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Q-Sâtze fur zwei arithmetische Funktionen

Henri Joris

1. Einleitung

Ziel dieser Arbeit ist der Beweis von O-Sâtzen fur die Restglieder der Idealfunk-
tionen algebraischer Zahlkorper und fur die Summenfunktion von Ramanujan's
arithmetischer Funktion t (n).

Fur einen algebraischen Zahlkorper K vom Grade n ûber dem rationalen Kôrper
Q sei Ck (s) die Dedekindsche Zetafunktion von K; X sei das Residuum von ÇK (s) bei
5=1. Fur Re,y> 1 ist ÇK(s) gegeben durch

00

Ck(s)=I^?- (i)

Dabei bedeutet a (m) die Anzahl ganzer Idéale in K, deren Norm m betrâgt. Fur x>0
ist die Idealfunktion RK (x) definiert durch

M*) J>(m)> (2)

was gleich der Anzahl ganzer Idéale in K ist, welche eine Norm kleiner als x haben

(das Nullideal nicht mitgezâhlt). Es gilt

RK(x)~Xx fur x-kx). (3)

(Zu diesen Angaben siehe [12], sowie [13] Seite 155 ff.) Das Restglied der
Idealfunktion wird definiert als

PK (x) RK (x) — Xx. (4)

Ich werde folgendes beweisen:

SATZ 1. Es sei K ein algebraischer Zahlkorper des Grades «, X das Residuum seiner
Dedekindschen Zetafunktion, RK (x) die Idealfunktion von K. Dann gilt fur x-> oo :

mit einer von Kàbhàngigen Konstante c>0.
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Dabei bedeutet Q± folgendes: Es seien g(x),f(x) réelle Funktionen von x, x>0;
ferner sei/ (x) > 0. Dann besagt

g(x) Q+(f(x)) fur

dass

limsup4>0.
^-00 f(x)

Analog besagt

g(x) £L(/(x)) fur x-oo,
dass

liminf^
x-oo f(x)

Schliesslich ist

gleichbedeutend mit:

Der zweite Satz bezieht sich auf Ramanujan's T-Funktion, definiert durch

% x(m)zm zfl(l-zk)24, |z|<l. (6)
m=l k=l

Sowohl die Reihe als das unendliche Produkt sind konvergent fur \z\ < 1. Die durch
sie dargestellte Funktion spielt eine wichtige Rolle in der Théorie der Modulfunk-
tionen. Es gilt nun der

SATZ 2.

X T(m) G±(x23/4logloglogx). (7)

Der Beweis dièses Satzes hângt wesentlich ab von folgendem Ergebnis :

SATZ 3. Es existiert eine Konstante c>0 mit der Eigenschaft, dass

X \x{m)\>cx2m fur x> 1. (8)
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Das bisher beste Résultat fur das Restglied PK(x), welches fur aile Kôrper K be-

liebigen Grades n gilt, ist

siehe [5]. Fur «^4 gibt es ein Ergebnis von Szegoe und Walfisz, das besser als (5) ist,
ebenso fur nicht totalreelle kubische Zahlkôrper ([20]). Fur die ûbrigen Zahlkôrper
beweisen sie dièses Résultat einseitig, das heisst, entweder mit £L oder mit Q+, nicht
aber mit beiden. Fur quadratische Kôrper siehe auch [1].

Nach oben bewies Landau [17] die Abschâtzung:

PK(x) 0(x(ll~1)/(rt+1)) fur x-»oo.

Da t (m) nicht fur aile m nichtnegativ ist, hat die Summe

S(x) Ç T(m)

keine asymptotische Annâherung durch eine einfache positive Funktion, wie sie etwa
die Idealfunktion eines Zahlkôrpers besitzt. S(x) hat vielmehr âhnliche Eigenschaften
wie das Restglied der Idealfunktion. So bewies W. B. Pennington [19]

sup S (x)
im înf ^374 :

mi x

Andererseits gilt Rankin's Ergebnis (s. [19])

o yx) u [x iur x —> oo

Weitere Eigenschaften und eine Liste von Referenzen findet man in [19]. Eine aus-
fûhrliche Darstellung enthâlt das 10. Kapitel von [11].

Die Beweise von Satz 1 und Satz 2 folgen einem Verfahren, welches K. S. Ganga-
dharan [10] sowie K. Corradi und J. Katai [8] fur die Restglieder der Dirichletschen
Teilerfunktion und der Kreisgitterfunktion verwendet haben, wobei sie dieselbe

Abschâtzung erhielten wie in Satz 1 im Falle n 2. Die Beweise sind eine gekûrzte und
in einigen Punkten abgeânderte Fassung meiner Dissertation [16], welche ich unter
der Anleitung von Prof. K. Chandrasekharan schrieb.
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2. BieY
Eine entscheidende Rolle spielt die Funktion g (s), definiert durch die Gleichung

(m)e-1/"-^--^K(0) (11)

m=l

fûrRes>0.

