Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 47 (1972)

Artikel: ...-Séatze fur zwei arithmetische Funktionen
Autor: Joris, Henri

DOl: https://doi.org/10.5169/seals-36362

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-36362
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

220

Q-Sitze fiir zwei arithmetische Funktionen

HENRI JORIS

1. Einleitung

Ziel dieser Arbeit ist der Beweis von Q-Sdtzen fiir die Restglieder der Idealfunk-
tionen algebraischer Zahlkorper und fiir die Summenfunktion von Ramanujan’s
arithmetischer Funktion 7 (n).

Fiir einen algebraischen Zahlkérper K vom Grade # liber dem rationalen Koérper
Q sei (g (s) die Dedekindsche Zetafunktion von K; A sei das Residuum von {(s) bei
s=1. Fiir Res>1ist (g (s) gegeben durch

(=]

(e (s) = Z ”,(n"s’ - (1)

m=1

Dabei bedeutet a(m) die Anzahl ganzer Ideale in K, deren Norm m betrigt. Fiir x>0
ist die Idealfunktion Ry (x) definiert durch

RK(x)= Z a(m)’ 2

m<x

was gleich der Anzahl ganzer Ideale in K ist, welche eine Norm kleiner als x haben
(das Nullideal nicht mitgezihlt). Es gilt

Rg(x) ~Ax fir x-o0. 3)

(Zu diesen Angaben siehe [12], sowie [13] Seite 155 ff.) Das Restglied der Ideal-
funktion wird definiert als

Pg(x) = Rg(x) — Ax. 4
Ich werde folgendes beweisen:

SATZ 1. Es sei K ein algebraischer Zahlkorper des Grades n, A das Residuum seiner
Dedekindschen Zetafunktion, Ry (x) die Idealfunktion von K. Dann gilt fiir x—0:

(n—1)/2n
_ S (log log x)
Ry(x) —ix = Q. (x exp (c (log log log x)™* D/2n ®)

mit einer von K abhdingigen Konstante c¢> 0.
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Dabei bedeutet Q, folgendes: Es seien g(x), f (x) reelle Funktionen von x, x>0;
ferner sei f (x)>0. Dann besagt

g(x)=Q,(f(x)) fir x-oo0,
dass

g(x)

lim sup ——= > 0.

o f(X)
Analog besagt

g(x)=Q_(f(x)) fir x-o0,

dass

lim inf gf ((’;)) <0.

Schliesslich ist

g(x) = (f (x))

gleichbedeutend mit:

g(x)=2.(f(x)) und g(x)=20Q_(f(x)).
Der zweite Satz bezieht sich auf Ramanujan’s t-Funktion, definiert durch

Y t(m)z"=z ] (1 =2, |z|<1. (6)
m=1 k=1

Sowohl die Reihe als das unendliche Produkt sind konvergent fiir |z| <1. Die durch
sie dargestellte Funktion spielt eine wichtige Rolle in der Theorie der Modulfunk-
tionen. Es gilt nun der

SATZ 2.

Y t(m)= Q. (x***logloglogx). (N

m<x

Der Beweis dieses Satzes hidngt wesentlich ab von folgendem Ergebnis:

SATZ 3. Es existiert eine Konstante c>0 mit der Eigenschaft, dass

Y lt(m) = ex?* fiir x>1. ®)

m<x
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Das bisher beste Resultat fiir das Restglied Py (x), welches fiir alle Kérper K be-
liebigen Grades n gilt, ist

sup Pg (x) + o0

lim inf ;”—_—1')/—2; =T N (9)

X

siehe [5]. Fiir n>4 gibt es ein Ergebnis von Szegoe und Walfisz, das besser als (5) ist,
ebenso fiir nicht totalreelle kubische Zahlkorper ([20]). Fiir die iibrigen Zahlkorper
beweisen sie dieses Resultat einseitig, das heisst, entweder mit Q_ oder mit Q ., nicht
aber mit beiden. Fiir quadratische Korper siehe auch [1].

Nach oben bewies Landau [ 17] die Abschitzung:

Pr(x) =0 (x"" VD) fiir x>0,

Da t(m) nicht fiir alle m nichtnegativ ist, hat die Summe

S(x)= ¥ (m)

m<x
keine asymptotische Anndherung durch eine einfache positive Funktion, wie sie etwa

die Idealfunktion eines Zahlkorpers besitzt. S(x) hat vielmehr dhnliche Eigenschaften
wie das Restglied der Idealfunktion. So bewies W. B. Pennington [19]

=+o. (10)

inf x23/4

X >0

Andererseits gilt Rankin’s Ergebnis (s.[19])
S(x)=0(x*"1*% fir x—o.

Weitere Eigenschaften und eine Liste von Referenzen findet man in [19]. Eine aus-
fiihrliche Darstellung enthélt das 10. Kapitel von [11].

Die Beweise von Satz 1 und Satz 2 folgen einem Verfahren, welches K. S. Ganga-
dharan [10] sowie K. Corradi und J. Katai [8] fiir die Restglieder der Dirichletschen
Teilerfunktion und der Kreisgitterfunktion verwendet haben, wobei sie dieselbe
Abschitzung erhielten wie in Satz 1 im Falle n=2. Die Beweise sind eine gekiirzte und
in einigen Punkten abgednderte Fassung meiner Dissertation [16], welche ich unter
der Anleitung von Prof. K. Chandrasekharan schrieb.
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2. DieReihe Ya(m) e

Eine entscheidende Rolle spielt die Funktion g(s), definiert durch die Gleichung

Ry o nlA 1
(= ) atm e =1 - ) an

m=1

fiir Res>0.

LEMMA 1. Es sei A der Betrag der Diskriminante von K, r, die Anzahl reeller
Isomorfismen von K, 2r, die Anzahl der komplexen Isomorfismen von K, r,+2r,=n.
Ferner sei

E=(2n)"'4'", B=Qnr)"4"%.

