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Holomorphe Bliitterungen komplexer Riume?)

von HARALD HOLMANN (Freiburg, Schweiz)
Herrn Professor Dr, Karl Stein zum 60. Geburtstag gewidmet

Einleitung

Fiir einen reduzierten komplexen Raum X mit einer komplexen Lieschen Trans-
formationsgruppe L gelten die folgenden Aussagen (siehe [6], Satz 6 und Satz 15):

Eine L-Bahn ist genau dann eine komplexe Untermannigfaltigkeit von X, wenn
sie in X abgeschlossen ist.

Der Bahnenraum X/L besitzt genau dann eine ,,kanonische‘ komplexe Struktur,
wenn er hausdorffsch ist.

In der vorliegenden Arbeit sollen diese Resultate auf holomorphe Blitterungen
komplexer Rdume iibertragen werden.

Eine holomorphe Blitterung eines komplexen Raumes X lédsst sich als ein System
paarweise holomorph vertrdglicher lokaler holomorpher Blitterungen beschreiben
(vergleiche die Definitionen 2.1., 2.2., 2.3). Dabei versteht man unter einer lokalen
holomorphen Blitterung von X eine lokal-einfache, einfache, offene, holomorphe
Abbildung T: U — V einer offenen Menge U< X auf einen komplexen Raum V,

Die Fasern von 7:U—V bilden eine Zerlegung von U in zusammenhidngende
analytische Mengen, die man mit der durch 7T induzierten komplexen Struktur ver-
sehen kann. Zwei holomorph vertrigliche lokale holomorphe Bldtterungen T;: U; -V},
i=1, 2, liefern die gleiche analytische Zerlegung von U; n U,. Das fiihrt auf den Be-
griff des globalen Blattes und des Blétterraumes einer holomorphen Blitterung (ver-
gleiche Definition 2.5).

Betrachtet man ein integrables Pfaffsches System holomorpher partieller Differen-
tialgleichungen auf einem komplexen Raum X, dann induziert dieses eine holomorphe
Blitterung B auf X, so dass die maximalen zusammenhédngenden L&sungsflichen
gerade die Blitter von B sind (vergleiche die Definitionen 1.1, 1.3 und Satz 2.4).

In der Differentialtopologie verwendet man den Begriff der holomorphen (oder
differenzierbaren) Blatterung in viel eingeschridnkterem Sinne (vergl. [17]). Man be-
schrinkt sich auf komplexe Mannigfaltigkeiten und eine lokale Blitterung einer
Mannigfaltigkeit X ist definiert als eine Submersion 7: U - V einer offenen Teilmenge
Uc X auf eine Mannigfaltigkeit ¥ (d.h. T ist in geeigneten lokalen Koordinaten eine

1) Die Ergebnisse der vorliegenden Arbeit wurden auf den 6. Rolf Nevanlinna-Kolloquium in
Ziirich (18./19. Juni 1971) vorgetragen.
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Projektion eines Produktes zweier Polyzylinder auf eine Komponente). Ein Pfaffsches
System partieller Differentialgleichungen liefert natiirlich nur dann eine Bldtterung in
diesem Sinne, wenn alle Losungsflichen singularitdtenfrei sind und lokal eine triviale
Faserung erzeugen. Will man auch Losungsflichen mit Singularitidten zulassen, so
erweist sich die obige Verallgemeinerung des Begriffes der holomorphen Bldtterung
als sinnvoll. Ausserdem sind die Resultate, die in dieser Arbeit dargestellt werden
sollen, fiir die speziellen ,,reguldren* Bldtterungen nicht einfacher zu erhalten. Auch
ldsst es sich gar nicht vermeiden, allgemeine komplexe Rdume in die Untersuchungen
mit einzubeziechen. Wenn zum Beispiel der Blidtterraum einer reguldren Bldtterung
einer komplexen Mannigfaltigkeit eine kanonische komplexe Struktur besitzt, so hat
diese in allgemeinen Singularititen (siche das Beispiel am Ende der vorliegenden
Arbeit). Erst unter zusidtzlichen Regularitdtsbedingungen erhdlt man Bldtterrdume
mit Mannigfaltigkeitsstruktur (man vergleiche die Untersuchungen von R. Palais
in [11]).

Die Hauptresultate der vorliegenden Arbeit sind die beiden folgenden: (siche die
Sitze 3.1. und 3.4):

B sei eine holomorphe Blitterung eines parakompakten komplexen Raumes X, dann gilt:

1. Ein Blatt von B ist genau dann (lokal-)analytisch, wenn es (lokal-)abgeschlossen
in X ist.

II. Ist X reduziert, so besitzt der Bldtterraum von B genau dann eine ,,kanonische*
komplexe Struktur, wenn er hausdorffsch ist.

Diese Aussagen gestatten eine spezielle Interpretation, wenn man sie auf die
Blitterungen anwendet, die durch Pfaffsche Systeme holomorpher partieller Differen-
tialgleichungen bzw. durch komplexe Liesche Transformationsgruppen erzeugt wer-
den (siche die Sdtze 3.6 und 3.7).

§ 1. Pfaffsche Systeme partieller Differentialgleichungen auf komplexen Riiumen

1.1. Essei X ein komplexer Raum im Sinne von Grauert (siche [4]). Seine Struktur-
garbe werde mit @, bezeichnet. Man hat iiber X die Oy-Modulgarben QF der holo-
morphen Differentialformen vom Grade p, so wie die 0x-Algebragarbe Qy:= @, n2%
(vergleiche [5], [12]). @ heisst auch Garbe der holomorphen Pfaffschen Formen auf
X. Lokal ist Q4 wie folgt definiert. Jeder Punkt xe X besitzt eine offene Umgebung U,
die mit einer analytischen Teilmenge einer offenen Menge G = C"identifiziert werden
kann. Dabei diirfen wir annehmen, dass es holomorphe Funktionen fj, ..., f,, auf G
gibt, die eine kohdrente Idealgarbe # =0, der Strukturgarbe 0; von G erzeugen, so
dass U={zeG; f,(z)="--=f,(z)=0} ist und die Quotientengarbe 0/ # die Struktur-
garbe (DU:=(DX| U von U ergibt. (Da der Triger der Garbe 0g/ ¢ gleich U ist, so
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kdnnen wir sie mit ihrer Beschrinkung auf U identifizieren). Qg: = @, nQ§ bezeichne
die bekannte O;-Algebragarbe der holomorphen Differentialformen auf G, wobei
QFf die 0z;-Modulgarben der holomorphen Differentialformen vom Grade p auf G
sind. £y=@®,.nF 1< sei die von fy, ..., f,, dfs, ..., df,, erzeugte 1dealgarbe, wobei
FEcQE fiir alle peN. Es ist #9=_¢ und ¢ wird von den holomorphen Pfaffschen
Formen f,dz,(n=1,...,m; i=1,..., n) und df,(u=1,..., m) erzeugt. Wir kdnnen nun
die Garben Qf der holomorphen Differentialformen vom Grade p auf U wie folgt
definieren:

Qp:=Q¢/ %, peN.
Qu:i=Q/Fv= @ Qp

PeN

ist dann eine Oy -Algebragarbe, die sogenannte Garbe der holomorphen Differential-
formen auf U. Da der Trager der Garbe Q, gleich U ist, so kann sie mit ihrer Be-
schrinkung auf U identifiziert werden. Es sei bemerkt, dass Q; nicht von der speziellen
Einbettung U< G abhéngt.

