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Holomorphe Blâtterungen komplexer Râumex)

von Harald Holmann (Freiburg, Schweiz)

Herrn Professor Dr. Karl Stein zum 60. Geburtstag gewidmet

Einleitung

Fur einen reduzierten komplexen Raum X mit einer komplexen Lieschen Trans-
formationsgruppe L gelten die folgenden Aussagen (siehe [6], Satz 6 und Satz 15):

Eine L-Bahn ist genau dann eine komplexe Untermannigfaltigkeit von X, wenn
sie in X abgeschlossen ist.

Der Bahnenraum X/L besitzt genau dann eine ,,kanonische" komplexe Struktur,
wenn er hausdorffsch ist.

In der vorliegenden Arbeit sollen dièse Resultate auf holomorphe Blâtterungen
komplexer Râume ùbertragen werden.

Eine holomorphe Blâtterung eines komplexen Raumes X lâsst sich als ein System

paarweise holomorph vertrâglicher lokaler holomorpher Blâtterungen beschreiben

(vergleiche die Definitionen 2.1., 2.2., 2.3). Dabei versteht man unter einer lokalen
holomorphen Blâtterung von X eine lokal-einfache, einfache, offene, holomorphe
Abbildung T:U-*V einer offenen Menge UczX auf einen komplexen Raum F,

Die Fasern von T:U^V bilden eine Zerlegung von U in zusammenhângende

analytische Mengen, die man mit der durch T induzierten komplexen Struktur ver-
sehenkann. Zwei holomorph vertrâglichelokaleholomorphe Blâtterungen T^Ui-*Vi9
/= 1, 2, liefern die gleiche analytische Zerlegung von U1nU2. Das fûhrt auf den Be-

griff des globalen Blattes und des Blâtterraumes einer holomorphen Blâtterung
(vergleiche Définition 2.5).

Betrachtet man ein integrables Pfaffsches System holomorpher partieller Differen-

tialgleichungen auf einem komplexen Raum X, dann induziert dièses eine holomorphe
Blâtterung 33 auf X, so dass die maximalen zusammenhângenden Lôsungsflâchen
gerade die Blâtter von 23 sind (vergleiche die Definitionen 1.1, 1.3 und Satz 2.4).

In der Differentialtopologie verwendet man den Begriff der holomorphen (oder
differenzierbaren) Blâtterung in viel eingeschrânkterem Sinne (vergl. [17]). Man be-

schrânkt sich auf komplexe Mannigfaltigkeiten und eine lokale Blâtterung einer

Mannigfaltigkeit X ist definiert als eine Submersion T: U -» V einer offenen Teilmenge
UczX auf eine Mannigfaltigkeit F(d.h. 7* ist in geeigneten lokalen Koordinaten eine

*) Die Ergebnisse der vorliegenden Arbeit wurden auf den 6. Rolf Nevanlinna-Kolloquium in
Zurich (18./19. Juni 1971) vorgetragen.
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Projektion eines Produktes zweier Polyzylinder auf eine Komponente). Ein Pfaffsches

System partieller Differentialgleichungen liefert natùrlich nur dann eine Blâtterung in
diesem Sinne, wenn aile Lôsungsflâchen singularitâtenfrei sind und lokal eine triviale
Faserung erzeugen. Will man auch Lôsungsflâchen mit Singularitâten zulassen, so
erweist sich die obige Verallgemeinerung des Begriffes der holomorphen Blâtterung
als sinnvoll. Ausserdem sind die Resultate, die in dieser Arbeit dargestellt werden

sollen, fur die speziellen ,,regulâren" Blâtterungen nicht einfacher zu erhalten. Auch
lâsst es sich gar nicht vermeiden, allgemeine komplexe Râume in die Untersuchungen
mit einzubeziehen. Wenn zum Beispiel der Blâtterraum einer regulâren Blâtterung
einer komplexen Mannigfaltigkeit eine kanonische komplexe Struktur besitzt, so hat
dièse in allgemeinen Singularitâten (siehe das Beispiel am Ende der vorliegenden
Arbeit). Erst unter zusâtzlichen Regularitâtsbedingungen erhâlt man Blâtterrâume
mit Mannigfaltigkeitsstruktur (man vergleiche die Untersuchungen von R. Palais

in [11]).
Die Hauptresultate der vorliegenden Arbeit sind die beiden folgenden: (siehe die

Sâtze3.1. und 3.4):

35 sei eine holomorphe Blâtterung eines parakompakten komplexen RaumesX, dann gilt:

I. Ein Blatt von 33 ist genau dann (lokal-)analytisch, wenn es (lokal-)abgeschlossen
in X ist.

IL Ist Xreduziert, so besitzt der Blâtterraum von 33 genau dann eine ,,kanonische"

komplexe Struktur, wenn er hausdorffsch ist.

Dièse Aussagen gestatten eine spezielle Interprétation, wenn man sie auf die

Blâtterungen anwendet, die durch Pfaffsche Système holomorpher partieller
Differentialgleichungen bzw. durch komplexe Liesche Transformationsgruppen erzeugt werden

(siehe die Sâtze 3.6 und 3.7).

§ 1. Pfaffsche Système partieller Differentialgleichungen auf komplexen Râumen

1.1. Es sei Zein komplexer Raum im Sinne von Grauert (siehe [4]). Seine Struktur-
garbe werde mit 0x bezeichnet. Man hat iiber X die tf^-Modulgarben Q% der
holomorphen Differentialformen vom Grade/?, so wie die $X-Algebragarbe Qx: — ©peND|
(vergleiche [5], [12]). Qx heisst auch Garbe der holomorphen Pfarfschen Formen auf
X. Lokal ist Qx wie folgt definiert. Jeder Punkt xeX besitzt eine offene Umgebung U,

die mit einer analytischen Teilmenge einer offenen Menge G c Cidentifiziert werden
kann. Dabei dùrfen wir annehmen, dass es holomorphe Funktionenyi,...,/m auf G

gibt, die eine kohârente Idealgarbe J c0G der Strukturgarbe (9G von G erzeugen, so
dass U={zeG;f1(z)=~>=fm(z)=O} ist und die Quotientengarbe Qq\# die Strukturgarbe

®v: (Px | V von U ergibt. (Da der Trâger der Garbe OGjf gleich U ist, so
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kônnen wir sie mit ihrer Beschrânkung auf U identifizieren). QG: ®pe^QG bezeichne
die bekannte 0G-Algebragarbe der holomorphen Differentialformen auf G, wobei
Qg die 0G-Modulgarben der holomorphen Differentialformen vom Grade p auf G
sind. /u=®PeN/uc:^G sei die vonfl9...,/m, dfl9...9 dfm erzeugte ldealgarbe, wobei

fl<=.Q% fur alle/?eN. Es ist ,/£ </ und f\j wird von den holomorphen Pfaffschen

Formen//irfzi(/i=l5..., m; f=l,..., n) und dffl(n=l,..., m) erzeugt. Wir kônnen nun
die Garben Q$ der holomorphen Differentialformen vom Grade p auf U wie folgt
definieren:

vGl/v &
peN

ist dann eine tf^-Algebragarbe, die sogenannte Garbe der holomorphen Differentialformen

auf U, Da der Trâger der Garbe Qv gleich U ist, so kann sie mit ihrer
Beschrânkung auf t/identifiziert werden. Es sei bemerkt, dass Qv nicht von der speziellen
Einbettung Ucz G abhângt.