Die fiir |v| <n konvergente Reihe

® m
r"(l + _)
L(v) = Z — L (12)

stellt eine in C— {v>n} analytische Funktion dar. Es gilt, fiir Res>0,

o0}

g(s) = B - 2 “('")M( - ) (13)

S m ml/

m=1

wobei
M(s)= Y, C.L(Eie"™"s). (14)
k=0
Die Cy sind von r, und r, abhingige komplexe Konstanten mit der Eigenschaft:
C,=1, (15)
Z Ck = 0 . (16)
k=0
M (s) ist analytisch in Res>0 sowie in |s| <nE~*, und
M(0)=0. (17)

Die Gleichung (13) ist bewiesen fiir |s| <nE~!in [22], S.11 ff, und in [16], S.23 fI.
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Die Fortsetzung von L(v) in das Schlitzgebiet Q,=C— {v>n} erhilt man durch

Betrachtung des Integrals

4+ +ioo
1
Ll(v)zZr—i j F(z)l""(l—g)v—zdz, v>0,
+—ico

welches absolut konvergiert, denn mit reellem x, y, ist

IT (x + yi)| ~ /2 [y e P! fiir |y|>o0,

(18)

(19

und zwar gleichmaéssig in jedem beschrinkten x-Intervall (fiir die Eigenschaften der
Gammafunktion siehe [9], Vol. 1). Wegen (19) Idsst sich die Integrationsgerade in (18)

nach i-m, m=1,2,..., verschieben. Man erhilt

1

L, (v) = :; F"(l + S) o Res,__ I'(2)

0
+-m+io
1 z
A r 'i1—-—-jJjv?2d
2mi J' (=) ( n) vooe
+—-m—iwo
ot (R (1)
= m1+-) —
kgo ( n) F(k S 1)
+—-m+ico
1 z
e r I'i1t——J)v*dz.
- 2mi J () ( n) v
3—-m—ico

Nun ergibt die Stirlingsche Formel, mit z=x +iy,
|F (z)l ~ \/Eglzlx_* e~ ¥y arcts0/X)  fiir lzl - 0,
gleichmissig in |argz| <m—J, 6 > 0. Ferner ist

n
~sinmz I (1 —z)

r(z)

(20)

Mit einigen leichten Zwischenrechnungen erhdlt man fiir —oo<y<oo, z=}—m+iy:

Ir(z) I <1 ~ g) b7

<c vm—% elyl(arcts(lyllm)—arctg(Iyl/(n+m))—1r) pom (1 + _:’%) (m + |y|)~}(n—1)

v\™ _
<e v~ % (ﬁ) e-%nlyl (m + Iyl)&(n 1),
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also

+—-m+ico

i J r@)r (1 _ ;i‘) b* dzll

+—m—iow
@

v m
< 2¢ v'*(z) Je‘*"” (m + y)*(""“ dy

o0
<cyv” (_) e%mj‘ —4ny %(n l)dy
0

Dieser Ausdruck geht gegen O fiir m— oo, falls v <ne™ *,
L (v)=L(—v) fir 0<v<ne ", (22)

Schreibt man v=re'®, r>0, so folgt aus (19) sofort, dass das Integral in (18) lokal
gleichmissig konvergiert fiir |9| <=, wo also L, (v) analytisch ist. Dies ergibt nun mit
(22) die Fortsetzung von L (v)in £,.

Aus diesem Ergebnis und der Gleichung (16) folgen unmittelbar unsere Behauptun-
gen iber die Funktion M(s). Aus (17) folgt M(s)=0(|s|) fir [s|->0, daraus die
lokal gleichmissige Konvergenz der Reihe in (13) und die Identitdt (13). Man be-
nutzt dabei, dass

® a(m)

Z_‘Tﬁﬁ

m=1M

< 0. (23)

In [22] und [16] wird gezeigt, dass sich L (v) von beiden Seiten {iber die Linie v>n
analytisch fortsetzen ldsst. Zusammen mit (17) erhilt man daraus das

KOROLLAR. Die durch (11) definierte Funktion g(s) ist in |s|<nE~"' reguldr,
ebenso auf Res>0 mit Ausnahme der Punkte s=+im*"nE~, m=1,2,...; in diesem
Regularititsgebiet wird g (s) durch (13) gegeben.

Wihrend in [16] die Fortsetzung von L (v) liber v>>n durch elementare, aber etwas
komplizierte Weise gegeben wird, benutzt Walfisz in [22] die Existenz einer linearen
Differentialgleichung n-ter Ordnung fir L(v) und wendet darauf die allgemeine
Theorie der Differentialgleichungen im Komplexen an. Es gilt nimlich mit gewissen
Konstantena,, ..., a,:

(" =n") L7 (v) + a " ' LV (v)+ - + a,L(v)=0. (24)
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Die Singularitdten dieser Gleichung liegen bei
v =ne?™n k=1, .., n,

d.h. v>nist singularitdtenfrei, woraus die analytische Fortsetzung folgt.

LEMMA 2. Fiir veQ, und v—n ist mit einem B; >0:
L(v)=B,(n—v)"*"*Y 4 0(ln — o] *"|log In — vll) (25)
=B, (n—v)* """V L 0o(n-0v]"#7,e>0. (26)
Ferner existiert ein reelles A, derart dass in Q, gilt:
L()=0(v[*) fir |v]-> 0. (27)

Die Gleichung (25) ist in [22] bewiesen, (26) folgt trivialerweise aus (25). In [16]
beweise ich (26) sogar mit ¢=0, falls |arg(n—v)| <n—3J, § >0, ist. Diese Verbesserung
ist aber hier ohne Belang. Das Vorzeichen in

(n _ U)—&(n+ 1)

wird so gewdhlt, dass der Ausdruck fiir v <n positiv ist.
Die Abschitzung (27) ist in [16] mit 4 =0 bewiesen. Durch geeignete Verformung
des Integrationsweges in (18) erhilt man sogar

L()=0(v]™(og|v))*" "), [v]->o0 in Q.

