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Uber die --Reflexivitit von C (X)

von H.-P. BUTZMANN

Fiir einen Limesraum X bezeichne € ,(X) die R-Algebra aller stetigen, reellwertigen
Funktionen auf X, versehen mit der Limitierung der stetigen Konvergenz und P(% (X))
die Menge aller stetigen Halbnormen auf %,(X). Die von P(%,(X)) auf %,(X) in-
duzierte Topologie — die feinste lokalkonvexe Topologie, die grober ist als die Limi-
tierung der stetigen Konvergenz — heisst die zur Limitierung der stetigen Konvergenz
assoziierte lokalkonvexe Topologie. Wir werden im 1. Teil dieser Arbeit zeigen, dass
sie mit der Topologie der gleichméssigen Konvergenz auf kompakten Mengen zu-
sammenfillt, wenn X zu der Klasse von Limesrdumen gehort, die wir nach [1] -
einbettbar nennen.

Fiir einen Limesvektorraum E bezeichne £ E die Menge aller linearen, stetigen
Funktionale auf E, versehen mit der Limitierung der stetigen Konvergenz, und der
Raum FE soll c-reflexiv heissen, wenn der natiirliche Homomorphismus von E in
£ £ E ein Homdomorphismus ist. Im 2. Teil werden wir die c-Reflexivitdt von
%€ .(X) fir jeden Limesraum X beweisen.

Im 3. Teil werden wir schliesslich zeigen, dass % _Z E die (topologische) Vervoll-
stdndigung von E ist, wenn E ein lokalkonvexer, topologischer Vektorraum ist. Also
ist E in diesem Falle genau dann c-reflexiv, wenn E vollstidndig ist. Die Resultate der
Teile 1 und 2 entstammen der Dissertation des Autors. Viele Beweise sind jedoch
vereinfacht und verkiirzt wiedergegeben. Die Anwendungen dieser Ergebnisse auf
topologische insbesondere lokalkonvexe, topologische Vektorriume wurden zusam-
men mit E. Binz gefunden.

I. Die assoziierte lokalkonvexe Topologie von € (X)

Es sei (E, A) ein Limesvektorraum und P(E) die Menge aller stetigen Halbnormen
auf (E, A). Die Menge P(E) induziert auf E eine lokalkonvexe Topologie 7, die grober
als A ist. In der Tat ist  die feinste lokalkonvexe Topologie auf E, die grober ist als 4,
und daher heisst (E, ) der zu (FE, A) assoziierte lokalkonvexe Vektorraum. Fir
(E, A)=%¢x(X) soll er €,,(X) genannt werden. Bezeichnen wir mit € ,(X) diec Menge
% (X), versehen mit der Topologie der gleichmdssigen Konvergenz auf kompakten
Teilmengen von X, so ist die Identitdt von %€,(X) in €,,(X) immer stetig. Nun soll
in diesem Teil gezeigt werden, dass sie fiir einen ¢-einbettbaren Limesraum X ein
Homd&omorphismus ist, d.h. in diesem Falle ist der zu €, (X) assoziierte lokalkonvexe
Vektorraum % ,(X).
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Es sei X ein Limesraum und K< X kompakt. Definiert man

k%, (X)-R
durch
px(f) = suglf(x)l fiir alle fe¥ (X),

s0 ist py eine stetige Halbnorm auf % ,(X). Weiterhin erzeugt das System {py | K< X,
K kompakt} die Topologie der gleichméssigen Konvergenz auf kompakten Mengen
auf € (X). Es bezeichne P wiederum die Menge aller stetigen Halbnormen auf € _(X),
dann ist die Hom&omorphie von

id: %, (X) > %, (X)

dquivalent zu der Aussage: Zu jedem peP existieren eine kompakte Menge K< X und
eine reelle Zahl o> 0 mit der Eigenschaft: p <opy.
Es sei P die Menge aller Halbnormen peP, fiir die gilt:

@) p(f)=p(f]) fir alle fe?(X)
(i) p(f)<p(g) furalle fund gaus €(X) mit |f|=f<g.
Wir werden zunichst zeigen, dass die von P und P erzeugten Topologien iiberein-

stimmen. Dazu brauchen wir die beiden folgenden Lemmata:

LEMMA 1. Es sei X ein Limesraum. Definiert man fiir eine beliebige Teilmenge
Fc%(X)

I'F ={fe?(X) | es existiert ein ge F mit |f| <|gl|},

dann konvergiert ein Filter 0 auf € (X) genau dann gegen Null, wenn I' ,0 gegen Null
konvergiert, dabei sei T'y0 der von {I' F | Fe0} erzeugte Filter.
Den Beweis fiihrt man durch einfaches Ausrechnen.

