Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 47 (1972)

Artikel: ...-Sätze für zwei arithmetische Funktionen

Autor: Joris, Henri

DOI: https://doi.org/10.5169/seals-36362

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ω-Sätze für zwei arithmetische Funktionen

HENRI JORIS

1. Einleitung

Ziel dieser Arbeit ist der Beweis von Ω -Sätzen für die Restglieder der Idealfunktionen algebraischer Zahlkörper und für die Summenfunktion von Ramanujan's arithmetischer Funktion $\tau(n)$.

Für einen algebraischen Zahlkörper K vom Grade n über dem rationalen Körper \mathbb{Q} sei $\zeta_K(s)$ die Dedekindsche Zetafunktion von K; λ sei das Residuum von $\zeta_K(s)$ bei s=1. Für Re s>1 ist $\zeta_K(s)$ gegeben durch

$$\zeta_K(s) = \sum_{m=1}^{\infty} \frac{a(m)}{m^s}.$$
 (1)

Dabei bedeutet a(m) die Anzahl ganzer Ideale in K, deren Norm m beträgt. Für x>0 ist die Idealfunktion $R_K(x)$ definiert durch

$$R_K(x) = \sum_{m \le x} a(m), \tag{2}$$

was gleich der Anzahl ganzer Ideale in K ist, welche eine Norm kleiner als x haben (das Nullideal nicht mitgezählt). Es gilt

$$R_K(x) \sim \lambda x \quad \text{für} \quad x \to \infty \,.$$
 (3)

(Zu diesen Angaben siehe [12], sowie [13] Seite 155 ff.) Das Restglied der Idealfunktion wird definiert als

$$P_K(x) = R_K(x) - \lambda x. \tag{4}$$

Ich werde folgendes beweisen:

SATZ 1. Es sei K ein algebraischer Zahlkörper des Grades n, λ das Residuum seiner Dedekindschen Zetafunktion, $R_K(x)$ die Idealfunktion von K. Dann gilt für $x \to \infty$:

$$R_K(x) - \lambda x = \Omega_{\pm} \left(x^{(n-1)/2n} \exp \left(c \frac{(\log \log x)^{(n-1)/2n}}{(\log \log \log x)^{(n+1)/2n}} \right) \right)$$
 (5)

mit einer von K abhängigen Konstante c > 0.

Dabei bedeutet Ω_{\pm} folgendes: Es seien g(x), f(x) reelle Funktionen von x, x>0; ferner sei f(x)>0. Dann besagt

$$g(x) = \Omega_+(f(x))$$
 für $x \to \infty$,

dass

$$\limsup_{x\to\infty}\frac{g(x)}{f(x)}>0.$$

Analog besagt

$$g(x) = \Omega_{-}(f(x))$$
 für $x \to \infty$,

dass

$$\lim_{x\to\infty}\inf\frac{g(x)}{f(x)}<0.$$

Schliesslich ist

$$g(x) = \Omega_{\pm}(f(x))$$

gleichbedeutend mit:

$$g(x) = \Omega_+(f(x))$$
 und $g(x) = \Omega_-(f(x))$.

Der zweite Satz bezieht sich auf Ramanujan's τ-Funktion, definiert durch

$$\sum_{m=1}^{\infty} \tau(m) z^m = z \prod_{k=1}^{\infty} (1 - z^k)^{24}, \quad |z| < 1.$$
 (6)

Sowohl die Reihe als das unendliche Produkt sind konvergent für |z| < 1. Die durch sie dargestellte Funktion spielt eine wichtige Rolle in der Theorie der Modulfunktionen. Es gilt nun der

SATZ 2.

$$\sum_{m \le x} \tau(m) = \Omega_{\pm} \left(x^{23/4} \log \log \log x \right). \tag{7}$$

Der Beweis dieses Satzes hängt wesentlich ab von folgendem Ergebnis:

SATZ 3. Es existiert eine Konstante c>0 mit der Eigenschaft, dass

$$\sum_{m \le x} |\tau(m)| \ge cx^{25/4} \quad \text{für} \quad x \ge 1.$$
 (8)

Das bisher beste Resultat für das Restglied $P_K(x)$, welches für alle Körper K beliebigen Grades n gilt, ist

$$\lim_{\substack{x\to\infty\\x\to\infty}}\frac{P_K(x)}{x^{(n-1)/2n}}=\pm\infty,$$
 (9)

siehe [5]. Für $n \ge 4$ gibt es ein Ergebnis von Szegoe und Walfisz, das besser als (5) ist, ebenso für nicht totalreelle kubische Zahlkörper ([20]). Für die übrigen Zahlkörper beweisen sie dieses Resultat einseitig, das heisst, entweder mit Ω_{-} oder mit Ω_{+} , nicht aber mit beiden. Für quadratische Körper siehe auch [1].

Nach oben bewies Landau [17] die Abschätzung:

$$P_K(x) = O(x^{(n-1)/(n+1)})$$
 für $x \to \infty$.

Da $\tau(m)$ nicht für alle m nichtnegativ ist, hat die Summe

$$S(x) = \sum_{m \leq x} \tau(m)$$

keine asymptotische Annäherung durch eine einfache positive Funktion, wie sie etwa die Idealfunktion eines Zahlkörpers besitzt. S(x) hat vielmehr ähnliche Eigenschaften wie das Restglied der Idealfunktion. So bewies W. B. Pennington [19]

$$\lim_{\substack{x \to \infty \\ x \to \infty}} \frac{S(x)}{x^{23/4}} = \pm \infty. \tag{10}$$

Andererseits gilt Rankin's Ergebnis (s.[19])

$$S(x) = O(x^{6-1/10}) \quad \text{für} \quad x \to \infty.$$

Weitere Eigenschaften und eine Liste von Referenzen findet man in [19]. Eine ausführliche Darstellung enthält das 10. Kapitel von [11].

Die Beweise von Satz 1 und Satz 2 folgen einem Verfahren, welches K. S. Gangadharan [10] sowie K. Corradi und J. Katai [8] für die Restglieder der Dirichletschen Teilerfunktion und der Kreisgitterfunktion verwendet haben, wobei sie dieselbe Abschätzung erhielten wie in Satz 1 im Falle n=2. Die Beweise sind eine gekürzte und in einigen Punkten abgeänderte Fassung meiner Dissertation [16], welche ich unter der Anleitung von Prof. K. Chandrasekharan schrieb.

2. Die Reihe $\sum a(m) e^{-sm^{1/n}}$

Eine entscheidende Rolle spielt die Funktion g(s), definiert durch die Gleichung

$$g(s) = \frac{1}{s} \sum_{m=1}^{\infty} a(m) e^{-sm^{1/n}} - \frac{n! \lambda}{s^{n+1}} - \frac{1}{s} \zeta_{K}(0)$$
 (11)

für Res > 0.

LEMMA 1. Es sei Δ der Betrag der Diskriminante von K, r_1 die Anzahl reeller Isomorfismen von K, $2r_2$ die Anzahl der komplexen Isomorfismen von K, $r_1+2r_2=n$. Ferner sei

$$E = (2\pi)^{-1} \Delta^{1/n}, \quad B = (2\pi)^{-n} \Delta^{1/2}.$$

Die für |v| < n konvergente Reihe

$$L(v) = \sum_{m=0}^{\infty} \frac{\Gamma^n \left(1 + \frac{m}{n}\right)}{\Gamma(1+m)} v^m$$
(12)

stellt eine in $\mathbb{C} - \{v \ge n\}$ analytische Funktion dar. Es gilt, für Re s > 0,

$$g(s) = Bi^{r_1 + r_2} \frac{1}{s} \sum_{m=1}^{\infty} \frac{a(m)}{m} M\left(\frac{s}{m^{1/n}}\right), \tag{13}$$

wobei

$$M(s) = \sum_{k=0}^{n} C_k L\left(Eie^{\pi ik/n}s\right). \tag{14}$$

Die C_K sind von r_1 und r_2 abhängige komplexe Konstanten mit der Eigenschaft:

$$C_n = 1, (15)$$

$$\sum_{k=0}^{n} C_k = 0. {16}$$

M(s) ist analytisch in Res > 0 sowie in $|s| < nE^{-1}$, und

$$M(0) = 0. (17)$$

Die Gleichung (13) ist bewiesen für $|s| < nE^{-1}$ in [22], S.11 ff, und in [16], S.23 ff.

