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Analytic First Integrals of Ordinary Differential Equations

by WILFRED KAPLAN (University of Michigan)

1. Introduction

In a previous paper [3], the author considered complex analytic differential
equations

d
_;tl‘=ﬁc(t,z1,..., z,), k=1,..,n. )

Here the f, are analytic functions of the n+1 complex variables ¢, z;,...,z, in a
domain D of the (n+ 1)-dimensional complex space K"*!. It was asked whether such
a system has first integrals in the large: that is, whether there exist functions ¢(, z,

. z,,), analytic in D, which are not identically constant but are constant on each
solution of (1). It is known from basic theory that such first integrals exist locally.
It was shown by examples that, in general, existence in the large of such first integrals
was excluded unless one allowed multiple-valued functions and exceptional sets of
measure zero. It was shown that for n=1 with D=K? ( f; entire), such a multiple-
valued first integral in the large does always exist. It was shown by an example that
the proof for the case n=1 could not be generalized directly to the case of larger n.
In the present paper, the result is extended to general n, and it is shown that for
D=K"*! there always exist n functionally independent first integrals ¢, (?, zy, ..., 2,),
in the sense described.

The question can also be phrased in terms of partial differential equations. The
integrals ¢, sought are solutions of the first order equation

ow i ow
~6—t+ Z St Z4soens 2,) =0. (2)

k=1 0z,
One seeks a complete set of solutions of this equation in the large. The result of the
present paper provides such a set, in the sense described, for D=K"*!,

When the f; are independent of ¢ and are analytic in K" (autonomous case), it is
shown that one can find n—1 functionally independent first integrals in the large
@1(z15 ..., 2,) (I=1,..., n—1), provided the equilibrium points (the common zeros of
the f,) are countable. The equations ¢,(zy,...,z,)=c;, I=1,...,n—1, then define
(almost all) the “trajectories’ of (1).

When the f; are meromorphic in K"*!, the complete set ¢, (2, zi, ..., z,) is again
found, under certain restrictions on the zeros and poles of the f,.



206 WILFRED KAPLAN

As pointed out in the previous paper, these questions are of interest in mechanics,
the first integrals being related to such quantities as energy and momentum.
It will be convenient to write (1) in vector form:

—'=f(ts Z), (3)

where z=(zy, ..., 2,), f =(f15-.., f,). We use the norm [z| =Y || in K",
As in the previous paper, we make use of the following consequence of Fubini’s
theorem:

Let X and Y be measure spaces, each of which is a countable union of sets of finite
measure. Let g(x, y) be a measurable function on X x Y such that, for almost all x,
g(x, y)=1 for almost all y. Then for almost all y, g(x, y)=1 for almost all x.

We shall refer to this principle by simply writing “by Fubini’s theorem.”

2. A Preliminary Result for the Meromorphic Case

The following theorem will play an essential role in the proof of the main result
(Theorem 2 below):

THEOREM 1. In (3), let f be meromorphicin K"** and suppose that for almost all
(¢°, 2° (3) has a solution with initial point (t°, z°) which can be continued analytically
for almost all t. Then there exist n functions @, (t, z) which are (multiple-valued) analytic
in K"*1, can be continued analytically to almost all of K"*!, remain constant on
solutions of (3) and have nonvanishing functional determinant 0(@y, ..., ¢,)/0(zy, ..., z,)-

This is proved in the same way as Theorem 4 of [3]. One applies the Fubini
theorem to show that for almost all #° the trajectories through initial points (¢°, z°)
sweep out almost all of K"**. We then choose a nonexceptional ¢°. Then for almost
all (¢, z) the solution through (¢, z) can be continued analytically to °, yielding a value
z° at t°. One defines the vector @(2, z) to be this value z° and thereby obtains
(multiple-valued) analytic functions (¢, z), constant on solutions. Since the de-
pendence of solutions on initial values is locally a one-to-one analytic mapping, the
functional determinant cannot vanish.

