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On the Homology Theory of Central Group Extensions:

I-The Commutator Map and Stem Extensions

by Beno Eckmann, Peter J. Hilton and Urs Stammbach

In Memoriam Heinz Hopf (1894-1971)

1. Introduction

For any group extension

(1.1)

and any g-module B, there is a five-term exact homology séquence

^^^H1(G;B)t^H1(Q;B)^09 (1.2)

due to Stallings and Stammbach [8, 9]. If 2?=Z, regarded as trivial g-module, (1.2)
reduces to

H2G A H2Q ^ N/[G, iV] -i HXG -4 HtQ -? 0. (1.3)

For a simple proof of (1.2), including the statement of naturality, see Eckmann-
Stammbach [3] ; ofcourse, aB and xB in (1.2) are induced by s ; aB is, in a sensé explained
later, induced by fi (the sensé is perfectly clear in the case (1.3)); and pB will be

elucidated in the next section.

In the spécial case where (1.1) is a central extension, that is, N is central in G,
Ganea [5] has added a further term on the left of the exact séquence (1.3), thus,

Gab®N^H2G^H2Q-+>—+09 (1.4)

using methods of algebraic topology.
In [2], Eckmann-Hilton extended the séquence (1.4) by four further non-trivial

homology terms, first replacing Gab®N by a suitable quotient. Their method was
based on a spectral séquence for the homology of a suitable fibre space. The Ganea

séquence (1.4) and its extension in [2] are important for applications, beyond those

of (1.3), in group theory, homology, algebraic jK-theory, etc.

In the présent paper we présent an elementary approach to the Ganea extension

(1.4) and to those parts of the extended séquence in [2] which are relevant to
applications to stem-extensions of groups (see Section 4), and, in particular, to the study
ofperfect groups. The argument is based on a fixed, but arbitrary, free présentation
of (1.1) (see Section 2), and the associated Gruenberg resolutions [4; Chapter VI] of Z
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over N, G and Q. The maps of (1.3) are exhibited and exactness is proved, by using
thèse explicit resolutions.

In Section 2 we study (1.3) - and, in less détail, (1.2) - from the viewpoint of the
given présentation of (1.1). In particular, we recall the relation with the Hopfformula
for H2G and H2Q and obtain an explicit form for ker a. Moreover, the connection
between /? and the characteristic class of the central extension

JV/[G,iV]>-»G/[G,JV]-»Ô, (1.5)

associated with (1.1), is obtained.
In Section 3 the Ganea extension (1.4) is established by means of an explicit

commutator map %\ and the équivalence of this map x with Ganea's map Xo is

demonstrated. In Section 4 we obtain an extended exact séquence

H3G-+ H3Q^> Gab® N 1>H2G¦$>H2Q->.~ (1.6)

for stem-extensions, that is, central extensions (1.1) with N^ [G. G]. Actually, we will
obtain (1.6) for an even broader class of central extensions, which we tentatively call
weak stem-extensions. Whereas a stem-extension (1.1) is characterized by the vanishing
of the abelianization of /*, i.e. /** : N-+ Gab is the zeromap, for weak stem extensions we

merely demand that /i*: N®N-+ Gab®N is the zeromap. We give examples to show
that this generalization is significant, and we also show how (1.6) may be regarded as

contained in the extended séquence of [2].
Section 5 deals with perfect groups ; we assume Q perfect and obtain, beyond the

results of Schur [7] and Kervaire [6] on stem-extensions of Q, a description of the
universal stem-extension of Q in terms of the given présentation of Q. Moreover, we
use the given présentations of N, G and Q to carry further the analogy remarked by
Kervaire between the theory ofperfect groups and covering space theory for connected

topological spaces.
Section 6 is an appendix concerning algebraic ^-theory, in which we show how

the exact séquence for Milnor's K2 may be obtained from (1.3).

2. Extensions, Free Présentations, and Resolutions

Given the group extension (1.1),

iV~G4>g,
let

jR~jF4g (2.1)

be a (free) présentation of G. There are then présentations of Q, N,

SÂF^Q, (2.2)
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R&sZ>N, (2.3)

where

(2.4)fifl"

We sum

m'

ss'

this up

iV

I*
4g

° 9

in the single

Us".

diagram

Q, (2.5)

N

which we call a, présentation oj the extension (1.1).