Die Fortsetzung von L(v) in das Schlitzgebiet $\Omega_0 = \mathbb{C} - \{v \ge n\}$ erhält man durch Betrachtung des Integrals

$$L_{1}(v) = \frac{1}{2\pi i} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \Gamma(z) \Gamma^{n} \left(1 - \frac{z}{n}\right) v^{-z} dz, \quad v > 0,$$

$$\tag{18}$$

welches absolut konvergiert, denn mit reellem x, y, ist

$$|\Gamma(x+yi)| \sim \sqrt{2\pi} |y|^{x-\frac{1}{2}} e^{-\frac{1}{2}\pi|y|} \quad \text{für} \quad |y| \to \infty \,,$$
 (19)

und zwar gleichmässig in jedem beschränkten x-Intervall (für die Eigenschaften der Gammafunktion siehe [9], Vol. 1). Wegen (19) lässt sich die Integrationsgerade in (18) nach $\frac{1}{2}$ -m, m = 1, 2, ..., verschieben. Man erhält

$$L_{1}(v) = \sum_{k=0}^{m-1} \Gamma^{n} \left(1 + \frac{k}{n} \right) v^{k} \operatorname{Res}_{z=-k} \Gamma(z)$$

$$+ \frac{1}{2\pi i} \int_{\frac{1}{2}-m-i\infty} \Gamma(z) \Gamma^{n} \left(1 - \frac{z}{n} \right) v^{-z} dz$$

$$= \sum_{k=0}^{m-1} \Gamma^{n} \left(1 + \frac{k}{n} \right) v^{k} \frac{(-1)^{k}}{\Gamma(k+1)}$$

$$+ \frac{1}{2\pi i} \int_{\frac{1}{2}-m+i\infty} \Gamma(z) \Gamma^{n} \left(1 - \frac{z}{n} \right) v^{-z} dz.$$

$$(20)$$

Nun ergibt die Stirlingsche Formel, mit z = x + iy,

$$\left|\Gamma\left(z\right)\right| \sim \sqrt{2\pi}|z|^{x-\frac{1}{2}} e^{-x-y \arctan\left(y/x\right)} \quad \text{für} \quad \left|z\right| \to \infty,$$

gleichmässig in $|\arg z| \leq \pi - \delta$, $\delta > 0$. Ferner ist

$$\Gamma(z) = \frac{\pi}{\sin \pi z \cdot \Gamma(1-z)}.$$

Mit einigen leichten Zwischenrechnungen erhält man für $-\infty < y < \infty$, $z = \frac{1}{2} - m + iy$:

$$\begin{split} \left| \Gamma(z) \, \Gamma^{n} \left(1 - \frac{z}{n} \right) v^{-z} \right| \\ &< c \, v^{m - \frac{1}{2}} \, e^{|y| (\operatorname{arctg} (|y|/m) - \operatorname{arctg} (|y|/(n+m)) - \pi)} \, n^{-m} \left(1 + \frac{n}{m} \right) (m + |y|)^{\frac{1}{2}(n-1)} \\ &< c_{1} \, v^{-\frac{1}{2}} \left(\frac{v}{n} \right)^{m} \, e^{-\frac{1}{2}\pi|y|} \, (m + |y|)^{\frac{1}{2}(n-1)}, \end{split}$$

also

$$\begin{split} & \left| \int\limits_{\frac{1}{2}-m-i\infty}^{\frac{1}{2}-m+i\infty} \Gamma\left(z\right) \Gamma^{n} \left(1 - \frac{z}{n}\right) v^{-z} \, dz \right| \\ & < 2c_{1} \, v^{-\frac{1}{2}} \left(\frac{v}{n}\right)^{m} \int\limits_{0}^{\infty} e^{-\frac{1}{2}\pi y} \left(m + y\right)^{\frac{1}{2}(n-1)} \, dy \\ & \leq c_{2} \, v^{-\frac{1}{2}} \left(\frac{v}{n}\right)^{m} \, e^{\frac{1}{2}\pi m} \int\limits_{0}^{\infty} e^{-\frac{1}{2}\pi y} \, y^{\frac{1}{2}(n-1)} \, dy \, . \end{split}$$

Dieser Ausdruck geht gegen 0 für $m \to \infty$, falls $v < ne^{-\frac{1}{2}\pi}$,

$$L_1(v) = L(-v)$$
 für $0 < v < ne^{-\frac{1}{2}\pi}$. (22)

Schreibt man $v=re^{i\vartheta}$, r>0, so folgt aus (19) sofort, dass das Integral in (18) lokal gleichmässig konvergiert für $|\vartheta| < \pi$, wo also $L_1(v)$ analytisch ist. Dies ergibt nun mit (22) die Fortsetzung von L(v) in Ω_0 .

Aus diesem Ergebnis und der Gleichung (16) folgen unmittelbar unsere Behauptungen über die Funktion M(s). Aus (17) folgt M(s) = O(|s|) für $|s| \to 0$, daraus die lokal gleichmässige Konvergenz der Reihe in (13) und die Identität (13). Man benutzt dabei, dass

$$\sum_{m=1}^{\infty} \frac{a(m)}{m^{1+1/n}} < \infty. \tag{23}$$

In [22] und [16] wird gezeigt, dass sich L(v) von beiden Seiten über die Linie v > n analytisch fortsetzen lässt. Zusammen mit (17) erhält man daraus das

KOROLLAR. Die durch (11) definierte Funktion g(s) ist in $|s| < nE^{-1}$ regulär, ebenso auf $Res \ge 0$ mit Ausnahme der Punkte $s = \pm im^{1/n}nE^{-1}$, m = 1, 2, ...; in diesem Regularitätsgebiet wird g(s) durch (13) gegeben.

Während in [16] die Fortsetzung von L(v) über v > n durch elementare, aber etwas komplizierte Weise gegeben wird, benutzt Walfisz in [22] die Existenz einer linearen Differentialgleichung n-ter Ordnung für L(v) und wendet darauf die allgemeine Theorie der Differentialgleichungen im Komplexen an. Es gilt nämlich mit gewissen Konstanten $a_1, ..., a_n$:

$$(v^{n} - n^{n}) L^{(n)}(v) + a_{1}v^{n-1} L^{(n-1)}(v) + \dots + a_{n}L(v) = 0.$$
(24)

Die Singularitäten dieser Gleichung liegen bei

$$v = ne^{(2\pi ik)/n}, \quad k = 1, ..., n,$$

d.h. v > n ist singularitätenfrei, woraus die analytische Fortsetzung folgt.

LEMMA 2. Für $v \in \Omega_0$ und $v \rightarrow n$ ist mit einem $B_1 > 0$:

$$L(v) = B_1 (n - v)^{-\frac{1}{2}(n+1)} + O(|n - v|^{-\frac{1}{2}n} |\log |n - v||)$$
(25)

$$= B_1 (n-v)^{-\frac{1}{2}(n+1)} + O(|n-v|^{-\frac{1}{2}n-\varepsilon}), \varepsilon > 0.$$
 (26)

Ferner existiert ein reelles A, derart dass in Ω_0 gilt:

$$L(v) = O(|v|^{A}) \quad \text{für} \quad |v| \to \infty.$$
 (27)

Die Gleichung (25) ist in [22] bewiesen, (26) folgt trivialerweise aus (25). In [16] beweise ich (26) sogar mit $\varepsilon = 0$, falls $|\arg(n-v)| < \pi - \delta$, $\delta > 0$, ist. Diese Verbesserung ist aber hier ohne Belang. Das Vorzeichen in

$$(n-v)^{-\frac{1}{2}(n+1)}$$

wird so gewählt, dass der Ausdruck für v < n positiv ist.

Die Abschätzung (27) ist in [16] mit A=0 bewiesen. Durch geeignete Verformung des Integrationsweges in (18) erhält man sogar

$$L(v) = O(|v|^{-n} (\log |v|)^{n-1}), \quad |v| \to \infty \quad \text{in} \quad \Omega_0.$$

Da aber der genaue numerische Wert von A nicht wichtig ist, kann man (27) schnell beweisen. Die Gleichung (24) geht durch die Substitution

$$v = w^{-1}, \qquad L(v) = L_2(w)$$

über in

$$L_2^{(n)}(w) = (1 - w^n n^n)^{-1} \sum_{k=1}^n b_k w^{-k} L_2^{(n-k)}(w),$$

mit Konstanten $b_1, ..., b_n$. Für diese Differentialgleichung ist w=0 eine Stelle der Bestimmtheit (s.[3]), woraus folgt

$$L_2(w) = O(|w|^{-A}), \quad \text{für } w \to 0,$$

also (27), mit einem gewissen reellen A.

Für die Funktion M(s) erhält man aus Lemma 2, falls $D=nE^{-1}$ gesetzt wird (mit $\varepsilon = \frac{1}{4}$ in (26)):

LEMMA 3. Für $0 < \sigma < D$ ist

$$M(\sigma + iD) = B_2 e^{(r_1 + r_2 - (n+1)/2)(\pi/2)i} \sigma^{-(n+1)/2} + O(\sigma^{-(n/2+1/4)})$$
(28)

mit einem $B_2 > 0$. Ferner gilt für $0 < \varepsilon < D$, $R \ge \frac{1}{2}D$, Res > 0, $|s| \le R$, $|s \pm iD| \ge \varepsilon$:

$$M(s) = O\left(\varepsilon^{-(n+1)/2} R^A\right) \tag{29}$$

mit einem $A \ge 0$.

Lemma 1 und Lemma 3 ermöglichen uns nun eine Bestimmung des Verhaltens von g(s) in Re s>0, insbesondere in der Nähe von ∞ und nahe den Singularitäten $s=\pm im^{1/n}D, m=1, 2, 3, ...$

LEMMA 4. Es sei $Y \ge 2$, $1 \le m \le Y$, m ganz, $0 < \sigma < D$. Dann ist mit positiven Konstanten B_0 , A:

$$\sigma^{(n+1)/2} g\left(\sigma \pm i m^{1/n} D\right) = B_0 e^{\pm i \pi (r_1 - 3)/4} \frac{a(m)}{m^{(n+1)/2n}} + O\left(\sigma^{1/4} Y^A\right). \tag{30}$$

LEMMA 5. Es sei $0 < \omega < D$, $k \ge 1$, Re s > 0, $|s| \le k$, sowie $|s \pm im^{1/n}D| > \omega$, m = 1, 2, 3, ... Dann ist

$$g(s) = O\left(\omega^{-(n+1)/2} k^A\right) \tag{31}$$

mit einem $A \geqslant 0$.

