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On the Homology Theory of Central Group Extensions:
I-The Commutator Map and Stem Extensions

by BENO ECKMANN, PETER J. HILTON and URS STAMMBACH

In Memoriam Heinz Hopf (1894-1971)

1. Introduction

For any group extension

N5GHQ 1.1)
and any Q-module B, there is a five-term exact homology sequence

H,(G; B) H,(Q; B) 5 N,,®¢B 3 H, (G; B) 3 H, (; B) 0, (1.2)

due to Stallings and Stammbach [8, 9]. If B=Z, regarded as trivial Q-module, (1.2)
reduces to

H,G5 H,05 NJ[G,N]> H,G5 H,0 0. (1.3)

For a simple proof of (1.2), including the statement of naturality, see Eckmann-
Stammbach [3]; of course, az and 75 in (1.2) are induced by ¢; o5 is, in a sense explained
later, induced by u (the sense is perfectly clear in the case (1.3)); and By will be
elucidated in the next section.

In the special case where (1.1) is a central extension, that is, N is central in G,
Ganea [5] has added a further term on the left of the exact sequence (1.3), thus,

G,®NSH,GSH,0— 0, (1.4)

using methods of algebraic topology.

In [2], Eckmann-Hilton extended the sequence (1.4) by four further non-trivial
homology terms, first replacing G, ®N by a suitable quotient. Their method was
based on a spectral sequence for the homology of a suitable fibre space. The Ganea
sequence (1.4) and its extension in [2] are important for applications, beyond those
of (1.3), in group theory, homology, algebraic K-theory, etc.

In the present paper we present an elementary approach to the Ganea extension
(1.4) and to those parts of the extended sequence in [2] which are relevant to appli-
cations to stem-extensions of groups (see Section 4), and, in particular, to the study
of perfect groups. The argument is based on a fixed, but arbitrary, free presentation
of (1.1) (see Section 2), and the associated Gruenberg resolutions [4; Chapter VI] of Z
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over N, G and Q. The maps of (1.3) are exhibited and exactness is proved, by using
these explicit resolutions.

In Section 2 we study (1.3) — and, in less detail, (1.2) — from the viewpoint of the
given presentation of (1.1). In particular, we recall the relation with the Hopf formula
for H,G and H,Q and obtain an explicit form for ker «. Moreover, the connection
between f and the characteristic class of the central extension

N/[G, N]—G/[G, N]»Q, 1.5)

associated with (1.1), is obtained.

In Section 3 the Ganea extension (1.4) is established by means of an explicit
commutator map y; and the equivalence of this map y with Ganea’s map y, is
demonstrated. In Section 4 we obtain an extended exact sequence

H,G > H,05 G @ NS H,GS HyQ o (1.6)

for stem-extensions, that is, central extensions (1.1) with N<[G. G]. Actually, we will
obtain (1.6) for an even broader class of central extensions, which we tentatively call
weak stem-extensions. Whereas a stem-extension (1.1) is characterized by the vanishing
of the abelianization of y, i.e. u,: N — G, is the zeromap, for weak stem extensions we
merely demand that p,: NQN - G,,®N is the zeromap. We give examples to show
that this generalization is significant, and we also show how (1.6) may be regarded as
contained in the extended sequence of [2].

Section 5 deals with perfect groups; we assume Q perfect and obtain, beyond the
results of Schur [7] and Kervaire [6] on stem-extensions of Q, a description of the
universal stem-extension of Q in terms of the given presentation of Q. Moreover, we
use the given presentations of N, G and Q to carry further the analogy remarked by
Kervaire between the theory of perfect groups and covering space theory for connected
topological spaces.

Section 6 is an appendix concerning algebraic K-theory, in which we show how
the exact sequence for Milnor’s K, may be obtained from (1.3).

2. Extensions, Free Presentations, and Resolutions

Given the group extension (1.1),

N5 G50,
let

REHF5G (2.1)
be a (free) presentation of G. There are then presentations of Q, N,

SHF»Q, (2.2)
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RESSHN, 2.3)
where
=y, e =8, ¢&hi=npe". (2.4)

We sum this up in the single diagram

SSFSQ, (2.5)

which we call a presentation of the extension (1.1).
Applying (1.3) to the two centre rows of (2.5) we obtain the commutative diagram

0 H,G % R|[F, R] 5 F|[F, F] -

o b
0- H,05 S/[F, S] S F/[F, F] >, (2.6)

where « is as in (1.3) and y is induced by the inclusion u”: R S. Thus
kery = (Rn[F, S])/[F,R], cokery= S/R[F,S]. (2.7)

We note that &” induces an isomorphism of coker y onto N/[G, N]. We write 7:
S/[F, S]-» N/[G, N] for the map induced by &”, and thus embed (2.6) in the larger
commutative diagram, with exact rows and columns,

0—» ker« — kery -0

| y ¥ A
0— H,G - R|[F,R]—>F|[F,F]--
= b =
0—» H,0 5 S/[F,S] SF|[F,F]--
e |
0- N/[G, N] 5 NJ[G,N] -0 : (2.8)

We use f’ to induce the Hopf formula
H,G = (R [F, F])/[F, R]; (2.9)
likewise B induces

H,Q = (S n[F, F])/[F, 5]. (2.10)
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We make the identifications (2.9), (2.10), so that ker « is identified with ker y,
kera = (Rn[F, S])/[F, R],

and the map S,
B:(S ~[F, F1)/[F, S1- N/[G, N1,

is just the restriction of n to H,Q, and thus is induced by &”. Note that the relation
B=np in (2.8) simply results from the naturality of (1.3), applied to

SBF5Q

b b
NS5G>»Q .