Da die âussere Ableitung d:QG-*QG die ldealgarbe /u<=^QG invariant lâsst, so

induziert sie eine eindeutig bestimmte âussere Ableitung d:Qv->QU9 so dass das

folgende Diagramm kommutiert:

Dabei bezeichnet n:QG^> Qu: QG/e/u die kanonische Quotientenabbildung.
Die Konstruktion der Garben holomorpher Differentialformen auf komplexen

Râumen ist funktoriell. Es sei kurz dargestellt, wie die durch holomorphe Abbildungen
zwischen komplexen Râumen induzierten Liftungsabbildungen zwischen den zuge-
hôrigen Garben holomorpher Differentialformen lokal aussehen. Sei (T, T*) : (X, @x) ->

->(y, @y) eine holomorphe Abbildung zwischen komplexen Râumen im Sinne von
Grauert; d.h. T:X-> Fist eine stetige Abbildung und T* : {T* : OYt T(x) -+6XtX\xeX}
ist eine Kollektion von Algebramorphismen, so dass jedem stetigen Schnitt / von 0Y

ùber einer offenen Menge Ucz F durch die Vorschrift x\-+Tl(f(T(x)))9 xeT~l{U)9
ein stetiger Schnitt von Ox iiber T~X(U) zugeordnet wird. Lokal lâsst sich eine

holomorphe Abbildung wie folgt beschreiben: Zu jedem xoeZgibt es offene Teil-

mengen UcX und Va Y, so dass gilt:
a) xoeU,T(U)c:V
b) U und V kônnen mit analytischen Mengen von offenen Teilmengen G bzw. D

komplexer Zahlenrâume identifiziert werden, und ihre Strukturgarben €v bzw. 0v
sind Quotientengarben 0Gj/ bzw. 0D\J nach kohârenten Idealgarben #<=^®G bzw.
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c) Es gibt eine gewôhnliche holomorphe Abbildung H.G^D mit H(x) T(x)
undH*x(JT(x))c:fx fur aile xeU(Hx\(9Dtnx)-+®GtX bezeichnet dabei die ûbliche
durch H gegebene Liftungsabbildung), so dass Hx jeweils auf kanonische Weise die

Abbildung

T*:«V,T(x) : <!>d.t<x)/St(x) - <V : <V J/x
induziert.

Sind nun fv<=-ùG und /^c^ die wie oben durch $ <=.(9G nn& ^^^d erzeugten
ldealgarben der entsprechenden Garben holomorpher DifFerentialformen und be-

zeichnet Hx:QDT(x)-*QGx9 xeU, die ubliche durch H.G-+D gegebene
Liftungsabbildung, so gilt fur aile xeG:

HX {^V, T(x)) c cfv, x '

Die Algebramorphismen Hx:QD1(x)-+QGx9 xeU, induzieren also auf kanonische
Weise Liftungsabbildungen

Tx : QVt r(jc) : QD> t(x)I^v, t(x) "^ &u, x : ®g, xlcfu, x •

Es sei bemerkt, dass die Algebramorphismen T* nicht von den speziellen Einbettungen
UczD und Va G abhângen. Nach Konstruktion sind die Liftungsabbildungen
T*:OF>r(jc)-> QUx mit den âusseren Ableitungen rfvon Qv und Qv vertrâglich.

1.2. Zur Motivierung der folgenden Définition eines Pfaffschen Systems
holomorpher partieller DiflFerentialgleichungen auf einem komplexen Raum betrachten
wir den klassischen Fall eines Systems

ÔXj

x (xl5..., xn), y (yl9..., ym),

partieller Dijfferentialgleichungen erster Ordnung auf einem Gebiet D im ^n+m, wobei
die Funktionen/^- auf D holomorph sind. Man kann dem System (*) ein System

n

cOi'^dyi- X ftj dxj> l U ••-, ^5 (**)

holomorpher Pfaffscher Formen zuordnen. Gesucht ist dann zu jedem Punkt

(x°,y°)eD ein System H=(H1,...,Hm) von lokalen holomorphen Stamfunktionen

Hp, 11 1,..., m, auf einer ofFenen Umgebung UczD von (x°, y0), so dass

wobei M^ auf U holomorphe Funktionen sind, und der Rang der Eulerschen Matrix
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(M^(x, y)) fur aile (x, y) U gleich m ist. Die lokalen Lôsungsflâchen des Systems (*)
stimmen auf U gerade mit den gemeinsamen Konstanzflâchen der lokalen Stamm-
funktionen Hu...,Hm des Systems (**) ûberein, d.h. mit den Niveauflâchen (d.h.
Zusammenhangskomponenten der Fasern) der Abbildung H—{HU..., Hm):U->^m.
H ist eine holomorphe Submersion, d.h. der Rang der Funktionalmatrix von H ist
auf U konstant gleich m. Die Umgebung U von (x°, y0) kann so gewâhlt werden, dass

sie zu einem Polyzylinder P im ^n+m biholomorph âquivalent ist, wobei den Niveauflâchen

der Abbildung H:U^^m im Polyzylinder P die «-dimensionalen Ebenen-

stùcke {(z1,...,zB+M)eP;zH+1 c1 zB+B=cB} entsprechen. Man bemerkt leicht,
dass H nicht von den einzelnen Formen œl9..., com explizit abhângt, sondern nur von
der durch sie erzeugten analytischen Untergarbe der Garbe Q^ der holomorphen
Pfaffschen Formen auf D. Das gibt Anlass zur folgenden Définition eines Pfaffschen

Systems holomorpher partieller Differentialgleichungen auf einem komplexen Raum
bzw. einer lokalen Lôsung eines solchen Systems.

DEFINITION 1.1. Unter einem Pfaffschen System holomorpher partieller
Differentialgleichungen auf einem komplexen Raum X versteht man eine lokal endlich

erzeugte (d.h. kohârente) analytische Untergarbe Qf der Garbe Qx der holomorphen

Pfaffschen Formen auf X.

DEFINITION 1.2. Unter der Garbe der Stammfunktionen von Q' czQx versteht

man die Untergarbe &f: d~1 (Q') von Ox.

DEFINITION 1.3. Q'c:Qx heisst schwach integrabel, wenn es zu jedem Punkt
x°eX eine offene Umgebung U und eine lokal-einfache, einfache, offene, holomorphe

Abbildung T:U-> Vgibt, so dass fiir aile xeUgilt:
a) <vx-r;(o£,T(x))=o;.
Q' heisst integrabel oder ein Frobeniussystem, wenn zusâtzlich gilt:
b)> t:(<T(;o)=0;.
Eine lokal-einfache, einfache, offene holomorphe Abbildung, die den Bedingungen a)

und b) genilgt, heisst eine lokale Lôsung von Q'czQx; sie heisst eine schwache lokale

Lôsung, wenn nur die Bedingung a) erfullt ist.

Unter einfachen und lokal-einfachen Abbildungen zwischen topologischen
Râumen versteht man das Folgende:

DEFINITION 1.4. Eine Abbildung T:X-+ Y zwischen topologischen Râumen X
und Y heisst einfach, wenn aile Fasern T~1(T(x)), xeX, von T zusammenhângend sind.

T heisst lokal-einfach, wenn es zu jedem Punkt xeX undjeder Umgebung U von x
eine offene Umgebung Ûa U von x gibt, so dass T | 0 einfach ist.