Applying (1.3) to the two centre rows of (2.5) we obtain the commutative diagram

0->#2G-

0. tj r\ " C/ri7 CT v T?IV T? T?~\ v /O /C^

where a is as in (1.3) and y is induced by the inclusion fi": R^^S. Thus

kery (Rn [F, S])/[F, R], cokery S/R [F, S]. (2.7)

We note that s" induces an isomorphism of coker y onto N/[G, N]. We write rj :

S/[F9 S]-»N/[G, N] for the map induced by s", and thus embed (2.6) in the larger
commutative diagram, with exact rows and columns,

()-? kera -? kery -»0

l „, l A
0 -? H2G U R\\F, jR] U F/[_F, F] -» • • •

0 -? H2Ô 4 S/[F, S] -? F/[F, F] -? • • •

0->iV/[G,N]^JV/[G,N]->0 (2.8)

We use /?' to induce the Hopfformula

H2Gs(Rn[F,F])HF,R-]; (2.9)

likewise /? induces

]. (2.10)
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We make the identifications (2.9), (2.10), so that ker a is identifiée with ker y,

kera (Kn [F, S])/[F,K],
and the map /?,

J8 : (S n [F, F])/[F, S]

is just the restriction of r\ to H2Q, and thus is induced by e". Note that the relation
P rjpm (2.8) simply results from the naturality of (1.3), applied to

N>-> G —*> 0

We now wish to relate /? to the associated central extension (1.5). It follows from
naturality that the homomorphism H2Q-+ N/[G, N] in the séquence (1.3) corresponding
to (1.5) coincides with /?, so that, in this part of the argument, we lose no generality in
supposing that N is itself central in (1.1). Then

P:H2Q->N,

and we propose to relate /? to the élément of H2(Q; N) characterized by the central
extension

We now hâve [G, N] 1, so that

[F, S]çzR9 ker a [F, S^F, R], (2.11)

and fi : (S n [F, F])/[F, S] -> S/R is induced by the inclusions Sn[F, F]^S,[F 5] s i?.

We begin by giving an explicit description of H2(Q; N) in terms of (2.5). We use
the Gruenberg resolution [4; VI. 13] of Z over Q based on (2.2), namely,

ZQ^Z-+0. (2.12)

Hère d0 is the augmentation; /Fis the augmentation idéal of F; dt is given by

3i((x - e)®Fe) è(x) - e, xeF,

where e stands for the unity in any group; the kernel of dt is known to be isomorphic
to Sab, with Q operating by inner automorphisms of F, under the monomorphism

given by
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and d2 is the composite of at with the g-module map s[S, S]®et->s[S, S]. (See

[4; VI. 6], where the argument is given in détail but for the Gruenberg resolution of
Z as left g-module.)

THEOREM 2.1. The Gruenberg resolution (2.12) induces an isomorphism

H2 (fi ; AT) s Hom (S/[F, g], N)l&* Hom (F/[F, F], JV)

trivial Q-module N.
Proof. For any resolution —->C3^C2^>CX^>CO of Z over Q, H2(Q;N)

HomQ(ker dl9 N)/i* HomQ(C1, N), where /: ker d1^C1. Thus, using the Gruenberg
resolution,

H2(Q; N) HomQ(Saft, N)ja* llomQ(JF®FZQ, N).

Now HomQ(5^, N) Hom ((Sab)Q, N) Hom(S/[F, S], N), and HomQ(JF®F ZQ, N)
Hom(/F®FZ, N). Moreover there is a natural isomorphism i/r. JF®FZ^Fab,

given by i//((x- e)®F 1) x [F, F], xeF, and plainly \l/(Tl induces â: S/[F, S] -+ F/[F, F],
This proves the theorem.

Now given the central extension N>-+G^»Q, the map n: S/[F, S]-+N of (2.8)
(recall that [G, N] l) then détermines, in the light of Theorem 2.1, an élément

ÇeH2(Q; N) and this is the characteristic cohomology class of the given central
extension (see [4; VI. 10]). We now readily prove

THEOREM 2.2. If N>-*G^»Q is a central extension with characteristic class

ÇeH2(Q; N), then the homomorphism p: H2Q-^N of (1.3) is the image of Ç under the

epimorphism

<P:H2(Q; N)-»Hom(H2Q, N)
of the universal coefficient theorem.

Proof For any t,eH2{Q\N)9 <P(Ç) is obtained by picking a représentative
9: S/[F9 S]-+N and restricting 6 to (Sn [F, F])/[F, S]. Since r\ represents { and p is the
restriction of n to (Sr\ [F, F])/[F, S], the theorem follows.

Remark. If Ext(Qab, ]V) 0, then 0 is an isomorphism, so that fi characterizes the
central extension. An important spécial case is that in which Qab=0 (i.e., Q isperfect).
The fact that j8 characterizes the extension when Q is perfect may be seen directly by
observing that then â:S/[F, S]^F/[F9 F] is surjective, so that two homomorphisms
S/[F, S]^N détermine the same élément of H2 (Q ; N) (see Theorem 2.1) if and only
if they agrée on H2Q.

We close this section by recalling from VI.8 of [4] how fiB and crB are defined in
(1.2). In terms of the resolution (2.12),

B) (2.13)
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and then PB'H2(Q; B)-+Nab®QB is given by restricting to H2(Q; B) the homomor-
phism Sah®QB-+Nab®QB induced by e". As to aB9 we exploit the short exact séquence
(Theorem VI.6.3 of [4])

Nab>-+JG<8)GZQ-»JG

of g-modules to obtain

Nab®QB-+JG®GB. (2.14)

Moreover the image of this homomorphism obviously lies in the kernel oïJG®GB -> B,
that is, in H1(G; B), and thus (2.14) détermines <rB.