We now wish to relate § to the associated central extension (1.5). It follows from
naturality that the homomorphism H,Q — N/[G, N]in the sequence (1.3) corresponding
to (1.5) coincides with f, so that, in this part of the argument, we lose no generality in
supposing that N is itself central in (1.1). Then

B:HZQ—)Na

and we propose to relate B to the element of H?(Q; N) characterized by the central
extension

N—-»G—»Q.
We now have [G, N]=1, so that
[F,S]= R, kera=][F,S]/[F,R], (2.11)

and B: (SN [F, F])/[F, S]1— S/Ris induced by the inclusions SN [F, F]< S, [F S]<R.
We begin by giving an explicit description of H*(Q; N) in terms of (2.5). We use
the Gruenberg resolution [4; VI. 13] of Z over Q based on (2.2), namely,

35,0203 IF®,20532032-0. (2.12)
Here 0, is the augmentation; JF is the augmentation ideal of F; 0, is given by
9;((x —e)®pe)=&(x)—e, xeF,

where e stands for the unity in any group; the kernel of 0, is known to be isomorphic
to S, with Q operating by inner automorphisms of F, under the monomorphism

0,: S~ JF QpZQ
given by
o, (s[S,S])=(s—e)®re;
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and 0, is the composite of g, with the Q-module map s[S, S]®er>s[S, S]. (See
[4; VI. 6], where the argument is given in detail but for the Gruenberg resolution of
Z as left Q-module.)

THEOREM 2.1. The Gruenberg resolution (2.12) induces an isomorphism
H?(Q; N) =~ Hom (S/[F, S], N)/6* Hom (F/[F, F], N)

Sor any trivial Q-module N.
Proof. For any resolution ---— C32> ng Clﬁ Co of Z over Q, H*(Q; N)
=Homy(ker d;, N)/i* Homy(Cy, N), where i: ker 9, < C;. Thus, using the Gruenberg
resolution,

H*(Q; N) = Hom, (S,5, N)/oF Homy (JF @ ZQ, N).

Now Homy (S, N)=Hom ((S,)g, N)=Hom(S/[F, S1, N),and Hom,(JF®ZQ, N)
=Hom(JF®y Z, N). Moreover there is a natural isomorphism V: JF®y Z=F,,,
given by ¥ ((x—e)®p 1)=x[F, F], xeF, and plainly Yo, induces 6: S/[F, S]- F/[F, F].
This proves the theorem.

Now given the central extension N>»G-—»Q, the map n: S/[F, S]— N of (2.8)
(recall that [G, N]=1) then determines, in the light of Theorem 2.1, an element
éeH?*(Q; N) and this is the characteristic cohomology class of the given central
extension (see [4; VI. 10]). We now readily prove

THEOREM 2.2. If N»G-»Q is a central extension with characteristic class
EeH?*(Q; N), then the homomorphism B: H,Q — N of (1.3) is the image of ¢ under the
epimorphism

@:H?*(Q; N)-»Hom (H,Q, N)

of the universal coefficient theorem.

Proof. For any (eH?*(Q; N), ®#({) is obtained by picking a representative
0:S/[F, S]- N and restricting 0 to (S [F, F])/[F, S]. Since n represents £ and f is the
restriction of 5 to (S [F, F])/[F, S], the theorem follows.

Remark. If Ext(Q,,, N)=0, then @ is an isomorphism, so that  characterizes the
central extension. An important special case is that in which Q,, =0 (i.e., Q is perfect).
The fact that S characterizes the extension when Q is perfect may be seen directly by
observing that then &:S/[F, S]— F/[F, F] is surjective, so that two homomorphisms
S/[F, S]— N determine the same element of H?(Q; N) (see Theorem 2.1) if and only
if they agree on H,Q.

We close this section by recalling from VI.8 of [4] how S5 and ¢ are defined in
(1.2). In terms of the resolution (2.12),

Hz (Q; B) == ker (Sab ®QB g JF ®FB) (2.13)
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and then f3:H,(Q; B) > N,®,B is given by restricting to H,(Q; B) the homomor-
phism S,,®,B— N,;®oB induced by &”. As to a5, we exploit the short exact sequence
(Theorem VI.6.3 of [4])

Ny JGRcZQ»JG
of Q-modules to obtain
Ny ®oB—JG®¢B. (2.14)

Moreover the image of this homomorphism obviously lies in the kernel of JG® B — B,
that is, in H,(G; B), and thus (2.14) determines o5.