Bemerkung. Ist T:U-*V eine schwache lokale Lôsung von Q\ so entnimmt man
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den kommutativen Diagrammen

^V. T(x) > ®U, x 9

dass fur aile xell gilt :

b') TUpr,T^0'x
c) €vyd&x=Q'x.

1.3. Unter gewissen Voraussetzungen sind schwache lokale Lôsungen eines

Pfaffschen Systems schon lokale Lôsungen.

SATZ 1.5. Q'cQx sei ein Pfaffsches System parîieller Differentialgleichungen auf
dem reduzierten komplexen Raum X.T:U-+ V sei eine schwache lokale Lôsung von Q'.
Ist V ein maximaler komplexer Raum (d.h. F ist reduziert und genùgt dem schwachen
Riemannschen Hebbarkeitssatz), dann ist T schon eine lokale Lôsung von Q'.

Beim Beweis hat man das folgende Lemma heranzuziehen (vergleiche [8]).

LEMMA 1.6. X, Y seien reduzierte komplexe Râume, Y sei maximal und T:X-+ Y
sei eine ojfene, holomorphe Abbildung, dann gilt: Zu jeder auf einer Tsaturierten
offenen Menge UcX T-invarianten holomorphen Funktion f gibt es eine holomorphe
Funktion F auf T(U), so dass FO{T\ U)= /(d.h. Y ist der kanonische Quotient von
X nach der durch T induzierten Aequivalenzrelation RT und 7": X-+ Y ist die
kanonische Quotientenabbildung).

Beweis (von Lemma 1.6). Auf Grund der Offenheit von T gibt es eine stetige
Funktion F auf T(U), so dass Fo(T\ U) f. Da Y maximal ist, bleibt zu zeigen,
dass Fausserhalb einer nirgends dichten analytischen Menge S von T(U) holomorph
ist. Man wâhle S als Singularitâtenmenge von T(U), Sei weT(U) — S und zeU mit
T(z) w. Wegen der Offenheit von Tist rgz(T): =dimz£/-dim^r~1(w)=dimwr(£/)
(vergleiche [13], Satz 29). Man kann eine rein-dimensionale analytische Menge A in
einer offenen Umgebung Va U von z mit folgenden Eigenschaften finden:

a) AnT-\w) {z}9

P) dim^ + dim2r"1(w)=dimzt/5 d.h. dim^4=dimwr(t/).
Man kann annehmen, dass T(A) in einer Zusammenhangskomponente W von

T(U)-S liegt und dass T\A-+W diskret ist (siehe a)). Wegen dim A dimW
(siehe 0)), stellt T\A-*W eine offene Abbildung dar (siehe [13], Satz 29). Wir
kônnen zusâtzlich annehmen, dass T\A-*T(A) eigentlich ist (vergleiche [15],
Hilfssatz 3), d.h. eine holomorphe Ueberlagerung der Mannigfaltigkeit T(A) liefert.
Wegen (F | T(A))o(T \ A) f | A ist F holomorph auf der offenen Umgebung T(A)
von w in T(U).
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Beweis (von Satz 1.5). Es ist fur jedes xeU zu zeigen, dass T* ((PVt r(JC)) 0^ ist.

Auf Grund der obigen Bemerkung b') ist T* {(9V> T(x))<=:@'x. Bleibt zu beweisen, dass

zu jedem/^e^ ein Fxe(9VT(x) mit TX(FX) /xexistiert./x wirddurcheine holomorphe
Funktion / auf einer offenen Umgebung UxcU von x reprâsentiert. Wir kônnen
annehmen, dass T\ Ux->V einfach und dfeQ'(Ux) ist. Da T eine schwache lokale
Losung von Q darstellt, so muss / auf den Fasern von T \ Ux konstant sein. Nach
Lemma 1.6 gibt es eine holomorphe Funktion F auf der offenen Umgebung T(Ux)cz V

von T(x)9 so dass/ =Fo(r| Ux) ist, d.h. fx T* (Fx), wobeiFxder durch Freprâsen-
tierte holomorphe Funktionskeim aus ®v,t(X) ist.

SATZ 1.7. Q'cQx sei ein schwach integrables Pfaffsches System holomorpher

partieller Differentialgleichungen auf einem reduzierten komplexen Raum X, dann gibt
es auf der Maximalisierung X von X (siehe [2], S. 44/45) genau ein integrables System
Df mit folgender Eigenschaft: Ist T:U-*V eine schwach lokale Losung von Qf, dann

ist ihre Maximalisierung T: É7-* F (siehe [2], S. 44/45) eine lokale Losung von D' (d.h.
die lokalen Lôsungen von Q' sind topologisch mit den schwachen lokalen Lôsungen

von Q' identisch).
Beweis. Zu jedem Punkt x°eZgibt es eine offene Umgebung Uund eine schwache

lokale Losung T: £/-» V von Q\ Sei nun T : Û-+ Fdie Maximalisierung von T. (9V und

0v seien die Strukturgarben von 0 bzw. V und O^, Qy die entsprechenden Garben

holomorpher Pfaffscher Formen. Ùf | U sei definiert als analytische Urbildgarbe von
Qy bzgl. T : Û-+ V, d.h. D'x &Vx'Tx(Glrt T(x)) fur aile xeV.D'\ t/ist eine kohârente

analytische Untergarbe von Qy. Sie ist integrabel, denn T:Û-*V stellt auf Grund
der Définition von Q' | Û und wegen Satz 1.5 eine (globale) lokale Losung von

D'\ tfdar.
Wenn wir zeigen kônnen, dass Df | Û nicht von der speziellen Wahl der schwachen

lokalen Losung T:U-+V abhângt, sondern nur von Qf \ U, so liefert die obige
Konstruktion von Df | V die gesuchte Garbe Df mit den im Satz behaupteten Eigen-
schaften. Zu diesem Zwecke rechnet man einfach fur die Garbe W | tJ der lokalen
Stammfunktionen von Q' | 0 aus, dass fur aile xe Û gilt:

Wx {fxe@UtX; fx ist aus dem totalen

Quotientenring von Ox und ganz algebraisch ûber O'x).

Damit ist die Garbe & | 0 durch die Maximalisierung (Û, 6V) von (U, 0v) und die

Garbe & \ U eindeutig bestimmt; d.h. D' \ V hângt letztlich nur von Qr \ U ab.

Da W | Û integrabel ist, so gilt Dx=(9VtX'd(Ux fur aile xeU> d.h. auch W \ 0hângt
nur von Qf | U ab.

1.4. Ein integrables Pfaffsches System Q'aQx partieller Differentialgleichungen
auf einem komplexen Raum X ist stets involutorisch, wie man leicht nachrechnet.
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Dabei heisst Q' involutorisch, wenn die durch O'cO* erzeugte Idealgarbe Q' aQx
von Qx unter der âusseren Ableitung d:Qx^Qx invariant bleibt. Die Umkehrung
gilt im allgemeinen nicht. Fur gewisse Pfaffsche Système auf komplexen Mannig-
faltigkeiten liefert jedoch der Satz von Frobenius (siehe [10], Chapter 2, §2.11) ein

notwendiges und hinreichendes Integrabilitâtskriterium. Es soll hier fur reduzierte
komplexe Râume eine analoge Aussage angegeben werden. Dazu benôtigen wir
folgende Begriffsbildungen.