3. The Commutator Map and the Ganea Term

Given a central group extension Ny^G-»Q we now define a homomorphism
vGab®N-+H2G which will yield exactness in

(3.1)

We return to the présentation (2.5) and recall (2.11) that then

Thus our objective is to define a natural surjection Gab®N-+ [F, S]/[F, R], We define

a map

by
c(x,j) |>,j][F,1*], xeF, seS (3.2)

where [x, s] is the commutator xsx~1s~1. We call c the commutator map (relative to
the présentation (2.5)).

PROPOSITION 3.1. The commutator map c is a bihomomorphism, that is,

c(xx',s) c(x9s)c(x',s)9
c(x,ss) =c(x,s)c(x9sr).

Proof. Since [ab, c] a[b, c] a~x[a9 c], and [a, bc] [a9 b] b[a9 c]b'1, we hâve

c(xx\ s) — xc(x'9s)x~x c(x9s)9

c(x9ssf) c(x9s)sc(x9s')s~1.

But [F9 S]^R and [F9 S]/[F9 R] is commutative. Thus

c(xx'9s) c(x9s)c(x'9s)9
c (x, ss') c (x9 s) c (x9 sf).
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Again, since [F, S]/[F, R] is commutative, Proposition 3.1 shows that c([F, F] xS) e;
plainly c(RxS) e, c(FxR) e. Thus c induces a bihomomorphism of abelian

groups

F]Rx S/R -> [F, S]/[F,

and hence a homomorphism

which is plainly surjective. We define # to be the composite of cx and the embedding
of [F, S]/[F, R] kera in H2G. We hâve thus proved, for a central extension N>-*G-»Q9

THEOREM 3.2. 7%e commutator map c defines a homomorphism x : Gab®N-+ H2G
such that the séquence

is exact,
We show later that x is équivalent to Ganea's #0.This would imply the naturality of

X, but we give now an independent proof so that our arguments may be entirely
self-contained. Suppose given a map of central extensions,

j/2 [/S
XQ09 (3.3)

and a présentation of N0*-+G0-^Q09 designated by (2.5) with ail éléments assigned
the suffix 0. We lift/2 to/: F-> Fo such that e'of=f2e'. Then/(5) c S0J(R) ç i?0. Thus

if co:Fo x Sq -> [Fo, S'oJ/fFo, Ro] is the commutator map,

c0 (/x, A) [/x, M [Fo, ,Ro] /[x, j] [Fo, Ro] /,c (x, j),

where/^: [F, aSJ/CF, R] -» [Fo, ^J/tFo, i?0] is induced by/. It follows that the diagram

Gab®N i H2G

if. If.

commutes, where the vertical arrows are induced by (3.3) and are independent of the
choice of présentations. This shows that x is itself independent of the choice of
présentation and is natural.

Ganea's map Xo: Gab®N-^H2G is effectively defined as follows. The multiplication
in G induces a homomorphism fi:GxN-+G, inducing fi#:H2(GxN)-+H2G. According
to the Kûnneth formula, HXG®HXN{=Gab®N) is naturally embedded in H2(G x N).
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Then

We prove

THEOREM 3.3. Xo=~X-
Proof. We first study, in gênerai, the embedding of GUb® G2ab in H2 (Gl x G2). Since

we know this is natural, it suffices to choose suitable resolutions. Thus we choose
the Gruenberg resolutions

of Z over Gt, corresponding to présentations Ri>-^Fi-^Gi9 i'=l, 2. Then a partial
resolution of Z over Gt x G2 is given by

d®l-l<8>0
•—>(JF1®PlZG1)®(JF2®P2ZG2) >{(./F1<x)i7iZG1)<g)ZG2}

0 {ZG1 ® (JF2 ®Fl ZG2)} ~> ZG1 ® ZG2 -? Z -» 0, (3.4)

where we hâve only written down that part of C2 which contributes to H^^H^G^
Tensoring with Z over Gt x G2, we get

(JFt ®Fl Z) ® (JF2 ®F2 Z)^>JF1®Z®Z®JF2.

Thus we hâve proved - in view of the natural isomorphisms JFt®FiZ^Fiab, i= 1, 2 -
writing Zk for the &th cycle group,

LEMMA 3.4. With respect to the resolution (3.4), ZlGl®Z2G2 is embedded in

Z2(G1xG2) as Flab®F2ab, and hence Glab®G2ab is embedded in H^G^xG^ as

We now revert to our spécial case. We must construct a chain-map $0, <j)i9 02>

-» (JF ®FZG) ® (JS ®SZN)-^{(JF ®FZG) ® ZN) ® {ZG ® (JS ®SZN)}

r
Rab®ZG -^-+ JF®FZG

JÎU ZG >Z-»0
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compatible with fi:GxN-+G. Direct calculation shows that we may take

<^((x -e)®Fe®e) (x-e)®Fe,
(j>i(e®(s- e)®se) (s-e)®Fe9
<t)2((x-e)®Fe®(s-e)®se) [s,x'][R,R]®xs, xeF9 seS.