3. The Commutator Map and the Ganea Term

Given a central group extension N>»»G-—»Q we now define a homomorphism
x:G,,®N— H,G which will yield exactness in

G,®N>5H,GS5H,0. (3.1)
We return to the presentation (2.5) and recall (2.11) that then
kera = [F, S]/[F, R].

Thus our objective is to define a natural surjection G,,@ N — [F, S]/[F, R]. We define
a map

¢:F x S—[F, S]/[F, R]
by
c(x,s)=[x,s][F,R], xeF, seS (3.2)

where [x, 5] is the commutator xsx~1s™!. We call ¢ the commutator map (relative to
the presentation (2.5)).

PROPOSITION 3.1. The commutator map c is a bihomomorphism, that is,
c(xx', s)=c(x,s)c(x,5),
c(x,ss’) =c(x,8)e(x,s).
Proof. Since [ab, c]=al[b, c]a"![a, c], and [a, bc]=[a, bl ba, c} b~*, we have
c(xx’,s)=xc(x',s)x L ec(x,s),
c(x, ss") =c(x,5)sc(x,s)s™ .
But [F, S]=R and [F, S]/[F, R] is commutative. Thus
c(xx',s)=c(x,5)c(x'ss),
c(x,ss") =c(x,5)c(x,s').
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Again, since [F, S1/[F, R]is commutative, Proposition 3.1 shows that c¢([F, F]1x S)=e;
plainly ¢(Rx S)=e, c(Fx R)=e. Thus ¢ induces a bihomomorphism of abelian
groups

FI[F, F1 R x S|R - [F, S]/[F, R],
and hence a homomorphism

¢,:G, ® N —[F, S]/[F, R],

which is plainly surjective. We define x to be the composite of ¢, and the embedding
of [F, S)/[F, R]=kera in H,G. We have thus proved, for a central extension N>»G—» Q,

THEOREM 3.2. The commutator map c defines a homomorphismy.G,N — H,G
such that the sequence

Gy ®NSH,GSH,Q05 NGy Qup—0

is exact.

We show later that y is equivalent to Ganea’s . This would imply the naturality of
X, but we give now an independent proof so that our arguments may be entirely
self-contained. Suppose given a map of central extensions,

N5G 50
lf1 lfz lfs
NoGo—>Q,, (3.3)

and a presentation of N, G,—»Q,, designated by (2.5) with all elements assigned
the suffix 0. We lift f, to f: F— F, such that gy f=f,¢’. Then f(S) = S,, f(R) S R,. Thus
if cg: Fy x Sg— [Fy, Sol/[Fo,> Ro] is the commutator map,

CO(fx3 fS) = [fxa fS] [FO’ RO] = f[x,s] [FO’ RO] = flc(x’s)’
where f,.:[F, SI/[F, R] - [F,, So)/[F,, R,] is induced by f. It follows that the diagram

G,®N 5 H,G

17+ Ire
Goas ® Ny > H,G,

commutes, where the vertical arrows are induced by (3.3) and are independent of the
choice of presentations. This shows that y is itself independent of the choice of
presentation and is natural.

Ganea’s map y,:G,,® N - H,G is effectively defined as follows. The multiplication
inG induces a homomorphism u:G x N = G, inducing . :H,(G x N) - H ,G. According
to the Kiinneth formula, H,G® H,N(=G,,® N) is naturally embedded in H,(G x N).
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Then
X0==#* (GMJ81V).
We prove

THEOREM 3.3. yo=—x.

Proof. We first study, in general, the embedding of G,,,® G, in H,(G; X G,). Since
we know this is natural, it suffices to choose suitable resolutions. Thus we choose
the Gruenberg resolutions

'”—)Riab®ZGi2Jﬂ ®F‘ZGi'a‘iZGing—)O,

of Z over G,;, corresponding to presentations R, F;—»G;, i=1, 2. Then a partial
resolution of Z over G; x G, is given by

®1-1®7

cee—> (JF]_ ®F1 ZGI) ® (JFZ ®F2 ZGz) {(JF1 ®F1 ZGI)® ZGz}
(‘D {ZGl ® (JFZ ®F2 ZGz)} i ZGl ® ZGZ o 0, (3.4)

where we have only written down that part of C, which contributesto H,G,® H,G,.
Tensoring with Z over G, x G,, we get

(JF, ®5, Z)® (JF, ®p,Z) > JF, ®ZD LR JF,.

Thus we have proved - in view of the natural isomorphisms JF;®p, Z= Fp, i=1, 2 -
writing Z, for the kth cycle group,

LEMMA 3.4. With respect to the resolution (3.4), Z,G,®Z,G, is embedded in
Z,(G1xG,) as F,;,®F,,, and hence G,,,®@G,,, is embedded in H,(G, xG,) as
F[[Fy, Fi] Ry @F,[[F, F,] R,.

We now revert to our special case. We must construct a chain-map ¢, ¢4, @5, -+

coo> (JF @5 ZG) ® (JS ®5ZN)— {(JF ®;ZG) ® ZN} @ {ZG ® (JS ®5ZN)}
i .

itﬁz 14’1
O R, ®ZG a, JF ®:ZG
2 ZGRZIN~Z -0

ld’o }I
, |

s ZG— Z-0
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compatible with u:G x N — G. Direct calculation shows that we may take

$o(e@e)=ce,

$1((x—e)@re®e) = (x — ) ®re,

$1(e® (s — ) ®se) = (s — €) ®re,

$:((x —e)Dre® (s — ) Qse) =[5, x] [R,R]®xs, xeF, seS.