Da die Beweise sehr ähnlich wie in [10] verlaufen, beweise ich hier nur Lemma 5. (Für eine genaue Durchführung siehe [16].) Es ist

$$g(s) = \frac{i^{r_1 + r_2} B}{s} \left(\sum_{m \le (2k/D)^n} + \sum_{m > (2k/D)^n} \right) \frac{a(m)}{m} M\left(\frac{s}{m^{1/n}}\right)$$
$$= \sum_{1} + \sum_{2}.$$

Ferner

$$|sm^{-1/n} \pm iD| = m^{-1/n} |s \pm iDm^{1/n}| > m^{-1/n} \omega, \qquad m = 1, 2, ...$$

 $|sm^{-1/n}| \le \frac{k}{m^{1/n}}.$

Da $m^{-1/n}\omega < D$ sowie $km^{-1/n} \ge \frac{1}{2}D$ für $m \le (2k/D)^n$, so folgt aus (29) falls $|s| > \frac{1}{2}D$:

$$\sum_{1} = O\left(\sum_{m \leq (2k/D)^{n}} \frac{a(m)}{m} m^{(n+1)/2n} \omega^{-(n+1)/2} k^{A} m^{-A/n}\right)$$

$$= O\left(\sum_{m \leq (2k/D)^{n}} m^{\varepsilon - 1 + (n+1-2A)/2n} k^{A} \omega^{-(n+1)/2}\right)$$

$$= O\left(k^{A_{1}} \omega^{-(n+1)/2}\right).$$
(32)

Denn $a(m) = O(m^{\varepsilon})$ für alle $\varepsilon > 0$, siehe z.B. [6], Lemma 9. Falls $m > (2k/D)^n$, ist $|s|m^{-1/n} \le kD/(2k) = \frac{1}{2}D$, also, weil M(v) = O(|v|) für $|v| \le \frac{1}{2}D(M(0) = 0)$,

$$\sum_{2} = O\left(\frac{1}{|s|} \sum_{m>(2k/D)^{n}} \frac{a(m)|s|}{m^{1+1/n}}\right) = O(1).$$
(33)

Aus (32) und (33) folgt (31) mit A für A_1 , falls $|s| > \frac{1}{2}D$. Für $|s| \le \frac{1}{2}D$ ist aber wegen dem Korollar zu Lemma 1 sogar g(s) = O(1).

3. Eine Folge von Primzahlen, welche Norm eines Ideals sind

Ich beweise hier ein Resultat, das zwar implizit aus bekannten Formeln der analytischen Theorie der Primzahlen folgt, das ich aber nirgends in der speziellen, hier benötigten Fassung finden konnte.

LEMMA 6. Es sei K ein algebraischer Zahlkörper. Dann existiert eine Folge von Primzahlen $p_1, p_2, ...$ mit $a(p_i) \ge 1$, und mit der Eigenschaft:

$$\sum_{p_j \leqslant x} 1 \sim c \frac{x}{\log x} \quad \text{für} \quad x \to \infty \,, \tag{34}$$

wo c > 0 eine von K abhängige Konstante ist.

Beweis. Es sei K_0 die Galoissche Abschliessung von K. Jede rationale Primzahl hat in K_0 folgende Zerfällung in Primfaktoren ([14], Bd. 2, S.38 ff., Satz 11):

$$p = (\mathfrak{p}_1 \dots \mathfrak{p}_g)^{e_0}$$
 $Nm(\mathfrak{p}_j) = p^f, \qquad j = 1, \dots, g, \qquad f = G(p) = \text{Grad von } p,$
 $e_0 g f = N,$

wo $N = [K_0 : \mathbf{Q}]$. Es ist $e_0 = 1$, genau wenn (d, p) = 1, wobei d die Diskriminante von K_0 ist. Für Re s > 1 ist

$$\zeta_{K_0}(s) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{Nm(\mathfrak{p})^s} \right)^{-1} = \\
= \prod_{\substack{(Nm(\mathfrak{p}), d) > 1}} \left(1 - \frac{1}{Nm(\mathfrak{p})^s} \right)^{-1} \prod_{\substack{f \mid N \ G(p) = f \\ f > 1 \ (p, d) = 1}} \left(1 - \frac{1}{p^{fs}} \right)^{-N/f} \times \\
\times \prod_{\substack{G(p) = 1 \\ (p, d) = 1}} \left(1 - \frac{1}{p^s} \right)^{-N}.$$

Das erste Produkt ist endlich, das zweite konvergiert absolut für $\operatorname{Re} s > \frac{1}{2}$. Diese beiden Produkte definieren also eine Funktion $\xi(s)$, welche in $\operatorname{Re} s > \frac{1}{2}$ analytisch und nullstellenfrei ist. Da $\zeta_{K_0}(1+it) \neq 0$ für reelles $t \neq 0$, und da $\zeta_{K_0}(s)$ für $\operatorname{Re} s \geqslant 1$ analytisch ist bis auf einen einfachen Pol bei s = 1, gilt dasselbe für Z(s),

$$Z(s) = \prod_{\substack{G(p)=1\\(p,d)=1}} \left(1 - \frac{1}{p^s}\right)^N = \prod_{j=1}^{\infty} \left(1 - \frac{1}{p_j^s}\right)^N, \quad \text{Re} s > 1.$$

Das Produkt muss unendlich sein, weil sonst Z(s) nicht einen Pol bei s=1 haben könnte, man kann also die p in einer unendlichen Folge anordnen. Nun beweist man die Behauptung

$$\sum_{p_j \leqslant x} 1 \sim \frac{1}{N} \frac{x}{\log x}, \qquad x \to \infty, \tag{35}$$

sowie die Behauptung

$$\sum_{p_j \leq x} \log p_j \sim \frac{1}{N} x, \qquad x \to \infty, \tag{36}$$

genau gleich wie den gewöhnlichen Primzahlsatz (s.z.B.[4]). Aus (35) folgt aber Lemma 6, denn wenn p_j Norm eines Ideals in K_0 ist, so erst recht Norm eines Ideals in K, also $a(p_j) \ge 1$. Aus (36) folgt überdies

$$\vartheta_K(x) \sim cx, \qquad x \to \infty,$$
 (37)

wobei

$$\vartheta_K(x) = \sum_{p_j \leqslant x} \log p_j. \tag{38}$$

4. Die lineare Unabhängigkeit von n-ten Wurzeln aus quadratfreien Zahlen

Besicovitch [2] bewies einen Satz über lineare Unabhängigkeit von n-ten Wurzeln aus quadratfreien ganzen Zahlen, falls man für die Wurzeln den reellen Wert wählt. Dieser Satz spielt eine wichtige Rolle in den Beweisen der Ω -Sätze in [5], [8], [10], [15], [19], wo stets nur die reellen Wurzeln benutzt werden. Ich brauche dasselbe Resultat für gewisse komplexe Wurzeln.

LEMMA 7. Es seien $p_1, ..., p_k$ paarweise verschiedene Primzahlen; $\alpha_1, ..., \alpha_k$ seien n-te (reelle oder komplexe) Wurzeln aus $p_1, ..., p_k$. $P(x_1, ..., x_k)$ sei ein rationales

Polynom von höchstens (n-1)-tem Grad in jeder Variabeln x_i , $P \not\equiv 0$. Dann ist auch

$$P(\alpha_1,\ldots,\alpha_k)\neq 0.$$

Nach [2] ist dieser Satz richtig für reelle Wurzeln α_j . Dies sei hier vorausgesetzt. Zum Beweise braucht man folgeneden Hilfssatz:

Es sei n eine natürliche Zahl, $n \ge 2$, L ein reeller Körper, a eine Zahl aus L, a > 0. Für alle von 1 verschiedenen Teiler b von n solle die Gleichung $x^b - a = 0$ keine Lösung in L haben. Dann ist $x^n - a$ irreduzibel in L[x].

Beweis des Hilfssatzes: Es sei

$$x^{n}-a=f\left(x\right) h\left(x\right) ,$$

 a_1 die positive *n*-te Wurzel von $a, f(a_1) = 0$, t der Grad von f(x). Da $a_1 \notin L$, ist $2 \le t \le n$; f(x) sei normiert, d.h.

$$f(x) = x^t + \dots + c_0.$$

Die übrigen Wurzeln von f(x) sollen $a_2, ..., a_t$ heissen, also

$$f(x) = (x - a_1) \dots (x - a_t).$$

Daraus folgt $a_1 a_2 \dots a_t \in L$. Da $a_j = \varepsilon_j a_1, \varepsilon_j^n = 1$, gilt

$$a_1 \ldots a_t = a_1^t \, \varepsilon_1 \ldots \varepsilon_t = a_1^t \, \varepsilon, \quad \varepsilon^n = 1.$$

Also ist ε reell, d.h. $\varepsilon = \pm 1$, und $a_1^t \in L$. Nun sei (n, t) = b, yn - zt = b für zwei natürliche Zahlen y, z; somit gilt

$$a_1^b (a_1^t)^z = a_1^{b+zt} = a_1^{ny} = a_1^y \in L.$$

Da $a_1^t \in L$, folgt schliesslich $a_1^b \in L$. a_1^b ist aber eine Wurzel von $x^{n/b} - a = 0$. Die Voraussetzung des Hilfssatzes ergibt dann n/b = 1, n = b, also n = t und schliesslich $f(x) = x^n - a$, h(x) = 1. Damit ist der Hilfssatz bewiesen.