Da die dussere Ableitung d: Q; — Q; die Idealgarbe #, =, invariant ldsst, so
induziert sie eine eindeutig bestimmte dussere Ableitung d:Q, — Qp, so dass das
folgende Diagramm kommutiert:

Qe 50

ﬂl 3 ln
Qy—Qy

Dabei bezeichnet n: Q; - Qp:=Q;/ # v die kanonische Quotientenabbildung.

Die Konstruktion der Garben holomorpher Differentialformen auf komplexen
Rdumen ist funktoriell. Es sei kurz dargestellt, wie die durch holomorphe Abbildungen
zwischen komplexen Rdumen induzierten Liftungsabbildungen zwischen den zuge-
horigen Garben holomorpher Differentialformen lokal aussehen. Sei (T, T7%):(X, Ox) —
— (Y, Oy) eine holomorphe Abbildung zwischen komplexen Rdumen im Sinne von
Grauert; d.h. T: X - Y ist eine stetige Abbildung und T*:={T%: Oy 1y — Oy, ,;x€X}
ist eine Kollektion von Algebramorphismen, so dass jedem stetigen Schnitt f von 0y
iiber einer offenen Menge Uc Y durch die Vorschrift x+—T% (f(7T(x))), xeT ~1(U),
ein stetiger Schnitt von Oy iiber T~*(U) zugeordnet wird. Lokal ldsst sich eine
holomorphe Abbildung wie folgt beschreiben: Zu jedem x,€X gibt es offene Teil-
mengen Uc X und V¥, so dass gilt:

a) xoeU, T(U)c=V

b) U und ¥V kdnnen mit analytischen Mengen von offenen Teilmengen G bzw. D
komplexer Zahlenrdume identifiziert werden, und ihre Strukturgarben Oy bzw. O,
sind Quotientengarben 0/ # bzw. 0,/f nach kohdrenten Idealgarben # <0, bzw.
J<lp.
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¢) Es gibt eine gewShnliche holomorphe Abbildung H:G— D mit H(x)=7T(x)
und H3(F 1)< A, fiir alle xe UH%: 0 1y~ g, . bezeichnet dabei die iibliche
durch H gegebene Liftungsabbildung), so dass H* jeweils auf kanonische Weise die
Abbildung

TE: Op, 10 1= Op, 1) F 166y = O, x 1= Ug, x| 7~

induziert.

Sind nun #,;<Q; und S, < Q,, die wie oben durch _# =0; und £ = 0, erzeugten
ldealgarben der entsprechenden Garben holomorpher Differentialformen und be-
zeichnet H%: Q) 1)~ Q26,x X€U, die iibliche durch H:G - D gegebene Liftungs-
abbildung, so gilt fiir alle xeG:

H: (fv, T(x)) c fv,x-

Die Algebramorphismen H%: Qp, 1)~ Q2¢,x X€U, induzieren also auf kanonische
Weise Liftungsabbildungen

%, . —
T;: QV, T(x) *— ‘QD, T(x)/jV, T(x) — Qv,x = QG, x/fv,x-

Es sei bemerkt, dass die Algebramorphismen T nicht von den speziellen Einbettungen
UcD und V<G abhingen. Nach Konstruktion sind die Liftungsabbildungen
T5%:Qy 1)~ Qu,, mit den dusseren Ableitungen d von Q) und Qy vertriglich.

1.2. Zur Motivierung der folgenden Definition eines Pfaffschen Systems holo-
morpher partieller Differentialgleichungen auf einem komplexen Raum betrachten
wir den klassischen Fall eines Systems

0y;
___l= 10X, . i=1,.,,,m, '=1,...,n, *
ox, Ju (> y) J O

x=(x19“'3 xn)s y=(y1:---’ ym)9
partieller Differentialgleichungen erster Ordnung auf einem Gebiet D im €"*™, wobei
die Funktionen f;; auf D holomorph sind. Man kann dem System (*) ein System

n

o i=dy,— Y fidx;, i=1,...,m, **)
j=1

holomorpher Pfaffscher Formen zuordnen. Gesucht ist dann zu jedem Punkt

(x° y°)eD ein System H=(Hj,..., H,) von lokalen holomorphen Stamfunktionen
H, p=1,..., m, auf einer offenen Umgebung U< D von (x°, y°), so dass

dH,= ) M,o,, p=1,..,m,
i=1

wobei M,; auf U holomorphe Funktionen sind, und der Rang der Eulerschen Matrix
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(M,;(x, y)) fiir alle (x, y)=U gleich m ist. Die lokalen Losungsflichen des Systems (*)
stimmen auf U gerade mit den gemeinsamen Konstanzflichen der lokalen Stamm-
funktionen H,,..., H, des Systems (**) iiberein, d.h. mit den Niveauflichen (d.h.
Zusammenhangskomponenten der Fasern) der Abbildung H=(H,,..., H,):U—>%".
H ist eine holomorphe Submersion, d.h. der Rang der Funktionalmatrix von H ist
auf U konstant gleich m. Die Umgebung U von (x°, y°) kann so gewéhlt werden, dass
sie zu einem Polyzylinder P im €"*™ biholomorph dquivalent ist, wobei den Niveau-
flichen der Abbildung H:U — %™ im Polyzylinder P die n-dimensionalen Ebenen-
stiicke {(zys++vs Zptm)EP; Zys1=C1seres Zyrm=Cpn} entsprechen. Man bemerkt leicht,
dass H nicht von den einzelnen Formen w,,..., ®,, explizit abhingt, sondern nur von
der durch sie erzeugten analytischen Untergarbe der Garbe Qj, der holomorphen
Pfaffschen Formen auf D. Das gibt Anlass zur folgenden Definition eines Pfaffschen
Systems holomorpher partieller Differentialgleichungen auf einem komplexen Raum
bzw. einer lokalen Losung eines solchen Systems.

DEFINITION 1.1. Unter einem Pfaffschen System holomorpher partieller Dif-
ferentialgleichungen auf einem komplexen Raum X versteht man eine lokal endlich

erzeugte (d.h. kohirente) analytische Untergarbe Q' der Garbe Qy der holomorphen
Pfaffschen Formen auf X.

DEFINITION 1.2. Unter der Garbe der Stammfunktionen von Q' <Qy versteht
man die Untergarbe 0’ :=d ™' (Q') von Oy.

DEFINITION 1.3. Q' <Qy heisst schwach integrabel, wenn es zu jedem Punkt
x°e X eine offene Umgebung U und eine lokal-einfache, einfache, offene, holomorphe
Abbildung T:U — V gibt, so dass fiir alle xe U gilt.

a) 0U,x. Tt (QII’, T(x))=9;c'

Q' heisst integrabel oder ein Frobeniussystem, wenn zusdtzlich gilt:

b) T:: ((911/ T(x))=@.;:'

Eine lokal-einfache, einfache, offene holomorphe Abbildung, die den Bedingungen a)
und b) geniigt, heisst eine lokale Lisung von Q' <=Qy; sie heisst eine schwache lokale
Losung, wenn nur die Bedingung a) erfiillt ist.

Unter einfachen und lokal-einfachen Abbildungen zwischen topologischen
Riumen versteht man das Folgende:

DEFINITION 1.4. Eine Abbildung T:X— Y zwischen topologischen Rdumen X
und Y heisst einfach, wenn alle Fasern T ~*(T(x)), x€ X, von T zusammenhiingend sind.