Da aber der genaue numerische Wert von A nicht wichtig ist, kann man (27) schnell
beweisen. Die Gleichung (24) geht durch die Substitution

v=w"', L(v)=L,(w)
tiber in

LD (w)=(1—w'n")~1 kil bow L5 (w),
mit Konstanten b,,..., b,. Fiir diese Differentialgleichung ist w=0 eine Stelle der
Bestimmtheit (s.[ 3]), woraus folgt

L,(w)=0(w|™), fir w-0,

also (27), mit einem gewissen reellen A.
Fiir die Funktion M (s) erhilt man aus Lemma 2, falls D=nE~1 gesetzt wird
(mit e=1%1in (26)):
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LEMMA 3. FirO<o<Dist

M(c +iD) =B, pr1Fr2 =+ /22 -+ 1/2 4 (O_—(n/2+1/4)) (28)
mit einem B, >0. Ferner gilt fiir0< e<D, R=4D,Res>0, |s|<R, |s+iD|>¢:

M(s) = 0 (e~ "*1/2R4) (29)
mit einem A > 0.

Lemma 1 und Lemma 3 ermdglichen uns nun eine Bestimmung des Verhaltens von

g(s) in Res>0, insbesondere in der Nihe von oo und nahe den Singularititen
s=+im"D, m=1,2,3,....

LEMMA 4. Essei Y>2,1<m<Y, mganz, 0 <o <D. Dann ist mit positiven Kon-
stanten By, A:

singri-3ya 9 (M)

+1)/2 T |
gt/ g(a +im /nD) =By e .—-__m("+1)/2"

+ 0 (a"* YY), (30)

LEMMA 5. Es sei O<w<D, k>1, Res>0, |s|<k, sowie |s+im'/"D|>w,
m=1,2,3,.... Dann ist

g(s) =0 (™" D2k4) 31)

mit einem A > 0.
Da die Beweise sehr dhnlich wie in [10] verlaufen, beweise ich hier nur Lemma 5.
(Fiir eine genaue Durchfiihrung siehe [ 16].) Es ist

g(s)=irl+r2B( s o4y )a(m)M<%)

s m<(2k/D)r  m>QRk/Dyr M m
= 21 + ZZ .
Ferner
lsm™ "+ iD|=m™"|s+ iDm'"| > m ' w, m=1,2, ...

k

i/n*

lsm™ 1" <
m

Da m™Y"w <D sowie km™*/">1D fiir m< (2k/D)", so folgt aus (29) falls |s|>4D:

a(m _ -

21 =0 Z ( )m(n+ 1)/2nw (n+1)/2 kAm A/ln
m<(2k/D)y» M

=0( Y m®™ L1 m24)/20 4~ (n+ 12y (32)

m< (2k/D)n

=0 (kAl w-(u+ 1)/2)'
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Denn a(m)=0 (m°®) fir alle ¢>0, siehe z.B. [6], Lemma 9. Falls m> (2k/D)", ist
Islm~1/"<kD/(2k)=1%D, also, weil M (v)= O (|v|) fiir |¢| <1D (M (0)=0),

1 a(m) |S|)
=0|— ———=]=0(1). 33
L-o( 3. Shm)-o @)
Aus (32) und (33) folgt (31) mit A fiir 4,, falls |s|>1D. Fiir |s| <3D ist aber wegen
dem Korollar zu Lemma 1 sogar g(s)=0(1).

3. Eine Folge von Primzahlen, welche Norm eines Ideals sind

Ich beweise hier ein Resultat, das zwar implizit aus bekannten Formeln der ana-
lytischen Theorie der Primzahlen folgt, das ich aber nirgends in der speziellen, hier
bendtigten Fassung finden konnte.

LEMMA 6. Es sei K ein algebraischer Zahlkorper. Dann existiert eine Folge von
Primzahlen py, p,, ... mit a(p;)> 1, und mit der Eigenschaft:

D {~ve— fiir x— o, (34)

pPjsx logx

wo ¢ >0 eine von K abhdngige Konstante ist.
Beweis. Es sei K,, die Galoissche Abschliessung von K. Jede rationale Primzahl hat
in K, folgende Zerfillung in Primfaktoren ([ 14], Bd. 2, S.38 ff., Satz 11):

P=P1--Py)”
Nm(p)=p', j=1,...,8  f=G(p)=Gradvonp,
eng=N9

wo N=[K,:Q]. Es ist e,=1, genau wenn (d, p)=1, wobei d die Diskriminante von
K, ist. Fiir Res> 1 ist

@ =TI(1- 5mos)

1 -1 1 —N/f
= 1 = ] — == X
(Nm(pI)-,[ B>1 ( Nm (P)s> fgv G(g=f ( Pfs>

f>1(p,d)=1
1 -N
x [ (1- —s) )
G(p)=1< D

(p,d)=1
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Das erste Produkt ist endlich, das zweite konvergiert absolut fiir Res>1. Diese
beiden Produkte definieren also eine Funktion & (s), welche in Res> 4 analytisch und
nullstellenfrei ist. Da (g, (1 +it)+#0 fiir reelles t#0, und da {g,(s) fir Res>1 ana-
lytisch ist bis auf einen einfachen Pol bei s = 1, gilt dasselbe fiir Z(s),

Z(s)= I (1-2)1-8)N=ﬁ<1-i8)1v, Res > 1.