Der Beweis von Lemma 7 ist jetzt einfach. Es seien β_1, \ldots, β_k die positiven *n*-ten Wurzeln von p_1, \ldots, p_k , also

$$P(\beta_1,\ldots,\beta_k)\neq 0.$$

Bekanntlich hat

$$x^b - p_1 = 0, \quad b \geqslant 2,$$

keine Lösung in Q. Nach dem Hilfssatz ist dann $x^n - p_1$ in Q [x] irreduzibel. $\beta_1 \rightarrow \alpha_1$

erzeugt also einen Isomorfismus $\mathbf{Q}(\beta_1) \rightarrow \mathbf{Q}(\alpha_1)$ über \mathbf{Q} . Ebenso hat

$$x^b - p_2 = 0, \quad b \geqslant 2, \quad b \mid n,$$

keine Lösung in $\mathbf{Q}(\beta_1)$, sonst wäre

$$p_2^{1/b} = \beta_2^{n/b} = f(\beta_1),$$

wo f ein rationales Polynom von höchstens (n-1)-tem Grade in β_1 ist, also

$$g(\beta_1,\beta_2)=0,$$

mit

$$g(x_1, x_2) = f(x_1) - x_2^{n/b}$$
.

Es ist aber $g \not\equiv 0$, und der Grad von g ist in x_1 und x_2 höchstens n-1. Das ist nicht möglich wegen der Richtigkeit von Lemma 7 für reelle Wurzeln. Nach dem Hilfssatz ist also x^n-p_2 irreduzibel in $\mathbf{Q}(\beta_1)[x]$. Daraus folgt, dass $\beta_1 \to \alpha_1$, $\beta_2 \to \alpha_2$ einen Isomorfismus $\mathbf{Q}(\beta_1, \beta_2) \to \mathbf{Q}(\alpha_1, \alpha_2)$ über \mathbf{Q} erzeugt. Auf diese Weise fortfahrend, erhält man durch $\beta_1 \to \alpha_1, \ldots, \beta_k \to \alpha_k$ einen Isomorfismus $\mathbf{Q}(\beta_1, \ldots, \beta_k) \to \mathbf{Q}(\alpha_1, \ldots, \alpha_k)$ über \mathbf{Q} , woraus die Behauptung folgt (da sie ja für β_1, \ldots, β_k anstelle von $\alpha_1, \ldots, \alpha_k$ richtig ist). (Die hier benötigte Algebra findet man in [21], 5. Kap.)

5. Die Funktion $\tilde{\eta}(x)$

Nun sei ein x>1 fest vorgegeben; $p_1, ..., p_k$ seien die k Primzahlen aus der Folge $p_1, p_2, ...$ in Lemma 6, welche kleiner als x sind. $1=q_1, q_2, q_3, ..., q_k$ seien die $k=2^k$ quadratfreien ganzen Zahlen mit Primteilern aus $p_1, ..., p_k$. Wir suchen eine untere Abschätzung für $\tilde{\eta}(x)$, wo

$$\tilde{\eta}(x) = \inf \left\{ \eta \mid \eta = |m^{1/n} + \sum_{j=1}^{h} r_j q_j^{1/n}|, \quad r_j = 0, \pm 1, \\ \sum_{j=1}^{h} r_j^2 \ge 2, \quad m = 1, 2, \dots \right\}.$$
(39)

Wegen Lemma 7 sind alle η von 0 verschieden, und wie in [10] zeigt man, dass $1 > \tilde{\eta}(x) > 0$, ferner dass das Infimum erreicht wird, d.h. dass ein η_0 existiert mit $\eta_0 = \tilde{\eta}(x)$. Wenn dann

$$\eta_0 = \left| m_0^{1/n} + \sum_{j=1}^n r_j q_j^{1/n} \right|, \tag{39'}$$

zeigt man noch, dass

$$m_0 \leqslant \left(\sum_{j=1}^h q_j^{1/n} + 1\right)^n.$$
 (40)

Es ist

$$\log q_j \leqslant \log q_h = \sum_{i=1}^k \log p_i = \vartheta_K(x) \leqslant c_1 x, \tag{41}$$

wegen (37) und (38), also

$$m_0 \le (he^{c_2x})^n = e^{c_3x + c_4k} \le e^{c_5x},$$
 (42)

da nach Lemma 6 $k \le c_6 x/\log x$. Es sei μ die Anzahl verschiedener Primteiler von m_0 , $2 = p'_1, p'_2, \dots$ die Folge aller Primzahlen. Dann ist

$$m_0 \geqslant p'_1 p'_2 \dots p'_{\mu} = \exp\left(\sum_{j=1}^{\mu} \log p'_j\right) = \exp(\vartheta(p'_{\mu})) = r(\mu),$$

wo $\vartheta(x)$ eine der arithmetischen Funktionen von Tschebischeff bedeute. Für diese gilt $\vartheta(x) \sim x$, wenn $x \to \infty$ (s.[4], S.64 ff, S. 128). Es ist

$$\begin{split} \log r\left(\mu\right) &= \vartheta\left(p_{\mu}'\right) \sim p_{\mu}' \sim \mu \log \mu, & \mu \to \infty, \\ \log \log r\left(\mu\right) \sim \log \mu, & \mu \to \infty, \\ \frac{\log r\left(\mu\right)}{\log \log r\left(\mu\right)} \sim \mu, & \mu \to \infty. \end{split}$$

Für $\mu \geqslant \mu_0$ folgt dann

$$\frac{\log m_0}{\log \log m_0} \geqslant \frac{\log r(\mu)}{\log \log r(\mu)} \geqslant \frac{1}{2}\mu.$$

Also, mit (42),

$$\mu \leqslant c_9 \frac{\log m_0}{\log \log m_0} \leqslant c_{10} \frac{x}{\log x},\tag{43}$$

für $x > x_0$. Nun kann man (39') schreiben als

$$\tilde{\eta}(x) = \eta_0 = F(P_1^{1/n}, ..., P_N^{1/n}),$$
(44)

wo $P_1, ..., P_N$ verschiedene Primzahlen sind, $F \not\equiv 0$ ein Polynom in N Variablen mit ganzen rationalen Koeffizienten, vom Grade $\leq n-1$ in jeder Variabeln,

 $F = F(x_1, ..., x_N)$. Ferner ist

$$N \leqslant k + \mu \leqslant c_{11} \frac{x}{\log x}.$$

Wir definieren

$$F_0 = \prod_{\substack{(k_1, \ldots, k_N) \\ k_j \bmod n}} F(\varepsilon^{k_1} x_1, \ldots, \varepsilon^{k_N} x_N),$$

 $\varepsilon = \exp(2\pi i/n)$. F_0 ist ein Polynom in x_1, \ldots, x_N , mit ganzen Koeffizienten aus dem n-ten Kreisteilungskörper. Übt man auf F_0 einen der $\varphi(n)$ Automorfismen $\tau: \varepsilon \to \varepsilon^r$, (r, n) = 1, aus, erhält man

$$\tau F_0 = \prod_{\substack{(k_1, \dots, k_N) \\ k_j \bmod n}} F\left(\varepsilon^{rk_1} x_1, \dots, \varepsilon^{rk_N} x_N\right)$$
$$= \prod_{\substack{(m_1, \dots, m_N) \\ m_j \bmod n}} F\left(\varepsilon^{m_1} x_1, \dots, \varepsilon^{m_N} x_N\right) = F_0.$$

Also ist F_0 in $\mathbb{Z}[x_1, ..., x_N]$. Ähnlich sieht man, dass F_0 sich nicht ändert, falls ein x_j durch εx_j ersetzt wird. Somit ist F_0 nur von den n-ten Potenzen von x_j abhängig,

$$F_0(x_1,...,x_N) = F_1(x_1^n,...,x_N^n),$$

$$|F_0(P_1^{1/n},...,P_N^{1/n})| = |F_1(P_1,...,P_N)| \ge 1,$$

da der Ausdruck links nach Lemma 7 nicht verschwindet und zudem ganz rational ist. Nun verfährt man wie in [10] und [8] und erhält:

$$\log \frac{1}{\tilde{\eta}(x)} \leqslant \exp\left(c \frac{x}{\log x}\right) \quad \text{für} \quad x \geqslant p_1, \tag{45}$$

mit einem c > 0.

6. Der Beweis von Satz 1

Nach diesen Vorbereitungen lässt sich der Beweis von Satz 1 genau wie in [8] und [10] durchführen. Wir definieren

$$Q(x) = \exp\left(a\frac{x}{\log x}\right),\tag{46}$$

wobei a > 0 und a so gewählt ist, dass

$$\frac{1}{\tilde{\eta}\left(x\right)} \leqslant Q\left(x\right) \tag{47}$$

und

$$h = 2^k \leqslant \exp\left(\frac{1}{2}a \frac{x}{\log x}\right), \quad k = \sum_{p_j \leqslant x} 1.$$
 (48)

Ferner sei

$$\sigma_{x} = e^{-2Q(x)},\tag{49}$$

$$\theta_x = \frac{n-1}{2} + \frac{1}{Q(x)}.\tag{50}$$

Mit

$$V(\xi) = 1 + \frac{1}{2}e^{i\xi} + \frac{1}{2}e^{-i\xi} = 2(\cos\frac{1}{2}\xi)^2, \quad \alpha = \pi \frac{r_1 - 3}{4},$$

definieren wir

$$T_x(u) = \prod_{j=1}^h V(Dq_j^{1/n}u + \alpha), \quad x \geqslant p_1.$$
 (51)

Es ist sicher

$$T_x(u) \geqslant 0$$
 für reelles u .