Sei X ein reduzierter komplexer Raum. %(X) bezeichne den reduzierten
komplexen Tangentialfaserraum an X (vergleiche [7], [9], [14]). Lokal ist %(X) wie folgt
definiert. Jeder Punkt xeXbesitzt eine offene Umgebung U, die mit einer analytischen
Menge einer offenen Menge Gcf identifiziert werden kann. Wir verwenden im
weiteren die Bezeichnungen vom Anfang dièses Paragraphen. Zunâchst definiert man
den Tangentialfaserraum X(G) an G als

zeU, a (al5..., aM) e<

d.h. Z(G) ist biholomorph équivalent zu Gx^n. Unter dem Tangentialfaserraum
%(U) an U versteht man dann die analytische Menge

X(U):={(z,Tz)eT(G); zeU, Tz(/z) 0}

von % (G), die wir mit der induzierten reduzierten komplexen Struktur versehen.

Die Garbe QG operiert in kanonischer Weise als Garbe von Linearformen auf
%(G) bzgl. der Abbildung <PG:O^Xg £(<?)-? ^ mit

|:= £ *j(z>Pj> zeG-

Da ^(^trX^^C^))^^ so induziert $G auf kanonische Weise eine Abbildung
<Pu:Qljy<^uZ(U)-+(£. Dièse hângt nur von der komplexen Struktur von U ab. Qx

operiert also als Garbe von Linarformen auf %{X) bzgl. einer Abbildung #:&IX*
%(X)-+*€9 deren Beschrânkung auf &£/Xtf ^iu) fur die oben beschriebenen offenen

Mengen UcX gleich ^^ist.
Sei nun Mcï(I) ein holomorphes Vektorraumbûndel. M heisst involutorisch,

wenn mit je zwei holomorphen Vektorfeldern T9 S in M ûber einer offenen Menge
UczXihr Liesches Klammerprodukt [T, S] wieder ein Vektorfeld in M ûber U ist.

Man kann einem holomorphen Vektorraumbûndel Ma%(X) die Annullator-
garbe Ann (M)c Qx zuordnen, die aus sâmtlichen holomorphen Pfaffschen Formen
besteht, die auf M verschwinden. Ann M ist eine kohârente analytische Untergarbe

von Qx, also ein Pfaffsches System partieller Differentialgleichungen auf X.
Es gilt nun die folgende Verallgemeinerung des Satzes von Frobenius, die man

vollkommen analog wie in [10], Chapter 2, §2.11 beweist.
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SATZ 1.8. X sei ein reduzierter komplexer Raum, dann sind fur ein holomorphes
Vektorraumbundel Mc%(X) iïber Xfolgende Aussagen âquivalent:

(1) M ist involutorisch.

(2) Ann (M) <= Qx ist involutorisch.

(3) Ann (M) ist integrabel.

§ 2. Holomorphe Blâtterungen

2.1. Integrable Pfaffsche Système partieller Differentialgleichungen auf komplexen
Râumen erzeugen holomorphe Blâtterungen auf diesen Râumen, und zwar im Sinne

der folgenden Definitionen.

DEFINITION 2.1. Unter einer lokalen holomorphen Blàtterung eines komplexen
Raumes (X, @x) versteht mon eine lokal-einfache, einfache, offene, holomorphe Ab-

bildung T:U-*V einer offenen Menge UcX auf einen komplexen Raum V.

DEFINITION 2.2. Zwei lokale holomorphe Blâtterungen Tt: Uf-» Vi9 î=l, 2, auf
einem komplexen Raum {X, (Px) heissen holomorph vertrâglich, wenn es zu jedem

xeJJ1r\JJ2 eine offene Umgebung WczUlnU2 und eine biholomorphe Abbildung

h:T1(W)->T2(W)gibt)sodassho(T1 \ W)=T2 \ W.

DEFINITION 2.3. Unter einer (globalen) holomorphen Blàtterung eines kom~

plexen Raumes (X, 6X) versteht man ein System (& {Ti:Ui-*Vi\ iel} paarweise

holomorph vertrâglicher lokaler holomorpher Blâtterungen von X mit Uiei Ut X.

SATZ 2.4. Q' c Qx sei ein integrables Pfaffsches System partieller Differentialgleichungen

auf einem komplexen Raum X. Dann bildet das System der lokalen Lôsun-

gen von Q' eine holomorphe Blàtterung von X.
Beweis. Die lokalen Lôsungen T:U-+V von Q' sind per Définition lokale

holomorphe Blâtterungen von X (dabei kônnen wir ohne Beschrânkung der AUgemeinheit
annehmen, dass die lokalen Lôsungen T:U-+V surjektiv sind). Wir haben noch die

holomorphe Vertrâglichkeit je zweier lokaler Lôsungen T1\U1-^VU T2:U2-» V2 von
Q' nachzuweisen. Fur jedes xeU1nU2 sind T?,x:(9VlTl(x)-+(!)r und T2,x:(PV2tT2(xy

-+&x Algebraisomorphismen, desgleichen (T*^y1 oT£tX:@V2tT2(X)-+ @VuTl(x). Es

gibt folglich eine biholomorphe Abbildung h\W1-^W2 zwischen offenen Umgebungen
Wx c Vx von T1 (x) und W2 c V2 von T2 (x), so dass /?*

1 (x) (r* x)~x °T*,(x) ist, oder

anders ausgedrûckt : (h oT± )* T*
}X oA*t (x)=T*, x-Das bedeutet, dass fur eine passende

Umgebung Wcz U1 n U2 von x die holomorphen Abbildungen ho{T1 | W) und T2 | W
ûbereinstimmen.

Bemerkung. Jeder holomorphen Blàtterung 23: {Tf:l^-> Vt; iel} eines kom-
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plexen Raumes (X, 0x) kann man ein schwach integrables Pfaffsches System
Q'czQx partieller Differentialgleichungen auf X zuordnen. Man setze einfach
O'x: ®x,x' TftX (Q^, Tt(x)), falls xeUt.

2.2. Um den Begriff des globalen Blattes einer holomorphen Blâtterung
$& {Ti:Ui-*Vi; iel} eines komplexen Raumes X einzufûhren, gehen wir wie folgt
vor. Zunâchst bilden wir einen komplexen Raum Xm, dessen unterliegende Menge
gleich der von X ist, dessen Topologie aber im allgemeinen nicht die von X ist. Als
Basis der Topologie von Xs nehmen wir das System

{Tf^zOn l/;îeJ,z,6 7f, U offen in X}

U:=={T[1 (zf); iel, zte Vt} ist dann eine offene Ueberdeckung von Xg. Auf der Faser

T£~1(zi), iel, zteVi9 haben wir die durch Tt induzierte komplexe Struktur. Ist
Tf * (zt) n TJ* (zj) # 0, so stimmen wegen der holomorphen Vertrâglichkeit von Tt und
Tj die durch Tt bzw. 7} darauf induzierten komplexen Strukturen ûberein. Zusammen-
fassend kann man sagen: auf Zs gibt es eine eindeutig bestimmte komplexe Struktur,
die auf den offenen Mengen Tf * (zt) gerade die durch Tt induzierte ist. Das liefert
eine holomorphe Abbildung i^X^^X, dessen unterliegende Mengenabbildung die
Identitât ist.