G(p)=1 i=1 Dj

(p,d)=1
Das Produkt muss unendlich sein, weil sonst Z(s) nicht einen Pol bei s=1 haben
konnte, man kann also die p in einer unendlichen Folge anordnen. Nun beweist man
die Behauptung

Y 1~ X — 00, (35)

sowie die Behauptung

1
> logpj~ﬁx, X — 0, (36)

PjSXx

genau gleich wie den gewohnlichen Primzahlsatz (s.z.B.[4]). Aus (35) folgt aber
Lemma 6, denn wenn p ; Norm eines Ideals in K| ist, so erst recht Norm eines Ideals in
K, alsoa(p;)=1. Aus (36) folgt iiberdies

I(x) ~ex, x- 0, 37
wobei
pjSx

4. Dielineare Unabhiingigkeit von n-ten Wurzeln aus quadratfreien Zahlen

Besicovitch [ 2] bewies einen Satz iiber lineare Unabhéngigkeit von n-ten Wurzeln
aus quadratfreien ganzen Zahlen, falls man fiir die Wurzeln den reellen Wert wihit.
Dieser Satz spielt eine wichtige Rolle in den Beweisen der Q-Sitze in [5], [8], [10],
[15], [19], wo stets nur die reellen Wurzeln benutzt werden. Ich brauche dasselbe
Resultat fiir gewisse komplexe Wurzeln.

LEMMA 7. Es seien p,,...,p, paarweise verschiedene Primzahlen; ay,..., o,
seien n-te (reelle oder komplexe) Wurzeln aus p, ... py. P(xy, ..., x;) sei ein rationales
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Polynom von hichstens (n— 1)-tem Grad in jeder Variabeln x ;, P#0. Dann ist auch
P(ay,...,)#0.

Nach [2] ist dieser Satz richtig fiir reelle Wurzeln o;. Dies sei hier vorausgesetzt.
Zum Beweise braucht man folgeneden Hilfssatz:

Es sei n eine natiirliche Zahl, n>2, L ein reeller Korper, a eine Zahl aus L, a>0. Fiir
alle von 1 verschiedenen Teiler b von n solle die Gleichung x* —a=0 keine Losung in L
haben. Dann ist X" — a irreduzibel in L[ x].

Beweis des Hilfssatzes: Es sei

x"—a=f(x)h(x),

a, die positive n-te Wurzel von a, f (a,)=0, ¢t der Grad von f (x). Daa,¢L,ist 2<t<n;
f (x) sei normiert, d.h.

fx)=x"4++c¢o.

Die tibrigen Wurzeln von f (x) sollen a,, ..., a, heissen, also
fx)=x—-ay)...(x —a,).

Daraus folgt a;a, ... a,e L. Daa;= ¢;a,, €j=1, gilt
a,..a,=aie ..e=aje, &=1.

Also ist ¢ reell, d.h. e= +1, und @’ € L. Nun sei (n, t)=b, yn—zt=> fiir zwei natiir-
liche Zahlen y, z; somit gilt

al(a}y¥ =ai"" =aP = a’eL.

Da d' €L, folgt schliesslich a’eL. a? ist aber eine Wurzel von x"®—a=0. Die Vor-
aussetzung des Hilfssatzes ergibt dann n/b=1, n=>b, also n=t und schliesslich
f(x)=x"—a, h(x)=1. Damit ist der Hilfssatz bewiesen.

Der Beweis von Lemma 7 ist jetzt einfach. Es seien f§,,.... f, die positiven n-ten
Wurzeln von py, ..., py, also

P(Byy-.., Br) #0.
Bekanntlich hat
xb—p1=0, b>2,

keine Losung in Q. Nach dem Hilfssatzist dann x”—p, in Q [x] irreduzibel. f;—a,
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erzeugt also einen Isomorfismus Q (f,)—Q («, ) iiber Q. Ebenso hat
xX*—p,=0, b>=2, bln,
keine Losung in Q(f3,), sonst wire

p" =B =1 (B1),

wo fein rationales Polynom von hichstens (»— 1)-tem Grade in B, ist, also

g(Bi,B,)=0,
mit

g(x1,x3)=f(x1) - xy°.
Es ist aber g#0, und der Grad von g ist in x, und x, hochstens n— 1. Das ist nicht
moglich wegen der Richtigkeit von Lemma 7 fiir reelle Wurzeln. Nach dem Hilfssatz
ist also x"—p, irreduzibel in Q(f,)[x]. Daraus folgt, dass B, —»«,, B,—>a, einen Iso-
morfismus Q (B, B,)—=Q(xy, a,) liber Q erzeugt. Auf diese Weise fortfahrend, er-
hdlt man durch f;—ay,..., f;—, einen Isomorfismus Q(B;,..., fi)—Q(ay, ..., o)

iiber Q, woraus die Behauptung folgt (da sie ja fiir B,,..., f; anstelle von a,, ..., &,
richtig ist). (Die hier benétigte Algebra findet man in [21], 5. Kap.)

5. Die Funktion7j (x)

Nun sei ein x> 1 fest vorgegeben; p,,..., p; seien die k Primzahlen aus der Folge
Pi> P2s--. in Lemma 6, welche kleiner als x sind. 1 =q,, g5, g3, ..., q, seien die h=2k
quadratfreien ganzen Zahlen mit Primteilern aus p,,..., p,. Wir suchen eine untere
Abschitzung fiir 7 (x), wo

h
ﬁ(x)=inf{n|n=|m“"+ S g, 1 =041,
=1
’ (39)

h
Yriz2, m
i=1

il
b
D
(S

Wegen Lemma 7 sind alle # von O verschieden, und wie in [10] zeigt man, dass
1>7#(x)>0, ferner dass das Infimum erreicht wird, d.h. dass ein 7, existiert mit
No=" (x). Wenn dann

h
Mo =|mo" + 3, 1ja;", (39)
j=1
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zeigt man noch, dass

h
mo < (Z q;" + 1)". (40)
ji=1
Esist
k
logq; < logg, = .Zl logp; = 9 (x) < ¢1x, (41)

wegen (37) und (38), also
mO < (heczx)n — eC3x+C4k < ecsx, (42)