3. The Autonomous Case

We now consider Equation (3) in the autonomous case, in which f is independent
of ¢, and assume f is an entire function of z. We seek n—1 functionally independent
first integrals ¢,(z) (/=1,..., n—1) independent of ¢. The equilibrium points cause a
certain complication, but this is minor. It will be seen that the result for the autono-
mous case leads easily to that for the nonautonomous case.
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THEOREM 2. Let the following differential equation be given:

— = £(2). @)

where f is analytic in K". Let the zeros of f form a countable set. Then there exist n—1
multiple-valued analytic functions ¢,(2), ..., @,_1(2), which can be continued analytically
to almost all of K", such that each ¢,(z) is constant on each solution of (4):

i 0
Zﬁc(z)ﬁ= ’ l=19>n“1 (5)
k=1 6zk

and such that the matrix

5(01
(a—;,;) ©

has rank n—1.
Proof. Each solution of (4) is of form

z=y (1), (7

where /(¢) is analytic. The solution is first defined in a neighborhood in the #-plane,
but may then be continued analytically on certain paths in the finite #-plane to yield
a complete solution, not capable of further continuation; in general, this complete
solution is a multiple-valued vector function in the #-plane. Among the solutions are
the equilibrium solutions: ¥ (¢)=const. By assumption, there are only countably
many such solutions.

LEMMA. Let a path y be defined in the t-plane by a continuous function t=t(u),
0<u< 1. Let a solution (7) be defined at t(0) and continuable along y. Let  [t(u)] have
a finite limit z° asu - 1 —.

(@) If also t(u) has a finite limit t; as u—1—, then Y (t) can be continued along
yu{t,} up to t;, so that  has no singularity at t,.

(b) If t(u) does not have a finite limit as u— 1 —, then z° is a zero of f.

Proof. Assertion (a) follows from a classical theorem of Painlevé (see [1, p. 11]).
For (b) we remark that if z° is not a zero of f, then at least one component of f, say
f., has no zero in some neighborhood of z°. In this neighborhood z, can then be used
as parameter on the solutions and, in a sufficiently small neighborhood, the basic
existence theorem shows that one can express all solutions by single-valued analytic
functions

z=2(2), k=1,...,n=1; t=1t(z,); |z,—z<e. 8)

It follows that our solution /(#) must be so expressible, for t=t#(u), and u sufficiently
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close to 1. But then, by the uniqueness of solutions, the condition ¥ (¢(#)) - z° can
hold only if the corresponding solution goes through z°: that is, z,(z3)=z} for
k=1,...,n—1. Since #(z,) is also analytic at zJ, we conclude that #(x) must have a
finite limit as #— 1. This contradicts our assumption. Accordingly, z° is a zero of f.

We now consider a complete solution (7). As remarked above,  is in general
multiple-valued and hence there is an associated Riemann surface R over the finite
t-plane. We form the universal covering surface R* of R, and represent R* as a disc
¢l <@, 0=1 or oo, in the {-plane. Our many-valued function y is then replaced by a
pair of single-valued analytic functions t=%({), z=y*({) in |{| <. If ¢= o0, then
¥*({) is entire and hence either y is identically constant (equilibrium solution) or else
at least one component y/; ({) takes on all complex values except perhaps one, by the
Picard theorem.

We now consider the case g=1 in more detail. We claim that at least one of the
functions v ({) must be of unbounded type in the unit circle. For if not, then all
¥4 (o) are of bounded type and hence have finite radial limits almost everywhere on
[{]=1. Since the zeros of f form a countable set, it follows from the theorem of F.
and M. Riesz that y*({) has a finite radial limit z° not a zero of f, for almost all
€ on |{|=1. For such a choice of €'°, a radius { =ue’ corresponds to a path ¢=t(1),
0<u<1 in the t-plane and the assertion that i/ has a finite limit is equivalent to the
statement that (#(x)) has a finite limit on the path as in the Lemma above. If 7(u)
also has a finite limit as u— 1 —, then by (a) there is no singularity as ¥ — 1 — and the
continuation leads to an interior point of the Riemann surface, hence an interior
point of R*; this contradicts the fact that { =u €' approaches the boundary of R* as
u—>1—. Hence t(«) has no finite limit. Therefore, by (b), z® must be a zero of £,
contrary to our choice of €' on |{|=1. Accordingly, we have a contradiction and at
least one of Y5 (0), ..., ¥¥({) is of unbounded type.