DEFINITION 2.5. Die Zusammenhangskomponenten von Xm werden Blâtter von

S genannt. Die Menge B=B(<$>) der Blâtter von S heisst Blâtterraum von S. B0&)
sei mit der feinsten Topologie versehen, so dass n:X-*B(S&) noch stetig ist. Dabei
bezeichnet n:X-+B($$) die Abbildung, die jedem xeX dasBlatt Bx zuordnet, in dem

x liegt.
Ist Qf c Q% ein integrables Pfaffsches System holomorpher partieller Differentialgleichungen

auf dem komplexen Raum X und 93 die zugehôrige holomorphe Blâtterung,

dessen lokale holomorphe Blâtterungen gerade die lokalen Lôsungen von Q'

sind, so werden die Blâtter von 93 auch als globale Lôsungsflâchenvon Qr bezeichnet,
und den Blâtterraum i?=2?(93) von 93 nennt man auch Parameterraum P=P(Q')
der globalen Lôsungsflâchen von Q'.

Eine holomorphe Blâtterung S eines komplexen Raumes X wirft die beiden

folgenden Fragen auf:

PROBLEMI. Unter welchen Bedingungen ist ein Blatt Bx, xeX, von SB eine

analytische Teilmenge von X, oder anders ausgedruckt: wann ist i$ | BX-*X ein kom-

plexer Unterraum von ^(vergleiche [2], S. 45)?

PROBLEM IL Unter welchen Bedingungen besitzt der Blâtterraum B (S) von S
eine kanonische komplexe Strukturi
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2.3. Bevor wir im nâchsten Paragraphen eine Antwort auf die oben formulierten
Problème geben, wollen wir zunâchst einige allgemeine Hilfssâtze iïber holomorphe
Blâtterungen zusammenstellen.

DEFINITION 2.6. Sei {X, (9X) ein komplexer Raum, und% {Ti:Ui->Vi; iel}
eine holomorphe Blâtterung von X. Unter einer lokalen S&-Blâtterung von X versteht

mon dann eine lokale holomorphe Blâtterung von X, die mit allen lokalen Blâtterungen

Ti'.Ui-* V( holomorph vertràglich ist.

LEMMA 2.7. T:U-+ V sei eine lokale SB-Blâtterung von X. Dann gibt es zu jedem
xeU und jedem yeBx eine lokale ^-Blâtterung yT:yU-> yV und eine biholomorphe

Abbildung yh:yV-> yV\ yV offen in V, so dassgilt:

(b) T 1(yh(v)) und yT *(v) gehôren jeweils zum gleichen Blatt fur aile veyV, d.h.

Bemerkungen (zu Lemma 2.7). (1) Zur Bestimmung von yT:yU^> yV kann man
von einer beliebigen lokalen 33_ Blâtterung T:Û-+V mit yeÛ ausgehen und yT als

geeignete Beschrânkung von Twâhlen.
(2) Andererseits kann man yT:yU-+yV auch so wâhlen, dass yV offen in V liegt

und dass gilt :

(a') yT(y) T(x)
(b') T~l(v) und yT~1(v) gehôren jeweils zum gleichen Blatt fur aile veyV.
Man gehe hierzu von einem beliebigen Paar yT:yU-*yV, yh:yV->yV aus, das

die Eigenschaften von Lemma 2.7 besitzt: yT': yhoyT:yU^yV genûgt dann den

Bedingungen (a') und (b').
Beweis. x sei fest aus U gewâhlt. Bx bezeichne die Menge aller Punkte y des

Blattes Bx, fur die die Aussagen (a) und (b) von Lemma 2.7 gelten. Es ist zu zeigen,
dass BX BX ist. Wir beweisen zu diesem Zweck, dass Bx gleichzeitig abgeschlossen
und offen in Bx liegt (die Topologie von Bx sei durch Xm induziert). Wegen des

Zusammenhangs von Bx muss dann BX=BX sein. Sx ist per Définition offen in Bx.
Die Abgeschlossenheit von Bx in Bx ergibt sich wie folgt. Sei y0 ein Punkt aus der

abgeschlossenen Huile von Bx. Man wâhle nun irgendeine lokale ©-Blâtterung
0T:0U->0V von X mit yosoU. Der Durchschnitt 0UnBx ist nicht leer. Sei y ein

Punkt aus 0UnBx. Wir kônnen annehmen, dass o^(j)==o^0;o)- Es gibt eine lokale
93-Blâtterung yT:yU-*yV und eine bilomorphe Abbildung yh:yV-+yV\ yV offen

in F, fur die die Aussagen (a) und (b) des Lemmas gelten. Da die lokalen SB-Blâtte-

rungen yT:yU->yVund 0T:0U-+0V holomorph vertràglich sind, gibt es eine offene

Umgebung Wc yUn0U von y und eine biholomorphe Abbildung h : 0T(W) -» yT( W),
so dass h o (or | W) yT \ W, Wir definieren nun :

(offen in 0U und yoeyoU), yoV:
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in V\ yoh: yhoh: yoV-*yoV\
yoT:yoU-+yoV ist per Définition eine lokale S-Blâtterung. Es bleibt, fiir yoT und
yoh die Aussagen (a) und (b) zu verifizieren. Ad (a) rechnet man einfach aus:
yoKyoT(yo) yh(h(QT{y0))) yh{h^ Ad (b) zeigen wir zu-
nâchst, dass fur jedes veyoVàit Fasern yT x (h(v)) und yoT 1(v) zum gleichen Blatt
gehôren. Es gibt stets ein y'e W, so dass v yoT(y) oder y'e^T'1^). Daraus folgt:
h(v)=h(0T(y')) yT(y') oder /e^r"1^)). Also ist yT-^h^n^T'1^) nicht
leer; d.h. yT'1^^)) und ^T'1^) gehôren zum gleichen Blatt. Da fiir yrund yh

die Aussagen (b) des Lemmas gilt und h(v)eyVfùr aile veyoV, so liegen yT~l (h(v))
und T~1(yh(h{v))) T~1{yoh{v)) stets im gleichen Blatt, also auch ^T'1^) und

Als unmittelbare Folgerung von Lemma 1 erhâlt man:

COROLLAR 2.8. Die durch eine holomorphe Blatterung 93 auf einem komplexen
Raum X erzeugte Aequivalenzrelation R<q, dessert Aequivalenzklassen gerade die Blâtter
von S sind, ist stets offen; d.h. die kanonische Quotientenabbildung n:X-*B(f&) ist
offen.

Wendet man den Satz von Poincaré-Volterra (siehe [3], Chap. I, §11, No. 7,

Corollaire 1) auf die mit einer holomorphen Blâtterung S kanonisch gegebene
holomorphe Abbildung is&\Xç&-+X(siehe Abschnitt 2.2) an, so erhâlt man:

LEMMA 2.9. S sei eine holomorphe Blâtterung aufdem komplexen Raum X. Ist X
parakompakt (d.h. jede Zusammenhangskomponente hat eine abzâhlbare Basis), so
auch Xg, d.h. die Blàtter von SB haben eine abzâhlbare Basis.

Sei X ein komplexer Raum mit einer holomorphen Blâtterung S. Jede lokale
23-Blâtterung T:U^V liefert eine Aequivalenzrelation Rv auf V:vl9 v2eV heissen

iÊK-âquivalent, wenn n^'1 (v1)) n(T~1 (v2)), d.h. wenn T'1^) und T~1{v2) zum
gleichen Blatt von 33 gehôren.

LEMMA 2.10. Die Aequivalenzrelation Rv hatfolgende Eigenschaften:

(1) Rv ist offen.