T heisst lokal-einfach, wenn es zu jedem Punkt xe X und jeder Umgebung U von x
eine offene Umgebung U< U von x gibt, so dass T | U einfach ist.

Bemerkung. Ist T: U — V eine schwache lokale Losung von 2, so entnimmt man
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den kommutativen Diagrammen

T‘x
‘DV, T(x) 0 U,x

d} ld
gtl’, T(x) —TE—’ Qtlj, X
dass fiir alle xe U gilt:
b) T3 (@V, T(x)) <0,
) Oy, d0,= Q..

1.3. Unter gewissen Voraussetzungen sind schwache lokale Losungen eines
Pfaffschen Systems schon lokale Lésungen.

SATZ 1.5. Q' cQy sei ein Pfaffsches System partieller Differentialgleichungen auf
dem reduzierten komplexen Raum X. T: U — V sei eine schwache lokale Losung von Q'.
Ist V ein maximaler komplexer Raum (d.h. V ist reduziert und geniigt dem schwachen
Riemannschen Hebbarkeitssatz), dann ist T schon eine lokale Losung von Q'.

Beim Beweis hat man das folgende Lemma heranzuziehen (vergleiche [8]).

LEMMA 1.6. X, Y seien reduzierte komplexe Rdume, Y sei maximal und T:X - Y
sei eine offene, holomorphe Abbildung, dann gilt: Zu jeder auf einer T-saturierten
offenen Menge Uc X T-invarianten holomorphen Funktion f gibt es eine holomorphe
Funktion F auf T(U), so dass Fo(Tl U)= f(d.h. Y ist der kanonische Quotient von
X nach der durch T induzierten Aequivalenzrelation Ry und 7T: X — Y ist die kano-
nische Quotientenabbildung).

Beweis (von Lemma 1.6). Auf Grund der Offenheit von T gibt es eine stetige
Funktion F auf T (U), so dass Fo(T [ U)= f. Da Y maximal ist, bleibt zu zeigen,
dass F ausserhalb einer nirgends dichten analytischen Menge S von 7'(U) holomorph
ist. Man wihle S als Singularititenmenge von T(U). Sei weT(U)— S und ze U mit
T(z)=w. Wegen der Offenheit von T ist rg,(T): =dim, U—dim, T~ ! (w)=dim,, T(U)
(vergleiche [13], Satz 29). Man kann eine rein-dimensionale analytische Menge 4 in
einer offenen Umgebung V< U von z mit folgenden Eigenschaften finden:

&) AT~ (W)={z},

p) dimA+dim, T~ 1(w)=dim,U, d.h. dimA=dim,T(U).

Man kann annehmen, dass 7(4) in einer Zusammenhangskomponente W von
T(U)—S liegt und dass T| A— W diskret ist (siche «)). Wegen dim A=dim W
(siche p)), stellt T | A— W eine offene Abbildung dar (sieche [13], Satz 29). Wir
kdonnen zusédtzlich annehmen, dass T| A—T(A) eigentlich ist (vergleiche [15],
Hilfssatz 3), d.h. eine holomorphe Ueberlagerung der Mannigfaltigkeit 7(4) liefert.
Wegen (F | T(A))o(T | A)= f | 4 ist F holomorph auf der offenen Umgebung T(A)
von w in T (U).
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Beweis (von Satz 1.5). Es ist fiir jedes xe U zu zeigen, dass T% (O, 1(x)=0% ist.
Auf Grund der obigen Bemerkung b’) ist T (0, 1(x)) = ;. Bleibt zu beweisen, dass
zu jedem f, e 0} ein F,. €0y 1, mit TH(F,)= f,existiert. f, wird durch eine holomorphe
Funktion f auf einer offenen Umgebung U,= U von x reprédsentiert. Wir kdnnen
annehmen, dass T | U,— V einfach und dfeQ’(U,) ist. Da T eine schwache lokale
Losung von Q darstellt, so muss f auf den Fasern von T | U, konstant sein. Nach
Lemma 1.6 gibt es eine holomorphe Funktion F auf der offenen Umgebung 7(U,) <V
von T(x), so dass f =Fo(T | U,) ist, d.h. f,=Ty (F,), wobei F, der durch Freprisen-
tierte holomorphe Funktionskeim aus Oy 1, ist.

SATZ 1.7. Q' =Qy sei ein schwach integrables Pfaffsches System holomorpher
partieller Differentialgleichungen auf einem reduzierten komplexen Raum X, dann gibt
es auf der Maximalisierung X von X (siehe [2], S. 44/45) genau ein integrables System
Q' mit folgender Eigenschaft: Ist T: U— V eine schwach lokale Lisung von Q', dann
ist ihre Maximalisierung T: U — V (siehe [2], S. 44/45) eine lokale Lésung von £’ (d.h.
die lokalen Losungen von £’ sind topologisch mit den schwachen lokalen Losungen
von Q' identisch).

Beweis. Zu jedem Punkt x°e X gibt es eine offene Umgebung U und eine schwache
lokale Losung T: U— ¥ von Q. Sei nun T: U — V die Maximalisierung von T. @y und
Oy seien die Strukturgarben von U bzw. ¥ und Q}, Qj die entsprechenden Garben
holomorpher Pfaffscher Formen. ' | U sei definiert als analytische Urbildgarbe von
Qp bzgl. T: U~ V, d.h. Q,=0y .- T5(Qp () fir allexe U. Q' | Tist eine kohdrente
analytische Untergarbe von Q. Sie ist integrabel, denn T: U — V stellt auf Grund
der Definition von Q' | U und wegen Satz 1.5 eine (globale) lokale Losung von
Q'| U dar.

Wenn wir zeigen konnen, dass 0’ | U nicht von der speziellen Wahl der schwachen
lokalen Losung T:U — V abhingt, sondern nur von Q' | U, so liefert die obige
Konstruktion von &’ | U die gesuchte Garbe £’ mit den im Satz behaupteten Eigen-
schaften. Zu diesem Zwecke rechnet man einfach fiir die Garbe @’ | U der lokalen
Stammfunktionen von £’ | U aus, dass fiir alle xe U gilt:

0,.={f.€0yp,; f, ist aus dem totalen
Quotientenring von @, und ganz algebraisch iiber @ }.

Damit ist die Garbe 0’ | U durch die Maximalisierung (U, @p) von (U, Oy) und die
Garbe @' | U eindeutig bestimmt; d.h. @' | U héngt letztlich nur von Q' | U ab.
Da 2’ | U integrabel ist, so gilt 2;=0yp, .-d0, fiir alle xeU, d.h. auch Q' | U hingt
nur von Q' | U ab.

1.4. Ein integrables Pfaffsches System Q' Q. partieller Differentialgleichungen
auf einem komplexen Raum X ist stets involutorisch, wie man leicht nachrechnet.
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Dabei heisst Q' involutorisch, wenn die durch Q' Q. erzeugte Idealgarbe Q' A Qy
von Qy unter der dusseren Ableitung d:Qy — Q4 invariant bleibt. Die Umkehrung
gilt im allgemeinen nicht. Fiir gewisse Pfaffsche Systeme auf komplexen Mannig-
faltigkeiten liefert jedoch der Satz von Frobenius (siche [10], Chapter 2, §2.11) ein
notwendiges und hinreichendes Integrabilititskriterium. Es soll hier fiir reduzierte
komplexe Rdume eine analoge Aussage angegeben werden. Dazu bendtigen wir
folgende Begriffsbildungen.