LEMMA 2. Es sei  eine positiv homogene, in Null stetige Abbildung von € (X)
in R, dann ist r beschrinkt, d.h. fiir jedes foe€ (X) ist die folgende Menge beschrdnkt:

Y{fe4(X)| - fo<S<fo}

Beweis. Esseif,e?(X)und A, ={fe?(X)| — fo<f<fo}. Nehmen wir an, dass
¥ (4,,) nicht beschrankt ist, dann gibt es zu jeder natiirlichen Zahl neN eine Funk-
tion g,eA4,  mit:

¥ (g,)| =n, also Il//(%)l?l.
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Andererseits gilt aber
—fo<g, < f, firalleneN

@_fg < és é fir alle neN,
n n n
woraus folgt, dass die Folge (g,/n) gegen Null konvergiert. Da { in Null stetig ist,
erhalten wir daraus die Konvergenz von ¥ (g,/n) gegen Null, also einen Widerspruch.

Nun definieren wir fiir jedes peP
§i€,(X)-R
durch:
B(fo) =sup{p(f)| fe€(X), |fI<Ifol} firalle foe?(X).

Nach Lemma 2 ist j wohldefiniert, und es ist nicht schwer zu verifizieren, dass p
eine Halbnorm auf € (X) ist. Wir beweisen daher nur die Stetigkeit von j:

Es konvergiere 68 gegen Null in € ,(X), dann konvergiert nach Lemma 1 auch
I',0 gegen Null. Da p stetig ist, gibt es zu jeder positiven reellen Zahl >0 ein F,e0 mit
den Eigenschaften:

F,=T,F, und p(F)<c (—¢c¢).

Sei foeF, und | f|<| fo], dann gilt feF, und daher p(f)<e, woraus wir p(f,)<e
erhalten. Also gilt: p(F,)<[—¢, ¢].

Daher gibt es zu jeder stetigen Halbnorm peP eine stetige Halbnorm peP mit
der Eigenschaft: p<p, woraus folgt, dass P und P in der Tat dieselbe Topologie
auf €(X) erzeugen.

Das folgende, sehr einfach zu beweisende, Lemma bildet den Schliissel des Be-
weises dafiir, dass P die Topologie der kompakten Konvergenz auf €(X) erzeugt:

LEMMA 3. Fiir jedes peP ist der Kern von p ein abgeschlossenes Ideal in € ,(X).

Beweis. Der Kern jeder stetigen Halbnorm auf %,(X) ist ein abgeschlossener
Unterraum von %,(X), also bleibt zu zeigen, dass Kerp gegen Multiplikation mit
Elementen aus % (X) abgeschlossen ist.

Sei also peP, f,eKerp und ge%(X). Definiert man

g = (_E \V; g) AR fiir alle neN,

so konvergiert die Folge (g,) gegen g und die Folge (g,f,) gegen gf,. (Dabei bezeichne
,» V¢ bzw. ,, A ¢ das (punktweise definierte) Supremum bzw. Infimum zweier Funk-
tionen und 7z die konstante Funktion mit dem Wert n.) Weiterhin gilt:

|fogal < n|fy| fiir alleneN

= p(fogs) < p(nfo) =np(f) =0.