LEMMA 1. Es sei A der Betrag der Diskriminante von K, rt die Anzahl reeller

Isomorfismen von K, 2r2 die Anzahl der komplexen Isomorfismen von K, r1+2r2=n.
Ferner sei

E (2n)~1 A11", B (2ny Ail2.

Diefur | v | < n konvergente Reihe

L(v)= %ToTÎiïvm (12)

stellt eine inC — {v^n} analytischeFunktion dar. Esgilt^fur Kes>0,

(13)

m=l
wobei

M(s)=£ckL(Eie«ikll's). (14)

Die CK sind von rl undr2 abhângige komplexe Konstanten mit der Eigenschaft:

C. l, (15)

î Q 0. (16)
fc 0

m'/analytisch in Rcs>0sowie in \s\ <nE~~x, und

M(0) 0. (17)

Die Gleichung (13) ist bewiesen fur \s\ <nE~x in [22], S.l 1 ff, und in [16], S.23 ff.
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Die Fortsetzung von L(v) in das Schlitzgebiet Q0 C-{v^n} erhâlt man durch
Betrachtung des Intégrais

Ji{v)=éi j r(z)r(1"^)r(z)r"(l--)t;"zdz) t>>0, (18)

(19)

und zwar gleichmàssig in jedem beschrânkten x-Intervall (fur die Eigenschaften der
Gammafunktion siehe [9], Vol. 1). Wegen (19) lâsst sich die Integrationsgerade in (18)
nach %-rn, m =1,2,..., verschieben. Man erhâlt

welches absolut konvergiert, denn mit reellem x, y, ist

fur |

*=o ;)•' ;=-*r(z)

lui J
—m —ioo

(-1)*

£ — m + ioo

h J
¦f — m — ioo

Nun ergibt die Stirlingsche Formel, mit z x + iy,

\r{z)\~j2n\z\x-±e-x-y*xci%{ylx) fur \z\ -> oo

gleichmàssig in |argz| < n — ô, ô > 0. Ferner ist

(20)

v J sinTTz-r(l-z)'

Mit einigen leichten Zwischenrechnungen erhâlt man fur — co<y<oo, z i — m + iy:

m
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also

I ri?)1

<2c1i;"i(-J e~iny(m + y)^'^ dy

o

00

C2 V *
\n,

0

Dieser Ausdruck geht gegen 0 fur m-» oo, falls \

\ l V j — -L/ l ""^ V f llil \J '^ U <^ fia \£Z»)

Schreibt man v reia9 r>0, so folgt aus (19) sofort, dass das Intégral in (18) lokal
gleichmâssig konvergiert fur |#| <n, wo also Ll (v) analytisch ist. Dies ergibt nun mit
(22) die Fortsetzung von L (v) in Qo.

Aus diesem Ergebnis und der Gleichung (16) folgen unmittelbar unsere Behauptun-

gen ûber die Funktion M{s). Aus (17) folgt M(s) 0(\s\) fur |.s|->0, daraus die

lokal gleichmâssige Konvergenz der Reihe in (13) und die Identitât (13). Man be-

nutzt dabei, dass

m

In [22] und [16] wird gezeigt, dass sich L(v) von beiden Seiten ûber die Linie v>n
analytisch fortsetzen lâsst. Zusammen mit (17) erhâlt man daraus das

KOROLLAR. Die durch (11) definierte Funktion g (s) ist in \s\KnE~1 regulâr,
ebenso auf Res^O mit Ausnahme der Punkte s=±im1/nnE~1, m 1,2,... ; in diesem

Regularitâtsgebiet wirdg (s) durch (13) gegeben.

Wâhrend in [16] die Fortsetzung von L(v) ùber v >n durch elementare, aber etwas

komplizierte Weise gegeben wird, benutzt Walfisz in [22] die Existenz einer linearen

Differentialgleichung «-ter Ordnung fur L(v) und wendet darauf die allgemeine
Théorie der Differentialgleichungen im Komplexen an. Es gilt nâmlich mit gewissen

Konstanten ax,..., an :

(vn - nn) L(n) (v) + a^'1 li""^ (») + .-.+ anL(v) 0. (24)



226 HENRI JORIS

Die Singularitâten dieser Gleichung liegen bei

v ne(2nik)l\ k 1,..., n,

d.h. v>n ist singularitâtenfrei, woraus die analytische Fortsetzungfolgt.

