Zeitschrift: Commentarii Mathematici Helvetici Herausgeber: Schweizerische Mathematische Gesellschaft **Band:** 47 (1972) **Artikel:** Every Odd Dimensional Homotopy Sphere has a Foliation of Codimension One Autor: Tamura, Itiro **DOI:** https://doi.org/10.5169/seals-36356 #### Nutzungsbedingungen Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren #### **Conditions d'utilisation** L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus #### Terms of use The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more **Download PDF:** 04.07.2025 ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch # **Every Odd Dimensional Homotopy Sphere has a Foliaton of Codimension One** by Itiro Tamura It is well-known that Reeb constructed a foliation of codimension one on S^3 (Reeb [4]). But, after that, nothing was known of codimension-one foliations of higher dimensional spheres for twenty years. In the circumstances Lawson's recent work is significant. He exhibited foliations of codimension one on each of the (2^k+3) -sphere for k=1, 2, ... (Lawson [2]). In this paper we shall prove the following. THEOREM. Every odd dimensional homotopy sphere has a foliation of codimension one. ## 1. Fiberings over a Circle Let \tilde{S}^{2m+1} be a (2m+1)-dimensional homotopy sphere $(m \ge 3)$ and let F^{2m} be a compact 2m-dimensional differentiable manifold imbedded in \tilde{S}^{2m+1} which has the homotopy type of the bouquet of r copies of m-sphere S^m : $$F^{2m} \simeq \underbrace{S^m \vee S^m \vee \cdots \vee S^m}_{r}.$$ Since the normal bundle of the (2m-1)-dimensional differentiable manifold ∂F , the boundary of F^{2m} , is trivial, the tubular neighborhood of ∂F is $\partial F \times D^2$. Thus $\tilde{S}^{2m+1} - (\partial F \times \operatorname{Int} D^2)$ is a (2m+1)-dimensional differentiable manifold with boundary $\partial F \times S^1$. In the following the intersection $F^{2m} \cap (\tilde{S}^{2m+1} - (\partial F \times \operatorname{Int} D^2))$ is simply denoted as F^{2m} , because they are naturally diffeomorphic. Let A be the compact (2m+1)-dimensional differentiable manifold (with corner) obtained by splitting $\tilde{S}^{2m+1} - (\partial F \times \operatorname{Int} D^2)$ at F^{2m} . Then $\partial A = F^+ \cup F^- \cup (\partial F \times I)$, where F^+ and F^- are copies of F^{2m} . A has the same homotopy type as $\tilde{S}^{2m+1} - F^{2m}$. It is easy to see that A is simply connected and that, by the Alexander duality, homology groups of A are as follows: $$H_q(A) = \begin{cases} Z & q = 0, \\ Z + Z + \dots + Z & q = m, \\ \hline \\ 0 & \text{otherwise.} \end{cases}$$ (Homology groups $H_*()$) mean homology groups with integral coefficient group $H_*(\;\;;Z).$ Let $\alpha_1, \alpha_2, ..., \alpha_r$ be a system of generators of $H_m(F) \cong Z + Z + \cdots + Z$ such that each α_i is represented by an imbedded m-sphere S_i (i=1, 2, ..., r). Let α_i^+ (resp. α_i^-) denote the element of $H_m(F^+)$ (resp. $H_m(F^-)$) corresponding to $\alpha_i \in H_m(F)$. Let α_i' denote the element of $H_{2m}(A)$ corresponding to $\alpha_i \in H_{2m}(F)$ by the Alexander duality (i=1, 2, ..., r). Then $\alpha'_1, \alpha'_2, ..., \alpha'_r$ form a system of generators of $H_m(A)$. Let $i^+: F^+ \to A$ and $i^-: F^- \to A$ be the inclusion maps, and let $$\iota_*^+(\alpha_i^+) = \sum_j a_{ij}^+ \alpha_j', \quad \iota_*^-(\alpha_i^-) = \sum_j a_{ij}^- \alpha_j' \quad (i = 1, 2, ..., r).