The last formula is justified by observing that

$10,((x — ) ®re® (s — €) @se)
=¢;(('x—e)Vp(s—e)Vse— (x — ) @re® (&'s — e))
=(5—e)Qr(ex—e)—(x—e)®p(e"s — )
=(s—e)(x—e)@re—(x—e)(s—e) Qe
= (sx — x5) @re
= ([s, x] — &) ®pxs
= 0, ([s, x] [R, R] ® xs).

Again writing Z, for the kth cycle group, we observe that ¢, induces
¢,:Z,GRZ,N->Z,G
given by
é2 (x[F, F]®s[S, ST) =[5, x] [R, R,
and so induces, in the light of Lemma 3.4, y, given by
%o (xR[F, F]®sR) = [s, x] [F, R].
(Recall that [S, S]< R). This proves the theorem, since
x(xR[F, F]®sR) = [x,s][R, R].

Remark. The difference of sign is not unexpected, since Ganea is considering the
left operation of N on G.

4. Stem-Extensions

A central extension N>5G-» Q is called a stem-extension if N<[G, G]. From (1.3)
we immediately deduce

PROPOSITION 4.1. Let N5 G-»Q be a central extension. Then the following
Statements are equivalent:
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(1) N»>»G-»Q is a stem-extension;
(i) py:N—> G, is the zeromap,
(iii) T=¢4:G,— Q. is an isomorphism,
(iv) B:H,Q — N is an epimorphism.
Note that (iv) implies that if £e H*(Q; N) is the characteristic class of the central
extension, then the stem-extensions are precisely those for which &(¢) is an epi-
morphism, where

@:H?(Q; N)-»Hom (H,Q, N)

is the natural epimorphism of the universal coefficient theorem.

We will apply the notion of a stem-extension in later sections. Here we wish to
show that the exact sequence of Theorem 3.2 extends two further places to the left in
the case of stem-extensions. However, our arguments encompass a generalization of
the notion of stem-extensions, which we now give.

We say that the central extension N>> G -»Q is a weak stem-extension if i induces
0:N®N - G,,®N. Thus we have, by applying (1.2) — compare Proposition 4.1 -

PROPOSITION 4.2. Let N5 G->Q be a central extension. Then the following
statements are equivalent:

(i) N>>G-»Q is a weak stem-extension;

(i) Ty=264:G,®N— Q,, QN is an isomorphism;

(iii) By:H,(Q; N)— NQ®N is an epimorphism.

We will abbreviate ‘weak stem-extension’ to ‘ws-extension’. We give some examples:

Examples. (a) If G is perfect then every central extension is a stem-extension.

(b) Consider Z,,—Z,.-»Z,,. Obviously this is not a stem-extension, but it is
clearly a ws-extension, for Z,.®Z, — Z,,®Z,, is certainly an isomorphism. It is
interesting to note that, in this example, while g is, by Proposition 4.2, an epimor-
phism, f®1:H,Q®N — N®N is not an epimorphism.

(c) Let p be a fixed prime, let r>s be positive integers, and let G=G(p", p*) be
the group

G={a,b|a”=b"=a""'b""ab}.

Then a is of order p'*5, and the center of G is generated by a”’. For any ¢>s5, let N,
be the (central) subgroup of G generated by a”’. One may then readily verify that
N,—G-»Q, is a stem-extension iff 7>r and a ws-extension iff > 4(r +s).

Our main theorem, which we prove by the elementary methods of Sections 2 and 3
is the following.

THEOREM 4.3. Let N5 G-»Q be a weak stem-extension. Then there is a homo-
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morphism 6:H3Q — G, N such that the sequence
&y é £y G £y
HG3H0> Gy ®NSHGIH,05N 56,53 0,-0

is exact.
Proof. We have only to define é and prove exactness at H;Q and G,,® N. Now by
the reduction theorem (see for example [4; Corollary VI. 6.5]), we have natural

isomorphisms
H3G = H,(G; Ryp), H;Q=H;(Q;S,),
so that it is sufficient to define 6: H,(Q; S,;) = G,,® N and prove exactness in
H, (G; Rap) S Hy (Q; Su) > Gy ® N 5 H,G. @.1)
Now from the exact sequence of Q-modules
R/[S, S]~S[[S,S]»N
we get a coefficient sequence

H,(Q; N)% H, (Q; RI[S, S) % H, (Q; Su) > H, (Q; N) 5 (RIS, ST)g =+ -
4.2)

Since e4:G,, ON=Q,®N=H,(Q; N), we may define § by d=¢, '5’. We now show
that the diagram

G, ® N5 R/[F, R]