Sei X ein reduzierter komplexer Raum. I (X) bezeichne den reduzierten kom-
plexen Tangentialfaserraum an X (vergleiche [7], [9], [14]). Lokal ist T(X) wie folgt
definiert. Jeder Punkt xe€ X besitzt eine offene Umgebung U, die mit einer analytischen
Menge einer offenen Menge G<%" identifiziert werden kann. Wir verwenden im
weiteren die Bezeichnungen vom Anfang dieses Paragraphen. Zunéchst definiert man
den Tangentialfaserraum I (G) an G als

2@ {(n f ] rev. amtmmmrert,

d.h. T(G) ist biholomorph dquivalent zu G x€". Unter dem Tangentialfaserraum
T(U) an U versteht man dann die analytische Menge

TU):={(z, .)eT(G); zeU, T, (F,)=0}

von I (G), die wir mit der induzierten reduzierten komplexen Struktur versehen.
Die Garbe QF operiert in kanonischer Weise als Garbe von Linearformen auf

T (G) bzgl. der Abbildung &4: Q5 X ¢ T(G) - ¥ mit

cpa(i; 0 (2) dzi, (z, 3 By ,)) - z %, (z)-B;, z€G.

=1
Da &;( 5 Xv T(U))=0, so induziert &, auf kanonische Weise eine Abbildung
®y: Q5 Xy T(U)—> €. Diese hingt nur von der komplexen Struktur von U ab. Q
operiert also als Garbe von Linarformen auf T(X) bzgl. einer Abbildung @: QX 4
T (X)— €, deren Beschrinkung auf Q; <y T(y) fiir die oben beschriebenen offenen
Mengen Uc X gleich &y ist.

Sei nun M <cI(X) ein holomorphes Vektorraumbiindel. M heisst involutorisch,
wenn mit je zwei holomorphen Vektorfeldern 7, S in M iiber einer offenen Menge
Uc X ihr Liesches Klammerprodukt [7, S] wieder ein Vektorfeld in M iiber U ist.

Man kann einem holomorphen Vektorraumbiindel M cT(X) die Annullator-
garbe Ann (M)<c Q% zuordnen, die aus simtlichen holomorphen Pfaffschen Formen
besteht, die auf M verschwinden. Ann M ist eine kohdrente analytische Untergarbe
von Qy, also ein Pfaffsches System partieller Differentialgleichungen auf X.

Es gilt nun die folgende Verallgemeinerung des Satzes von Frobenius, die man
vollkommen analog wie in [10], Chapter 2, §2.11 beweist.
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SATZ 1.8. X sei ein reduzierter komplexer Raum, dann sind fiir ein holomorphes
Vektorraumbiindel M — T (X) iiber X folgende Aussagen dquivalent:

(1) M ist involutorisch.

(2) Ann (M) < Qy ist involutorisch.

(3) Ann (M) ist integrabel.

§ 2. Holomorphe Blitterungen

2.1. Integrable Pfaffsche Systeme partieller Differentialgleichungen auf komplexen
Rdumen erzeugen holomorphe Blitterungen auf diesen Rdumen, und zwar im Sinne
der folgenden Definitionen.

DEFINITION 2.1. Unter einer lokalen holomorphen Blitterung eines komplexen
Raumes (X, Ox) versteht man eine lokal-einfache, einfache, offene, holomorphe Ab-
bildung T:U — V einer offenen Menge Uc X auf einen komplexen Raum V.

DEFINITION 2.2. Zwei lokale holomorphe Blitterungen T;:U;—>V,, i=1, 2, auf
einem komplexen Raum (X, Oy) heissen holomorph vertriglich, wenn es zu jedem
xeU, nU, eine offene Umgebung WU, U, und eine biholomorphe Abbildung
h: T, (W) T, (W) gibt, so dass ho(T, | W)=T, | W.

DEFINITION 2.3. Unter einer (globalen) holomorphen Blitterung eines kom-
plexen Raumes (X, Oy) versteht man ein System B={T;:U;—V,; icl} paarweise
holomorph vertréiglicher lokaler holomorpher Blitterungen von X mit \ J;.; U;=X.

SATZ 2.4. Q' =Qy sei ein integrables Pfaffsches System partieller Differential-
gleichungen auf einem komplexen Raum X. Dann bildet das System der lokalen Losun-
gen von Q' eine holomorphe Bldtterung von X.

Beweis. Die lokalen Losungen T:U— V von Q' sind per Definition lokale holo-
morphe Blitterungen von X (dabei kénnen wir ohne Beschrinkung der Allgemeinheit
annehmen, dass die lokalen Losungen T: U— V surjektiv sind). Wir haben noch die
holomorphe Vertriglichkeit je zweier lokaler Losungen T;:U, - V;, T,: U, = V, von
Q' nachzuweisen. Fiir jedes xeU; n U, sind T7,,:0p, 1,— Or und T5,,:0y, 1,
— @, Algebraisomorphismen, desgleichen (77 )" T .:0p, 1,6~ Ov, 1, (x) ES
gibt folglich eine biholomorphe Abbildung /#: W, — W, zwischen offenen Umgebungen
WycV; von T, (x) und W, ¥, von T, (x), so dass At = (TT )~ *oT5 () ist, oder
anders ausgedriickt: (AT, )s=T7 ,oht, y=T3, Das bedeutet, dass fiir eine passende
Umgebung W< U; nU, von x die holomorphen Abbildungen /(T I W)und T, | w
iibereinstimmen.

Bemerkung. Jeder holomorphen Bldtterung B:={T;:U;— V;; iel} eines kom-
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plexen Raumes (X, 0x) kann man ein schwach integrables Pfaffsches System
Q' < Qy partieller Differentialgleichungen auf X zuordnen. Man setze einfach
Q.:=0x T} (2, 1) falls xeU,.

2.2, Um den Begriff des globalen Blattes einer holomorphen Bldtterung
B={T,;:U;— V;; icl} eines komplexen Raumes X einzufiihren, gehen wir wie folgt
vor. Zundchst bilden wir einen komplexen Raum X, dessen unterliegende Menge
gleich der von X ist, dessen Topologie aber im allgemeinen nicht die von X ist. Als
Basis der Topologie von Xy nehmen wir das System

{T;7'(z)n Uiel,zeV,, U offenin X}.

W:={T; '(z,); iel, z;eV;} ist dann eine offene Ueberdeckung von Xy. Auf der Faser
T; '(z)), iel, z;eV;, haben wir die durch T, induzierte komplexe Struktur. Ist
T; '(z;)nT; *(z;)#9, so stimmen wegen der holomorphen Vertriglichkeit von T; und
T; die durch T; bzw. T; darauf induzierten komplexen Strukturen iiberein. Zusammen-
fassend kann man sagen: auf X gibt es eine eindeutig bestimmte komplexe Struktur,
die auf den offenen Mengen T; '(z;) gerade die durch T; induzierte ist. Das liefert
eine holomorphe Abbildung 14: X — X, dessen unterliegende Mengenabbildung die
Identitét ist.

DEFINITION 2.5. Die Zusammenhangskomponenten von Xg werden Blitter von
B genannt. Die Menge B= B(B) der Blitter von ‘B heisst Blitterraum von B. B(B)
sei mit der feinsten Topologie versehen, so dass n:X — B(B) noch stetig ist. Dabei
bezeichnet n: X — B(B) die Abbildung, die jedem xe€ X das Blatt B, zuordnet, in dem
x liegt.