da nach Lemma 6 k< cgx/logx. Es sei u die Anzahl verschiedener Primteiler von m,,,
2=p}, p5,... die Folge aller Primzahlen. Dann ist

u
mo> vy = oxp ( 3 108} = exp (9(21)) = 7 (1),

wo 9(x) eine der arithmetischen Funktionen von Tschebischeff bedeute. Fiir diese
gilt 9 (x)~ x, wenn x— oo (s.[4], S.64 ff, S. 128). Es ist

logr(u)=9(p,) ~p, ~ulogp, p-owo,

log logr () ~ log u, p—oo,
logr(n) ) 400
loglogr(u) '
Fiir u> pu, folgt dann

log m, g logr(u)
loglogm,  loglogr(x)” =

Also, mit (42),

logm, X
USCg———— S Cro; 2> (43)
log logm, log x
fiir x> x,. Nun kann man (39’) schreiben als
i(x)=no=F (P, .., Py, (44)

wo P,,..., Py verschiedene Primzahlen sind, F#0 ein Polynom in N Variablen mit
ganzen rationalen Koeffizienten, vom Grade <n—1 in jeder Variabeln,
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F=F(xy,..., xy). Ferner ist

X
N<k+pu<cy
lo
Wir definieren

Fo= ] F(Exy,..., 8%xy),
(K1 ey kN)

kjmodn
e¢=exp(2ni/n). F, ist ein Polynom in x,,..., xy, mit ganzen Koeffizienten aus dem
n-ten Kreisteilungskdrper. Ubt man auf F, einen der ¢ (n) Automorfismen t:e— ¢,
(r, n)=1, aus, erhilt man

k k
tFo= [] F(€"%,..., € xy)
(k1, v--’kN)
kjmodn
m m
= H F(8 1xl,...,s NxN)=F0.
(my, ..., mn)
mjmodn

Also ist Fy in Z[x, ..., xy]. Ahnlich sieht man, dass F, sich nicht dndert, falls ein x j
durch ¢ x ; ersetzt wird. Somit ist F, nur von den n-ten Potenzen von x; abhingig,

Fy (xla---a xN) =F, (x'{, cees an),
|F0 (Plllns seey Pl‘llln)l = IFI (Pl’ teey PN)I ? 19

da der Ausdruck links nach Lemma 7 nicht verschwindet und zudem ganz rational ist.
Nun verfihrt man wie in [ 10] und [8] und erhilt:

1 X
log——<explc—— ] fir x=p,, 45
og;7 ™) p( og x) 2 (45)

mit einem ¢ >0.
6. Der Beweis von Satz1

Nach diesen Vorbereitungen lésst sich der Beweis von Satz 1 genau wie in [8] und
[10] durchfiithren. Wir definieren

X
Q (X) = €Xp (a I—O—é—.)—c) ’ (46)
wobei a>0 und a so gewdhlt ist, dass

1

<™ ")
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und

h=2k<exp<%a—x—), k=Y 1. (43)

logx pjsx

Ferner sei

o, =e 2™, (49)

n—1 1
0, = + . (50)
2 Q(x)
Mit
i —ig 2 ry—3

V() =1+%e"+3e " =2(cosié)’, a=n 1

definieren wir
h
T.(w)= [] V(Dq"u +a), x=p;. (51)
j=1

Es ist sicher
T.(u) >0 fiir reelles u.

Fiir ein trigonometrisches Polynom 7T'(u)=) 5., c,e” " «,, u reell, ¢, komplex, und
fiir eine in Res> 0 definierte komplexe Funktion H (s) bedeute TA H folgende Funk-
tion:

r

TAH(o)=) c¢H(oc+ix,), ¢>0.

v=1
Weiter sei
e = sup T _ gup (-M) ' (52)
wo w7 wo | et
Wegen (9) ist
7x > 0. (53)

Fiir u <1 ist Py (u")=0 (4") und, fiir x> x,, 6, <3n, also
Pc(u)u™®=0(1) fir u—0.

Dabher ist, falls y, =00, P (u)=Q, (u®*'"), was viel stirker ist als die Q,-Behauptung
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in Satz 1. Wir konnen daher y, < co annehmen. Dann ist
™ — Pr(u") =0 fir u>0,

also, wegen T, (u) >0,

J, =gtz f (y1® — Py (u™) e "*T, (u) du > 0

Anderseits rechnet man leicht aus, dass

Jx = O-gcn+1)/2'Yx[' (Hx + 1) Tx A IOx+1 (O-x) -
o2 (0) T A I (0y) — 6T V2T, A g (o),

235

(54)

} (55

wobei fiir reelles f und fiir Res>0 gelte: I, (s)=s"*. g(s) ist die durch (11) definierte
Funktion. Als néichstes miissen wir die Summanden in (55) genauer untersuchen.

Zu diesem Zwecke wird T, () in vier Summanden zerlegt:
Tx= Tx,O + Tx,l + Tx,l + Tx,2’

h
Tx,o = 1, T 1 (u) — % Z e+ia e+iqu1/n“,

h
x L (u) Z —iax -thjl/nu —_ T 1 (u)

ji=1
N
T, ,(u)= Z b, e Fm*,
wobel
N=3"—-2hnh-1.

Die b, sind komplexe Zahlen mit |b,| <%, die B,, reelle Zahlen der Form

h
1/n, _ 2
T'm,j4qj > rm,f—O’ il’ '21 rm,j>2

J:

S
?EV1=

Aus der Definition (39) von 7 (x) und aus (45) folgt

|B, + Dm'""| = Dij (x) > De 9™  y=1,...,N;
m=20,1,2,....