¥ ¥
Q. ® N5 R/[F, R][S, 5] (4.3)

commutes, where { is the natural projection; here no use is made of the assumption
that N>»>G-—»Q is weak stem. Using the Gruenberg resolution of Z over Q, we
have C;®,N=JF®pN, consisting exclusively of cycles. Thus, to compute ' on
[(x—e)®FsR] we pass to (x—e)®ps[S, S] and apply the boundary 0,, obtaining
xsx~1s71[S, S]. We have shown that y'[(x—e)®ysR] =[x, s] [F, R] [S, S]. Iden-
tifying JF® p N with F,, ® N, we find

1 (xS[F, F]®sR) =[x, s] [F, R] [S, S],

proving (4.3). Now enlarge (4.3) to the diagram, with exact columns,

N ® N5 [S, SJ[S, R]

l“* X l
G, ® N - R|[F, R]
Yo ¥

0., ® N5 RI[F, R][S, 5] , (4.4)
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where j is defined by the commutator map for the extension N>»N-»1. It follows
from (4.4) that, in the case of a ws-extension, ¢, induces an isomorphism of ker y onto
kery’. Thus the exactness of (4.2) at H; (Q; N) implies the exactness of the sequence
of Theorem 4.3 at G,,® N.

Before proceeding with the argument, we remark that it follows from (4.4) that,
for a ws-extension,

[S, S] < [F,R], (4.5)

so that { in (4.3) is the identity, and (R/[S, S])o=R/[F, R].
It remains to prove the exactness of (4.1) at H,(Q; S,;). Our first step is to factorize
ex:H;(G; Ryp) > Hi(Q; Sp) as ex=0¢'9"9",

H, (G; Ry) S H, (Q; (Ru)w) S H, (Q; RIS, S1) S H, (Q; Sa).- (4.6)

Here ¢" is the ‘change-of-rings’ homomorphism; ¢” is induced by the sequence
of O-modules,

[S, SI/LS, R] > R/[S, R] » R[S, 5]

(note that (R,,)y=R/[S, R]); and ¢’ is as in (4.2). We will prove
¢" is surjective ; 4.7)
im¢'¢" = im ¢’ (4.8)

These two facts together establish the exactness of (4.1) at H,(Q; S,,)—in view of
(4.2) — and hence Theorem 4.3. To prove (4.7), we demonstrate the following more
general lemma.

LEMMA 4.4. Given any extension N> G-»Q and any G-module B,
¢.:H; (G; B)—> H, (Q; By)
is surjective.
Proof of Lemma. This is well-known (see for example [9]), but we give an elementary

proof here in the framework of our paper. Using the Gruenberg resolutions, we
readily obtain a commutative diagram

H, (G; B) = H, (Q; By)
A
JN®yB3JG®gB—>JQ®,By

I l l
JN ®yB—— B ——— By

in which the columns are exact, the bottom row is exact, and the middle row is
differential. It is now trivial that ¢, : H, (G; B) - H,(Q; By) is surjective.
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The proof of (4.8) is based on the following lemma. As usual, we refer to the
presentation (2.5).

LEMMA 4.5. Let N—>G-»Q be a central extension. Let 6":H,(Q; R/[S, S])—
—([S, SIS, R))g be the connecting homomorphism associated with the sequence of
Q-modules

[S, ST/[S, R]—R]/[S, R]—>R/[S, S]

andlet i: NQN — [S, S1/[S, R] be the commutator map (4.4) for the extension N>>N-»
—» 1. Then ([S, SV/[S, R])o=I[S, SVIS, R] and the square

H,(Q; N) % H, (Q; RIS, S])

l B ) l 8"
N®N 5[s,S)/[S,R] 4.9)
commuutes.

Proof of Lemma. Since N is central, Q operates trivially on H,N=[S, S1/[S, R].
We now prove the commutativity of (4.9) by again appealing to the Gruenberg
resolution of Z over Q. Then a 2-chain of C,(Q; N) has the form ) ; 5;[S, S1®s;R.
Since y is the connecting homomorphism associated with the sequence of Q-modules

R/[S, S]—S][S, S]—»N,

it follows that the value of Y on the class of the cycle w=Y; s;[S, S]®s;R is the class,
in H,(Q; R/[S; S1), of Y ;(s;—e)®ps;[S, S}, i.e., (using { } for homology classes)

¥ {w} = {2; (s — ) @psi[S, S]} - (4.10)

Now a 1-chain of C,(Q; R/[S, S1)=JFQ® R/[S, S]has the form } ;(x;—e)®,r;[S, S,
and the value of §” on the class of the cycle z=) ;(x;—¢€) ®pr; [S, S] is the class, in
Hy(Q;[S, SYIS, R]), of Y ;[x;, r;]1 [S, R]. Butsince Q operates trivially on [S, SJ/[S, R],
we may write

0" {z} = ;[x » 1] [S, R]. (4.11)

We now define a ‘commutator map’ 6:JF®S/[S, S1— [F, SI/[S, R] by the rule

6((x — e)®rs[S, S]) =[x, s][S, R]. . 4.12)
To check that 6 is well-defined we must verify that