(2) Eine Aequivalenzklasse von Rv ist entweder diskret oder enthâlt uberhaupt keine
isolierten Punkte.

(3) jRf ist schwach analytisch.
Ist Xparakompaktt so giltferner:
(4) Die Aequivalenzklassen von Rv sind aile hôchstens abzâhlbar.

(5) Eine abgeschlossene Aequivalenzklasse von Rv ist stets diskret.
Dabei versteht man unter einer schwach analytischen Aequivalenzrelation auf

einem komplexen Raum das Folgende.
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DEFINITION 2.11. RczXxX sei der Graph einer Aequivalenzrdation auf einem

komplexen Raum. qi:R-+X(i=\9 2) bezeichne die kanonische Projektion auf die i-te
Komponente von XxX. R heisst schwach analytisch, wenn es durch jeden Punkt
(x,x')eR eine lokal-analytische Menge R(x, x')czR gibt und wenn eine offene Um-

gebung Vx von x in X existiert, so dass qx durch Beschrânkung eine biholomorphe
Abbildung qx | R(x, x') -» Vx induziert.

Beweis. (1) Rv ist offen, da Rs eine offene Aequivalenzrelation auf X darstellt.
(2) Lemma 2.7 beinhaltet unter anderem, dass eine Aequivalenzklasse von Rv

schon diskret ist, wenn sie nur einen einzigen isolierten Punkt besitzt.

(3) Sei (vu v2)gRvœVx V. Wir wâhlen dann Punkte xux2eU mit T(xl)=v1
und r(x2) v2. Da x2eBXl, so gibt es auf Grund der Bernerkungen (2) zu Lemma 2.7

eine lokale 25-Blâtterung T2:U2-+ V2 (mit x2eU2c: U), so dass V2 offen in Vliegt und
folgendes gilt:

(a) T2{x2) T{x1).
(b) T2

1

(v) und T 1 (v) gehôren jeweils zum gleichen Blatt fur aile veV2.
Da die lokalen ©-Blâtterungen T und T2 holomorph vertrâglich sind, so gibt es

eine Umgebung Wvon x2 in U2c:Uund eine biholomorphe Abbildung h:T2(W)->
->r(JF), so dass gilt:

(c) ho(T2 | W) T\ W.

Wir kônnen (eventuell nach Verkleinerung von V2 und U2) annehmen, dass

T2(W) V2. Die holomorphe Abbildung h:V2-*T(W)cV hat dann folgende Eigen-
schaften (man beachte (a), (b) und (c)):

T"1^) und T~1(h(v)) T21(v) gehôren fur jedes veV2 zum gleichen Blatt, d.h.

(v,h(v))eRv.
Darausfolgt:
R(vi> V2): {(v> h(v))l ^^F2} ist lokal analytisch in Rv und (vl9 v2)eR{vu v2).

ai | R(vu v2)^>V2 ist biholomorph mit der Zuordnung v\-*(v, h(v))9 veV2, als

Umkehrabbildung.

(4) Auf Grund von Lemma 2.9 gibt es hôchstens abzâhlbar viele Fasern von
T:U-+V* die zum gleichen Blatt von S gehôren. Daraus folgt sofort Aussage (4).

(5) Eine abgeschlossene Aequivalenzklasse von Rv ist wegen (2) entweder diskret
(d.h. sie besteht nur aus isolierten Punkten) oder perfekt (d.h. abgeschlossen und ohne
isolierte Punkte). Nehmen wir einmal an, es existiert eine perfekte Aequivalenzklasse
A von Rv. Wir wâhlen eine offene, relativ kompakte Umgebung Wa V eines Punktes

aeA. Dann ist die abgeschlossene Huile A n FF von A n FF eine nichtleere, kompakte,
diskontinuierliche, perfekte Teilmenge von A. Da jede solche Menge zum Cantorschen
Diskontinuum C homôomorph ist (siehe [1], Satz VI', Seite 121) und da C uber-
abzâhlbar ist, so miisste auch A uberabzâhlbar sein im Widerspruch zu (4).
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§ 3. Hausdorffsche Blâtterrâume

3.1. Wir wollen jetzt eine Antwort auf die beiden im letzten Paragraphen formu-
lierten Problème geben.

SATZ3.1. X sei ein parakompakter komplexer Raum mit einer holomorphen

Blâtterung 23. Dann stellt jedes (lokal-) abgeschlossene Blatt von 23 eine (lokal-)
analytische Teilmenge von X dar.

Beweis. Sei Bx9 xeX, ein lokal-abgeschlossenes Blatt von 23. Zu jedem Punkt
yeBx gibt es eine offene Umgebung U mit einer lokalen 23-Blâtterung T:U->V. Wir
kônnen annehmen, dass Bxn Uin U abgeschlossen ist. Folglich liegt auch T(Bxn U)
abgeschlossen in V. Da T(BxnU) als abgeschlossene Aequivalenzklasse von Rv
diskret ist, so stellt Bx n U= T~* (T (Bx n U)) eine analytische Menge in U dar. Damit
ist gezeigt, dass Bx lokal-analytisch in Xtet.

COROLLAR 3.2. X sei ein parakompakter komplexer Raum mit einer
holomorphen Blâtterung 23. Ist der Blâtterraum B von 23 hausdorffsch, so sind aile Blâtter
analytische Teilmengen von X.

3.2. Fur die Frage, wann es auf einem Blâtterraum eine kanonische komplexe
Struktur gibt, ist das folgende Lemma sehr nùtzlich.

LEMMA 3.3. Ist X ein parakompakter, reduzierter komplexer Raum und 23 eine

holomorphe Blâtterung mit hausdorffschem Blâtterraum Bfô), dann gibt es zu jedem
Punkt xeX eine offene Umgebung U mit einer lokalen SB-Blâtterung T:U-*V, so dass

die Aequivalenzrelation Rv offen, diskret, eigentlich und analytisch ist.
Beweis. Man kann von einer beliebigen lokalen 23-Blâtterung T:U-*V auf einer

offenen Umgebung U von x ausgehen. Die Aequivalenzrelation Rv ist auf Grund von
Lemma 2.10 offen, diskret und schwach-analytisch. T induziert einen Homôo-
morphismus T.n{U)-* V/Rv9 so dass das folgende Diagramm kommutiert:

XaU -Ï-+V
«i f K

Dabei sind 7c:Z-> J?(93) und ny: V-+ V/Rv die kanonischen Quotientenabbildungen.
Da B nach Voraussetzung hausdorffsch ist, so auch V/Rv (bzgl. der Quotienten-
topologie). Da F lokal kompakt ist, so auch V/Rv. Da Rv eine diskrete Aequivalenzrelation

darstellt, kann man (durch passendes Verkleinern von V und U) stets er-

reichen, dass nv: V-+ V/Rv eine eigentliche Abbildung wird (siehe [15], Hilfssatz 3).

T:U-*V kann also stets so gewâhlt werden, dass die Aequivalenzrelation Rv offen
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diskret, eigenthch und schwach analytisch ist. In [6], Hilfssatz 6, wurde gezeigt, dass

solche Aequivalenzrelationen stets analytisch sind.