Wir beweisen jetzt

Tx A Iﬂ (O') _ O'_B —_ O(3h enQ(x))

(56)

(57)

(58)

(39)
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fire>0,0<f<n, x>p;. Dennes ist

T oAI(c)—a7?=0, (60)

h
ITos AL (@) =4I % ¢ (o~ iDg}™) ™"

h (61)
<iD7'I% 4" =0 (h).
=
Analog gilt
Tx,l /\I,;(O‘)=O(h). (62)
Schliesslich ist
N N
Tz AL (@I =13, bulo+iB) "I <3 Y 1Bl l
m=1 m=1 (63)

=0 (NeﬂQ(x)) =0 (3h enQ(x)) l

wegen (57) und (58). Durch Addition von (60) bis (63) ergibt sich (59). Nun beweisen
wir

LEMMA 8. Fiir x— o0 ist

o DAT, ALy (o)} =€+ o(1) (64)
ST, A L (0,)) = o (1) (©5)
h(x)
S (T, A g(0,)} = Bo Z o1, (66)
j=1 ’

Bemerkung. h=h(x); die Numerierung der g; wechselt, wenn sich x édndert;
wesentlich ist, dass es sich in der Summe in (66) um jene quadratfreien ganzen Zahlen
handelt, welche sich aus den p; < x bilden lassen, wo py, p,, ... die Folge aus Lemma 6
bedeutet.

Beweis von (64):

AT, Ay (6} = 00 V(T A Ly (0,) — 07071} 4 gl D120
=0 (o_in+ 1)/23h enQ(x)) + O'; 1/Q(x)

wegen (59), da 0, +1 <n fiir x> x,; also, mit (49):

GOHDIZ (T A I (o)} = e2 +0(3" e 29) =% + o(1).
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Denn nach (48) ist 4 log3= 0 (Q(x)'/?).
Der Beweis von (65) verlduft gleich:

eI ORAT AL (6,)) =00 D2 4 60 D2LT AT (0,) — a2 Y}
=o0(1)+o0(1).
Beweis von (66): Wegen g (o,)=0(1) fiir ,—0 ist:
STIRT, o A g(0) = o g (0,) = 0 (6 V) = o (1),

Ferner ist
. h
0"V, A g(o) =3¢ X 07" V% (0, —ig;"D).
J =
Durch Anwendung von Lemma 4 mit Y=g, /" ergibt sich
h

ia—in((ry— a(q ) i
O_;n+1)/2 {Tx, LA g(o.x)} — _%_ e ((r1—3)/4) BO Z W + 0( ch/4hqA/ )
J

i=1

= %BO Z _a(gll_ +0 (e”%Q(x) ec1x/logx+c2x)

q§n+ 1)/2n

a(q;)
=%?BO ZZ]_(_"—:-—I;/Z"+O(1)
J

Jj=1

wegen (41) und weil h=2* k=0 (x/logx), nach Lemma 6. Ebenso ist

h

n _ a(q;)
T, A (o) =180 ) ol o).
j=1
Schliesslich ist
N
" VIZLT A g(o,)} = a2 Zl big(o, + iB;).
=
Nun ist, nach (58),

lo, + if; £ Dim'"| > |B; £ Dm'"| > D e™%®, m=0,1,2,..,,

und fiir x> x,,

lo, + iB;| < o, + hqll" < 2hqp™.
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(67)

(68)

(69)

(70)
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Nun ldsst sich auf (70) Lemma 5 anwenden mit o = De 2™, k=2pgl/™:

O_;n+1)/2 {Tx,2 A g(o_x)} — O(O_;n+1)/2hAq;’1/n e((n+1)/2)Q(x) N)
=0 (e-((n+1)/2)Q(x) eh log 3hA.q;:1/n)

-0 (e—((n+ 1)/2)Q0x) +¢(Q(x)/2 c1x/log x+sz) (71)
=0(1)

mit gleichen Uberlegungen wie weiter unten. Aus (67), (68), (69) und (71) erhilt man
(66) durch Addition.

Setzt man nun in (55) die Abschidtzung von Lemma 8 ein, erhilt man wegen (54):

h

(eZ + 0(1)) ,yx['(n _2}_ : + sz)> > BO Z q(nf?)l/)Zn + (1) (72)

i=1

Da Q(x)— o fiir x— 00, und a(m)a (n)=a(nm) fir (n, m)=1, folgt

enr (") @ o)z o I1 (14 280 +o ).

Daa(p;)>1, ergibt dies mit C>0:

: a(p;) . _
7= Cexpl Y log| 1+ iy ) | = C exp( Y log(l + P; (n+1)/2n))
)4 i=1

= J

k k
> C exP(Zl (pj—(n—f-l)/Zn _ _%pj-_-(n+1)/n)> > Cl exp< Z pj_(n+ 1)/2n> (73)
Jj= Jj=1

x®=1)/2n
=2 C, exp| ¢; ,
log x

dap;~c4jlogjfiir j—» oo, und k~csx/logx, x— co.
Sei nun u, so gewahlt, dass

Py (u3) uz ™ > 47,

was wegen der Definition von y, moglich ist (s.(52), (53)), also folgt aus (73):

x(®=1)/2n
Py (u}) u;** > 4C, exp (03 )
logx

Die rechte Seite geht gegen oo fiir x— o0, also auch u,, und es gilt

log u, ) (74)
logx ' Q(x)

=1)/2n

Py (up)ud ™D > cq exp(c3
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Wir unterscheiden zwei Fille:

a)

logu x(®~Li2n
X

<
Q(x) s log x

Durch Logarithmieren ergibt dies fiir x > x,:

x
loglogu, <c¢; —,
log x

und schliesslich, da y#log®y fiir grosse y eine monotone Funktion ist:

(log logu, )~ /2n - x(m=1)/2n 75)
7 (log log log u, ) D/2n = 8 log x
b)
10 (n—1)/2n
Blrs e X (76)
Q(x) log x
Ferner sei
1 l (n—1)/2n 1
(loglogu,) ogu, a7

> ,
(log log logu, )™ V2" ™ Q (x)

ansonsten Satz 1 bewiesen wire. Zweimaliges Logarithmieren von (76) ergibt
log log logu, > cg logx,
einmaliges Logarithmieren von (77) dagegen:

X
loglogu, <cg —,
log x

immer fiir hinreichend grosses x. Aus den beiden letzten Ungleichungen schliesst man:

(log log ux)(n—l)IZn 5 (n=1)/2n 8)

)(n+ 1)/2n < C3
X

“19 (log log logu log x

Mit (78), (75) und (74) ist die Q,-Behauptung des Satzes 1 bewiesen, da u,— oo fiir
x— 0. Der Beweis fiir Q_ geht ganz gleich vor sich, mit angepasstem « und 7y,. Damit

ist Satz 1 bewiesen.
Bemerkung. Ein einfaches Beispiel fiir einen kubischen totalreellen Korper ist

folgendes:
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Es sei p eine Primzahl, m und k natiirliche Zahlen, welche folgenden Bedingungen
geniigen: 1<k<m, (k,p)=1. Ferner sei f(x)=x>—mpx+kp. Wegen f(1)<0,
f(—=1)>0 hat f(x) drei reelle Nullstellen. Nach dem Kriterium von Eisenstein ist
ausserdem f (x) irreduzibel iiber Q (s. [21], §27); falls ¢ eine Nullstelle von f (x) ist,
so ist Q (¢) kubisch und total-reell.

7. Eine Ungleichung fiir }_,, < .|t (m)|

Der Beweis von Satz 2 verlduft nach den gleichen Prinzipien wie jener von Satz 1.
Man kennt aber kein Lemma 6 entsprechendes Ergebnis. Als Ersatz dient Formel (8)
in Satz 3:

Y Je(m)] > ex?* fir x> 1, (79)

m<x
mit einem ¢> 0. Andererseits weiss man ([11], S.173), dass

Y Jt(m) =0 (x'*?) fir x>1. (80)

mxx

Der Beweis von Satz 3 ergibt sich aus folgendem

LEMMA 9. Es gibt zwei positive Zahlen c,, c, derart, dass zu jedem y=>1 zwei
reelle Zahlen y,, y, existieren mit folgenden Eigenschaften:

y<y;<y+ey’? j=1,2;

S(y1) = Z T(m) > ch’?Ms

m<y

S(r2)= Y t(m)<—cy3’*.

m<y>

Daraus ergibt sich nun (79) folgendermassen: Es seien ¢, und c, die beiden Konstanten
aus Lemma 9. Wir setzen

cy=max|1,— |,
4

y(k) = c;k?, k=1,2,3,....
Es ist

yk)=1, k=1,2,3,..,
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ferner
y(k+1) = y (k) = 2csk + ¢ > 2¢3 2y (k) 2 = ¢,y (k)2
Dann folgt aus Lemma 9

|7 (m)] = 2c,y (k)**/*

yk)y<m<yk+1)

2 ltm)l = 3 > |z (m)|
m<x ykk+1)<x yk)<m<yk+1)

> Z 2C2C§3/4k23/2

ca(k+1)2<x

= Cy
k<csx1/2

k23/2 25/4

= cex™'", w.z.b.w.

Beweis von Lemma 9 (vgl. [18]): Es sei fiir >0, x>0:

S, (x) = ng:x t(m) (x — m)QITQ:_—B.

Dann gilt, wie man leicht nachrechnet :

S01 (9= [ 5,0) d. (81)
0
Ferner ist fiir 9> 0:
5009 = ()7 %, (50 wlm) g {dm(me) ), ®)

wo J, die Besselsche Funktion erster Art v-ter Ordnung ist, s.[7], (55). Nach [9],
Bd. I, S.85, istfiirz>1:

J,(z) = (%)1/2 7zt cos(z _ "2—” - g) +0(z73). (83)
Aus (80) folgt:
Z 'T;";’)' ¢ <, (84)
m=1
und daraus weiter
5 e (m)l o252 < g 20 <2 (85)

2 8’

m
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falls ¢>g,, Wo g, eine geniigend grosse natiirliche Zahl ist. Nun ist fiir 0>1 wegen
(82), (83) und (84):

[« 8}

t(m
Se(x) = cox23/4+a/2 { Z ;1*53754—4;)9]—2 cos (47r (mx)l/2 — 37 — %n@)

(i 86
cofer] Ho) .

m=1

= cx”* T2 {U, (x) + R, (%)},

wo die c, positive, von ¢ abhingige Konstanten sind, und
R,(x)=0(x"1?). (87)

Daraus ergeben sich die Ungleichungen

1/2
IRQ(X,)IQ? flir x=x05 0=0000+1,00+2,00+3; (88)

fiir ein bestimmtes x, > 1. Nun seien k,, k, derart gewéhlt, dass fiir x > x, gelte
S() < ky®* fiir x<y<x+kx"?=x+h. (89)

Ich zeige, dass fiir ein gewisses grosses k, eine positive, von x nicht abhidngige Kon-
stante c, existiert, derart dass k,>c,>0.
Unter den vier Zahlen g =9,, 0o +1, 0o +2, 0, + 3 erfiillt bei gegebnem x sicher eine
die Bedingung
21/2

cos(4n (x + h)''* — n — 3me) > —-.

Dann ist wegen (85), (86) und (88), und weil 7(1)=1:
So(x + 1) = ¢y (x + h)/*+e” {Cos(‘*n (x + h)'/? = $r — 4m)

o0

.y X Zgﬁm cos (475 (m(x + h))l/z — 37— %“Q) + R, (x)}

n=2 (90)
1/2 1/2
> ce(x + h)23/4+0/2 %21/2 _ L _ _2“
8 8
1/2

)23/4+e/2 .

=g ek
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Aus (89) folgt

S(y) < ky(x+h)*** fir x<y<x+h.