LEMMA 2. Fur veQ0 und v-+n ist mit einem B1>0:

L(v) Bx (n - v)-±(n+1) + 0(\n - v\-*"\ log \n - v\\) (25)

B, (n - v)-±(n+i) + 0(\n- t;!"^"8), a > 0. (26)

Ferner existiert ein réelles A, derart dass in Qo gilt :

L(v) 0(\v\A) fur \v\->oo. (27)

Die Gleichung (25) ist in [22] bewiesen, (26) folgt trivialerweise aus (25). In [16]
beweise ich (26) sogar mit s 0, falls |arg(n — v)\ <n — S, ô >0, ist. Dièse Verbesserung
ist aber hier ohne Belang. Das Vorzeichen in

wird so gewâhlt, dass der Ausdruck fur v < n positiv ist.
Die Abschâtzung (27) ist in [16] mit ^4 0 bewiesen. Durch geeignete Verformung

des Intégrationsweges in (18) erhàlt man sogar

L(v) O(\v\-n (log |t?|)"-*), H-.oo in O0.

Da aber der genaue numerische Wert von A nicht wichtig ist, kann man (27) schnell
beweisen. Die Gleichung (24) geht durch die Substitution

ûber in

L<;> (w) (1 - wV)"1 t bkw-kLTk)(w),
k=l

mit Konstanten bl9..., bn. Fur dièse DifTerentialgleichung ist w 0 eine Stelle der
Bestimmtheit (s. [3]), woraus folgt

L2(w) 0(\w\'A), fur w->0,

also (27), mit einem gewissen reellen A.
Fur die Funktion M (s) erhâlt man aus Lemma 2, falls D nE~i gesetzt wird
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LEMMA 3. FùrO<cr<D ist

M((7 + W) B2 ^i+^-(»+l)/2)(«/2)

mit einem B2>0.Fernergiltfur 0< e<D9

A) (29)

mit einem

Lemma 1 und Lemma 3 ermôglichen uns nun eine Bestimmung des Verhaltens von

g (s) in Re*y>0, insbesondere in der Nâhe von oo und nahe den Singularitâten
s=±im1/nD,m=l,29 3,....

LEMMA 4. Es sei y>2, l^m^Y,m ganz, 0<a<D. Dann ist mitpositiven Kon-

stanten B0,A:

<r(n+1)/2 g(<7 ± imllnD) Bo e*'«"-W-?Jg)_ + 0{allA YA). (30)

LEMMA5. Es sei 0<w<D, k^ï, Rej>0, \s\^k, sowie \s+im1'"D\>co,
m 1, 2, 3,.... Dann ist

g(5) O(t»-("+1)/2^) (31)

mit einem A^O.
Da die Beweise sehr âhnlich wie in [10] verlaufen, beweise ich hier nur Lemma 5.

(Fur eine genaue Durchfûhrung siehe [16].) Es ist

2
m>(2k/D)n

Ferner

|sm~1/fl±iD| m~1In\s± iDmljn\ > m~ifnœ, m 1,2,

\sm-lln\
mi/n*

Da m~lln(o<D sowie km~Un^\D fur w< (2k/D)n, so folgt aus (29) falls \s\>iD

(32)
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Denn a(m) O(me) fur aile s>0, siehe z.B. [6], Lemma 9. Falls m>(2k/D)n9 ist

iA also, weil M^

-o(ij E ^)-o(». (33)
Vl^l m>(2k/Dr m

Aus (32) und (33) folgt (31) mit A fur Al9 falls \s\>iD. Fur |s|^iZ) ist aber wegen
dem Korollar zu Lemma 1 sogar g($) 0(1).

3. Eine Folge von Primzahlen, welche Norm eines Ideals sind

Ich beweise hier ein Résultat, das zwar implizit aus bekannten Formeln der ana-
lytischen Théorie der Primzahlen folgt, das ich aber nirgends in der speziellen, hier
benôtigten Fassung finden konnte.

LEMMA 6. Es sei K tin algebraischer Zahlkôrper. Dann existiert eine Folge von
Primzahlen Pi,p2, • • • mit a(pj)^l, und mit der Eigenschaft :

xV \ ~ c fiir x -» oo (34)
pj^x logx

wo c>0 eine von Kabhàngige Konstante ist.
Beweis. Es sei Ko die Galoissche Abschliessung von K. Jede rationale Primzahl hat

in Ko folgende Zerfâllung in Primfaktoren ([14], Bd. 2, S.38 ff., Satz 11) :

Nm(p;) pf, j 1,..., g, f G(p) Grad vonp,

wo N=[K0:Q~]. Es ist eo 1, genau wenn (d, p)=l, wobei d die Diskriminante von
Ko ist. Fur Re^> 1 ist