The last formula is justified by observing that

<Ma ((* ~e)®Fe®{s-e) ®s e)

0! ((e'x - e) ®F(s - e) ®se -(x-e)®Fe® (s"s - e))

(*-«) ®f(s'x -e)-(x-e) ®F(é's - e)

(s-e)(x- e) ®Fe -(x-e)(s- e) ®Fe

(sx — xs) ®F e

Again writing Zk for the A:th cycle group, we observe that (j)2 induces

given by

<t>2 (*& FI ®slS,S]) ls9 x] [R, R],

and so induces, in the light of Lemma 3.4, Xo given by

Xo (xR [F, F] ® sR) [j, x] [F, K].

(Recall that [S, S]^R). This proves the theorem, since

X (xR [F, F] ® sR) [x, 5] [JR, X].

Remark. The différence of sign is not unexpected, since Ganea is considering the

left opération of JV on G.

4. Stem-Extensions

A central extension N&G-^Q is called a stem-extension if N^[G, G]. From (1.3)
we immediately deduce

PROPOSITION 4.1. Let N&G-^Q be a central extension. Then the following
statements are équivalent:
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(i) N>-*G-»Q is a stem-extension;

(ii) n*:N-^Gab is the zeromap;
(iii) t e* : Gab -+ Qab is an isomorphism;
(iv) p:H2Q-*N is an epimorphism.
Note that (iv) implies that if ÇeH2(Q; N) is the characteristic class of the central

extension, then the stem-extensions are precisely those for which #(£) is an
epimorphism, where

<P:H2(Q;N)-»Ilom(H2Q9N)

is the natural epimorphism of the universal coefficient theorem.
We will apply the notion of a stem-extension in later sections. Hère we wish to

show that the exact séquence of Theorem 3.2 extends two further places to the left in
the case of stem-extensions. However, our arguments encompass a generalization of
the notion of stem-extensions, which we now give.

We say that the central extension n£*G-»Q is a weak stem-extension if fi induces

0:N®N-+ Gab®N. Thus we hâve, by applying (1.2) - compare Proposition 4.1 -

PROPOSITION 4.2. Let n£>G-$>Q be a central extension. Then the following
statements are équivalent:

(i) N>+G-»Q is a weak stem-extension;

(ii) tN e*:Gab®N-+ Qab®N is an isomorphism;

(iii) pN:H2(Q', N)^>N®N is an epimorphism.
We will abbreviate 'weak stem-extension' to 'ws-extension'. We give some examples:

Examples, (a) If G is perfect then every central extension is a stem-extension.

(b) Consider Zm>->Zm2-»Zm. Obviously this is not a stem-extension, but it is

clearly a ws-extension, for Zm2®Zm-»Zm®Zm is certainly an isomorphism. It is

interesting to note that, in this example, while pN is, by Proposition 4.2, an epimorphism,

fi® 1 \H2Q®N-+ N®N is not an epimorphism.
(c) Let p be a fixed prime, let r^s be positive integers, and let G G(pr,ps) be

the group

G {a, b | apr bp° a^b^ab}.

Then a is of order pr+s, and the center of G is generated by ap\ For any t^s, let Nt
be the (central) subgroup of G generated by ap\ One may then readily verify that
Nt>-*G^»Qt is a stem-extension iiït>r and a ws-extension iff t^i(r+s).

Our main theorem, which we prove by the elementary methods of Sections 2 and 3

is the following.

THEOREM 4.3. Let Ny^G-^Q be a weak stem-extension. Then there is a homo-
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morphism ô:H3Q-> Gab®Nsuch that the séquence

H3G$H3Q^ Gab® N^H2GiH2Q^N1 Gabï Qab-*0

is exact.
Proof. We hâve only to define S and prove exactness at H3Q and Gab®N. Now by

the réduction theorem (see for example [4; Corollary VI. 6.5]), we hâve natural
isomorphisms

H3G s H± (G; Rab)9 H3Q s Ht (Q; Sab),

so that it is sufïicient to define à : Hi (Q ; Sab) ->• Gab®N and prove exactness in

#i (G; Rab) ^ ffi (G; 5ab) A Gfl6 ® iV i H2G. (4.1)

Now from the exact séquence of ^-modules

we get a coefficient séquence

(4.2)

Since e*:Gab®N^Qab®N=Hi(Q; N), we may define (5 by ô e;iô'. We now show
that the diagram