[x, s15,]1 [S, R] = [*, 1] [, 521 [S, R] (4.13)

and that 0((x—e) y®s[S, S1)=0((x—e)®rysy~*[S, S1), or
[xy, s] [y, s]"* [S, R] = [x, ysy~'1[S, R]. 4.14)
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Now (4.13) follows exactly as in the proof of Proposition 3.1, since [S, [F, S]] <[S, R],
and (4.14) holds since, in fact, [xy, s]=[x, ysy~] [y, s]. Thus 0 is well-defined; and
we observe that JF®  R/[S, S] is a subgroup of JF® ;S/[S, S] and that, from (4.11),

6(z)=96"{z}. (4.15)
It thus follows from (4.10), (4.12) and (4.15) that, if w=Y 5;[S, SI®s;R,
3"y {w} =Y. [, si] [S, R]. (4.16)

Now, as shown in Section 2, By: H,(Q; N) > NQN=NQ@,N is given by restricting
to H,(Q; N) the homomorphism S,®,N—N®,N induced by &". Thus, with
w=2i S [Sa S]®S;R3

By{w} =Y sR®sR,
so that

iBy{w} = Zi:[si’ si1[S, R],

and the lemma is proved.
The relation (4.8) quickly follows from Lemma 4.5. For we have the diagram
(with exact row and column)

H, (Q; R/[S, R])
e
H,(Q; N) % H, (; R/[S, S1)% H (Q; S/[S, S])
I
S, SIS, R]

and, by Lemma 4.5, 6"y is surjective in the case of a ws-extension; for, in that case,
By is surjective (Proposition 4.2), and j is always surjective. It follows immediately
that H,(Q; R/[S, S])=imy +im¢”, so that im¢'=im¢’¢”. Thus Theorem 4.3 is
completely proved.

Remark. The exact sequence of [2] yields Theorem 4.3 as a special case. For the
homomorphisma:H,(N,2)— G,®N of [2] factors through p,: NQ N - G,,®N and
is thus zero for a ws-extension. Indeed, the exact sequence of [2] shows that the con-
clusion of Theorem 4.3 holds if and only if u, | ker¥=0. We will revert to this point
in a subsequent paper [11].

In the case of a stem-extension, the exact sequence of Theorem 4.3 becomes

HG3H,Q>G,9NSH,GSHOL N0 4.17)

Now let Q be a given group and let U be any subgroup of H,Q. Set N=H,Q/U and let
B:H,Q-» N be the canonical projection. Let & be any element of H?(Q; N) such that
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®(£)=p, and let N>>G-» Q be a central extension with characteristic class & Then it
follows from Theorem 2.2 and Proposition 4.1 that N>»>G-»Q is a stem-extension
and (4.17) shows that

U =imeg, = cokery.

The stem-extensions yielding the given epimorphism f are in one-to-one corre-
spondence with the elements of Ext(H,Q, N). The stem-extensions for which U=0,
p=1 are called stem-covers. For a stem-cover

H,0G>Q
we have an exact sequence

HyG 3 Hy,0 5 G,y ® HyQ 5 HyG - 0; (4.18)
and the stem-covers of Q are in one-to-one correspondence with elements of
Ext(H,Q, H,Q).
5. Perfect Groups

Let
N5G>Q (5.1)

be a central extension classified by ée H?(Q; N) and let g: N— N; be a homomor-
phism of commutative groups. We then recall that if &, =g, (¢)e H*(Q; N,) and

Ny =Gy —»Q
is the central extension classified by &,, there is a map of extensions

N5G 50

d ]
N—G,—»Q . (5.2)

We study this situation when Q is perfect, that is, Q,,=0. In that case (see the
Remark following Theorem 2.2) the central extension (5.1) is characterized by
B=®(&):H,Q — N, which appears in the exact sequence (1.3)

H,G->H,05% 4G, —0;
ands lf 51 =Q*(é)’
45(51) = oB. (5.3)

Moreover,
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PROPOSITION 5.1. Let
N5G 50

el | v
N> Gy »Q,
21 &1

be a map of extensions in which Q is perfect and N, is central. Then 1 is uniquely
determined by g and .

Proof. Let 7, 7':G— G, be two homomorphisms each yielding commutativity in
relation to ¢ and . Consider the function f: G — G, given by f(x)=1(x) 7' (x) !, xeG.
Since ¢;7=¢,7’, f maps G into N,. Since N, is central, it is clear that f:G— N, is a
homomorphism. Since tu=1"y, f is trivial on N, and thus induces a homomorphism
g:Q— Nj;. Since Q is perfect and N, is commutative, g=0. Thus f=0, so that t=1’.

COROLLARY 5.2. In the diagram (5.2), with Q perfect, t is uniquely determined
by o.

We now, temporarily, restrict attention to stem-extensions (5.1) with Q perfect. We
note that, Q being perfect, (5.1) is a stem extension if and only if G is also perfect.
Theorem 3.2 then yields the short exact sequence, for stem extensions (5.1),

0 H,G3H,05N-0. (5.4)

Thus, with every stem extension (5.1) of the perfect group Q, we may associate a sub-
group U= H,G of H,(Q, such that the stem extension is characterized by the projection
H,0—-»H,Q/U=N. Conversely, given U< H,Q, set N=H,Q/U, p:H,Q— N the
projection, and let (5.1) be the central extension characterized by f. Then, plainly,
(5.1) is a stem extension and

H2G= U.