-1 / l \~N/f

n
G(p)=l
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Das erste Produkt ist endhch, das zweite konvergiert absolut fur Re>s>| Dièse
beiden Produkte defimeren also eine Funktion Ç(s), welche in Re5>| analytisch und
nullstellenfrei ist Da £xo(l +tf)^0 fur réelles t^O, und da ÇKo(s) ^ur Res^l
analytisch ist bis auf einen einfachen Pol bei s 1, gilt dasselbe fur Z(s),

G(p)=l \ P'J 7=1 V
(P d)=l

Das Produkt muss unendhch sein, weil sonst Z(s) nicht einen Pol bei s=\ haben

konnte, man kann also die p in einer unendhchen Folge anordnen Nun beweist man
die Behauptung

J,1-^' ^°°' (35)

sowie die Behauptung

Y \ogp ~ —; x, x -» oo, (36)

genau gleich wie den gewohnhchen Pnmzahlsatz (s z B [4]) Aus (35) folgt aber
Lemma 6, denn wenn/^ Norm eines Ideals in Ko ist, so erst recht Norm eines Ideals in
K, alsoa(pj)^l Aus(36)folgtuberdies

wobei

SxW= Z log/>, 08)

4. Die lineare Unabhângigkeit von n-ten Wurzeln aus quadratfreien Zahlen

Besicovitch [2] bewies einen Satz uber lineare Unabhângigkeit von w-ten Wurzeln
aus quadratfreien ganzen Zahlen, falls man fur die Wurzeln den reellen Wert wahlt
Dieser Satz spielt eine wichtige Rolle m den Beweisen der D-Satze in [5], [8], [10],
[15], [19], wo stets nur die reellen Wurzeln benutzt werden Ich brauche dasselbe

Résultat fur gewisse komplexe Wurzeln

LEMMA 7 Es seien pu ,pk paarweise verschiedene Pnmzahlen, ocu <xk

seien n-te (réelle oder komplexe) Wurzeln aus pu pk P(xl9 xk) sei ein ratwnales
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Polynom von hôchstens (n — \)-tem Gradinjeder Variabeln xj9 P^O. Dann ist auch

Nach [2] ist dieser Satz richtig fur réelle Wurzeln a,-. Dies sei hier vorausgesetzt.
Zum Beweise braucht man folgeneden Hilfssatz:

Es sei n eine naturliche Zahl, n ^ 2, L ein reeller Kôrper, a eine Zahlaus L, a>0. Fur
aile von 1 verschiedenen Teiler b von n solle die Gleichung xb — a=0 keine Lôsung in L
haben. Dann ist xn — a irreduzibel in L [x].

Beweis des Hilfssatzes : Es sei

aY die positive «-te Wurzel von a,f(a1) 0, t der Grad von/(x). Da ax

f(x) sei normiert, d.h.

Die ûbrigen Wurzeln von/ (x) sollen a2,..., at heissen, also

Darausfolgtata2... ateL. Da.aj= Sjau e"= 1, gilt

a1... at a[ ei... et a\ s, en 1.

Also ist s reell, d.h. e= ±1, und a\GL. Nun sei (n, t) b, yn—zt — b fur zwei naturliche

Zahlen y, z; somit gilt

a\{a[)z a\+zt a"/ ayeL.

Da a\eL, folgt schliesslich a\eL. a\ ist aber eine Wurzel von xn/b — a 0. Die Vor-
aussetzung des Hilfssatzes ergibt dann n/b l, n b9 also n t und schliesslich

/ (x) xn — a,h(x)=l. Damit ist der Hilfssatz bewiesen.

Der Beweis von Lemma 7 ist jetzt einfach. Es seien pl9.... fik die positiven «-ten
Wurzeln \onp1, ...,pk, also

Bekanntlich hat

keine Lôsung in Q. Nach dem Hilfssatz ist dann xn—pt in Q [x] irreduzibel. P1
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erzeugt also einen Isomorfismus Q(/?i)-»Q(ax) uber Q. Ebenso hat

xb-p2=0, b>2, b\n9

keine Lôsung in Q (/?x), sonst wâre
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wo/ein rationales Polynom von hôchstens {n — 1 )-tem Grade in pt ist, also

mit

Es ist aber g=£0, und der Grad von g ist in xt und x2 hôchstens n—\. Das ist nicht
môglich wegen der Richtigkeit von Lemma 7 fur réelle Wurzeln. Nach dem Hilfssatz
ist also xn—p2 irreduzibel in Q(/?i)[*]. Daraus folgt, dass /?i-+ai, /?2-»a2 einen
Isomorfismus Q(Pl9 /?2)-*Q(al9 a2) ûber Q erzeugt. Auf dièse Weise fortfahrend, er-
hàlt man durch /^-x^,..., Pk^Kxk einen Isomorfismus Q(/?l9..., i5fc)->Q(a1,..., afc)

ûber Q, woraus die Behauptung folgt (da sie ja fur pu..., pk anstelle von al9..., afc

richtig ist). (Die hier benôtigte Algebra findet man in [21], 5. Kap.)