][5,5] (4.3)

commutes, where Ç is the natural projection; hère no use is made of the assumption
that N>-*G-*>Q is weak stem. Using the Gruenberg resolution of Z over g, we
hâve C1®QN=JF®FN9 consisting exclusively of cycles. Thus, to compute x' on
[(* — e)(g>FsR~] we pass to (x—e)®Fs[S, £] and apply the boundary dl9 obtaining
xsx~1s~1 [S, 5]. We hâve shown that x'[(x-e)®FsR']=[x9 s] [F, 1(] [S, S]. Iden-

tifying JF®FN with Fab®N9 we find

X' (xS [F, F] ® 5*) [x, 5] [F, a] [S, S],

proving (4.3). Now enlarge (4.3) to the diagram, with exact columns,

^ x 1

Gab®N-*RI[F9K]

(4.4)
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where x is defined by the commutator map for the extension JVWJV-»1. It follows
from (4.4) that, in the case of a ws-extension, e* induces an isomorphism of ker# onto
kerY- Thus the exactness of (4.2) at Ht(Q\ N) implies the exactness of the séquence
of Theorem 4.3 at Gab®N.

Before proceeding with the argument, we remark that it follows from (4.4) that,
for a ws-extension,

[S, S] s [F,*], (4.5)

so that Ç in (4.3) is the identity, and (R/[S, S])Q R/[F, R].
It remains to prove the exactness of (4.1) at H1 (Q ; Sab). Our first step is to factorize

H^Q; Sab) as e* tf>W,
Hx (G; RJ^H, (G; (Rab)N) ^H^Q; */[S, S]) ÏH^Q; Sab). (4.6)

Hère §"' is the 'change-of-rings' homomorphism; <j>" is induced by the séquence
of g-modules,

[S, S]/[S, X] ^H/[S, R-] ^R/IS, 5]

(note that (Rab)N R/[S, R]); and 0' is as in (4.2). We will prove

<£'" is surjective ; (4.7)

im <£'<£" im<£'. (4.8)

Thèse two facts together establish the exactness of (4.1) at Ht(Q; Sab)-in view of
(4.2) - and hence Theorem 4.3. To prove (4.7), we demonstrate the following more
gênerai lemma.

LEMMA 4.4. Given any extension N>-+G-$>Q and any G-module B,

e.:H1(G;B)^Hi(Q;BN)
is surjective.

Proof of Lemma. This is well-known (see for example [9]), but we give an elementary

proof hère in the framework of our paper. Using the Gruenberg resolutions, we

readily obtain a commutative diagram

JN®NB-+JG®GB-»JQ®QBN
II I i

JN®NB > B BN

in which the columns are exact, the bottom row is exact, and the middle row is

differential. It is now trivial that e* : Hx (G ; B) -» Hj, (Q ; BN) is surjective.
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The proof of (4.8) is based on the following lemma. As usual, we refer to the

présentation (2.5).

LEMMA 4.5. Let N»G-»Q be a central extension. Let ô":Hx{Q\ R/[S, £])-?
-"?([S, S]/[S, R])Q be the Connecting homomorphism associated with the séquence of
Q-modules

[S, S]/[S, K\~R1\S9 *]-»*/[£ S]

andletx-N®N-> [S, S]/[S, R] be the commutator map {AA) for the extension N+

-» 1. Then ([S, S]/[S9 R])Q [S, S]/[S, R] and the square

[fi* K
N®N i[S,S]/[S,R] (4.9)

commutes.

Proof of Lemma. Since N is central, Q opérâtes trivially on H2N= [S, S]/[S9 R].
We now prove the commutativity of (4.9) by again appealing to the Gruenberg
resolution of Z over Q. Then a 2-chain of C2(Q; N) has the form £f st[S9 S]®s'tR.
Since ^ is the Connecting homomorphism associated with the séquence of g-modules

it follows that the value ofxj/ on the class of the cycle H>=£f st [5, S]®.s-i£ is the class,

in Ht(Q; R/[S, S])9 of 2tt(sr-e)®FSi[S, S], i.e., (using { } for homology classes)

* {^} Œ fa - e) ®Fs't [5, S]}. (4.10)
i

Now a 1-chain of CX{Q\ R/[S, 5f])=/F®Fi^/[5, S] has the form Xj(*j-<?)®fOI& S],
and the value of ô" on the class of the cycle z=Yjj(xj~e)®Frj [S9 &l is the class, in

H0(Ql[S, S]/[S,R]),oîY,j[Xj,rj] [5, R]. But since Q opérâtes trivially on [S9S]/[S,R]9

we may write

r{'}~ï.[xj,rj][.S,Rl. (4-11)
j

We now define a 'commutator map' 0:JF®FS/[S, £]-> [F, S]/[S, R] by the rule

0((x - e) ®FslS, S]) [*, s} [S, H]. (4.12)

To check that 0 is well-defined we must verify that

[x, slS2] [S, R] [x, *J [x, *2] [S, R] (4.13)

and that ^((jc-e)^®,*^, 5])=0((x-e)®F^5j'~1[S, S)), or

[** *] [y, sT1 [S, *] [x, ysy-1} [S, il]. (4.14)
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Now (4.13) follows exactly as in the proof of Proposition 3.1, since [S, [F, S]] £ [S, R],
and (4.14) holds since, in fact, [xy, s] [x,ysy~i] [y, s], Thus 6 is well-defined; and

we observe that JF®FR/[S, S] is a subgroup of JF®FS/[S, S] and that, from (4.11),

e(z) ô"{z}. (4.15)