We now consider complex scalars c,..., ¢, and form the vector space V of all
linear combinations ) ;&Y (0), |{]<1. The functions of bounded type form a sub-
space of V (see [4, p. 162, p. 179]). We have just seen thart at least one of the functions
Yr (0) is of unbounded type. It follows that those vectors c¢=(c;, ..., ¢,) for which
Y &z (0) is of bounded type form a subspace of ¥ of dimension /ess than n; therefore
for almost all ¢ in K™ (with reference to 2n-dimensional Lebesgue measure), Y. &y (0)
is of unbounded type; that is, for almost all vectors c, the projection of ¥*({) on the
one-dimensional subspace of K" generated by c is a function w=y*°({) of unbounded
type. Therefore w takes on almost all complex values (in fact, all except a set of
capacity 0 ... see [4, p. 202]).

A similar conclusion obtains in the case ¢ = oo, with bounded type and unbounded
type replaced by constant and nonconstant entire function. If y(¢) is not identically
constant, then for almost all ¢, w=y*°({) takes on almost all complex values.

Now let o(z°% ¢, w)=1 if the solution ¥ of (4) through z° for #=0 is such that
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Y*¢({) can be continued to take on the value w; let 6(2°, ¢, w)=0 otherwise. Then ¢
is measurable and we have just shown that, except for the countable set of zeros of f,
for each z°, for almost all ¢, 6(z°, ¢, w)=1 for almost all w. It now follows from the
Fubini theorem that, for almost all ¢, for almost all z°, ¢(z° ¢, w)=1 for almost all
w. We choose one such value c. Without loss of generality, we can assume that
c¢=(0, ..., 0, 1); that is, that z,=y/({) attains almost all complex values, for almost
every initial point z°.

We now use z, as new independent variable, and consider our trajectories in K"
as solutions of the meromorphic differential equations

dz, _ fi(z4sees 2p)
Az,  fi(zis.es 24)

Each such solution is given by (multiple-valued) functions

Zl=q,(zn), l=1,...,n_1, (10)

I=1,..,n—1. 9)

obtained by eliminating ¢ from z, =y, (¢),..., z,=¥,(¢t) by solving the last equation
for t; from the properties given above, it follows that, for almost every initial point
z%, the corresponding solution (10) can be continued analytically to reach almost all
values z,. Therefore Theorem 1 can be applied, with » replaced by n—1 and z, by ¢,
and there must exist n—1 functions ¢,(zy,..., z,), k=1,..., n—1 with the properties
(5) and (6). Thus Theorem 2 is proved.

4, Extensions
We first consider the non-autonomous case.
THEOREM 3. Let the differential equation

= f(za t) (11)

be given, where z=(zy, ..., z,), f=(f1 ..., f,) and f is analytic in all of K"*'. Then there
exist n (multiple-valued) analytic functions ®,(z, t), k=1,...,n, which can be con-
tinued to almost all of K", which are constant along each solution of (11) and
whose functional matrix

(0®,/0z)) (k=1,..,n, I=1,..,n+1,z,,,=1)

has rank n.
Proof. If we set z,,.,=t, then (11) becomes an autonomous system
dz, dz Az,

_5 — fl (ZI’ ceey Zn+1)"'-’ Eig = f;l(zl’-.-, zn+1)’—d—t = 19
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with no equilibrium points. If we apply Theorem 2 to this system, we obtain the »
integrals @,(z;, ..., z,, ) satisfying the conditions stated.

