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Generators for Certain Ideals
in Regular Rings of Dimension Three

by M. PAVANAN MURTHY!)

Introduction
We prove here the following

THEOREM. Let A be a regular ring of dimension 3 with K,A=0. Let a bean
unmixed ideal of height 2. Suppose a is locally generated by r elements. Then a is
generated by r+1 elements.

Applying this theorem to 4 =K[x,, x,, x53], Kafield we obtain for instance that
if C is a curve in the affine three space A, which is locally a complete intersection (e.g.
C non-singular), then the ideal of C is generated by three elements. We also show
that this is best possible by givinh an exemple of a non-singular curve in A; which
is not a complete intersection.

In the case A=K[x,, x,, x3], K algebraically closed and a the ideal of a non-
singular curve, S. Abhyankar has proved this by quite different methods (see his
Montreal Lecture Notes [1]).

A basic tool in the proof is a lemma of Serre [6] which relates projective modules
with generators of certain ideals of height 2. In fact for r>3, our theorem easily
follows from a corollary to Serre’s lemma (see corollary to Lemma 1). For r=2, we
have to make a separate argument using a remark of Bass [3] (P@®A=A4*"=>P=
=P'@A).

We consider here only commutative noetherian rings and finitely generated
modules. Most of the time we just use the ring 4. For a module M, hd M denotes its
homological dimension. dim A denotes the Krull dimension of A.

The following lemma is basic for what follows. We include a proof here for the
sake of completeness.

LEMMA 1 (Serre [6]). Let A be a noetherian ring and M a left A-module of
homological dimension <1. Let Ext}(M, A) be generated by one element. Then there
is an exact sequence

0-A->P->M->0
with P projective.

1) I am thankful to the Forschungsinstitut, ETH, Zurich, for support when this note was being
written.
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Proof. Let « generate Ext}(M, A) and let o correspond to the extension (a):
0-A->P->M-0

Then homing («) with A, we get the exact sequence
Hom (P, A) —» Hom (4, 4) 5 Ext (M, 4) - Extl; (P, A) - 0.

By extension theory, f(1)=a. Since Ext} (M, A) is generated by «, we have Ext} (P, 4)
=0. Since hd M'<1, by («), it follows that hd P< 1. Since A4 is noetherian, hd P<1
and Exty (P, A)=0 together imply that P is projective.

COROLLARY. Let A be a noetherian ring and M an A-module of homological
dimension <1. Let Ext,(M, A) be generated by r elements. Then there is an exact
sequence

0-A4A"5P->M-0

with P projective.

Proof. We prove the corollary by induction on r. For r=1, this is precisely Serre’s
lemma. Assume that the corollary is true for r—1. Let «y, ..., o, generate Ext' (M, A).
Let a, correspond to the extension (a;):

0»A>LS5M-0
Then we get the exact sequence
Hom (L, A) - Hom (4, 4) 5 Extl (M, 4) 5 Ext} (L, 4) -0,

where f (1)=a,. Hence Exty(L, A) is generated by r—1 elements g(a,), ..., g(«,). The
exact sequence (a;) and the hypothesis that hd M <1 show that hd L<1. Hence by
induction hypothesis there is an exact sequence I:

054" 15P5L-0
with P projective. We also have the exact sequence
0 Ker(hok)—» P25 M —0.

By the exact sequences («;) and 7 it easily follows that Ker(hok)= A". The proof of
the corollary is complete.

For a ring 4, we denote Max(4) its maximal ideal spectrum and by dim Max(4),
the dimension of Max(A4). If 4 is an integral domain with quotient field K and M an
A-module, we recall that rank M=dimy(K® 4M).

LEMMA 2. Let A be a noetherian domain. Let M be an A-module of hd M<1.
Let M be an A-module of rank n. Let a be the annihilator of Ext(M, A). Suppose that
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dim Max(4/a)<d. If M is locally generated by r elements, then Exty(M, A) is gener-
ated by r+d—n elements.

Proof. By Swan [7], we need only prove that Ext}(M, A) is locally generated by
r—n elements. So, we may assume A is local. Since hd M <1 M is generated by r
elements and rank M =n, we get an exact sequence (since projectives are free over
local rings)

0-A""">A4">M-0.