It thus follows from (4.10), (4.12) and (4.15) that, if h>=£ st [S, S]®s[R,

Ww} Z[^G[S,*]. (4.16)
i

Now, asshown in Section2, pN:H2(Q;N)-+ N®N= N®QNis given by restricting
to H2(Q;N) the homomorphism Sab®QN->N®QN induced by e". Thus, with

Z

i
so that

and the lemma is proved.
The relation (4.8) quickly follows from Lemma 4.5. For we hâve the diagram

(with exact row and column)

H1(Q;RIIS9R'])

ir
H2(Q; N)*>Ht (g; */[S, S])±+H(Q; 5/[5, S])

and, by Lemma 4.5, ô"\j/ is surjective in the case of a ws-extension; for, in that case,

PN is surjective (Proposition 4.2), and x is always surjective. It follows immediately
that H^Q; R/[S, S]) im\l/ + im(t)\ so that im^im^'^'. Thus Theorem 4.3 is

completely proved.
Remark. The exact séquence of [2] yields Theorem 4.3 as a spécial case. For the

homomorphism a :H4(N, 2) -+Gab®N of [2] factors through ji*: N®N -+ Gab®N and
is thus zéro for a ws-extension. Indeed, the exact séquence of [2] shows that the
conclusion of Theorem 4.3 holds if and only if n* | ker£=0. We will revert to this point
in a subséquent paper [11].

In the case of a stem-extension, the exact séquence of Theorem 4.3 becomes

H3GiH3Q^ Gab® NiH2GiHQ^N->0 (4.17)

Now let Q be a given group and let Ube any subgroup oîH2Q. Set N-H2QjU and let

p:H2Q-»Nbe the canonical projection. Let Ç be any élément of H2(Q; N) such that
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$(£) /?, and let n£*G-»Q be a central extension with characteristic class f. Then it
foliows from Theorem 2.2 and Proposition 4.1 that JVW(7-»g is a stem-extension
and (4.17) shows that

U ime+ s coker/.

The stem-extensions yielding the given epimorphism p are in one-to-one corre-
spondence with the éléments of Ext (H1Q, N). The stem-extensions for which U=0,
p l are called stem-covers. For a stem-cover

we hâve an exact séquence

H3G $ H3Q X Gab ® H2Q ^>H2G-+0; (4.18)

and the stem-covers of Q are in one-to-one correspondence with éléments of

5. Perfect Groups

Let

jSfAG-^Q (5.1)

be a central extension classified by ÇeH2(Q; N) and let QiN-tNi be a homomor-
phism of commutative groups. We then recall that if £t =£*(£)e//2(g; iVt) and

is the central extension classified by £l5 there is a map of extensions

NAG^Q (5.2)

We study this situation when Q is perfect, that is, Qab=0. In that case (see the

Remark following Theorem 2.2) the central extension (5.1) is characterized by

P=$(Ç):H2Q-*N, which appears in the exact séquence (1.3)

and, if^
• («i)

Moreover,
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PROPOSITION 5.1. Let

4 4 l*

be a map of extensions in which Q is perfect and Nt is centrai Then t is uniquely
determined by q and \j/.

Proof Let t, t' : G -> G1 be two homomorphisms each yielding commutativity in
relation to q and xj/. Consider the fonction/: G^GX given byf(x) x{x) t'(x)"1, xeG.
Sincee1T e1T/,/maps G into iV^. Since JVj is central, it is clear that/iG-^Ni is a

homomorphism. Since Tfi Tffi,fis trivial on N9 and thus induces a homomorphism
g'-Q-^Ni. Since g is perfect and JVX is commutative, g=0. Thus/= 0, so that t t'.

COROLLARY 5.2. /« fAe diagram (5.2), w/VA g perfect, t ht uniquely determined

by q.
We now, temporarily, restrict attention to stem-extensions (5.1) with Q perfect. We

note that, Q being perfect, (5.1) is a stem extension if and only if G is also perfect.
Theorem 3.2 then yields the short exact séquence, for stem extensions (5.1),

0 -> H2G A H2Q ^>N-+0. (5.4)

Thus, with every stem extension (5.1) of the perfect group Q, we may associate a sub-

group U=H2G ofH2Q, such that the stem extension is characterized by the projection
H2Q-»H2Q/U=N. Conversely, given U^H2Q, set N=H2Q/U, P:H2Q->N the

projection, and let (5.1) be the central extension characterized by /?. Then, plainly,
(5.1) is a stem extension and

H2G= U.

