï1g2g1 t(1, x) •

The construction of (1.1) produces an élément yeN such that (y, x)= 1 and both
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eka.nâek occur with zéro coefficient in y. Thus G contains [t(1, y) t( —1, ek+y)9 cr3]

(3.3) PROPOSITION // G contains a transvection % ^ 1, then Gz> ESp (q) for some

Proof. Suppose %{a9 x)eG for some a #0 and some unimodular xeM. In view of
(2.1), (2.2) implies that %{a9 x)eGîor ail unimodular *eM. To prove that ESp(aA)cz G,

it is therefore sufficient to show that t (a6, x)eG for a particular unimodular xeMand
ail 6ev4.

Let N be a hyperbolic submodule of M with a hyperbolic basis {ej9 ej}x <7^3. As in
the proof of (2.4), the identity

t (- a, é?2 + e3 + bex) t (a, e2 + fc^O t (a, e3 + fc^J t (a, e2 + e3)r(- a, e2).

can be written as

z(ab29 et) [fi, t(- a, e2 + e3) t(«, é?3)] [y, r(
where j8 t( —è, e3)r(6, ^H-^) and y x( —6, e2)t(6, e2 + ei) are in ESp(i?) and

T( — a9e2 + e3) T(a9e2 + e3)~19T(a9 e3)andT(a, e2)belongto G in view of the initial
remarks. Hence x{ab29e1)x(ac29e1)~1 x{a{b2-c2)9ei)eG for ail a, beA. Since

^e>4, any élément in A can be written in the form b2—c29 proving the assertion. ||

We now corne to our principal resuit.

(3.4) THEOREM. Suppose \eA and the form (•,•) is locally hyperbolic. The

following assertions are équivalent:

(i) G is a subgroup ofSp(R) normalised by ESp(-R).

(ii) There exists a unique idéal q in A such that ESp (q) c Gc Sp' (q).

Proof Choose q maximal w.r.t. the property ESp(q)c<7. Suppose (jcjiSp^q);
then the image G of G in Sp(jR/ (q)) will not be in the center. Since the homomorphism
ESp(£)->ESp(jR/(q)) is surjective by (2.3), we may apply (3.2) and (3.3) to G and
conclude that (jz>ESp(q7q) for some idéal q'Jq; lifting to A, we hâve ESp(q')cz
c=Sp(q)-G. Now by (2.4) and (2.5), ESp(q') [ESp(tf), ESp(q/)]c[ESp(^),
Sp (q) • G] c: G, contradicting the maximality of q. Therefore GcSp'(q).

IfESp (q)cGc Sp' (q) then by (2.4) and (2.5) we hâve ESp (q) [ESp (R)9 ESp (q)] c
c [ESp (R)9 G] cz [ESp (R)9 Sp' (q)] c ESp (q) cz G. This shows that q is unique and that

Il

(3.5) COROLLARY. The following are équivalent:

(i) G is a normal subgroup of ESp (R).
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(ii) There exists a unique idéal q such that

ESp (q) c G c ESp (R) n Sp (q).

The groups ô(q) ESp(jR)nSp(q)/ESp(q) are ail abelian.

Proof. Suppose G is normal in ESp(i?); (3.4) provides a unique idéal q such that
ESp(q)czGcESp(jR)nSp'(q). To show (i)=>(ii), it suffices to prove that ESp (R)n
nSp'(q) ESp(i^)nSp(q). However, it is easy to see that the center of Sp(R/(q))
consists of homotheties, of which only 1 can lie in ESp(i?/(q)).

Both (ii)=>(i) and the commutativity of ô(q) are implied by (2.5). ||

(3.6) COROLLARY. Ifqisa maximal idéal of A, the group ESp (i*)/ESp (R) n
n Sp (q) is simple. ||
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