Homing this with 4, we see that Hom(4" ™", 4)— Ext (M, A)—0 is exact. This
shows that Exty(M, A) is generated by r—n elements.

COROLLARY. Let A be a regular domain of dimension 3. Let a be an unmixed
ideal of height 2. If a is locally generetad by r elements, then Ext}(a, A) is generated
by r elements.

Proof. Using the well known fact that depth M +hd M=dim A for a regular local
ring A, one easily sees that a is unmixed of height 2 implies hda< 1. Since Ext}(a, 4)~
~Ext%(4/a, A), it follows that annihilator b of Extj(a, 4) contains a. Hence
dimA4/b<dim A/a<1, since a is unmixed of height 2 and dim 4 =3. Now the corollary
follows from Lemma 2.

Let A be a ring and P an 4-module. We recall that seP is unimodular if s generates
a free direct summand of P, isomorphic to A. For xeMax(4), we denote by s(x) the
image of s under the canonical map P — P/xP.

LEMMA 3. Let A be a noetherian ring of dimension <1 and P a projective A-
module of rank 2. If sy, s,, S5 generate P, then there exist 1,, Ay€A such that s, +
+ A8, + 4385 is unimodular.

Proof. Let P,,..., B, be the minimal prime ideals of 4. Choose IRk, ..., M,eMax(4)
such that 9, = P,. Since P is of rank 2, P/(IIIM )P is A/IIIM, free of rank 2. Using
Chineese Remainder Theorem we can find easily a, be A such that if we set s} =s; +ass,
Sy =5, +bs;, then s (IM,), s5(M ) are linearly independent over A/M,, 1<i<r. Thus
we may assume s;, s, are linearly independent at I, 1<i<r. Then the set T=
={MeMax(4) | s;(M), 5,(9M) are linearly dependent} is a closed set [5, p. 6] which
does not contain any irreducible component of Max(4). Since dimA<1, it follows
that T'is finite. Let U={9teMax(4) | s;(M)=0}. Then U<T. Since P is of constant
rank 2 and sy, 5,, 53 generate P it follows that s,(9R)#0, Me U. Choose feA4 such
that £ ()0, Me U and f (M)=0, MeT—U. Clearly s, +fs, is unimodular.

THEOREM. Let A be a regular integral domain of dimension 3 with K,A=0. Let
a be an ideal unmixed of height 2. Suppose a is locally generated by r elements. Then
a is generated by r+1 elements.
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We recall that K,4=0 is equivalent to saying that for any finitely generated
projective A-module P, P@ A"~ A" for some m, n.

Proof of the theorem. By the corollary to Lemma 2, we see that Extj(a, 4) is
generated by r elements. Consequently by the corollary to Lemma 1 (since hda<1),
we get an exact sequence

0-A">P—->a-0.

with P a projective 4-module of rank r+1. If >3, then rank P>4. Since K,4=0
and dim 4 =3, it follows from Bass’ cancellation theorem [2, p. 184, (3.5)] that P is
free. Hence a is generated by r+ 1 elements. Thus the theorem is proved in case r> 3.

Now we consider the case r=2. In this case P is a projective module of rank 3.
Again by [2, p. 184, (3.5)], P@ A~ A*. Hence by [3], P admits a free direct summand
of rank 1: P=P'@®Aa. We have the exact sequence

054> P @®Aeba—0. (%)
Since A is a regular ring and a is an ideal of height 2, locally generated by two elements,
it follows that a4, is generated by an Ag-sequence of length 2 for any maximal ideal
I >a. Hence a/a? is a locally free A/a-module of rank 2. Tensoring the exact sequence
(*) by A/a, we get the exact sequence

A2 5P @ s b aja? -0
where M =M/aM for an A-module M and for xe M, % denotes residue class of x
modulo aM. Since P’ is stably free, so is the A-module P’. Since dimension of A<1,
it follows by [2, p. 170 §2], that P'~ 42, Let a,, a, € P’ be such that &,, &, generated P’.
Then f (), f(&,), f (&,) generate a/a®. Since a/a? is a projective 4/a-module of rank 2,
by Lemma 3, there exist d;, d,€ A4 such that f(d+4,&, +d,&,) is unimodular in a/a?.
Since o generates a free direct summand of rank 1 with supplement P’, it follows that
o+ a,a, +a,a, also generates a free direct summand of rank 1.