5. DieFunktion^(x)

Nun sei ein x> 1 fest vorgegeben;pu...,pk seien die k Primzahlen aus der Folge

pu p2,... in Lemma 6, welche kleiner als x sind. 1 =ql9 q2, q3,...,qh seien die h 2k

quadratfreien ganzen Zahlen mit Primteilern aus />!,..,/?£. Wir suchen eine untere
Abschâtzung fur fj (x), wo

fj (x) inf rjqyn\, r, 0, ± 1,

:, m 1, z,... >

(39)

Wegen Lemma 7 sind aile rç von 0 verschieden, und wie in [10] zeigt man, dass

1>//(jc)>0, ferner dass das Infimum erreicht wird, d.h. dass ein r\Q existiert mit
rj0 fj (x). Wenn dann

(39')
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zeigt man noch, dass

(i (40)

Esist
k

logqj < logqh £ logpi SK (x) < ctx, (41)

wegen (37) und (38), also

m0 < (heC2X)n eC3X+C4k < eC5X, (42)

da nach Lemma 6 k^c6x/\ogx. Es sei fi die Anzahl verschiedener Primteiler von mQ,

2 =p'l9p'2,... die Folge aller Primzahlen. Dann ist

0 > p\p2 .../?; exp ^ log^jj exp (S (/>;)) r (^),

wo ^(x) eine der arithmetischen Funktionen von Tschebischeff bedeute. Fur dièse

gilt 9(x)~x, wenn ^r-^oo (s.[4], S.64 ff, S. 128). Es ist

log r (ju) # (p'n) ~ p'n ~ H log fi, ju -> oo

loglogr(^) ~ log fi, fi -?oo,

-fi, fi ->00.
log log r (ju)

Fur // ^ ^o f°lgt dann

logm0 log r
log log m0 log log r (fi)

Also, mit (42),

logm0 ^ (43)ju^c9 — <c10,log log m0 logx

fur x> x0. Nun kann man (39') schreiben als

lf\...,Pym), (44)

wo P1?..., PN verschiedene Primzahlen sind, F^O ein Polynom in N Variablen mit
ganzen rationalen Koeffizienten, vom Grade ^n— 1 in jeder Variabeln,
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N^k
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xN). Ferner ist

Wir definieren

F0 n
(*i, ...,fc*r)
kj mod m

X
1

logx'
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s exp(2ni/n). Fo ist ein Polynom in xl5..., xN, mit ganzen Koeffizienten aus dem
rc-ten Kreisteilungskôrper. Ubt man auf Fo einen der cp(n) Automorfismen x:£-> er,

(r, n)= 1, aus, erhàlt man

tF0= n
(ku...,kN)
kj mod n

fi
(mi m^v

rtij mod n

Also ist Fo in Z[xu..., x^]. Âhnlich sieht man, dass Fo sich nicht ândert, falls ein Xj
durch s Xj ersetzt wird. Somit ist Fo nur von den «-ten Potenzen von Xj abhângig,

F0(xi,..., xN) F1 (xnl9..., xnN),

da der Ausdruck links nach Lemma 7 nicht verschwindet und zudem ganz rational ist.

Nun verfàhrt man wie in [10] und [8] und erhâlt :

1 / x\log-r-^exp c- fiir x^pl9 (45)
ri(x) V l°8xJ

miteinemoO.

6. DerBeweisvonSatzl

Nach diesen Vorbereitungen lâsst sich der Beweis von Satz 1 genau wie in [8] und

[10] durchfùhren. Wir definieren

wobei a > 0 und a so gewâhlt ist, dass

«è)<flW (47)
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und

k= X 1. (48)

Ferner sei

Mit

n-1 1

2(cosK)2, « « ™^>

definieren wir

Tx{u)= Y[V{Dq)lnu + a), x>Pl. (51)
7=1

Es ist sicher

Tx(w)^0 fur réelles u.

Fur eintrigonometrisches Polynom T(u) YJx=i cve~l<XvU, av, w reell, cv komplex, und
fur eine in Re5f>0 definierte komplexe Funktion H (s) bedeute Ta H folgende Funk-
tion:

r
T a H(g) X cvH(a + îav), a > 0.

v=l
Weiter sei

K)sup^ sup

Wegen (9) ist

7*>0. (53)

Fur u < 1 ist Px (wn) O (w11) und, fur x^ x0, 0, ^ \n, also

Px(mm)m"^ O(1) fur m-»0.