Thus we hâve proved

THEOREM 5.3. There is a one-one correspondence between stem extensions of the

perfect group Q and subgroups of H2Q, given by associating with (5.1) the group H2G.
Now let us take the stem extension

H2Q»Qo-»Q (5.5)

of the perfect group Q with H2Q0 0. It is universal in the foliowing sensé. Given any
central extension (5.1), characterized by p : H2Q -» N9 there exists, according to Corol-
lary 5.2, a unique homomorphism t: Qo -> G such that the diagram

1

N >~+ G -»Q
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commutes (note that (5.5) is characterized by the identity map of H2Q). Notice that,
if (5.1) is also a stem extension, then, in (5.6), fi is surjective, so that x is surjective.
Moreover, ker x ker/? H2G, which is central in Qo. Thus if we describe G as a cover
of Q if there exists a stem extension (5.1), then Theorem 5.3 establishes a one-one
correspondence between covers of g and subgroups of H2Q [6], and our subséquent

argument shows that Qo is the universal cover of Q in that it (uniquely) covers any
cover of Q.

PROPOSITION 5.4. The central extension (5.1) is the universal cover oftheperfect
group Q ifandonly ////1G 0, H2G=0.

Proof. This is immédiate, since, if HtG 0, H2G 0, then fi and x are isomorphisms
in (5.6).

We next describe Qo and x in (5.6) by means of the présentation (2.5). We hâve the
évident

PROPOSITION 5.5. Let (5.1) be a stem extension oftheperfect group Q. Then

Proof. We showed in Section 3 that for any central extension, the kernel ofa : H2G ->

->H2Qis [F,S]/[F, R]. But for a stem extension oftheperfect group g, ker a=0(5.4);
indeed, it is plain that [F, S] [F, R] for a ws-extension of the perfect group Q.

Now if (5.1) is the universal cover, then HxG 09 H2G 0, N=H2Q. Thus

so that

G F/R [F, F]/(# n [F, F]) [F, F]HF9 5].

Conversely, let S^F-**Q be a free présentation of the perfect group Q; then Q —

[F, F]/(Sn [F, F]) and if we set G= [F, F]/[F, S] we obtain the extension

G-*Q. (5.7)

This extension is plainly central and is characterized by the identity on H2Q. It follows
that (5.7) is a stem extension and H2G=0.

IfN>~+G-»Qis an arbitrary central extension of the perfect group g, characterized

by p : H2Q -+ N, we induce a homomorphism x : [F, F]/[F, S] -+ F/R from the inclusions

[F, F]^F9 [F,S]^R. Plainly, t restricts to p on H2Q (Sn [F, F])/[F,S] and induces

a commutative diagram (5.6). By uniqueness, it is therefore the homomorphism there
described. We sum up:

THEOREM 5.6. Given the présentation S>^F-»Q of the perfect group Q, the
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£0
universal central (stem) extension H2Q>-+Q0-»Q can be given by Q0 [F, F]/[F9 S]
with s0 induced by the inclusions [F, F]ç=i% [F, S] ^5. For any central extension

Ny-ïG-^Q with présentation (2.5), the universal homomorphism x:Q0^G=F/R is

induced by the inclusions [F, F]^F, [F, S]^R.
Remarks. 1) Theorem 5.6 may readily be used to prove, without any spectral

séquence techniques, the resuit cited in [6] that, given a short exact séquence ofperfect
groups Â>-> (/-»(?, the lifted séquence Ko -^G0-*>Q0 is exact.

2) It is also clear how to présent the cover of Q corresponding to any subgroup U

oîH2Q. With H2Q (Sn [F, F])/[F, S] we hâve U=V/[F,Sl [F,S]^V^Sn[F, F],
and V>~+[F, F]-»G is then a présentation of the required cover G.

We now prove a theorem motivated by the analogy with covering space theory.

THEOREM 5.7 Let n£*G-*> Qbea central extension, let X be aperfect group and

let \j/:X-+Q be a homomorphism. Then ij/ lifts, uniquely, to 4>:X-*G with e<j) il/, if
and only if

\l/JH2X^s,H2G. (5.8)

Proof. Plainly, if \j/ lifts, (5.8) holds. Also Proposition 5.1 affirms that if (f> exists,

it is unique. Thus it suffices to prove that (5.8) implies the existence of 0.
We use the présentation of X,

Let \j/ be lifted to rj: F-»Fwith tj(U)^S. Then

since N is central in G. Thus the hypothesis (5.8) may be translated into the condition

ri (Un lV,V})^Rn [F, F]. (5.9)

Since X is perfect we may présent it by

We hâve the diagram

X l l
[V, F] —?—* [F, F] * [F, F]

* l >
l

X ->G >Q (5.10)

determining a map <j>:X-* G such that e<j> — \l/.
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We may apply this theorem in the following situation. Consider the diagram

N^G-^Q

NAGAQi > (5.H)

where the top row is a stem extension of the perfect group g, and the bottom row is a
central extension. Then we know that we may complète (5.11) to the commutative
diagram (and uniquely)

|<? |t l*
N1~G1$Q1 (5.12)

if and only if \l/*s*H2GÇ:£1*H2Gv However this latter is precisely the condition that
we may find q'\N-+N1 such that the diagram

H2Q^N

HtQi-lNi (5.13)

commutes, as follows immediately from (1.3). Moreover, since (5.12) induces

H2Q^N

H2qA^i (5.14)

and P is surjective, it follows that q q\ We thus hâve the corollary of Theorem 5.7.