The upshot of the above discussion is that we may assume by changing a to
a+a,o; +a,a,, that the class of f(«) in a/a® is unimodular. Set f(«)=a. We claim
that a/Aa is projective ideal of rank 1 in A/aA. To show this we observe that since
a/ax Aa® D for some D, it follows that for any maximal ideal M >a, a can be chosen
as one of the two generators for ag. Since any two generators of ag form an Ag-
sequence, it follows that a/4a is locally generated by one element which is even a non-
zero-divisor. Thus a/Aa is a projective A/aA-module of rank 1.

By the exact sequence (), we get (since f («)=a) the exact sequence

0> A2> P —»a/da—0.
Tensoring this sequence with 4/aA, we have the exact sequence

4, P

;P_)aP’

—af/Aa—0.
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Since a/Aa is projective, we have

’

~ Img ® a/Aa

!

Taking X both sides and observing that ZP'~ A4 (since P’ is stably free) and so
2(P'/aP")~ A]Aa, it follows that

a/Aa @ Img ~ Alad ie. alad~ (Img)™!.

Since Img is generated by two elements, it easily follows that a/aA is generated by
two elements. Hence a is generated by three elements. The proof of the theorem is
completely established.

Since by [2, p. 639, (3.5)] K, (K[xy,..., x,])=0, where K is a field, we have

COROLLARY. Let acK[x,, x,, x3] be an unmixed ideal of height 2. Suppose a
is locally generated by r elements. Then a is generated by r+1 elements.
A particular case of the Corollary which may be of interest to us

COROLLARY 2. Let C be a closed affine curve in A5 which is locally a complete
intersection (e.g. C non-singular), then the ideal I1(C) of C is generated by three
elements.

Remark. (i) One can multiply examples of three dimensional regular rings with
trivial K, for instance, by using the following well known facts

a) K,A=0, if 4 is a principal ideal domain or a local ring.

b) (Grothendieck), If 4 is regular, K,4 — KyA[x] is an isomorphism .

¢) If A is regular, then K,4 — K,S 14 is surjective, S being multiplicatively
closed set.

(ii) (Fossum and Claborn) Let K be a field of characteristic #2 with ./—1€K or
K=R and 4=K [x,, x;, X5, x3], Y. x?=1. Then K,4=0.

AN EXAMPLE. The theorem above is best possible in the sense that there do
exist non-singular affine curves C in A; whose prime ideals are not generated by two
elements. For example, let C be a complete non-singular curve of genus 2. Let Q
denote a divisor in its canonical class. Let Pe C be such that Q is not linearly equiva-
lent to 2P (such points exist since otherwise the Jacobian variety of C will be a 2-
torsion group!). Consider C'=C—{P}. Then C’ is an affine non-singular curve which
can be embedded as a closed set in A;. This we can do for instance by considering the
complete linear system 2) |5P ] or by a well known result which says that any non-
singular affine curve can be embedded as a closed set in A;. Let } be the ideal
of C"in A=K[x,, x,, x5] (K algebraically closed). We claim that 9P is not generated

2) T am thankful M. S. Narasimhan for pointing this to me.



184 M.PAVANAN MURTHY

by two elements. For if {§ were generated by two elements, then Ext}(4/B, A)~A/P
(this one can be seen for example by Koszul-resolution for 4/B). Since by [4],
Ext2(A4/%P, A) is the module of sections of the canonical line bundle Q.. it follows
that Q.. is trivial. This implies that a canonical divisor Q~nP. Since deg Q=2, we
have 2~ 2P. Contradiction.

We do not know if the hypothesis X, (A4)=0 is essential in our theorem.
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Added in Proof: In the case when r> 3, our result is an easy consequence of Swan [7].
Also, it is not difficult to see that in the statement of the theorem one can drop the

hypothesis that a be of height 2.



	Generators for Certain Ideals in Regular Rings of Dimension Three