Diese Ungleichung wird integriert:

x+h xth
x x+h—(x+h—y)/o
yi Yo-1
< [ a0 sooa o1
yi—(x+h-y)le Ye-1—(x+h—y)/e
x+h Yo—1
<B=k2(x+h)23/4f dy... f dy,,
x Yo-1—(x+h-y)/e
denn
X+h—y XxX+h—y X+h—y
XEAB R g~ B Py — It LB Yy (= 1)
0 0 Q
X+ h—
>x+h—9o- —y=y>x.
Fiir das Integral B gilt:
x+h
x4+ h—y\° h\? h
B=k2(x+h)23/4 J (————~}~)> dy=k2(x+h)23’4(~) —, 92)
0 e/ 1+e¢

Fiir das Integral A gilt, wegen (81):

Yo-1

X+h—y
S(,) 4y, =8S1(¥,-1) — 84 (yg_l B ~),

Yo—-1—(x+h=y)/e

Ye~-2 Ye—-1

dye-—l J S(ya) dyo

Yo-2—(x+h—y)le Yo-1—(x+h-y)le

x+h—y Xx+h—y
=S, (yo—Z) - 252<ya—2 - -—*—Z—) + Sz(ya_z - 2_*_Q--_)
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und so fort, bis

x+h ¢

4= | L) rs{onn==)e

x m=0

= hS,(x + h) + Z (i) (- 1)”'% ®3)

S CRS N A ()

Nun folgt aus (82), (83) und (84):

‘Se+1 (J’)| < Csy25/4+e/2 ,y=21 (%94)

mit einem c¢s>0. Da ferner

i (,i)(—— 1)’"}%] <02,

|
m=

erhalten wir aus (91) bis (94):

k -e
B=_22 Wt (x + h)?¥/% > hS, (x + h) — €502+ (x + h)25/4+ei2,

o+1

und, wenn man s =k, x'/? sowie (90) einsetzt:

le € bl el
kQ (Q )/2 (x + k x1/2)23/4

0+ )+ 1
1/2
> k,x'/? e c,(x + k1xl/2)23/"'+‘~’/2 — 50201 (x + k1x1/2)25/4+9/2

1/2

2
>(1+ klx"”z)e/2 <—4“

21/2
> (k1 (T C, — c5Q2"+1x_1/2> - 05Q2‘~’“>.

Falls man nun x, und damit x gross genug wihlt, ergibt sich

k2k1 +e

s ck, —c 29“1+kx_”2>
Q(1+Q) Ql SQ ( 1 )

k2k1 +e

A k _ 2Q+1 ,
0 (1 +Q) (% lca CSQ )
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und weiter fiir geniigend grosses k; :
kakiTe = 0%(e+1).

Fiir jedes x> x, muss nun eine solche Ungleichung erfiillt sein, wobei ¢ eine der vier
Zahlen g, 0¢ +1, 99 +2, 0 +3 sein muss. Also

(Q +])Qo+1+J

k2> min on+1+]

0<j<3

=c,>0.

Somit ist die erste Ungleichung in Lemma 9 fiir y>x, mit ¢, =k, ¢, =1c, bewiesen.
Wihlt man nun c¢; noch einmal etwas grosser, so stimmt die Behauptung fiir alle
y=1. Die zweite Ungleichung wird gleich bewiesen.

KOROLLAR ZU SATZ 3.

|T(m)| ,
m(25/3 >c'logx. ©3)

m<x

Beweis.
Y, |t (m)l T
|T(m)| m< 25 -29/
Z 2578 T T 25/4 _4’ |2 (m)| 2% dt
1 m<:z

LB dt> ;
= C — C| —=2¢C 108X.
1) 8

8. Der Beweis von Satz 2

Der Beweis von Satz 2 ldsst sich nun wie der von Satz 1 durchfiihren. Es ist
fiir Res>0(s.[19], Lemma 1, oder [7], (56)):

[e8} o0

1 — t(m)
g (s)= 3 z t(m)e =B 2 (s2 n 167'62m)25/2’ (96)

m=1 m=1

B = I'(25/2) 2*¢a?*/2.

25/2

Fiir g, (s) gelten zu Lemma 4 und 5 analoge Aussagen. Es sei B,=B(8n)~ “*/“. Dann
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gilt:
t(m)

25/2g(0+47rm1/21) Be:t"'/4 25/4+O( y 132

fir 0<o<l1l, 1<m<KY.
Ferner
g(s) =0 (0?2 k**"*) fir Res>0,|s| <k k>1,
ls + dnm*%i| >0, m=1,2,..

Fiir p,, p,,... wéhlt man jetzt die Folge aller Primzahlen. Wie im vorigen Beweise
definiert man anhand dieser Folge die Funktionen # (x), Q (x) und o,, ferner

23, 1
%)

und fir reelles u

0, =

T, (u) = Z V (4nq}*u + 0g,)

mit
ozq-————g1r fir t(q)=0
=+ 3n fir t(q)<0.
Mit
S(uz)
Yx = Sup
u>0 u

erhilt man dann nach gleicher Rechnung wie in Abschnitt 6:

h
I7(q;)!
x = c q125/4 ’

j=1

S >e, "‘E‘i;)'-—n(l )

pPS<x

i=1
[z (m)]
254

m<x
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wegen t(mn)=1(m) t(n) fiir (m, n)=1 (s.[11], S.161). Fiir die letzte Ungleichung
siche den Beweis von Lemma 2 in [19].
Aus (95) folgt dann, mit u,— oo fiir x> o0 :

S Yu; 22> cul9logx.

Falls nun log log logu, > ul/2™, gilt

X

logu, < Q(x)loglogloglogu, = exp (Cs l X ) log log log logu,
ogx

X
log logu, < cg

log x
logloglogu, <logx fir x> x,.
Also ist jedenfalls

S (uz)
—53/3 = ¢ loglog logu,,
Uy

womit, wegen u,— 00, Satz 2 fiir den Q,-Fall bewiesen ist. Dasselbe Verfahren fiihrt
zur Q_-Behauptung.
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