SATZ 3.4. X sei eine parakompakter, reduzierter komplexer Raum mit einer
maximalen holomorpher Blatterung 93 {Tx\ Ut -> Vx, tel} (d.h. die komplexen Raume
Vx sind maximal), dann gilt Der Blatterraum B08) von 33 besitzt genau dann eine
kanonische komplexe Struktur, wenn er hausdorffsch ist, und dièse ist dann wieder

maximal.
Beweis Wir konnen auf Grund von Lemma 3.3 annehmen, dass die Aequivalenzrelationen

Rv\ tel, aile offen, diskret, eigenthch und analytisch sind. Da die Vt als

maximal vorausgesetzt sind, so existiert (siehe [6], Satz 15) eine kanonische maximale
komplexe Struktur auf pyi£Fl, d h die kanonische Quotientenabbildung nVi

Vx -> VJRVi ist holomorph und zu jeder i?y*-invananten holomorphen Funktion (oder
Abbildung) / auf einer iÊF*-satunerten offenen Teilmenge W von Vx gibt es eine

holomorphe Funktion (oder Abbildung) /auf nVi (W) <=. VJRVi, so dass/o(7cK' | W) =/
Die holomorphen Abbildungen Tx. Ut -> Vx induzieren Homoomorphismen

fx:n(Ux)-^ VJRVi, so dass die folgenden Diagramme kommutieren:

x-=>ux -^ vx

Da die kanonische Quotientenabbildung n:X-+B((>8) von X auf denBlatterraum
-6(93) von © offen ist, so stellt {n(Ut); iel} eine offene Ueberdeckung von Bdar und

{(^(U,), r,), iel} ist ein System vom komplexen Karten von i?(23).

Wir mussen nur noch nachweisen, dass zwei Karten (n(Ut), ft) und (n(Uj), Tj),
i,jel, stets holomorph vertraghch sind; d.h. wir mussen zeigen, dass die Abbildung
TtJ.^T^TJ1 auf Tj(n(Uj)nn(Uj) holomorph ist. Sei b ein Punkt aus n(Uj)n7r(l/f).
Dann gibt es Punkte xleUl und XjEUj mit n(xl) n(xJ) b Da XjGBXi, so gtbt es

auf Grund von Lemma 2.7 eine lokale 23-Blàtterung TJ: l/J -+ V'3 emer offenen Um-
gebung Uj von x3 und eine biholomorphe Abbildung h : FJ -»• V[ von V] auf eine
offene Umgebung V[czVl von T^x^, so dass gilt.

;
(b) T~1 (h(v)) und TJ ~1(v) hegen fur jedes ve VJ îm gleichen Blatt von 93

Wir kônnen ohne weiteres annehmen, dass VJ c Vj9 UJ c Uj und TJ : T, | UJ ->

-> VJ. Da Ft/i^Fi und ^/i?^ kanonische komplexe Strukturen tragen, so induziert

h:VJ->v; eine biholomorphe Abbildung H:nVj (VJ)-^nVi(v;), so dass nVi (h(v))
îi{nVi(v)) fur aile veVJ. nVj(VJ) ist eine offene Umgebung vonf/é) in ^(^(l/^n

n 71(1/,)) und fi stimmt dort mit fXJ uberein, wie man folgender Rechnung entmmmt:
Zu jedem ve VJ gibt es Punkte yte Ut und y3e UJ, so dass TJ(yj) v und Tt(jt)

=*(*). Wegen(b)ist n{yù n{y,). Darausfolgt: Tu(nv>(v)) Tt{Tjx {v
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^(*(7y)) ^^ fur aile veVj;d.h.

Damit ist nachgewiesen, dass Tij:Tj(n(Uj)nn(Ui))-+Ti(n(Uj)nn(Ui)) biholo-
morph ist.

Der Atlas {(rc (£/,), Tt); iel} definiert auf dem Blâtterraum £(23) eine kanonische

komplexe Struktur, wie man dem obigen Beweis sofort entnimmt.
Bemerkungen (zu Satz 3.4). (1) Man kann die Voraussetzung, dass Xparakompakt

ist, in allen oben bewiesenen Aussagen ersetzen durch die Bedingung, dass die Blâtter
eine abzâhlbare Basis besitzen (die Parakompaktheit wurde nur zum Beweis von
Lemma 2.9 ausgenutzt).

(2) Der obige Satz 3.4 wird im allgemeinen falsch, wenn man die Voraussetzung
fallen lâsst, dass die Blâtterung 23 {Ti:£/f-»Fi; iel} maximal ist. Man kann sich
aber im Fall, dass 23 nicht maximal ist, wie folgt helfen. Man gehe zur Maximalisierung
X von X iiber, dann bilden die Maximalisierungen Tt: £?,.-> Vt von Tt: U^V^ iel,
eine maximale Blâtterung S von X. Der Blâtterraum 2?(23) vonSistalstopologischer
Raum gleich dem Blâtterraum £(23) von 23. £(S) besitzt als Blâtterraum der holo-
morphen Blâtterung S von X eine kanonische maximale komplexe Struktur. Dièse
ist jedoch im allgemeinen nicht kanonisch bzgl. der Blâtterung 23 von X, denn die
kanonische Quotientenabbildung n:X->B0B) ist im allgemeinen nicht holomorph,
sondern nur meromorph in dem Sinne, dass der Graph Gn\ {(x, n(x))eXxB0B);
xeX} von n:X^> £(S) eine analytische Menge in Xx£(S) darstellt. {Gn istnâmlich
das Bild des Graphen Glt: {(x, n(x))e%xB0&); xeX)} der kanonischen holo-
morphen Quotientenabbildung 7r:X-*£(!5) unter der kanonischen holomorphen
Abbildung Xx J(S) -> X x £(S).

Hieraus folgt insbesonders fur eine holomorphe Blâtterung auf einem maximalen
komplexen Raum X, dass der Blâtterraum £(23) eine kanonische maximale komplexe
Struktur besitzt, wenn er hausdorffsch ist.

Ist Xnicht maximal und 23 eine holomorphe Blâtterung von X mit hausdorffschem
Blâtterraum £(23), dann wollen wir die kanonische maximale komplexe Struktur auf
dem Blâtterraum J§(S) von S auch als ,,kanonische" maximale komplexe Struktur
von £(23) bezeichnen.

COROLLAR 3.5. X, Y seien parakompakte, reduzierte komplexe Ràume, wobei
mindestens einer der beiden Ràume maximal ist. T.X^Y sei eine lokal einfache,

offene, holomorphe Abbildung. R bezeichne die Aequivalenzrelation, die die Zerlegung
von X in Niveaumengen von T beschreibt (vergleiche [16]). Dann gilt:

Der Quotientenraum XIR besitzt genau dann eine kanonische komplexe Struktur,
wenn er hausdorffsch ist, und dièse ist dann maximal.

Beweis. Jeder Punkt xeX besitzt eine offene Umgebung UX9 so dass Tx : T \ Ux-+
-> VX: T(UX) eine lokale holomorphe Blâtterung von X darstellt. 23: {Tx:l/x-> Vx;
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xeX} ist dann eine holomorphe Blâtterung von X, dessen Blâtter genau die Niveau-

mengen von T.X-* 7sind.

3.3. Fur ein integrables Pfaffsches System Q' a £2% partieller Differentialgleichun-
gen auf einem parakompakten komplexen Raum X lassen sich die obigen Sâtze 3.1

und 3.4 auch wie folgt formulieren:

SATZ 3.6. Eine globale Lôsungsflâche MaX von Q' ist genau dann (lokal-) analy-
tisch in X, wenn sie (lokal-) abgeschlossen in Xist.