Für ein trigonometrisches Polynom $T(u) = \sum_{\nu=1}^{r} c_{\nu} e^{-i\alpha_{\nu}u}$, α_{ν} , u reell, c_{ν} komplex, und für eine in Res > 0 definierte komplexe Funktion H(s) bedeute $T \wedge H$ folgende Funktion:

$$T \wedge H(\sigma) = \sum_{\nu=1}^{r} c_{\nu} H(\sigma + i\alpha_{\nu}), \quad \sigma > 0.$$

Weiter sei

$$\gamma_{x} = \sup_{u>0} \frac{P_{K}(u^{n})}{u^{\theta_{x}}} = \sup_{u>0} \left(\frac{P_{K}(u^{n})}{u^{\left(\frac{1}{Q(x)} + \frac{n-1}{2}\right)}} \right). \tag{52}$$

Wegen (9) ist

$$\gamma_x > 0. ag{53}$$

Für u < 1 ist $P_K(u^n) = O(u^n)$ und, für $x \ge x_0$, $\theta_x \le \frac{1}{2}n$, also

$$P_K(u^n) u^{-\theta_x} = O(1)$$
 für $u \to 0$.

Daher ist, falls $\gamma_x = \infty$, $P_K(u) = \Omega_+(u^{\theta_x/n})$, was viel stärker ist als die Ω_+ -Behauptung

in Satz 1. Wir können daher $\gamma_x < \infty$ annehmen. Dann ist

$$\gamma_x u^{\theta_x} - P_K(u^n) \geqslant 0$$
 für $u \geqslant 0$,

also, wegen $T_x(u) \ge 0$,

$$J_{x} = \sigma_{x}^{(n+1)/2} \int_{0}^{\infty} (\gamma_{x} u^{\theta_{x}} - P_{K}(u^{n})) e^{-\sigma_{x} u} T_{x}(u) du \ge 0.$$
 (54)

Anderseits rechnet man leicht aus, dass

$$J_{x} = \sigma_{x}^{(n+1)/2} \gamma_{x} \Gamma\left(\theta_{x} + 1\right) T_{x} \wedge I_{\theta_{x}+1}\left(\sigma_{x}\right) - \sigma_{x}^{(n+1)/2} \zeta_{K}(0) T_{x} \wedge I_{1}\left(\sigma_{x}\right) - \sigma_{x}^{(n+1)/2} T_{x} \wedge g\left(\sigma_{x}\right),$$

$$\left. \right\}$$
(55)

wobei für reelles β und für Res>0 gelte: $I_{\beta}(s) = s^{-\beta}$. g(s) ist die durch (11) definierte Funktion. Als nächstes müssen wir die Summanden in (55) genauer untersuchen. Zu diesem Zwecke wird $T_x(u)$ in vier Summanden zerlegt:

$$T_{x} = T_{x, 0} + T_{x, 1} + \overline{T}_{x, 1} + T_{x, 2},$$

$$T_{x, 0} \equiv 1, \quad T_{x, 1}(u) = \frac{1}{2} \sum_{j=1}^{h} e^{+i\alpha} e^{+iDq_{j}^{1/n}u},$$

$$\overline{T}_{x, 1}(u) = \frac{1}{2} \sum_{j=1}^{h} e^{-i\alpha} e^{-iDq_{j}^{1/n}u} = \overline{T}_{x, 1}(u),$$

$$T_{x, 2}(u) = \sum_{j=1}^{N} b_{m} e^{-i\beta_{m}u},$$
(56)

wobei

$$N = 3^h - 2h - 1. (57)$$

Die b_m sind komplexe Zahlen mit $|b_m| \leq \frac{1}{4}$, die β_m reelle Zahlen der Form

$$\beta_m = D \sum_{j=1}^h r_{m,j} q_j^{1/n}; \quad r_{m,j} = 0, \pm 1, \sum_{j=1}^h r_{m,j}^2 \ge 2.$$

Aus der Definition (39) von $\tilde{\eta}(x)$ und aus (45) folgt

$$|\beta_{\nu} \pm Dm^{1/n}| \ge D\tilde{\eta}(x) \ge De^{-Q(x)}, \quad \nu = 1, ..., N;$$

$$m = 0, 1, 2,$$
(58)

Wir beweisen jetzt

$$T_x \wedge I_{\beta}(\sigma) - \sigma^{-\beta} = O\left(3^h e^{nQ(x)}\right) \tag{59}$$

für $\sigma > 0$, $0 \le \beta \le n$, $x \ge p_1$. Denn es ist

$$T_{x,0} \wedge I_{\beta}(\sigma) - \sigma^{-\beta} = 0, \tag{60}$$

$$|T_{x,1} \wedge I_{\beta}(\sigma)| = \frac{1}{2} |\sum_{j=1}^{h} e^{i\alpha} (\sigma - iDq_{j}^{1/n})^{-\beta}|$$

$$\leq \frac{1}{2} D^{-\beta} |\sum_{j=1}^{h} q_{j}^{-\beta/n}| = O(h).$$
(61)

Analog gilt

$$\bar{T}_{x,1} \wedge I_{\beta}(\sigma) = O(h). \tag{62}$$

Schliesslich ist

$$|T_{x,2} \wedge I_{\beta}(\sigma)| = |\sum_{m=1}^{N} b_{m}(\sigma + i\beta_{m})^{-\beta}| \leq \frac{1}{4} \sum_{m=1}^{N} |\beta_{m}|^{-\beta}$$

$$= O(Ne^{\beta Q(x)}) = O(3^{h} e^{nQ(x)})$$
(63)

wegen (57) und (58). Durch Addition von (60) bis (63) ergibt sich (59). Nun beweisen wir

LEMMA 8. Für $x \rightarrow \infty$ ist

$$\sigma_x^{(n+1)/2} \{ T_x \wedge I_{\theta_x+1} (\sigma_x) \} = e^2 + o(1)$$
(64)

$$\sigma_x^{(n+1)/2} \{ T_x \wedge I_1(\sigma_x) \} = o(1)$$
(65)

$$\sigma_x^{(n+1)/2} \left\{ T_x \wedge g\left(\sigma_x\right) \right\} = B_0 \sum_{j=1}^{h(x)} \frac{a\left(q_j\right)}{q_j^{(n+1)/2n}} + o\left(1\right). \tag{66}$$

Bemerkung. h=h(x); die Numerierung der q_j wechselt, wenn sich x ändert; wesentlich ist, dass es sich in der Summe in (66) um jene quadratfreien ganzen Zahlen handelt, welche sich aus den $p_j \le x$ bilden lassen, wo $p_1, p_2, ...$ die Folge aus Lemma 6 bedeutet.

Beweis von (64):

$$\begin{split} \sigma_{x}^{(n+1)/2} \left\{ T_{x} \wedge I_{\theta_{x}+1} \left(\sigma_{x} \right) \right\} &= \sigma_{x}^{(n+1)/2} \left\{ T_{x} \wedge I_{\theta_{x}+1} \left(\sigma_{x} \right) - \sigma_{x}^{-\theta_{x}-1} \right\} + \sigma_{x}^{(n+1)/2 - \theta_{x}-1} \\ &= O \left(\sigma_{x}^{(n+1)/2} 3^{h} e^{nQ(x)} \right) + \sigma_{x}^{-1/Q(x)} \end{split}$$

wegen (59), da $\theta_x + 1 \le n$ für $x \ge x_0$; also, mit (49):

$$\sigma_x^{(n+1)/2} \left\{ T_x \wedge I_{\theta_x+1} \left(\sigma_x \right) \right\} = e^2 + O\left(3^h e^{-Q(x)} \right) = e^2 + o\left(1 \right).$$

Denn nach (48) ist $h \log 3 = O(Q(x)^{1/2})$.

Der Beweis von (65) verläuft gleich:

$$\sigma_x^{(n+1)/2} \left\{ T_x \wedge I_1(\sigma_x) \right\} = \sigma_x^{(n-1)/2} + \sigma_x^{(n+1)/2} \left\{ T_x \wedge I_1(\sigma_x) - \sigma_x^{-1} \right\}$$

$$= o(1) + o(1).$$

Beweis von (66): Wegen $g(\sigma_x) = O(1)$ für $\sigma_x \to 0$ ist:

$$\sigma_x^{(n+1)/2} T_{x,0} \wedge g(\sigma_x) = \sigma_x^{(n+1)/2} g(\sigma_x) = O(\sigma_x^{(n+1)/2}) = o(1). \tag{67}$$

Ferner ist

$$\sigma_x^{(n+1)/2} T_{x,1} \wedge g(\sigma_x) = \frac{1}{2} e^{i\alpha} \sum_{j=1}^h \sigma_x^{(n+1)/2} g(\sigma_x - iq_j^{1/n}D).$$

Durch Anwendung von Lemma 4 mit $Y = q_h^{1/n}$ ergibt sich

$$\sigma_{x}^{(n+1)/2} \left\{ T_{x,1} \wedge g(\sigma_{x}) \right\} = \frac{1}{2} e^{i\alpha - i\pi((r_{1}-3)/4)} B_{0} \sum_{j=1}^{h} \frac{a(q_{j})}{q_{j}^{(n+1)/2n}} + O(\sigma_{x}^{1/4} h q_{h}^{A/n})$$

$$= \frac{1}{2} B_{0} \sum_{j=1}^{h} \frac{a(q_{j})}{q_{j}^{(n+1)/2n}} + O(e^{-\frac{1}{2}Q(x)} e^{c_{1}x/\log x + c_{2}x})$$

$$= \frac{1}{2} B_{0} \sum_{j=1}^{h} \frac{a(q_{j})}{q_{j}^{(n+1)/2n}} + o(1)$$

$$(68)$$

wegen (41) und weil $h = 2^k$, $k = O(x/\log x)$, nach Lemma 6. Ebenso ist

$$\sigma_x^{(n+1)/2} \left\{ \overline{T}_{x,1} \wedge g\left(\sigma_x\right) \right\} = \frac{1}{2} B_0 \sum_{j=1}^h \frac{a\left(q_j\right)}{q_j^{(n+1)/2n}} + o\left(1\right). \tag{69}$$