$$ Then a_{ij}^+ and a_{ij}^- are expressed by linking numbers as follows. Denote by S_i^+ (resp. S_i^-) a displacement of S_i in \tilde{S}^{2m+1} towards the normal direction of F^+ (resp. F^-). Then it is easy to see that $$a_{ij}^{+} = Lk(S_i^{+}, S_j), \quad a_{ij}^{-} = Lk(S_i^{-}, S_j).$$ Furthermore it follows from $$Lk(S_i^+, S_i) = Lk(S_i, S_i^-) = (-1)^{m+1}Lk(S_i^-, S_i),$$ that $$a_{ii}^+ = (-1)^{m+1} a_{ii}^-$$ Denote by L(F) the following $(r \times r)$ matrix: $$L(F) = \begin{pmatrix} Lk(S_{1}^{+}, S_{1}) \dots Lk(S_{1}^{+}, S_{r}) \\ \vdots & \ddots & \vdots \\ Lk(S_{r}^{+}, S_{1}) \dots Lk(S_{r}^{+}, S_{r}) \end{pmatrix}.$$ Suppose now that L(F) is unimodular. Then the homomorphisms $$\iota_*^+: H_m(F^+) \to H_m(A), \iota_*^-: H_m(F^-) \to H_m(A)$$ are isomorphisms. This shows, since F^+ , F^- and A are simply connected, that ι^+ and i^- are homotopy equivalence. Thus, according to the relative h-cobordism theorem (Smale [5], Corollary 3.2), the following holds: $$(A, \partial F \times I) = (F^{2m}, \partial F) \times I.$$ This implies the following proposition which is a differential topological version of so-called Milnor fibering. (See also Tamura [6].) PROPOSITION 1. If the matrix L(F) is unimodular, then there exists a fibering $\tilde{S}^{2m+1} - (\partial F \times \text{Int } D^2) \rightarrow S^1$ having F as a fibre. 166 ITIRO TAMURA # 2. Construction of Fiberings Let X, Y denote the following matrices $$X = \begin{pmatrix} 2 & 1 & & 0 \\ 2 & 1 & & 0 \\ 1 & 2 & 1 & & \\ 1 & 2 & 1 & & \\ & & 1 & 2 & 1 \\ & & & 1 & 2 & 1 \\ 0 & & & & 1 & 2 \end{pmatrix}, \quad Y = \begin{pmatrix} 2 & 1 & & & 0 \\ 2 & 1 & & & 0 \\ 1 & 2 & 1 & & \\ & & & 1 & 2 & 1 \\ & & & & 1 & 2 & 1 \\ & & & & & 1 & 2 & 1 \\ 0 & & & & & 1 & 2 & 1 \\ 0 & & & & & 1 & 2 & 1 \\ & & & & & & 1 & 2 & 1 \\ 0 & & & & & & 1 & 2 & 1 \\ \end{pmatrix}.$$ As is well known, X is positive definite and unimodular. The rank of (9×9) matrix Y is 8 and its elementary divisor is (1, 1, 1, 1, 1, 1, 1). Let Δ denote the diagonal of $S^{2n} \times S^{2n} (n \ge 2)$ and let N be a tubular neighborhood of Δ in $S^{2n} \times S^{2n}$. Then N has the homotopy type of S^{2n} and the self-intersection number of a generator of $H_{2n}(N) \cong Z$ is 2. Let W(X) be the parallelizable compact oriented 4n-dimensional differentiable manifold formed from $N_1, N_2, ..., N_8$ (8 copies of N), by plumbing N_i and N_{i+1} (i=2, 3, ..., 7), and N_1 and N_4 . Then W(X) has the homotype types of $S^{2n} \vee S^{2n} \vee \cdots \vee S^{2n}$. The orientation of W(X) is chosen so that Fig. 1. the matrix of intersection numbers of $H_{2n}(W(X))$ is X. Similarly parallelizable compact oriented 4n-dimensional differentiable manifolds W(-X) and W(Y) both of which have the homotopy type of bouquets of 2n-spheres, are defined. The matrix of intersection numbers of $H_{2n}(W(-X))$ (resp. $H_{2n}(W(Y))$) is -X (resp. Y). Let W = W(-X) mathrix W(Y) be the boundary connected sum of W(-X) and W(Y). W is a parallelizable compact oriented 4n-dimensional differentiable manifold. Let us imbed W into \tilde{S}^{4n+1} as indicated in the Fig. 1, by 17 copies of naturally imbedded $S^{2n} \times S^{2n}$ which osculate consecutively, so