THEOREM 4. Let the differential equations

dz, _ £i(2)

a  g(z)’
be given, where fi(2)=fi(zy,..., Z,) and g(z)=g(zy,...,2,) are analytic in K" and
g(2)#0. Let f(2)=(f,(2),....f,(2)) have only a countable set of zeros. Then first
integrals ¢ (2), ..., ¢,—1 (2) exist as in Theorem 2.

For we can choose ¢,,... for the corresponding equation (4), as in Theorem 2.
Then (5) holds, so that also

" 1,(2) 901 _
k=1 g(2) 0z

k=1,..,n (12)

0, I=1,..,n-1

and hence ¢, is constant on each solution of (12). In fact, the solutions of (12) have
the same trajectories as (4), with a new “time” parameter t=| g(z) dt.
For a general autonomous meromorphic system

dz, _ fi(z)
dt  g.(z)
one can always write the equations in form (12) by reducing the fractions to a common
denominator. If, after this reduction, the numerators have only countably many

common zeros, then Theorem 4 is applicable. For a nonautonomous system analogous
to (12):

dzk_ﬁc(z’ t)
dt g(z 1)’

one can introduce ¢ as (n+1)—st dependent variable, as in the proof of Theorem 3,
and obtain the equivalent autonomous system

(13)

=1,..,n, (14)

dZ,,__ dt_
T=f1(21 t),-“) E;_.f;l(z’ t)’ d—;—g(z’ t) (15)

and hence, if the functions f,,..., f,, g have only countably many common zeros, we
obtain n independent first integrals @, (z, ), ..., @,(z, t).

5. Examples

In the paper [3] various examples are given. In particular, it is pointed out that
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for the first order equation z'=P(z), where P is a polynomial of degree 4, in general
the first integral has logarithmic branch points and the typical solution is a curve
dense in ¢z-space. By raising the degree of P or replacing P(z) by sinz?, for example,
the complexity can be increased.

The following example is also instructive. (Its relevance to the problem at hand
was pointed out to the author by T. Kimura.) It is well known that each “linear-
polymorphic’ function satisfies a differential equation of the form

[Z]C =R (C)’ (16)

where [z], is the Schwarzian derivative and R({) is rational (see [2], p. 444). Since
(16) is of third order, it can be written in the form (1) with k=3 and the f; rational.
The general solution of (16) is given by

_ah({)+b

Z-——m, (17)

where h({) is one particular solution. For proper choice of R({), #({) is the inverse
of the elliptic modular function and is hence continuable everywhere except for
logarithmic branch points over three points of the {-plane. Each solution (17) has
then a similar character, and hence Theorem 1 is applicable. One can in fact obtain
a complete set of three first integrals ¢,, ¢, @5 from (17) by differentiating twice and
solving for a, b, c, with d set equal to 1. The resulting functions ¢, are many-valued
and can be continued to almost all of K*. In particular, the solutions with d=0 have
been lost; their graphs fill a set of measure 0.

By taking { as dependent variable and z as independent variable, (16) can be
rewritten as an algebraic differential equation of third order for {(z). For appropriate
choice of R({), as above, the solutions are given by

az+b
‘= l'[/(cz + d)’ (18)

where  is the elliptic modular function. The third order differential equation can
again be replaced by a system of first order equations (here, autonomous). Because
of the nature of the elliptic modular function, the solutions of this system are single-
valued but each is defined only in a half-plane or a circle. Thus the hypotheses of
Theorem 1 are not satisfied. However, the function i is of unbounded type ([4], p. 201)
and hence one has the situation encountered in the proof of Theorem 2. Thus the
existence of first integrals is assured. These can be obtained explicitly as above by
inverting (18), differentiating twice and solving for a, b, ¢, with d set equal to 1. The
fact that ( is preferable to z as independent variable, so that one may be able to apply
Theorem 1, is indicated by the proof of Theorem 2.
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