Schliesslich ist

$$\sigma_x^{(n+1)/2} \{ T_{x,2} \wedge g(\sigma_x) \} = \sigma_x^{(n+1)/2} \sum_{j=1}^N b_j g(\sigma_x + i\beta_j).$$
 (70)

Nun ist, nach (58),

$$|\sigma_x + i\beta_i \pm Dim^{1/n}| \ge |\beta_i \pm Dm^{1/n}| \ge D e^{-Q(x)}, \quad m = 0, 1, 2, ...,$$

und für $x \ge x_0$,

$$|\sigma_x + i\beta_i| \leqslant \sigma_x + hq_h^{1/n} \leqslant 2hq_h^{1/n}.$$

Nun lässt sich auf (70) Lemma 5 anwenden mit $\omega = De^{-Q(x)}$, $k = 2hq_h^{1/n}$:

$$\sigma_{x}^{(n+1)/2} \left\{ T_{x, 2} \wedge g(\sigma_{x}) \right\} = O(\sigma_{x}^{(n+1)/2} h^{A} q_{h}^{A/n} e^{((n+1)/2)Q(x)} N)
= O(e^{-((n+1)/2)Q(x)} e^{h \log 3} h^{A} q_{h}^{A/n})
= O(e^{-((n+1)/2)Q(x) + c(Q(x))^{1/2}} e^{c_{1}x/\log x + c_{2}x})
= o(1)$$
(71)

mit gleichen Überlegungen wie weiter unten. Aus (67), (68), (69) und (71) erhält man (66) durch Addition.

Setzt man nun in (55) die Abschätzung von Lemma 8 ein, erhält man wegen (54):

$$(e^{2} + o(1)) \gamma_{x} \Gamma\left(\frac{n+1}{2} + \frac{1}{Q(x)}\right) \geqslant B_{0} \sum_{j=1}^{h} \frac{a(q_{j})}{q_{j}^{(n+1)/2n}} + o(1).$$
 (72)

Da $Q(x) \to \infty$ für $x \to \infty$, und a(m)a(n) = a(nm) für (n, m) = 1, folgt

$$e^{2}\gamma_{x}\Gamma\left(\frac{n+1}{2}\right)\left(1+o(1)\right) \geqslant B_{0}\prod_{j=1}^{k}\left(1+\frac{a(p_{j})}{p_{j}^{(n+1)/2n}}\right)+o(1).$$

Da $a(p_i) \ge 1$, ergibt dies mit C > 0:

$$\gamma_{x} \ge C \exp\left(\sum_{j=1}^{k} \log\left(1 + \frac{a(p_{j})}{p_{j}^{(n+1)/2n}}\right)\right) \ge C \exp\left(\sum_{j=1}^{k} \log\left(1 + p_{j}^{-(n+1)/2n}\right)\right) \\
\ge C \exp\left(\sum_{j=1}^{k} \left(p_{j}^{-(n+1)/2n} - \frac{1}{2}p_{j}^{-(n+1)/n}\right)\right) \ge C_{1} \exp\left(\sum_{j=1}^{k} p_{j}^{-(n+1)/2n}\right) \\
\ge C_{2} \exp\left(c_{3} \frac{x^{(n-1)/2n}}{\log x}\right), \tag{73}$$

 $\operatorname{da} p_j \sim c_4 j \log j \operatorname{für} j \to \infty$, und $k \sim c_5 x / \log x$, $x \to \infty$.

Sei nun u_x so gewählt, dass

$$P_K(u_x^n) u_x^{-\theta_x} \geqslant \frac{1}{2} \gamma_x,$$

was wegen der Definition von γ_x möglich ist (s.(52), (53)), also folgt aus (73):

$$P_K(u_x^n) u_x^{-\theta_x} \ge \frac{1}{2}C_2 \exp\left(c_3 \frac{x^{(n-1)/2n}}{\log x}\right).$$

Die rechte Seite geht gegen ∞ für $x \to \infty$, also auch u_x , und es gilt

$$P_{K}(u_{x}^{n})/u_{x}^{(n-1)/2} \ge c_{6} \exp\left(c_{3} \frac{x^{(n-1)/2n}}{\log x} + \frac{\log u_{x}}{Q(x)}\right). \tag{74}$$

Wir unterscheiden zwei Fälle:

a)

$$\frac{\log u_x}{Q(x)} \leqslant c_3 \frac{x^{(n-1)/2n}}{\log x}.$$

Durch Logarithmieren ergibt dies für $x \ge x_0$:

$$\log\log u_x\leqslant c_7\frac{x}{\log x},$$

und schliesslich, da $y^{\beta} \log^{\alpha} y$ für grosse y eine monotone Funktion ist:

$$c_7 \frac{(\log \log u_x)^{(n-1)/2n}}{(\log \log \log u_x)^{(n+1)/2n}} \le c_3 \frac{x^{(n-1)/2n}}{\log x}.$$
 (75)

b)

$$\frac{\log u_x}{Q(x)} \geqslant c_3 \frac{x^{(n-1)/2n}}{\log x}. \tag{76}$$

Ferner sei

$$\frac{(\log\log u_x)^{(n-1)/2n}}{(\log\log u_x)^{(n+1)/2n}} \geqslant \frac{\log u_x}{Q(x)},\tag{77}$$

ansonsten Satz 1 bewiesen wäre. Zweimaliges Logarithmieren von (76) ergibt

 $\log\log\log u_x \geqslant c_8\log x,$

einmaliges Logarithmieren von (77) dagegen:

$$\log\log u_x\leqslant c_9\frac{x}{\log x},$$

immer für hinreichend grosses x. Aus den beiden letzten Ungleichungen schliesst man:

$$c_{10} \frac{(\log \log u_x)^{(n-1)/2n}}{(\log \log \log u_x)^{(n+1)/2n}} \le c_3 \frac{x^{(n-1)/2n}}{\log x}. \tag{78}$$

Mit (78), (75) und (74) ist die Ω_+ -Behauptung des Satzes 1 bewiesen, da $u_x \to \infty$ für $x \to \infty$. Der Beweis für Ω_- geht ganz gleich vor sich, mit angepasstem α und γ_x . Damit ist Satz 1 bewiesen.

Bemerkung. Ein einfaches Beispiel für einen kubischen totalreellen Körper ist folgendes:

Es sei p eine Primzahl, m und k natürliche Zahlen, welche folgenden Bedingungen genügen: $1 \le k < m$, (k, p) = 1. Ferner sei $f(x) = x^3 - mpx + kp$. Wegen f(1) < 0, f(-1) > 0 hat f(x) drei reelle Nullstellen. Nach dem Kriterium von Eisenstein ist ausserdem f(x) irreduzibel über Q(x) (s. [21], § 27); falls ξ eine Nullstelle von f(x) ist, so ist $Q(\xi)$ kubisch und total-reell.

7. Eine Ungleichung für $\sum_{m \leq x} |\tau(m)|$

Der Beweis von Satz 2 verläuft nach den gleichen Prinzipien wie jener von Satz 1. Man kennt aber kein Lemma 6 entsprechendes Ergebnis. Als Ersatz dient Formel (8) in Satz 3:

$$\sum_{m \le x} |\tau(m)| > cx^{25/4} \quad \text{für} \quad x \ge 1, \tag{79}$$

mit einem c > 0. Andererseits weiss man ([11], S.173), dass

$$\sum_{m \leq x} |\tau(m)| = O\left(x^{13/2}\right) \quad \text{für} \quad x \geqslant 1.$$
 (80)

Der Beweis von Satz 3 ergibt sich aus folgendem

LEMMA 9. Es gibt zwei positive Zahlen c_1 , c_2 derart, dass zu jedem $y \ge 1$ zwei reelle Zahlen y_1 , y_2 existieren mit folgenden Eigenschaften:

$$y \le y_j \le y + c_1 y^{1/2}, \quad j = 1, 2;$$

 $S(y_1) = \sum_{m \le y_1} \tau(m) \ge c_2 y_1^{23/4},$
 $S(y_2) = \sum_{m \le y_2} \tau(m) \le -c_2 y_2^{23/4}.$

Daraus ergibt sich nun (79) folgendermassen: Es seien c_1 und c_2 die beiden Konstanten aus Lemma 9. Wir setzen

$$c_3 = \max\left(1, \frac{c_1^2}{4}\right),$$

 $y(k) = c_3 k^2, \quad k = 1, 2, 3,$

Es ist

$$y(k) \ge 1$$
, $k = 1, 2, 3, ...$,

ferner

$$y(k+1) - y(k) = 2c_3k + c_3 > 2c_3^{1/2}y(k)^{1/2} \ge c_1y(k)^{1/2}$$
.