Ist Q' = Qy ein integrables Pfaffsches System holomorpher partieller Differential-
gleichungen auf dem komplexen Raum X und B die zugehorige holomorphe Blétte-
rung, dessen lokale holomorphe Blitterungen gerade die lokalen Losungen von Q'
sind, so werden die Blitter von B auch als globale Losungsflichen von Q’ bezeichnet,
und den Blitterraum B=B(B) von B nennt man auch Parameterraum P=P(Q’)
der globalen Lésungsflichen von Q’.

Eine holomorphe Blitterung B eines komplexen Raumes X wirft die beiden
folgenden Fragen auf:

PROBLEM 1. Unter welchen Bedingungen ist ein Blatt B, x€X, von B eine
analytische Teilmenge von X, oder anders ausgedriickt: wann ist 1y | B, — X ein kom-
plexer Unterraum von X (vergleiche [2], S. 45)?

PROBLEM II. Unter welchen Bedingungen besitzt der Blitterraum B (B) von B
eine kanonische komplexe Struktur?
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2.3. Bevor wir im nichsten Paragraphen eine Antwort auf die oben formulierten
Probleme geben, wollen wir zunichst einige allgemeine Hilfssdtze iiber holomorphe
Bldtterungen zusammenstellen.

DEFINITION 2.6. Sei (X, 0y) ein komplexer Raum, und B={T;:U,- V,; iel}
eine holomorphe Bliitterung von X. Unter einer lokalen B-Bldtterung von X versteht
man dann eine lokale holomorphe Blitterung von X, die mit allen lokalen Bldtterungen
T;: U, - V, holomorph vertrdglich ist.

LEMMA 2.7. T:U -V sei eine lokale B-Bldtterung von X. Dann gibt es zu jedem
x€U und jedem yeB, eine lokale B-Blitterung ,T: ,U— ,V und eine biholomorphe
Abbildung h: V- V', V' offenin V, so dass gilt:

@ ,h (T()=T).
(b) T7*(,h(v)) und , T~ (v) gehdren jeweils zum gleichen Blast fiir alle ve ,V, d.h.
2(T " Gh (o)) =n(,T~* (v)).

Bemerkungen (zu Lemma 2.7). (1) Zur Bestimmung von ,T: ,U~- ,V kann man
von einer beliebigen lokalen B _ Blitterung T: U — ¥ mit ye U ausgehen und ,T als
geeignete Beschrinkung von T wihlen.

(2) Andererseits kann man ,7:,U— ,V auch so wihlen, dass ,V offen in V liegt
und dass gilt:

@) ,T(y)=T(x)

(b") T7*(v) und , T~ (v) gehdren jeweils zum gleichen Blatt fiir alle ve, V.

Man gehe hierzu von einem beliebigen Paar T:,U~ ,V, h: V- yV’ aus, das
die Eigenschaften von Lemma 2.7 besitzt: ,7':= ho T: U— V' geniigt dann den
Bedingungen (a’) und (b").

Beweis. x sei fest aus U gewihlt. B, bezeichne die Menge aller Punkte y des
Blattes B,, fiir die die Aussagen (a) und (b) von Lemma 2.7 gelten. Es ist zu zeigen,
dass B,=B, ist. Wir beweisen zu diesem Zweck, dass B, gleichzeitig abgeschlossen
und offen in B, liegt (die Topologie von B, sei durch Xy induziert). Wegen des
Zusammenhangs von B, muss dann B =B, sein. B, ist per Definition offen in B,.
Die Abgeschlossenheit von B, in B, ergibt sich wie folgt. Sei y, ein Punkt aus der
abgeschlossenen Hiille von B,. Man wihle nun irgendeine lokale B-Blitterung
oT:oU= oV von X mit y,€,U. Der Durchschnitt ,Un B, ist nicht leer. Sei y ein
Punkt aus ,Un B,. Wir konnen annehmen, dass ,T(3)=,T (y,). Es gibt eine lokale
B-Blitterung ,T: ,U— ,V und eine bilomorphe Abbildung ,h: V- V', V' offen
in V, fiir die die Aussagen (a) und (b) des Lemmas gelten. Da die lokalen B-Blitte-
rungen ,T: U— ¥V und ,T:,U-,V holomorph vertréglich sind, gibt es eine offene
Umgebung W< ,Un (U von y und eine biholomorphe Abbildung h: ,T(W) - ,T(W),
so dass ho(oT' | W)=,T | W. Wir definieren nun:

wUi=oT 1 (oT(W)) (offen in (U und ,€,U), ,Vi=oT(W)=,T(;,U),
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Wi =0T | 5oU= oV, 5oV i=,h(h(,,V)) (offen in V), , hi=hoh: , V-, V'
yol *yoU = 3,V ist per Definition eine lokale B-Blitterung. Es bleibt, fiir , 7 und
st die Aussagen (a) und (b) zu verifizieren. Ad (a) rechnet man einfach aus:

3o GoT (Vo) =1 (h(6T(30)))=,h(h (,T(1)))=,h(,T (»))=T(x). Ad (b) zeigen wir zu-
nichst, dass fiir jedes ve, ¥ die Fasern ,7~' (2 (v)) und , 7' (v) zum gleichen Blatt
gehoren. Es gibt stets ein y'e W, so dass v=, T()’) oder y'e, T~ !(v). Daraus folgt:
h(v)=h(,T(¥'))=,T(¥") oder y'e , T~ (h(v)). Also ist ,T~*(h(v))n,,T~*(v) nicht
leer; d.h. , 77! (h(v)) und , T~'(v) gehdren zum gleichen Blatt. Da fiir ,7 und ,h
die Aussagen (b) des Lemmas gilt und k(v)e,V fiir alle ve, V, so liegen ,7 ' (h(v))
und 77 1(,h(h(v)))=T""(,,h(v)) stets im gleichen Blatt, also auch ,,7~'(v) und
T_l (J’oh (U))

Als unmittelbare Folgerung von Lemma 1 erhilt man:

COROLLAR 2.8. Die durch eine holomorphe Blitterung B auf einem komplexen
Raum X erzeugte Aequivalenzrelation Ry, dessen Aequivalenzklassen gerade die Blitter
von B sind, ist stets offen; d.h. die kanonische Quotientenabbildung 7:X — B(B) ist
offen.

Wendet man den Satz von Poincaré-Volterra (siehe [3], Chap. I, §11, No. 7,
Corollaire 1) auf die mit einer holomorphen Bldtterung B kanonisch gegebene holo-
morphe Abbildung 14: X — X (siche Abschnitt 2.2) an, so erhdlt man:

LEMMA 2.9. B sei eine holomorphe Blitterung auf dem komplexen Raum X. Ist X
parakompakt (d.h. jede Zusammenhangskomponente hat eine abzdhlbare Basis), so
auch Xg, d.h. die Bldtter von B haben eine abzdhlbare Basis.

Sei X ein komplexer Raum mit einer holomorphen Blétterung B. Jede lokale
B-Blitterung T: U — V liefert eine Aequivalenzrelation RV auf V:v,, v,V heissen
RY-dquivalent, wenn n(T ™ (v,))=n(T""(v,)), d.h. wenn T~*(v,) und T~*(v,) zum
gleichen Blatt von B gehoren.