COROLLARY 5.8. Let N>->G^>Q be a stem extension of the perfect group Q, let
Ni>+G1^»Q1be a central extension, and let Q:N^-Nu\l/:Q-^Qibe homomorphisms.
Then there exists f.G-+G1 rendering the diagram (5.12) commutative if and only if
(5.14) commutes. If % exists, it is unique.

Remark. We note, in particular, that if (5.14) commutes, then there exists a

canonical homomorphism 9:H2G-*H2Gl9 namely t*, such that

H2G A H2Q

H.G^H.Q,

commutes.
We close this section by observing that Theorem 4.3 leads to an immédiate proof

of the following resuit of Kervaire [6] (see also [2]) :
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THEOREM 5.9. Let N>^G-^Qbea stem extension of the perfect group Q. Then

e*:H3G->H3Q is an epimorphism.

6. Appendix: Remarks on Algebraic AT-Theory

Certain exact séquences of algebraic AT-theory can easily be obtained within the
framework of this paper. We first recall some known facts and définitions.

We consider G GL(À), A being a ring with unity, and the subgroup E=E(A)
generated by elementary matrices \+XElP ij^j, leA. Given an idéal acyl, we write
G G(Ala), Ë=E(A/a) and dénote by n:G-+G, n'\E->Ë the canonical maps, by
TV the kernel of n (Le., the congruence subgroup G(Ay et)). The group E{A9 a), the
normal hull in E of ail elementary matrices 1 +<xElJ9 aea, is contained in x)

kerrc' =EnN. The following facts are easily proved: E=[E, E], Ë=[Ë, Ê], E(A9 a)
\_E, E(A, a), and n':E-> Ë is an epimorphism.
The generalized Whitehead Lemma [10, Theorem 15.1]

[G, N] SE (4, a)

yields the further relations

E [G,G] (6.1)

[G9!f] (6.2)

] [G,N]. (6.3)

The proof of (6.3) is as follows : the inclusion [E, En N~\ £ [G, TV] is obvious, and, on
the other hand, we hâve

[E,EnN-\ 2 [E,E(A9 a)] E(A9 a) [G, Nj

We now reflect this situation by the following more gênerai set-up. Let G and G

be groups with perfect commutator subgroups, let E=\_G, G] and É=[(j, (?]; let n be

a homorphism G-> G which maps E onto Ë, and suppose that [G, N~\ [E, EnN~\,
where N=kern.

We write Q G/N and map the extension Ec\N>-+E^»Ë into N>~+G~»Q by
inclusions. The induced map of the exact séquences (1.3) is given by the commutative

diagram

H2E X H2Ë ^ E n JV/[E, E n JV]—? 0 >0 —>0II I* 11
#2G -^ H2Q—^NI[G,N~]—^^^G 4 HXQ -+ 0. (6.4)

On p. 211 of [10], Swan inadvertently defines E(A, a) to be ker^'. The statement on p. 212
is the correct one - and the only one which Swan uses.
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We note that Im^ (EnN)/[G, N] ker <5 ; this is also imgP'. Since \_E, EnN]
[G, iV], Q is a monomorphism, so ker£/?' ker/T ima\ We further remark that n
induces a monomorphism Q>->G which maps [g, g] £(is)isomorphically onto Ë.

It foliows that the kernel of n*:H1G G/E-*H1G G/E is equal to the kernel of
e*:G/E-+ Q\\_Q-> Q2- Writing g q(Ï9 we obtain from (6.4) the exact séquence

H2E ^ H2Ë^Nj[G, Ni^HiG^H^. (6.5)

In the case of Z-theory, the groups can ail be identified with familiar £-groups:
H1G=G/E=K1(A); H1G=K1(A/a); N/[G9 N] GL(A, a)/E(A, a) K1(A, a); and

finally one defines K2(A) by H2E(A). Then (6.5) becomes the exact séquence

K2 (A) -> K2 (A/a) -> K± (A, a) -> Kt (A) -> Kx (A/a). (6.6)

The above définition of K2 (A) coincides with that ofMilnor, where K2 (A) is the kernel
of St(A)-»E(À). The group St(A)9 the Steinberg group, is defined by an explicit
free présentation S>-+F-»St(À); it is a stem-extension of E(A), and in fact the univer-
sal one - which implies that the kernel is H2E(A). To prove that St(À) is universal, it
suffices to show that it is its own universal stem-extension ; Le., that the homomorphism
[F, F]/[F, S~]-+ F/S induced by the inclusions [F, F]çF, [F, S]^S, is an isomor-
phism. This can be done by following Kervaire's procédure [6], using various com-
mutator relations.
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