Dann folgt aus Lemma 9

$$\begin{split} &\sum_{y(k) < m \leqslant y(k+1)} |\tau(m)| \geqslant 2c_2 y(k)^{23/4} \\ &\sum_{m \leqslant x} |\tau(m)| \geqslant \sum_{y(k+1) \leqslant x} \sum_{y(k) < m \leqslant y(k+1)} |\tau(m)| \\ &\geqslant \sum_{c_3(k+1)^2 \leqslant x} 2c_2 c_3^{23/4} k^{23/2} \\ &\geqslant c_4 \sum_{k \leqslant c_5 x^{1/2}} k^{23/2} \geqslant c_6 x^{25/4}, \quad \text{w.z.b.w.} \end{split}$$

Beweis von Lemma 9 (vgl. [18]): Es sei für $\varrho \ge 0$, x > 0:

$$S_{\varrho}(x) = \sum_{m \leq x} \tau(m) (x - m)^{\varrho} \frac{1}{\Gamma(\varrho + 1)}.$$

Dann gilt, wie man leicht nachrechnet:

$$S_{\varrho+1}(x) = \int_{0}^{x} S_{\varrho}(t) dt.$$
 (81)

Ferner ist für $\varrho > 0$:

$$S_{\varrho}(x) = (2\pi)^{-\varrho} \sum_{m=1}^{\infty} \left(\frac{x}{m}\right)^{6+\varrho/2} \tau(m) J_{12+\varrho} \left\{ 4\pi (mx)^{1/2} \right\}, \tag{82}$$

wo J_{ν} die Besselsche Funktion erster Art ν -ter Ordnung ist, s.[7], (55). Nach [9], Bd. II, S.85, ist für $z \ge 1$:

$$J_{\nu}(z) = \left(\frac{2}{\pi}\right)^{1/2} z^{-\frac{1}{2}} \cos\left(z - \frac{\nu\pi}{2} - \frac{\pi}{4}\right) + O(z^{-3/4}). \tag{83}$$

Aus (80) folgt:

$$\sum_{m=1}^{\infty} \frac{|\tau(m)|}{m^7} = c_3 < \infty , \qquad (84)$$

und daraus weiter

$$\sum_{m=2}^{\infty} |\tau(m)| \ m^{-25/4 - \varrho/2} \le c_3 \ 2^{3/4 - \varrho/2} \le \frac{2^{1/2}}{8}, \tag{85}$$

falls $\varrho \geqslant \varrho_0$, wo ϱ_0 eine genügend grosse natürliche Zahl ist. Nun ist für $\varrho \geqslant 1$ wegen (82), (83) und (84):

$$S_{\varrho}(x) = c_{\varrho} x^{23/4 + \varrho/2} \left\{ \sum_{m=1}^{\infty} \frac{\tau(m)}{m^{25/4 + \varrho/2}} \cos(4\pi (mx)^{1/2} - \frac{5}{4}\pi - \frac{1}{2}\pi\varrho) \right\}$$

$$+ O\left(x^{-1/2} \sum_{m=1}^{\infty} \frac{|\tau(m)|}{m^{27/4 + \varrho/2}} \right)$$

$$= c_{\varrho} x^{23/4 + \varrho/2} \left\{ U_{\varrho}(x) + R_{\varrho}(x) \right\},$$
(86)

wo die c_{ϱ} positive, von ϱ abhängige Konstanten sind, und

$$R_{\varrho}(x) = O(x^{-1/2}). (87)$$

Daraus ergeben sich die Ungleichungen

$$|R_{\varrho}(x)| \le \frac{2^{1/2}}{8} \quad \text{für} \quad x \ge x_0; \quad \varrho = \varrho_0, \varrho_0 + 1, \varrho_0 + 2, \varrho_0 + 3;$$
 (88)

für ein bestimmtes $x_0 \ge 1$. Nun seien k_1, k_2 derart gewählt, dass für $x \ge x_0$ gelte

$$S(y) \le k_2 y^{23/4}$$
 für $x \le y \le x + k_1 x^{1/2} = x + h$. (89)

Ich zeige, dass für ein gewisses grosses k_1 eine positive, von x nicht abhängige Konstante c_4 existiert, derart dass $k_2 \ge c_4 > 0$.

Unter den vier Zahlen $\varrho = \varrho_0$, $\varrho_0 + 1$, $\varrho_0 + 2$, $\varrho_0 + 3$ erfüllt bei gegebnem x sicher eine die Bedingung

$$\cos\left(4\pi(x+h)^{1/2}-\frac{5}{4}\pi-\frac{1}{2}\pi\varrho\right)\geqslant\frac{2^{1/2}}{2}.$$

Dann ist wegen (85), (86) und (88), und weil $\tau(1) = 1$:

$$S_{\varrho}(x+h) = c_{\varrho}(x+h)^{23/4+\varrho/2} \left\{ \cos\left(4\pi(x+h)^{1/2} - \frac{5}{4}\pi - \frac{1}{2}\pi\varrho\right) + \sum_{m=2}^{\infty} \frac{\tau(m)}{m^{25/4+\varrho/2}} \cos\left(4\pi(m(x+h))^{1/2} - \frac{5}{4}\pi - \frac{1}{2}\pi\varrho\right) + R_{\varrho}(x) \right\}$$

$$\geqslant c_{\varrho}(x+h)^{23/4+\varrho/2} \left(\frac{1}{2}2^{1/2} - \frac{2^{1/2}}{8} - \frac{2^{1/2}}{8} \right)$$

$$= \frac{2^{1/2}}{4} c_{\varrho}(x+h)^{23/4+\varrho/2}.$$

$$(90)$$

Aus (89) folgt

$$S(y) \le k_2 (x+h)^{23/4}$$
 für $x \le y \le x+h$.

Diese Ungleichung wird integriert:

$$A = \int_{x}^{x+h} dy \int_{x+h-(x+h-y)/\varrho}^{x+h} dy_{1} \times \int_{y_{1}-(x+h-y)/\varrho}^{y_{1}} dy_{2} \dots \int_{y_{\varrho-1}-(x+h-y)/\varrho}^{y_{\varrho-1}} S(y_{\varrho}) dy_{\varrho} \times \int_{x+h}^{y_{\varrho-1}-(x+h-y)/\varrho} dy_{\varrho} \times \int_{x}^{y_{\varrho-1}-(x+h-y)/\varrho} dy_{\varrho},$$

$$\leq B = k_{2}(x+h)^{23/4} \int_{x}^{x+h} dy \dots \int_{y_{\varrho-1}-(x+h-y)/\varrho}^{y_{\varrho-1}-(x+h-y)/\varrho} dy_{\varrho},$$

$$(91)$$

denn

$$x + h \geqslant y_{\varrho} \geqslant y_{\varrho-1} - \frac{x + h - y}{\varrho} \geqslant y_{\varrho-2} - 2\frac{x + h - y}{\varrho} \dots \geqslant y_1 - (\varrho - 1)\frac{x + h - y}{\varrho}$$
$$\geqslant x + h - \varrho \frac{x + h - y}{\varrho} = y \geqslant x.$$

Für das Integral B gilt:

$$B = k_2 (x+h)^{23/4} \int_{x}^{x+h} \left(\frac{x+h-y}{\varrho}\right)^{\varrho} dy = k_2 (x+h)^{23/4} \left(\frac{h}{\varrho}\right)^{\varrho} \frac{h}{1+\varrho}.$$
 (92)

Für das Integral A gilt, wegen (81):

$$\int_{y_{\varrho-1}-(x+h-y)/\varrho}^{y_{\varrho-1}} S(y_{\varrho}) dy_{\varrho} = S_{1}(y_{\varrho-1}) - S_{1}\left(y_{\varrho-1} - \frac{x+h-y}{\varrho}\right),$$

$$\int_{y_{\varrho-2}-(x+h-y)/\varrho}^{y_{\varrho-2}} dy_{\varrho-1} \int_{y_{\varrho-1}-(x+h-y)/\varrho}^{y_{\varrho-1}} S(y_{\varrho}) dy_{\varrho}$$

$$= S_{2}(y_{\varrho-2}) - 2S_{2}\left(y_{\varrho-2} - \frac{x+h-y}{\varrho}\right) + S_{2}\left(y_{\varrho-2} - 2\frac{x+h-y}{\varrho}\right)$$

und so fort, bis

$$A = \int_{x}^{x+h} \sum_{m=0}^{\varrho} \binom{\varrho}{m} (-1)^m S_{\varrho} \left(x + h - m \frac{x+h-y}{\varrho} \right) dy$$

$$= hS_{\varrho} (x+h) + \sum_{m=1}^{\varrho} \binom{\varrho}{m} (-1)^m \frac{\varrho}{m}$$

$$\times \left(S_{\varrho+1} (x+h) - S_{\varrho+1} \left(x + \left(1 - \frac{m}{\varrho} \right) h \right) \right)$$
(93)

Nun folgt aus (82), (83) und (84):

$$|S_{\varrho+1}(y)| \le c_5 y^{25/4 + \varrho/2}, y \ge 1$$
 (94)

mit einem $c_5 > 0$. Da ferner

$$\sum_{m=1}^{\varrho} \left| \binom{\varrho}{m} (-1)^m \frac{\varrho}{m} \right| \leq \varrho 2^{\varrho},$$

erhalten wir aus (91) bis (94):

$$B = \frac{k_2 \varrho^{-\varrho}}{\varrho + 1} h^{\varrho + 1} (x + h)^{23/4} \geqslant h S_{\varrho} (x + h) - c_5 \varrho 2^{\varrho + 1} (x + h)^{25/4 + \varrho/2},$$

und, wenn man $h = k_1 x^{1/2}$ sowie (90) einsetzt:

$$\begin{split} \frac{k_2\varrho^{-\varrho}}{\varrho+1} \, k_1^{\varrho+1} \, x^{(\varrho+1)/2} \, \big(x + k_1 x^{1/2} \big)^{23/4} \\ & \geqslant k_1 x^{1/2} \, \frac{2^{1/2}}{4} \, c_\varrho \, \big(x + k_1 x^{1/2} \big)^{23/4 + \varrho/2} - c_5 \varrho 2^{\varrho+1} \, \big(x + k_1 x^{1/2} \big)^{25/4 + \varrho/2} \\ & \frac{k_2 k_1^{1+\varrho}}{\varrho^{\varrho} \, (1+\varrho)} \geqslant \big(1 + k_1 x^{-1/2} \big)^{\varrho/2} \, \bigg(\frac{2^{1/2}}{4} \, c_\varrho k_1 - c_5 \varrho 2^{\varrho+1} \, \big(1 + k_1 x^{-1/2} \big) \bigg) \\ & \geqslant \bigg(k_1 \bigg(\frac{2^{1/2}}{4} \, c_\varrho - c_5 \varrho 2^{\varrho+1} x^{-1/2} \bigg) - c_5 \varrho 2^{\varrho+1} \bigg). \end{split}$$