LEMMA 2.10. Die Aequivalenzrelation R” hat folgende Eigenschaften:

(1) RY ist offen.

(2) Eine Aequivalenzklasse von RY ist entweder diskret oder enthdlt iiberhaupt keine
isolierten Punkte.

(3) RY ist schwach analytisch.

Ist X parakompakt, so gilt ferner:

(4) Die Aequivalenzklassen von RY sind alle hichstens abzéihlbar.

(5) Eine abgeschlossene Aequivalenzklasse von RY ist stets diskret.

Dabei versteht man unter einer schwach analytischen Aequivalenzrelation auf
einem komplexen Raum das Folgende.
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DEFINITION 2.11. RcX x X sei der Graph einer Aequivalenzrelation auf einem
komplexen Raum. q;: R— X (i=1, 2) bezeichne die kanonische Projektion auf die i-te
Komponente von Xx X. R heisst schwach analytisch, wenn es durch jeden Punkt
(x, x")eR eine lokal-analytische Menge R(x, x')<=R gibt und wenn eine offene Um-
gebung V. von x in X existiert, so dass q, durch Beschrinkung eine biholomorphe
Abbildung q, | R(x, x") - V,, induziert.

Beweis. (1) RY ist offen, da Ry eine offene Aequivalenzrelation auf X darstellt.

(2) Lemma 2.7 beinhaltet unter anderem, dass eine Aequivalenzklasse von RY

schon diskret ist, wenn sie nur einen einzigen isolierten Punkt besitzt.

(3) Sei (vy, v;)eR" =V x V. Wir wihlen dann Punkte x;, x,eU mit T (x,)=0,
und 7' (x,)=1v,. Da x,€ B, , so gibt es auf Grund der Bemerkungen (2) zu Lemma 2.7
eine lokale B-Blétterung T,: U, — V, (mit x,€ U, = U), so dass V, offen in V liegt und
folgendes gilt:

@) To(xy)=T(xy).

(b) T;*(v) und T~ (v) gehdren jeweils zum gleichen Blatt fiir alle veV,.

Da die lokalen B-Blitterungen 7" und T, holomorph vertrdglich sind, so gibt es
eine Umgebung W von x, in U, = U und eine biholomorphe Abbildung A: T,(W)—
— T (W), so dass gilt:

(©) ho(T, | W)=T| W.

Wir kénnen (eventuell nach Verkleinerung von ¥V, und U,) annehmen, dass
T, (W)=V,. Die holomorphe Abbildung 4:V, - T(W)c< V hat dann folgende Eigen-
schaften (man beachte (a), (b) und (c)):

h(vy)=h(T (x,))=h(T; (x2)) = T(x2)= vs.

T~*(v) und T~ (h(v))=T, " (v) gehdren fiir jedes veV, zum gleichen Blatt, d.h.
(v, h(v))eR".

Daraus folgt:

R(vy, v5):={(v, h(v)); veV,} ist lokal analytisch in R” und (v;, v,)eR(vy, v,).

g; | R(vy, v,) > V, ist biholomorph mit der Zuordnung v (v, £(v)), veV,, als
Umkehrabbildung.

(4) Auf Grund von Lemma 2.9 gibt es hochstens abzdhlbar viele Fasern von
T:U -V, die zum gleichen Blatt von B gehoren. Daraus folgt sofort Aussage (4).

(5) Eine abgeschlossene Aequivalenzklasse von R” ist wegen (2) entweder diskret
(d.h. sie besteht nur aus isolierten Punkten) oder perfekt (d.h. abgeschlossen und ohne
isolierte Punkte). Nehmen wir einmal an, es existiert eine perfekte Aequivalenzklasse
A von RY. Wir wihlen eine offene, relativ kompakte Umgebung W< V eines Punktes
ae A. Dann ist die abgeschlossene Hiille 4 n W von A n W eine nichtleere, kompakte,
diskontinuierliche, perfekte Teilmenge von A. Da jede solche Menge zum Cantorschen
Diskontinuum C homdomorph ist (siche [1], Satz VI, Seite 121) und da C iiber-
abzihlbar ist, so miisste auch A iiberabzéhlbar sein im Widerspruch zu (4).
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§ 3. Hausdorffsche Blitterriume

3.1. Wir wollen jetzt eine Antwort auf die beiden im letzten Paragraphen formu-
lierten Probleme geben.

SATZ 3.1. X sei ein parakompakter komplexer Raum mit einer holomorphen
Blitterung B. Dann stellt jedes (lokal-) abgeschlossene Blatt von B eine (lokal-)
analytische Teilmenge von X dar.

Beweis. Sei B,, xeX, ein lokal-abgeschlossenes Blatt von B. Zu jedem Punkt
ye B, gibt es eine offene Umgebung U mit einer lokalen 8B-Blitterung 7: U— V. Wir
kénnen annehmen, dass B, n U in U abgeschlossen ist. Folglich liegt auch T (Bx nU )
abgeschlossen in V. Da T (B,nU) als abgeschlossene Aequivalenzklasse von R"
diskret ist, so stellt B,n U=T"*(T (B, U)) eine analytische Menge in U dar. Damit
ist gezeigt, dass B, lokal-analytisch in X ist.

COROLLAR 3.2. X sei ein parakompakter komplexer Raum mit einer holo-
morphen Blitterung B. Ist der Blitterraum B von B hausdorffsch, so sind alle Blitter
analytische Teilmengen von X.

3.2. Fiir die Frage, wann es auf einem Blédtterraum eine kanonische komplexe
Struktur gibt, ist das folgende Lemma sehr niitzlich.

LEMMA 3.3. Ist X ein parakompakter, reduzierter komplexer Raum und ‘B eine
holomorphe Blitterung mit hausdorffschem Blitterraum B(B), dann gibt es zu jedem
Punkt xeX eine offene Umgebung U mit einer lokalen B-Blitterung T:U — V, so dass
die Aequivalenzrelation RY offen, diskret, eigentlich und analytisch ist.

Beweis. Man kann von einer beliebigen lokalen B-Blitterung 7: U — V auf einer
offenen Umgebung U von x ausgehen. Die Aequivalenzrelation RY ist auf Grund von
Lemma 2.10 offen, diskret und schwach-analytisch. 7' induziert einen Homd&o-
morphismus T:7(U)— V/RY, so dass das folgende Diagramm kommutiert:

XcU —V
nl r an
B(B) <« n(U)—> V/Ry
Dabei sind #: X — B(B) und n¥: V- V/R" die kanonischen Quotientenabbildungen.
Da B nach Voraussetzung hausdorffsch ist, so auch V/RY (bzgl. der Quotienten-
topologie). Da ¥V lokal kompakt ist, so auch ¥/R". Da RY eine diskrete Aequivalenz-
relation darstellt, kann man (durch passendes Verkleinern von ¥ und U) stets er-
reichen, dass n¥ : ¥ — V/RY eine eigentliche Abbildung wird (siehe [15], Hilfssatz 3).
T:U— V kann also stets so gewidhlt werden, dass die Aequivalenzrelation R” offen
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diskret, eigentlich und schwach analytisch ist. In [6], Hilfssatz 6, wurde gezeigt, dass
solche Aequivalenzrelationen stets analytisch sind.

SATZ 3.4. X sei eine parakompakter, reduzierter komplexer Raum mit einer
maximalen holomorpher Blitterung B={T,:U;— V;; iel} (d.h. die komplexen Rdume
V, sind maximal), dann gilt: Der Blitterraum B(B) von B besitzt genau dann eine
kanonische komplexe Struktur, wenn er hausdorffsch ist, und diese ist dann wieder
maximal.