Thus we have proved

THEOREM 5.3. There is a one-one correspondence between stem extensions of the
perfect group Q and subgroups of H,Q, given by associating with (5.1) the group H,G.
Now let us take the stem extension

H,0—~ Q>0 (5.5

of the perfect group Q with H,Q,=0. It is universal in the following sense. Given any
central extension (5.1), characterized by f: H,Q — N, there exists, according to Corol-
lary 5.2, a unique homomorphism 7: 9, — G such that the diagram

H,0—-00»0
b
N - G-»Q
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commutes (note that (5.5) is characterized by the identity map of H,Q). Notice that,
if (5.1) is also a stem extension, then, in (5.6), B is surjective, so that 7 is surjective.
Moreover, ker 1=ker = H,G, which is central in Q,. Thus if we describe G as a cover
of Q if there exists a stem extension (5.1), then Theorem 5.3 establishes a one-one
correspondence between covers of Q and subgroups of H,Q [6], and our subsequent
argument shows that Q, is the universal cover of Q in that it (uniquely) covers any
cover of Q.

PROPOSITION 5.4. The central extension (5.1) is the universal cover of the perfect
group Q if and only if H G=0, H,G=0.

Proof. This is immediate, since, if H;G=0, H,G=0, then # and 7 are isomorphisms
in (5.6).

We next describe Q, and 7 in (5.6) by means of the presentation (2.5). We have the
evident

PROPOSITION 5.5. Let (5.1) be a stem extension of the perfect group Q. Then
[F, S]=[F,R].

Proof. We showed in Section 3 that for any central extension, the kernel of «: H,G —
— H,Q is [F, S]/[F, R]. But for a stem extension of the perfect group Q, kera=0 (5.4);
indeed, it is plain that [F, S]=[F, R] for a ws-extension of the perfect group Q.

Now if (5.1) is the universal cover, then H;G=0, H,G=0, N=H,Q. Thus

Rn[F,F]=[F,R]=[F,S],
so that
G=F/R=[F, F]/(Rn[F, F])=[F, F]/[F, S].

Conversely, let S F—»Q be a free presentation of the perfect group Q; then Q=
=[F, F)/(SN[F, F]) and if we set G=[F, F}/[F, S] we obtain the extension

H,0G-»Q. (5.7)

This extension is plainly central and is characterized by the identity on H,Q. It follows
that (5.7) is a stem extension and H,G=0.

If N>»G-» Q is an arbitrary central extension of the perfect group Q, characterized
by f:H,Q — N, we induce a homomorphism t:[F, F]/[F, S]— F/R from the inclusions
[F, F]1<SF, [F,S]<R. Plainly, 7 restricts to f on H,Q =(S N [F, F])/[F, S] and induces
a commutative diagram (5.6). By uniqueness, it is therefore the homomorphism there
described. We sum up:

THEOREM 5.6. Given the presentation S»»F-»Q of the perfect group Q, the
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universal central (stem) extension H,Q»> Qo Q can be given by Q,=|[F, F}/[F, S]
with &, induced by the inclusions [F, F]1<F, [F, S1<S. For any central extension
N G-—»Q with presentation (2.5), the universal homomorphism t:Q,— G=F/R is
induced by the inclusions [F, F1=F, [F, S]=R.

Remarks. 1) Theorem 5.6 may readily be used to prove, without any spectral
sequence techniques, the result cited in [6] that, given a short exact sequence of perfect
groups K> G-»Q, the lifted sequence K, —» G,—» Q, is exact.

2) It is also clear how to present the cover of Q corresponding to any subgroup U
of H,Q. With H,Q=(Sn[F, F])/[F,S]we have U=V/[F, S], [F,S]=sV<SnI[F, F],
and V- [F, F]-»G is then a presentation of the required cover G.

We now prove a theorem motivated by the analogy with covering space theory.

THEOREM 5.7 Let N G-»Q be a central extension, let X be a perfect group and
let y:X — Q be a homomorphism. Then s lifts, uniquely, to ¢:X — G with ep=y, if
and only if

Y., X < 6, H,G. (5.8)

Proof. Plainly, if y lifts, (5.8) holds. Also Proposition 5.1 affirms that if ¢ exists,
it is unique. Thus it suffices to prove that (5.8) implies the existence of ¢.
We use the presentation of X,

U»V-»X.
Let y be lifted to #: V- F with n(U)< S. Then
e H,G = (Rn[F, F]) [F, S]/LF, §]
= Rn][F, F]/[F, 5],
since N is central in G. Thus the hypothesis (5.8) may be translated into the condition
n(Un[V,V])sRn[F, F]. (5.9)
Since X is perfect we may present it by
Un[V,V]-[V,V]>»X.
We have the diagram
Un[V,V]3RA[F, F]-»Sn[F, F]

¥ ¥ 1
[V, V]——[F,F]——[F,F]
Lo, L,
) TR -G (5.10)

determining a map ¢:X — G such that e =y.
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We may apply this theorem in the following situation. Consider the diagram