Daher ist, falls 7^= 00, PK(u) Q+ (u6x/n), was viel stàrker ist als die &+-Behauptung
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in Satz 1. Wir konnen daher yx < oo annehmen. Dann ist
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also, wegen Tc(m)>0,

00

jx=«r1)/2 J o-y- - ^ («•)) e-
0

Anderseits rechnet man leicht aus, dass

(54)

+1)/2CK(o) rx a
(55)

wobei fur réelles P und fur Rej>0 gelte: Ip(s)=s P. g(s) ist die durch (11) definierte
Funktion. Als nachstes mussen wir die Summanden in (55) genauer untersuchen.

Zu diesem Zwecke wird Tx(u) m vier Summandenzerlegt

(56)

J=l
wobei

JV 3" - 2/i - 1.

Die èm sind komplexe Zahlen mit |6J<i, die fïm réelle Zahlen der Form

Pm D S rMiJ «j"1; r.,7 0, ± 1, è r^, > 2.
j=i j=i

Aus der Définition (39) von r\ (x) und aus (45) folgt

\Pv±Dml">\>Dfj(x)^De-Q(x\ v 1, AT;

m 0,1, 2,

Wir beweisen jetzt

(57)

(58)

(59)
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furoO, 0^/?<«, x^/^.Dennesist

T,)Oa^((j)-^ 0, (60)

(61)

Analog gilt

(62)

Schliesslich ist

x, 2 A J, (ff)| | £ fem («7 + J/
m=l

wegen (57) und (58). Durch Addition von (60) bis (63) ergibt sich (59). Nun beweisen

wir

LEMMA 8. Fur x->oo ist

lex+1(crx)} e2 + o(l) (64)

A/iW} o(l) (65)

h(x)

i

Bemerkung. h h(x); die Numerierung der #7- wechselt, wenn sich x ândert;
wesentlich ist, dass es sich in der Summe in (66) um jene quadratfreien ganzen Zahlen
handelt, welche sich aus den/?7<x bilden lassen, wopup2,... die Folge aus Lemma 6

bedeutet.

Beweisvon(64):

(n+l)/2fT r / \i _ ff(»+l)/2(T Ar (n \ -0x-lï&X X1x A l0x+l\°x)} ~ ax \1x A J0x+1 Kax) "" ax / + ^
0 (4n+1)/23/I enQix)) + ct;1/Q(x)

wegen (59), da 6X +1 ^ n fur x ^ x0 ; also, mit (49) :

/ ; a 4,+ 1 (ct,)} e2 + 0(3" e"^>) e2 + o(l).
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Denn nach (48) ist h Iog3 O(Q(x)1/2).
Der Beweis von (65) verlâuft gleich:
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Beweis von (66): Wegeng(vx)=0(1) fur ff^-^-O ist:

*r 1)/2t;,0 a «(o=a
Ferner ist

g (O
J=l

Durch Anwendung von Lemma 4 mit Y= ql/n ergibt sich

h

0
V
Lj

x + c2x\

wegen (41) und weil h 2k,k 0 (x/log x), nach Lemma 6. Ebenso ist

h

Schliesslich ist

Nun ist, nach (58),

1^ + ij8, ± Diml!n\ > \fi, ± Dmlln\ > D e~Q(x\ m 0,1, 2,....

(67)

(68)

(69)

(70)
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Nun lâsst sich auf (70) Lemma 5 anwenden mit co De~Qix\ k 2hql/n:

°(:+1)I2{Tx,2 A g(O} O(crxn+i)/2hAqAfne((n+1)/2)Q^ N)
O(e~i(n+1)/2)Q(x) ehloe3hAqA/n)

(71)

mit gleichen Ûberlegungen wie weiter unten. Aus (67), (68), (69) und (71) erhâlt man
(66) durch Addition.

Setzt man nun in (55) die Abschâtzung von Lemma 8 ein, erhàlt man wegen (54):

Da Q (x)-kx> fur x-»oo, und a (m)a(n) a (nm) fur (n9 m)= 1, folgt

1, ergibt dies mit C>0:

C exp(£ log(l log(l

C2 expl c3
c(»-l)/2n

logx

dapj ~ c4j logj fùrj-* oo, und k~ c5x/logx, x-> oo.