Beweis. Wir konnen auf Grund von Lemma 3.3 annehmen, dass die Aequivalenz-
relationen R"", iel, alle offen, diskret, eigentlich und analytisch sind. Da die V; als
maximal vorausgesetzt sind, so existiert (siche [6], Satz 15) eine kanonische maximale
komplexe Struktur auf V,/R"‘, d.h. die kanonische Quotientenabbildung ="*:
V, - V,/R"" ist holomorph und zu jeder R"'-invarianten holomorphen Funktion (oder
Abbildung) f auf einer R"*-saturierten offenen Teilmenge W von V, gibt es eine
holomorphe Funktion (oder Abbildung) fauf 7" (W) < V,/R"*,so dass fo(n"*| W) =f.

Die holomorphen Abbildungen T7T;:U;—V, induzieren Homdomorphismen
T;:n(U;)— V,/RY", so dass die folgenden Diagramme kommutieren:

XDUi‘—Ti—’Vi

nl . ani
B(B) o n(U)—> V;/R"

Da die kanonische Quotientenabbildung n: X — B(B) von X auf den Blitterraum
B(B) von B offen ist, so stellt {n(U,); iel} eine offene Ueberdeckung von B dar und
{(=(U;), T;); iel} ist ein System vom komplexen Karten von B(%B).

Wir miissen nur noch nachweisen, dass zwei Karten (= (U,), T;) und (z(U,), T)),
i, jel, stets holomorph vertrédglich sind; d.h. wir miissen zeigen, dass die Abbildung
T.;:=T;oT; " auf T;(n (U;) n = (U,)) holomorph ist. Sei b ein Punkt aus z(U;) n = (U)).
Dann gibt es Punkte x;eU; und x;e U; mit n(x;)=n(x;)=b. Da x;€B,,, so gibt es
auf Grund von Lemma 2.7 eine lokale B-Blitterung T;: U;— V; einer offenen Um-
gebung U von x; und eine biholomorphe Abbildung A:V;— V| von V; auf eine
offene Umgebung V<V, von T;(x;), so dass gilt:

(@) h(T} (x;))=Ti(x)).

(b) T; ' (h(v)) und T; ~*(v) liegen fiir jedes ve V] im gleichen Blatt von B.

Wir kdnnen ohne weiteres annehmen, dass V;<V;, U/cU; und T;:=T;| U -
- V;. Da V,/R" und V,/R"’ kanonische komplexe Strukturen tragen, so induziert
h:V] -V eine biholomorphe Abbildung h:z"’ (V) - n"*(V/), so dass n"* (h(v))=
=h(n"*(v)) fiir alle ve V}. n"/(V]) ist eine offene Umgebung von T(b) in T;(n (U;) N
N7 (U,)) und h stimmt dort mit T}, iiberein, wie man folgender Rechnung entnimmt:

Zu jedem ve V] gibt es Punkte y;eU; und y;e U}, so dass T;(y;)=v und T;(y;)=
=h(v). Wegen (b) ist n(y;)=n(p,). Darausfolgt: T;; (" (v))=T\(T; ! (=" (T;(»)))) =
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=Ti(r () =Ti(x () =n"(T:(»)))=n"*(h (v))=h(n"(v)) fiir alle veV;;d.h.
h=T, auf 23(V)).

Damit ist nachgewiesen, dass T;;:T;(n (U;) n n(U;)) - T;(n(U;) n o (U;)) biholo-
morph ist.

Der Atlas {(n(U;), T};); iel} definiert auf dem Bldtterraum B(®B) eine kanonische
komplexe Struktur, wie man dem obigen Beweis sofort entnimmt.

Bemerkungen (zu Satz 3.4). (1) Man kann die Voraussetzung, dass X parakompakt
ist, in allen oben bewiesenen Aussagen ersetzen durch die Bedingung, dass die Blétter
eine abzdhlbare Basis besitzen (die Parakompaktheit wurde nur zum Beweis von
Lemma 2.9 ausgenutzt).

(2) Der obige Satz 3.4 wird im allgemeinen falsch, wenn man die Voraussetzung
fallen ladsst, dass die Blitterung B={T;: U;,— V;; i e I} maximal ist. Man kann sich
aber im Fall, dass B nicht maximal ist, wie folgt helfen. Man gehe zur Maximalisierung
X von X iiber, dann bilden die Maximalisierungen T;: U, — V; von T;:U; - V,, iel,
eine maximale Bldtterung B von X. Der Blitterraum B(B) von Bist als topologischer
Raum gleich dem Blitterraum B(B) von B. B(B) besitzt als Blitterraum der holo-
morphen Blitterung B von X eine kanonische maximale komplexe Struktur. Diese
ist jedoch im allgemeinen nicht kanonisch bzgl. der Blitterung 8B von X, denn die
kanonische Quotientenabbildung n: X — B(B) ist im allgemeinen nicht holomorph,
sondern nur meromorph in dem Sinne, dass der Graph G,:={(x, n(x))e X x B(B);
xeX} von n: X — B(B) eine analytische Menge in X x B(B) darstellt. (G, ist ndmlich
das Bild des Graphen G:={(x, 7(x))eXx B(B); xeX)} der kanonischen holo-
morphen Quotientenabbildung 7:X - B(B) unter der kanonischen holomorphen
Abbildung X x B(B) - X x B(B).

Hieraus folgt insbesonders fiir eine holomorphe Bldtterung auf einem maximalen
komplexen Raum X, dass der Bldtterraum B(®B) eine kanonische maximale komplexe
Struktur besitzt, wenn er hausdorffsch ist.

Ist X nicht maximal und B eine holomorphe Blédtterung von X mit hausdorffschem
Blatterraum B(B), dann wollen wir die kanonische maximale komplexe Struktur auf
dem Blitterraum B(B) von B auch als ,,kanonische* maximale komplexe Struktur
von B(B) bezeichnen.

COROLLAR 3.5. X, Y seien parakompakte, reduzierte komplexe Rdume, wobei
mindestens einer der beiden Rdume maximal ist. T:X— Y sei eine lokal einfache,
offene, holomorphe Abbildung. R bezeichne die Aequivalenzrelation, die die Zerlegung
von X in Niveaumengen von T beschreibt (vergleiche [16]). Dann gilt:

Der Quotientenraum X|R besitzt genau dann eine kanonische komplexe Struktur,
wenn er hausdorffsch ist, und diese ist dann maximal.

Beweis. Jeder Punkt xe X besitzt eine offene Umgebung U,, so dass T,:=T | U, —
— V,:=T(U,) eine lokale holomorphe Blitterung von X darstellt. B:={T,:U,— V,;
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xe X} ist dann eine holomorphe Blitterung von X, dessen Blitter genau die Niveau-
mengen von 7: X — Y sind.

3.3. Fiir ein integrables Pfaffsches System Q' = Qy partieller Differentialgleichun-
gen auf einem parakompakten komplexen Raum X lassen sich die obigen Sitze 3.1
und 3.4 auch wie folgt formulieren:

SATZ 3.6. Eine globale Losungsfliche M <X von Q' ist genau dann (lokal-) analy-
tisch in X, wenn sie (lokal-) abgeschlossen in X ist.