SATZ 3.7. Ist X reduziert und maximal, dann besitzt der Parameterraum P(Q') der

globalen Lôsungen von Q' genau dann eine kanonische (maximale) komplexe Struktur,
wenn er hausdorffsch ist.

Eine wichtige Klasse von Beispielen holomorpher Blàtterungen wird durch
komplexe Liesche Transformationsgruppen erzeugt. Sei X ein reduzierter komplexer
Raum, L eine komplexe Liesche Transformationsgruppe von X. Unter der L-Bahn
durch xeX versteht man dann die Menge L(x): {g(x) ; geL}. Es gilt folgender Satz:

(siehe [6], Hilfssatz 2, und [7], Theorem 2):

SATZ 3.8. Haben aile L-Bahnen von X die gleiche Dimension m9 dann besitzt jeder
Punkt xeX eine offene Umgebung der Form Ux AxxPm, wobei Ax ein komplexer
Raum und Pm ein m-dimensionaler komplexer Polyzylinder sind, so dass die Mengen

{a} xPm, ae AxJeweils ganz in L-Bahnen liegen.

COROLLAR 3.9. X sei ein reduzierter komplexer Raum mit einer komplexen
Lieschen Transformationsgruppe L. Haben aile L-Bahnen die gleiche Dimension m, dann

gibt es genau eine holomorphe Blâtterung 23 93 (X L) von X, dessen Blâtter genau die

Zusammenhangskomponenten der L-Bahnen sind.

Bemerkung. Es genùgt im obigen Corollar vorauszusetzen, dass die Dimension
der L-Bahnen lokal konstant is.

Beweis. Unter Verwendung von Satz 3.8 kann man SB wie folgt definieren:
SB : {px:UX^AX; xeX}, wobei px die kanonische Projektion des Produktes Ux=Axx
xPm auf die erste Komponente ist.

Ist X ein reduzierter komplexer Raum und L eine komplexe m-dimensionale
Liesche Transformationsgruppe von X, wobei die Bahndimension nicht notwendig
lokal konstant ist, dann erzeugt L eine partielle holomorphe Blâtterung von X im
folgenden Sinne:

Es gibt analytische Mengen Xo, Xl9..., Xm von X, so dass gilt:
(1) I=ImDlm_1D...Dl03l-1=(J
(2) Auf Xi — Xi-i (i=0, 1,..., m) haben aile L-Bahnen die Dimension i, d.h.
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Xi—Xi-! ist L-invariant und L erzeugt dort eine holomorphe Blâtterung 2?i5 dessen

Blâtter Zusammenhangskomponenten i-dimensionaler L-Bahnen sind (vergleiche [6],
Satz 5, Seite 335).

XIL bezeichne den Bahnenraum von L, B(X, L) sei der Raum der
Zusammenhangskomponenten von L-Bahnen auf X. Ist X/L oder B(X, L) hausdorffsch bzgl.
der Quotiententopologie, so ist die Dimension der L-Bahnen lokal konstant
(vergleiche [6], Satz 7, Seite 337), d.h. L induziert eine holomorphe Blâtterung
23 33(Z, L) von X, dessen Blâtterraum gerade B(X, L) ist.

Die Sâtze 3.1 und 3.4 dièses Paragraphen ergeben fur einen komplexen Raum X
mit einer komplexen Lieschen Transformationsgruppe L die folgenden Aussagen.

SATZ 3.10. Eine Zusammenhangskomponente einer L-Bahn ist genau dann

(lokal-) analytisch in X, wenn sie (lokal-) abgeschlossen in X liegt.

SATZ 3.11. X sei reduziert und maximal. Der Raum B(X,L) der Zusammenhangskomponenten

von L-Bahnen besitzt genau dann eine kanonische komplexe Struktur,
wenn er hausdorffsch ist.

Bemerkung. Die Voraussetzung von Satz 3.4, dass Xparakompakt ist, kônnen wir
in Satz 3.11 fallen lassen, da aile Lie-Gruppen und damit auch aile L-Bahnen eine
abzâhlbare Basis besitzen (vergleiche Bemerkung (1) zu Satz 3.4).

BEISPIEL. Als komplexen Raum Xwâhlen wir die offene Menge {z (z1z2z3)e(^3 ;

^3^0} des tf3, versehen mit der iiblichen Strukturgarbe 0 der Keime holomorpher
Funktionen auf X. Die holomorphen Pfaffschen Formen

(ot 2z3 dzt + zt dz3

co2 2z3 dz2 + z2 dz3

erzeugen eine analytische Untergarbe Qr der Garbe Q\ der holomorphen Pfaffschen
Formen auf X. Q' ist involutorisch auf X, denn

dco1 2dz3 a dzt + dzt a dz3 dz3 a dzt — dz3 a œ1,
2z3

dœ2 2dz3 a dz2 -f dz2 a dz3 dz3 a dz2 — dz3 a co2
2z3

Da die Linearformen ct)1(z), co2(z) in allen Punkten zeJHinear unabhângig sind, so ist
auf Grund des Satzes von Frobenius integrabel. Wir wollen die lokalen Eulerschen

Multiplikatoren fur das System cou co2, suchen. Jeder Punkt z°=(z°l9 z2, z3) von
X (mit Z3V0) besitzt eine offene Umgebung Ux0, so dass auf Uz0 ein Zweig von
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yfz3 wohl definiert ist. Dann ist

T2(z) : z2 Jz~~3

ein wohl definiertes Paar von holomorphen Stammfunktionen von œl9 œ2 auf U2o,

denn

dTt Jz3 dzt + —J= dz3 —= œl,
27 27

dz2

Tz0: =(T1? T2): Uzo -? Vzo ist eine Submersion von Uzo auf eine offene Menge Vzo im
^2, bei passender Wahl von Uzo also eine lokal einfache, einfache, offene, holomorphe
Abbildung, d.h. eine lokale Lôsung von Q\

Man verifiziert leicht, dass durch

% (z) : z\z3, tt2 (z) : z\z3, 7i3 (z) : Z!Z2z3

eine einfache, offene, holomorphe Abbildung n:X-+Y definiert wird, wobei

r: {w (w1, vv2, wz)e^3; w1w2 — w3 0} ein komplexer Unterraum des ^3 ist, den

wir uns mit der ûblichen normalen reduzierten komplexen Struktur versehen denken.

Die Fasern von n sind 1-dimensionale zusammenhângende komplexe Untermannig-
faltigkeiten von X, welche die Fasern der lokalen Lôsungen Tz:Uz-> Vz von Q1 jeweils
als offene Teilmengen enthalten. Damit ist aber klar, dass die Fasern von n genau die
maximalen zusammenhângenden Lôsungsflâchen von Q' sind, d.h. die Blâtter der
durch die lokalen Lôsungen TZ:UZ^VZ9 zeX, von Q' gegebenen holomorphen
Blâtterung $8 von X. Y ist dann nichts anderes als der Blâtterraum i?(23) von 93 oder,
anders ausgedrùckt, der Parameterraum P{Q') der globalen Lôsungsflâchen von Q'.
Es sei noch bemerkt: Lâsst man auf X die multiplikative Gruppe ^* der von Null
verschiedenen komplexen Zahlen wie folgt operieren :

t(z1, z2, z3) := (tz1? tz2, t"2z3), tg#*,
so stimmen die ^*-Bahnen genau mit den Fasern von n ûberein, d.h. F ist der Bahnen-

raum der komplexen Lieschen Transformationsgruppe fé7* von X.
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