N5 G50
Ly
NG, >0, , (5.11)

where the top row is a stem extension of the perfect group Q, and the bottom row is a
central extension. Then we know that we may complete (5.11) to the commutative
diagram (and uniquely)

N5 G »Q
ll)m lr &1 ldl
NIHGI—»QI (512)

if and only if Y ,e,H,G <S¢, H,G,. However this latter is precisely the condition that
we may find ¢’ : N — N, such that the diagram

H0 5N
e e

H,0, 5N, (5.13)

commutes, as follows immediately from (1.3). Moreover, since (5.12) induces

Ho 5 N
LA le

H,0,4 5 N; (5.14)

and f is surjective, it follows that g=g’. We thus have the corollary of Theorem 5.7.

COROLLARY 5.8. Let N~»G—»Q be a stem extension of the perfect group Q, let
N, G, —»Q, be a central extension, and let 9: N — Ny, Y: Q — Q, be homomorphisms.
Then there exists 1:G — G, rendering the diagram (5.12) commutative if and only if
(5.14) commutes. If t exists, it is unique.

Remark. We note, in particular, that if (5.14) commutes, then there exists a
canonical homomorphism 6:H,G — H,G,, namely 7,, such that

H,G - H,0
bl
H,G{ = H,0,

commutes.
We close this section by observing that Theorem 4.3 leads to an immediate proof

of the following result of Kervaire [6] (see also [2]):
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THEOREM 5.9. Let N>5 G-» Q be a stem extension of the perfect group Q. Then
ey H3G — H;Q is an epimorphism.

6. Appendix: Remarks on Algebraic K-Theory

Certain exact sequences of algebraic K-theory can easily be obtained within the
framework of this paper. We first recall some known facts and definitions.

We consider G=GL(A), A being a ring with unity, and the subgroup E=E(A)
generated by elementary matrices 1+ AE;;, i#/, AeA. Given an ideal ac 4, we write
G=G(A/a), E=E(A/a) and denote by n:G— G, n': E— E the canonical maps, by
N the kernel of 7 (i.e., the congruence subgroup G (A, a)). The group E(4, a), the
normal hull in E of all elementary matrices 1+4akFE;;, a€a, is contained in 1)
kern’ =En N. The following facts are easily proved: E=[E, E], E=[E, E], E(4, a)
=[E, E(4, a), and n’: E— E is an epimorphism.

The generalized Whitehead Lemma [10, Theorem 15.1]

[G, N] < E(4,q)

yields the further relations

E =[G, G] (6.1)
E(4,a) =[G, N] (6.2)
[E,EnN] =[G, N]. (6.3)

The proof of (6.3) is as follows: the inclusion [E, En N]<[G, N] is obvious, and, on
the other hand, we have

[E, EnN]2[E, E(4,a)] = E(4,a) = [G, N].

We now reflect this situation by the following more general set-up. Let G and G
be groups with perfect commutator subgroups, let E=[G, G] and E=[G, G]; let = be
a homorphism G — G which maps E onto E, and suppose that [G, N]=[E, EnN],
where N=Xker.

We write Q=G/N and map the extension EnN—»E—»E into N HG—S»Q by
inclusions. The induced map of the exact sequences (1.3) is given by the commutative
diagram

HES HEL EANI[E,EAN]— 0— 0 —0
! ! le ! l

H,G 5 H,0—" 5 N/[G,N]—2—H,G 3 H,0 - 0. (6.4)

1) On p. 211 of [10], Swan inadvertently defines E(A, a) to be kern’. The statement on p. 212
is the correct one — and the only one which Swan uses.
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We note that Img=(EnN)/[G, N]=kerd; this is also imgp’. Since [E, EnN]=
[G, N], ¢ is a monomorphism, so kergf'=kerp’=ima’. We further remark that =
induces a monomorphism @>»G which maps [Q, Q]=¢(E)isomorphically onto E.
It follows that the kernel of n,:H,G=G/E—~H,G=G/E is equal to the kernel of
ex:G/E— Q/[Q, Q]. Writing 6 =¢f’, we obtain from (6.4) the exact sequence

H,ES H,ES NJ[G,N]> H,G3 H,G. (6.5)

In the case of K-theory, the groups can all be identified with familiar K-groups:
finally one defines K, (A) by H,E(A). Then (6.5) becomes the exact sequence

K, (A) - K, (4/a) = K, (4, a) > K (4) - K, (4]a). (6.6)

The above definition of K, (A4) coincides with that of Milnor, where K, (4)is the kernel
of St(A)—»E(A). The group Stz(A), the Steinberg group, is defined by an explicit
free presentation S>> F—» St(A); it is a stem-extension of E(A), and in fact the univer-
sal one — which implies that the kernel is H,E(A). To prove that S¢(A) is universal, it
suffices to show that it is its own universal stem-extension; i.e., that the homomorphism
[F, F]/LF, S]— F/S induced by the inclusions [F, F]<F, [F, S]< S, is an isomor-
phism. This can be done by following Kervaire’s procedure [6], using various com-
mutator relations.
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