SATZ 3.7. Ist X reduziert und maximal, dann besitzt der Parameterraum P (Q') der
globalen Losungen von Q' genau dann eine kanonische (maximale) komplexe Struktur,
wenn er hausdorffsch ist.

Eine wichtige Klasse von Beispielen holomorpher Bldtterungen wird durch kom-
plexe Liesche Transformationsgruppen erzeugt. Sei X ein reduzierter komplexer
Raum, L eine komplexe Liesche Transformationsgruppe von X. Unter der L-Bahn
durch xe X versteht man dann die Menge L(x):={g(x); geL}. Es gilt folgender Satz:
(siehe [6], Hilfssatz 2, und [7], Theorem 2):

SATZ 3.8. Haben alle L-Bahnen von X die gleiche Dimension m, dann besitzt jeder
Punkt xeX eine offene Umgebung der Form U,= A, xP™, wobei A, ein komplexer
Raum und P™ ein m-dimensionaler komplexer Polyzylinder sind, so dass die Mengen
{a} x P™, a€ A,, jeweils ganz in L-Bahnen liegen.

COROLLAR 3.9. X sei ein reduzierter komplexer Raum mit einer komplexen
Lieschen Transformationsgruppe L. Haben alle L-Bahnen die gleiche Dimension m, dann
gibt es genau eine holomorphe Blitterung B=B(X, L) von X, dessen Blitter genau die
Zusammenhangskomponenten der L-Bahnen sind.

Bemerkung. Es geniigt im obigen Corollar vorauszusetzen, dass die Dimension
der L-Bahnen lokal konstant is.

Beweis. Unter Verwendung von Satz 3.8 kann man B wie folgt definieren:
B:={p,:U,— A,; xe X}, wobei p, die kanonische Projektion des Produktes U, =4, x
x P™ auf die erste Komponente ist.

Ist X ein reduzierter komplexer Raum und L eine komplexe m-dimensionale
Liesche Transformationsgruppe von X, wobei die Bahndimension nicht notwendig
lokal konstant ist, dann erzeugt L eine partielle holomorphe Blitterung von X im
folgenden Sinne:

Es gibt analytische Mengen X,, Xj, ..., X,, von X, so dass gilt:

(D) X=X,2X,-12...2X,2X_;=

(2) Auf X;—X;_, (i=0, 1,...,m) haben alle L-Bahnen die Dimension i, d.h.
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X,—X;_, ist L-invariant und L erzeugt dort eine holomorphe Blitterung B;, dessen
Bldtter Zusammenhangskomponenten i-dimensionaler L-Bahnen sind (vergleiche [6],
Satz 5, Seite 335).

X/L bezeichne den Bahnenraum von L, B(X, L) sei der Raum der Zusammen-
hangskomponenten von L-Bahnen auf X. Ist X/L oder B(X, L) hausdorffsch bzgl.
der Quotiententopologie, so ist die Dimension der L-Bahnen lokal konstant (ver-
gleiche [6], Satz 7, Seite 337), d.h. L induziert eine holomorphe Blitterung
B=PB(X, L) von X, dessen Blitterraum gerade B(X, L) ist.

Die Sidtze 3.1 und 3.4 dieses Paragraphen ergeben fiir einen komplexen Raum X
mit einer komplexen Lieschen Transformationsgruppe L die folgenden Aussagen.

SATZ 3.10. Eine Zusammenhangskomponente einer L-Bahn ist genau dann
(lokal-) analytisch in X, wenn sie (lokal-) abgeschlossen in X liegt.

SATZ 3.11. X sei reduziert und maximal. Der Raum B(X,L) der Zusammenhangs-
komponenten von L-Bahnen besitzt genau dann eine kanonische komplexe Struktur,
wenn er hausdorffsch ist.

Bemerkung. Die Voraussetzung von Satz 3.4, dass X parakompakt ist, konnen wir
in Satz 3.11 fallen lassen, da alle Lie-Gruppen und damit auch alle L-Bahnen eine
abzdhlbare Basis besitzen (vergleiche Bemerkung (1) zu Satz 3.4).

BEISPIEL. Als komplexen Raum X wéhlen wir die offene Menge {z=(z;2,2;)e%";
23 #0} des €, versehen mit der iiblichen Strukturgarbe @ der Keime holomorpher
Funktionen auf X. Die holomorphen Pfaffschen Formen

Wy =2z3dz{+ 2z, dz,
W, = 223 d22 + Z,y dZ3

erzeugen eine analytische Untergarbe ' der Garbe Q} der holomorphen Pfaffschen
Formen auf X. €' ist involutorisch auf X, denn

1
do, =2dzy Adz, +dz, Adzy3=dz3 Adz;, =—dz; A ©,
Z3

1
dwz = 2dZ3 A de + dZZ A d23 = dZ3 A d22 = 5“" dZ3 A wz.
Z3

Da die Linearformen w, (z), w,(z) in allen Punkten ze X linear unabhéngig sind, so ist
auf Grund des Satzes von Frobenius integrabel. Wir wollen die lokalen Eulerschen
Multiplikatoren fiir das System ,, w,, suchen. Jeder Punkt z°=(z}, 23, z3) von
X (mit z$#0) besitzt eine offene Umgebung U ,, so dass auf U,, ein Zweig von
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/73 wohl definiert ist. Dann ist

T,(z):=z, \/;;, Tz(z):=zz\/;;

ein wohl definiertes Paar von holomorphen Stammfunktionen von w,, w, auf U,.,
denn

dT, = \/23 dz, + —= - dz; =

Z3 2\/_0)1’
- Z,y
dT, = d 2 dz, = —
2 \/23 zZ, + 2\/ Z3 = \/ @, .

Zs3 2
T,0:=(Ty, T;): U 0= V,0 ist eine Submersion von U,o auf eine offene Menge V,o im
%2, bei passender Wahl von U, also eine lokal einfache, einfache, offene, holomorphe
Abbildung, d.h. eine lokale Lésung von Q'.
Man verifiziert leicht, dass durch

ny(z) 1=1ziz5, 7(2):i=12323, W3(2):=12,2,2,

eine einfache, offene, holomorphe Abbildung =#:X— Y definiert wird, wobei
Y:={w=(wy, wy, w3)e€>; w,w,—w3=0} ein komplexer Unterraum des %3 ist, den
wir uns mit der iiblichen normalen reduzierten komplexen Struktur versehen denken.
Die Fasern von = sind 1-dimensionale zusammenhidngende komplexe Untermannig-
faltigkeiten von X, welche die Fasern der lokalen Losungen T,: U, —» V, von Q' jeweils
als offene Teilmengen enthalten. Damit ist aber klar, dass die Fasern von = genau die
maximalen zusammenhidngenden Lésungsflichen von Q’ sind, d.h. die Blitter der
durch die lokalen Losungen T,:U,—V,, zeX, von Q' gegebenen holomorphen
Blitterung B von X. Y ist dann nichts anderes als der Bldtterraum B(B) von B oder,
anders ausgedriickt, der Parameterraum P(Q’) der globalen Losungsflichen von Q’.
Es sei noch bemerkt: Ldsst man auf X die multiplikative Gruppe €* der von Null
verschiedenen komplexen Zahlen wie folgt operieren:

1(21s 235 23) i = (124, 125, T 223), TEFT,

so stimmen die €*-Bahnen genau mit den Fasern von = iiberein, d.h. Y ist der Bahnen-
raum der komplexen Lieschen Transformationsgruppe €* von X.
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