Falls man nun x_0 und damit x gross genug wählt, ergibt sich

$$\frac{k_2 k_1^{1+\varrho}}{\varrho^{\varrho} (1+\varrho)} \geqslant (\frac{1}{4} k_1 c_{\varrho} - c_5 \varrho 2^{\varrho+1}),$$

und weiter für genügend grosses k_1 :

$$k_2 k_1^{1+\varrho} \geqslant \varrho^{\varrho} (\varrho + 1).$$

Für jedes $x \ge x_0$ muss nun eine solche Ungleichung erfüllt sein, wobei ϱ eine der vier Zahlen $\varrho_0, \varrho_0 + 1, \varrho_0 + 2, \varrho_0 + 3$ sein muss. Also

$$k_2 \geqslant \min_{0 \le j \le 3} \frac{(\varrho_0 + j)^{\varrho_0 + 1 + j}}{k_1^{\varrho_0 + 1 + j}} = c_4 > 0.$$

Somit ist die erste Ungleichung in Lemma 9 für $y \ge x_0$ mit $c_1 = k_1$, $c_2 = \frac{1}{2}c_4$ bewiesen. Wählt man nun c_1 noch einmal etwas grösser, so stimmt die Behauptung für alle $y \ge 1$. Die zweite Ungleichung wird gleich bewiesen.

KOROLLAR ZU SATZ 3.

$$\sum_{m \leq x} \frac{|\tau(m)|}{m^{25/4}} \geqslant c' \log x. \tag{95}$$

Beweis.

$$\sum_{m \le x} \frac{|\tau(m)|}{m^{25/4}} = \frac{\sum_{m \le x} |\tau(m)|}{x^{25/4}} + \frac{25}{4} \int_{1}^{x} \sum_{m \le t} |\tau(m)| t^{-29/4} dt$$

$$\geqslant c + \frac{25}{4} c \int_{1}^{x} \frac{dt}{t} \geqslant c' \log x.$$

8. Der Beweis von Satz 2

Der Beweis von Satz 2 lässt sich nun wie der von Satz 1 durchführen. Es ist für Res > 0 (s.[19], Lemma 1, oder [7], (56)):

$$g_1(s) = \frac{1}{s} \sum_{m=1}^{\infty} \tau(m) e^{-sm^{1/2}} = B \sum_{m=1}^{\infty} \frac{\tau(m)}{(s^2 + 16\pi^2 m)^{25/2}},$$

$$B = \Gamma(25/2) 2^{36} \pi^{23/2}.$$
(96)

Für $g_1(s)$ gelten zu Lemma 4 und 5 analoge Aussagen. Es sei $B_0 = B(8\pi)^{-25/2}$. Dann

gilt:

$$\sigma^{25/2}g(\sigma \pm 4\pi m^{1/2}i) = B_0 e^{\pm i\pi/4} \frac{\tau(m)}{m^{25/4}} + O(\sigma y^{13/2})$$
für $0 < \sigma < 1$, $1 \le m \le Y$.

Ferner

$$g(s) = O(\omega^{-25/2}k^{23/2})$$
 für $\text{Re } s > 0, |s| < k, k \ge 1,$
 $|s \pm 4\pi m^{1/2}i| > \omega, \quad m = 1, 2,$

Für $p_1, p_2, ...$ wählt man jetzt die Folge aller Primzahlen. Wie im vorigen Beweise definiert man anhand dieser Folge die Funktionen $\tilde{\eta}(x)$, Q(x) und σ_x , ferner

$$\theta_x = \frac{23}{2} + \frac{1}{Q(x)}$$

und für reelles u

$$T_{x}(u) = \sum_{j=1}^{h} V(4\pi q_{j}^{1/2}u + \alpha_{q_{j}}),$$

mit

$$\alpha_q = -\frac{\pi}{4}$$
 für $\tau(q) \geqslant 0$

$$\alpha_q = +\frac{3}{4}\pi$$
 für $\tau(q) < 0$.

Mit

$$\gamma_x = \sup_{u > 0} \frac{S(u^2)}{u^{\theta_x}}$$

erhält man dann nach gleicher Rechnung wie in Abschnitt 6:

$$\gamma_{x} \geqslant c \sum_{j=1}^{h} \frac{|\tau(q_{j})|}{q_{j}^{25/4}},$$

$$S(u_{x}^{2}) u_{x}^{-\theta_{x}} \geqslant c_{1} \sum_{j=1}^{h} \frac{|\tau(q_{j})|}{q_{j}^{25/4}} = \prod_{p \leqslant x} \left(1 + \frac{|\tau(p)|}{p^{25/4}}\right)$$

$$\geqslant c_{2} \sum_{m \leqslant x} \frac{|\tau(m)|}{m^{25/4}}.$$

wegen $\tau(mn) = \tau(m)$ $\tau(n)$ für (m, n) = 1 (s.[11], S.161). Für die letzte Ungleichung siehe den Beweis von Lemma 2 in [19].

Aus (95) folgt dann, mit $u_x \to \infty$ für $x \to \infty$:

$$S(u_x^2)u_x^{-23/2} \ge c_4 u_x^{1/Q(x)} \log x$$
.

Falls nun log log $\log u_x \ge u_x^{1/Q(x)}$, gilt

$$\log u_x \leqslant Q(x) \log \log \log \log u_x = \exp\left(c_5 \frac{x}{\log x}\right) \log \log \log \log u_x$$

$$\log \log u_x \leqslant c_6 \, \frac{x}{\log x}$$

 $\log \log \log u_x \le \log x$ für $x > x_0$.

Also ist jedenfalls

$$\frac{S(u_x^2)}{u_x^{23/2}} \geqslant c_7 \log \log \log u_x,$$

womit, wegen $u_x \to \infty$, Satz 2 für den Ω_+ -Fall bewiesen ist. Dasselbe Verfahren führt zur Ω_- -Behauptung.

REFERENZEN

- [1] Berndt, B. C., A note on the number of integral ideals of bounded norm in a quadratic number field, Bull. Amer. Math. Soc. 75 (1969), 1283-85.
- [2] Besicovitch, A. S., On the linear independence of fractional powers of integers, J. London Math. Soc. 15 (1940), 3-6.
- [3] BIEBERBACH, L., Theorie der gewöhnlichen Differentialgleichungen, (Springer, Berlin, 1965).
- [4] CHANDRASEKHARAN, K., Introduction to Analytic Number Theory, (Springer, Berlin, 1968).
- [5] CHANDRASEKHARAN, K. and RAGHAVAN NARASIMHAN, Functional equations with multiple Gamma factors and the average order of arithmetical functions. Ann. of Math. 76 (1962), 93–136.
- [6] —, The approximate functional Equation for a class of zeta functions. Math. Annalen 152 (1963), 30-64.
- [7] —, Hecke's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23.
- [8] CORRADI, K. und KATAI, J., Egy megieyzés K. S. Gangadharan "Two classical lattice point problems" cimü dolgozatahoz, MTA III Osztaly Közleményei 17 (1967), 89–97.
- [9] ERDELYI, MAGNUS, OBERHETTINGER, TRICOMI, Higher Transcendental Functions, (McGraw-Hill, New York, 1953).
- [10] GANGADHARAN, K. S., Two classical lattice point problems, Proc. of the Cambr. Phil. Soc., 57 (1961), 699-721.
- [11] HARDY, G. H., Ramanujan, (Cambridge, 1940).
- [12] HECKE, E., Über die Zetafunktion beliebiger algebraischer Zahlkörper, Mathematische Werke, Göttingen, Vanderhoeck, 1959, 159–171.
- [13] —, Vorlesungen über die Theorie der algebraischen Zahlen (Leipzig 1923).
- [14] Holzer, L., Zahlentheorie (Teubner, Leipzig, 1958).

- [15] INGHAM, A. E., On two classical lattice point problems, Proc. of the Cambr. Phil. Soc. 36 (1940), 131–138.
- [16] Joris, H., Ω -Theoreme für die Restglieder zweier arithmetischer Funktionen, Dissertation, Forschungsinstitut für Mathematik an der Eidgenösischen Technischen Hochschule Zürich. (dort erhältlich, oder bei der Bibliothek der Eidg. Techn. Hochschule, Zürich.)
- [17] LANDAU, E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale (Teubner, Leipzig und Berlin, 1918).
- [18] —, Über die Gitterpunkte in einem Kreis, Fünfte Mitteilung, Göttinger Nachrichten, 1924, 135–136.
- [19] Pennington, W. B., On the order of magnitude of Ramanujan's arithmetical function τ (n), Proc. of the Cambridge Phil. Soc. 47 (1951), 668–678.
- [20] SZEGOE, G., und WALFISZ, A., Über das Piltz'sche Teilerproblem in algebraischen Zahlkörpern, Math. Zeitschrift 26 (1927) 138–156, 467–486.
- [21] WAERDEN, B. L. VAN DER, Algebra I, Berlin, Springer, Grundlehren Bd 33, 5. Aufl., 1960.
- [22] Walfisz, A., Über die summatorischen Funktionen einiger Dirichletscher Reihen. Dissertation, 1922, Göttingen.

Math. Seminar. E.T.H., Zürich

Eingegangen den 25. Februar 1972.