that unnecessary linking numbers do not occur in the matrix L(W) (cf. Tamura [6], section 2). Then it is easy to see that the matrix L(W) of linking numbers is given by $$L(W) = \begin{pmatrix} P & \\ & Q \end{pmatrix},$$ where Thus, by Proposition 1, the following holds. PROPOSITION 2. There exists a fibering $\tilde{S}^{4n+1} - (\partial W \times \operatorname{Int} D^2) \to S^1$ having W as a fibre $(n \ge 2)$. Let $\widehat{\Delta}$ denote the diagonal of $S^{2n-1} \times S^{2n-1}$ ($n \ge 2$) and let \widehat{N} be a tubular neighborhood of $\widehat{\Delta}$ in $S^{2n-1} \times S^{2n-1}$. Let us imbed \widehat{N} into \widetilde{S}^{4n-1} by imbedding $S^{2n-1} \times S^{2n-1}$ into \widetilde{S}^{4n-1} naturally. Then the matrix $L(\widehat{N})$ of linking numbers is given by $L(\widehat{N}) = (1)$. Thus, by Proposition 1, the following holds. PROPOSITION 3. There exists a fibering $\tilde{S}^{4n-1} - (\partial \hat{N} \times \text{Int } D^2) \to S^1$ having \hat{N} as a fibre $(n \ge 2)$. This fibering corresponds to the Milnor fibering of $z_0^2 + z_1^2 + \cdots + z_{2n-1}^2 = 0$. # 3. Boundary of the Fibre W Let M denote the boundary of the fibre W in Proposition 2. Then M is an orientable closed (4n-1)-dimensional differentiable manifold. It follows by the Poincaré- 168 ITIRO TAMURA Lefschetz duality that $$H_q(W, M) \cong H^{4n-q}(W),$$ and that the natural homomorphism $$H_{2n}(W) \rightarrow H_{2n}(W, M) \cong \operatorname{Hom}(H_{2n}(W), Z)$$ is determined by $\begin{pmatrix} -X \\ Y \end{pmatrix}$, the matrix of intersection numbers of $H_{2n}(W)$. Thus the following is a direct consequence of the homology exact sequence of (W, M): $$H_q(M) = \begin{cases} Z & q = 0, 2n - 1, 2n, 4n - 1, \\ 0 & \text{otherwise.} \end{cases}$$ Obviously W is obtained from W(-X) it W(X) by attaching a handle $D^{2n} \times D^{2n}$: $$W = (W(-X) \natural W(X)) \bigcup_{g} (D^{2n} \times D^{2n}),$$ where $g:\partial D^{2n}\times D^{2n}\to \partial \big(W(-X) \, | \, W(X)\big)$ is an attaching map. The boundary $\partial \big(W(-X) \, | \, W(X)\big)$ is the natural (4n-1)-sphere (Kervaire-Milnor [1]), and the following decomposition holds: $$W = W(-X) \natural W(X) \natural (D^{4n} \bigcup_{g} (D^{2n} \times D^{2n})).$$ According to the h-cobordism theorem (Smale [5]), $B = D^{4n} \bigcup_g (D^{2n} \times D^{2n})$ is the total space of a 2n-disk bundle ξ over S^{2n} , and its differentiable structure is compatible with the bundle structure. Thus $M = \partial W = \partial B$ is the total space of an S^{2n-1} -bundle over S^{2n} associated with ξ . Let $\alpha \in \pi_{2n-1}(SO(2n))$ be the characteristic map of ξ . Since B is parallelizable, ξ is stably trivial and, thus, α belongs to the kernel of $\pi_{2n-1}(SO(2n)) \to \pi_{2n-1}(SO(2n+1))$. Let us consider the diagram $$\cdots \to \pi_{2n}(S^{2n}) \xrightarrow{\partial} \pi_{2n-1}(SO(2n)) \to \pi_{2n-1}(SO(2n+1)) \to \cdots$$ $$\downarrow^{p_*}$$ $$\pi_{2n-1}(S^{2n-1}),$$ consisting of the homotopy exact sequence of the fibering $SO(2n+1) \rightarrow SO(2n+1)/SO(2n) = S^{2n}$ and the homomorphism induced by the projection $p:SO(2n) \rightarrow SO(2n)/SO(2n-1) = S^{2n-1}$. Let ι_{2n}, ι_{2n-1} be generators of $\pi_{2n}(S^{2n}), \pi_{2n-1}(S^{2n-1})$ respectively. Since $\alpha \in \partial(\pi_{2n}(S^{2n})), \alpha = \partial(c\iota_{2n})$ for an integer c. If $c \neq 0$, $p_*\partial(c\iota_{2n}) = \pm 2c\iota_{2n-1} \neq 0$ and, thus, the Euler class of ξ is not zero. This implies, by using the Thom-Gysin exact sequence, that $H_{2n-1}(M) = H_{2n-1}(\partial B) \not\cong Z$, which is a contradiction. Thus c = 0 and ξ is a trivial bundle. This yields the following. LEMMA 1. The boundary of W is $S^{2n-1} \times S^{2n}$. ## 4. Proof of Theorem Let E be a compact connected (2m+1)-dimensional differentiable manifold such that E is a total space of a fibering over S^1 and ∂E is connected. Then it is well known that there exists a foliation of codimension one on E having ∂E as the only compact leaf (cf. Lawson [2]). LEMMA 2. Suppose that S^{2n+1} has a foliation of codimension one $(n \ge 2)$, then the following holds: - (i) Any (4n+1)-dimensional homotopy sphere \tilde{S}^{4n+1} has a foliation of codimension one. - (ii) Any (4n-1)-dimensional homotopy sphere \tilde{S}^{4n-1} has a foliation of codimension one. *Proof.* Let γ be a closed smooth curve in S^{2n+1} which is transversal to the leaves. The existence of such γ is a classical fact. The tubular neighborhood of γ is $S^1 \times D^{2n}$. The foliation on S^{2n+1} can be modified so that its restriction on $S^{2n+1} - (S^1 \times \text{Int } D^{2n}) = S^{2n-1} \times D^2$ is a foliation having the boundary as a compact leaf. Now, by Proposition 2, $\tilde{S}^{4n+1} - (\partial W \times \operatorname{Int} D^2)$ has a foliation of codimension one such that $\partial W \times S^1$ is the only compact leaf. On the other hand, since $\partial W = S^{2n-1} \times S^{2n}$ by Lemma 1, $\partial W \times D^2$ has a foliation of codimension one which is induced by the projection $\partial W \times D^2 \to S^{2n-1} \times D^2$ from the foliation of $S^{2n-1} \times D^2$. This completes the proof of (i). Making use of Proposition 3 and the projection $\partial \hat{N} \times D^2 \to \hat{\Delta} \times D^2 = S^{2n-1} \times D^2$, the proof of (ii) is completely analogous to that of (i). Remark. Lemma 2, (ii) is (a slightly generalized form of) a result of Lawson [2]. Let \tilde{S}^{2m+1} be a (2m+1)-dimensional homotopy sphere. In case m=1, 2, the existence of a foliation of codimension one is proved by Novikov [3] and Lawson [2] respectively. Suppose that, for $2 \le m < q$, \tilde{S}^{2m+1} has a foliation of codimension one. Then, if q is even (resp. odd), the existence of a foliation of codimension one of \tilde{S}^{2q+1} is assured by Lemma 2 (i) (resp. (ii)). This completes the proof of the theorem by induction. #### **REFERENCES** - [1] Kervaire M. and Milnor J., Groups of homotopy spheres I, Ann. Math. 77 (1963) 504-537. - [2] LAWSON H. B., Codimension-one foliations of spheres, Bull. Amer. Math. Soc. 77 (1971) 437-438. - [3] Novikov S. P., The topology of foliations, Trudy Moscov Mat. Obšč., 14 (1965) 248-278. 170 ITIRO TAMURA - [4] Reeb G., Sur certains propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., No. 1183, Hermann, Paris, 1952. - [5] SMALE S., On the structure of manifolds, Amer. J. Math., 84 (1962) 387-399. - [6] Tamura I., Fixed point sets of differentiable periodic transformations on spheres, J. Fac. Sci. Univ. Tokyo, Sect. I, 16 (1969) 101-114. Department of Mathematics University of Tokyo. Received November 19, 1971.