Sei nun ux so gewâhlt, dass

(72)

(73)

was wegen der Définition von yx môglich ist (s.(52), (53)), also folgt aus (73) :

/
iC2 cxplc3

Die rechte Seite geht gegen oo fur x-^ oo, also auch ux, und es gilt

x
K\Ux)lUx C6 exP (74)
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Wir unterscheiden zwei Fâlle :

a)

(n-l)lln

Durch Logarithmieren ergibt dies fur x ^ x0 :

x
log log mx < c7.

logx

und schliesslich, da yp \ogay fur grosse y eine monotone Funktion ist :

(l0gl0gWjc)(n-1)/2w x(n-D!2n

logx

b)

lOgMf> X(n~1)f2n

Ferner sei

logu*

(76)

ansonsten Satz 1 bewiesen wâre. Zweimaliges Logarithmieren von (76) ergibt

log log log ux^ c8logx,

einmaliges Logarithmieren von (77) dagegen :

x
log log ux < c9 logx'

immer fur hinreichend grosses x. Aus den beiden letzten Ungleichungen schliesst man:

(78)03
logx

•

Mit (78), (75) und (74) ist die &+-Behauptung des Satzes 1 bewiesen, da w^-^oo fur
x->oo. Der Beweis fur O_ geht ganz gleich vor sich, mit angepasstem a und yx. Damit
ist Satz 1 bewiesen.

Bemerkung. Ein einfaches Beispiel fur einen kubischen totalreellen Kôrper ist

folgendes:



240 HENRI JORIS

Es sei p eine Primzahl, m und k natûrliche Zahlen, welche folgenden Bedingungen
genûgen: l^k<m, (k,p)=l. Ferner sei f(x) x3-mpx+kp. Wegen /(l)<0,
/(—1)>0 hat/(x) drei réelle Nullstellen. Nach dem Kriterium von Eisenstein ist
ausserdem/(.x)irreduzibel ûber Q (s. [21], §27); falls £ eine Nullstelle von f(x) ist,
so ist Q (£) kubisch und total-reell.

7. Eine Ungleichung fur £w ^ x|t (m) \

Der Beweis von Satz 2 verlâuft nach den gleichen Prinzipien wie jener von Satz 1.

Man kennt aber kein Lemma 6 entsprechendes Ergebnis. Als Ersatz dient Formel (8)
in Satz 3:

£ |t(m)|>cx25/4 fur x>l, (79)
nt^x

mit einem c>0. Andererseits weiss man ([11], S. 173), dass

£ |r(m)| O(x13/2) fur x>l. (80)

Der Beweis von Satz 3 ergibt sich aus folgendem

LEMMA 9. Es gibt zwei positive Zahlen cu c2 derart, dass zu jedem y^l zwei
réelle Zahlen yu y2 existieren mitfolgenden Eigenschaften :

y<yj<y + cxyll29 J 1,2;

S(yi)= X x{m)

m^y2

Daraus ergibt sich nun (79) folgendermassen: Es seien cx und c2 die beiden Konstanten

aus Lemma 9. Wir setzen

c3 maxl 1, - I,

c3k2, k 1,2,3,....

Es ist

y(k)>l9 fe 1,2,3,...,
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ferner

y(k + 1) - y{k) 2c3k + c3 > 2c\l2y{k) 1/2 ^ ciy(k)1/2.

Dann folgt aus Lemma 9

£ \x{m)\>2c2y{k)2^

>c4 £i2fc23/2>c6x25/4, w.z.b.w.

Beweis von Lemma 9 (vgl. [18]) : Es sei fur q ^ 0, x > 0 :

Dann gilt, wie man leicht nachrechnet :

Se(t)dt. (81)

0

Ferner ist fur q>0:

Se(x) (2nyô £ (-\*+</2 T(m)J12+Q{4n{mx)1/2}, (82)
m=i \wij

wo Jv die Besselsche Funktion erster Art v-ter Ordnung ist, s.[7], (55). Nach [9],

Bd.II,S.85,istfûrz^l:

(^^ O(z-^). (83)

Aus (80) folgt:
oo

y i!^
m=l

(84)

und daraus weiter

9I/2/2=
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falls q>q0, wo q0 eine genûgend grosse natûrliche Zahl ist. Nun ist fur
(82),(83)und(84):

1 wegen

Se(x)

+ 0 x

cos(4*(»*)1/2 - f* -

m=l
^27/4 + ^/2^1

wo die ce positive, von q abhângige Konstanten sind, und

Daraus ergeben sich die Ungleichungen

2l/2

fur ein bestimmtes x0 ^ 1. Nun seien /r^ k2 derart gewàhlt, dass fur x^x0 gel te

(86)

(87)

(88)

iur x ^ y ^ x + /c^x x -t- n. v*-v

Ich zeige, dass fur ein gewisses grosses kx eine positive, von x nicht abhângige Kon-
stante c4 existiert, derart dass k2^c4> 0.

Unter den vier Zahlen £ £0> £o +1? @o +2, ^0 +3 erfûllt bei gegebnem x sicher eine
die Bedingung

21/2
cos(47c(x + h)112 — in — ^7r@) ^

Dann ist wegen (85), (86) und (88), und weil t(1) 1 :

SQ(X + h) ce(x + jcos(47i(x + h)112 -in- \nQ)

+ —2574+7/2 cos(47r(m(x + h))1'2 - in - \i
m 2

2i/2 21/2^

JRff

(90)
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fur
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Dièse Ungleichung wird integriert:

x + h x + h

A= J dy I dyx x

x x + h-(x + h-y)/Q
yi ye-i

x J dy2... J S(yQ)dye

yi~(x + h-y)/Q ye-i~(x + h-y)/Q
x + h ye - i

^jB /c2(x + /i)23/4 J dy... j dyQ9

denn

Q

x + h- y
x + h - q- ——

h —y x + h —y^ yQ_2 - 2
Q

Fur das Intégral B gilt :

x + h

k2(x + h)

Fur das Intégral A gilt, wegen (81) :

ye-i

J

ya-2 yc-i

/ +

(91)

x + h — y

(92)

x + h - y
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und so fort, bis

x + h q
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m
m=l

x(se+1(x+h)-Se+l(x

Nun folgt aus (82), (83) und (84) :

mit einem c5 > 0. Da ferner

y
m

erhalten wir aus (91) bis (94) :

„ k2Q

Q + l
he+1 (x + fc)23/4 > hSe (x + h)- c5q2'+1 (x + A)25/4+e/2,

und, wenn man h k1x1/2 sowie (90) einsetzt :

TT!*1

klXll2)ll2)23'4+tl2

21 (\ + fc.x"1'2)

Falls man nun x0 und damit x gross genug wâhlt, ergibt sich

(93)

(94)
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und weiter fur genugend grosses kt

Fur jedes x^x0 muss nun eine solche Ungleichung erfullt sein, wobei q eine der vier
Zahlen q0, q0 H-1, q0 + 2, q0 +3 sein muss Also

Somit ist die erste Ungleichung in Lemma 9 fur y^x0 mit c± =/c1, c2 ic4 bewiesen

Wahlt man nun cx noch einmal etwas grosser, so stimmt die Behauptung fur aile

y ^ 1 Die zweite Ungleichung wird gleich bewiesen

KOROLLAR ZU SATZ 3

|t(m)|
m2514

(95)

VU(m)\ Ç |T(m)l
25 fr

^ 25 fd^ M^ c H c I — ^ c logx
4 J '

8. DerBeweisvonSatz2

Der Beweis von Satz 2 lasst sich nun wie der von Satz 1 durchfuhren Es ist
fur Re^>0 (s [19], Lemma 1, oder [7], (56))

00 C»

(52 + 16tt2
m=l

B T(25/2)23V3/2

Fur gt (s) gelten zu Lemma 4 und 5 analoge Aussagen Es sei B0=B(Sn)~2s/2. Dann
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gilt:

o2SI2g{a ± 4nm1/2i) Boe±in/4- ^~ + O(ay13/2)

fur 0 < (T < 1, 1 ^ m < F.
Ferner

g (s) O(œ~25/2k23/2) fur Res>0,\s\<k9k^l,
\s ± 4nml/2i\ >œ9 m 1, 2,....

Fûrpup2,... wâhlt man jetzt die Folge aller Primzahlen. Wie im vorigen Beweise

definiert man anhand dieser Folge die Funktionen fj (x), Q (x) und <jx, ferner

_23 1

x ~2 +Q(x)

und fur réelles u

h

Tx(u) Z V(4nq)l2u + a^),

mit

a fiir t (^f) ^ 0
4

a€ + îtt fiir t (q) < 0.

Mit

sup
M>0

erhâlt man dann nach gleicher Rechnung wie in Abschnitt 6 :

n

l Ï5JT
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wegen x(mn) x{m) x{n) fur (m, n)=l (s.[ll], S.161). Fur die letzte Ungleichung
siehe den Beweis von Lemma 2 in [19].

Aus (95) folgt dann, mit ux-> oo fur x-+ oo :

S{u2x )u

Falls nun log log log ux ^ ux/Q(xy, gilt

(x \
c5 log log log logwx

logxj
X

loglogii,<c6
logx

log log log ux ^ log x fiir x > x0.

Also ist jedenfalls

-T3/2 >c7logloglogux,
ux

womit, wegen ux-+oo, Satz 2 fur den £2+-Fall bewiesen ist. Dasselbe Verfahren fûhrt
zur O_-Behauptung.
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