Also liegen alle fyg, im Kern von p. Da p stetig ist, folgt, dass fogeKerp gilt.
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Fiir ein Ideal /=% (X) definiere man

N(I)={xeX|f(x)=0 firalle fel}.
Man rechnet leicht nach, dass N(Kerp) kompakt sein muss, wenn sich peP durch
das Vielfache einer Supremumsnorm iiber eine kompakte Menge majorisieren lésst.
Beim Beweis dieser Kompaktheit miissen wir uns jedoch (wegen Lemma 5) auf die
Klasse der c-einbettbaren Limesrdume beschrdnken, die wir deshalb hier kurz be-
schreiben wollen:

Fiir einen Limesraum Y bezeichne 5#s» % ,(Y) die Menge aller reellwertigen,
unitiren R-Algebrenhomomorphismen auf Y, versehen mit der Limitierung der
stetigen Konvergenz, und

iy:Y > Hom,E,(Y)

werde definiert durch iy (y) (f)=f (») fiir alle yeY und alle fe€(Y). In [3] wurde
gezeigt, dass iy stets surjektiv ist. Wenn iy sogar ein Homdomorphismus ist, nennen
wir Y, der Terminologie von [3] folgend, c-einbettbar. Als Beispiele c-einbettbarer
Limesrdume erwdhnen wir hier die vollstindig reguldren topologischen Rdume und
%¢(Y) fiir jeden Limesraum Y. Ferner sind Unterrdume c-einbettbarer Limesrdume
wieder c-einbettbar.

Unser Ziel ist es nun, fiir jeden c-einbettbaren Limesraum zu beweisen, dass
N(Kerp) fiir alle pe P kompakt ist und p<p(l) Py kerp) 8ilt. Zum Beweis der Kom-
paktheit brauchen wir die folgende Definition und die sich anschliessenden beiden
Lemmata (s. [8]):

DEFINITION. Ein System U <B(X) von Teilmengen eines Limesraumes X
heisst Uberdeckungssystem von X, wenn es zu jedem xeX und jedem gegen x kon-
vergenten Filter @ ein U, o€l gibt mit xeU, ¢ und U, 4€®.

LEMMA 4. Ein hausdorffscher Limesraum ist genau dann kompakt, wenn es zu
jedem Uberdeckungssystem W von X ein endliches Teilsystem W < gibt, dessen Ele-
mente X tiberdecken.

LEMMA 5. Es sei X ein c-einbettbarer Limesraum und X die von €(X) auf X
induzierte Topologie. Weiter sei U ein Uberdeckungssystem von X. Dann gibt es ein
Uberdeckungssystem I8 von X mit den Eigenschaften:

() U ist Verfeinerung von U

(i) VeW=>X\VeX

Nun kénnen wir die Kompaktheit von N(Kerp) im c-einbettbaren Fall beweisen:

LEMMA 6. Es sei X ein c-einbettbarer Limesraum, peP und K=N(Kerp), dann
ist K kompakst.
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Beweis. OBdA sei K#(. Nach Lemma 4 reicht es, zu zeigen, dass jedes Uber-

deckungssystem von K eine endliche Teiliiberdeckung enthélt. Sei also i ein Uber-
deckungssystem von K. Da K abgeschlossen ist, bildet das System U ={UuU(X\K) |
Uell} ein Uberdeckungssystem fiir X. Sei nun ¢ ein Uberdeckungssystem von X,
fiir das die Bedingungen (i) und (ii) des Lemmas 5 gelten. Fiir jedes VeI und jede
positive reelle Zahl ¢ definiere man:

Fy.={fe¥(X)|f(V)=(—¢z¢)}.
Es gilt OeFy,, fiir alle Ve2B und alle >0, also ist
{Fy,.| Ve, ecR, &>0}

eine Filtersubbasis, der erzeugte Filter heisse §. Da 2B ein Uberdeckungssystem von
X ist, konvergiert 6 gegen 0 und wegen der Stetigkeit von p konvergiert p(6) gegen 0.
Also gibt es Mengen V;eB3 (i=1,..., n) und eine reelle Zahl ¢>0 mit:

p(Fyoen...nF, )cs[—1,1].

Wir wollen nun zeigen, dass
UV%2K
i=1

gilt. Nehmen wir an, dass es ein x,e K\| J!-, V; gibt. Da alle V;in (X, X) abgeschlossen
sind, existiert eine stetige Funktion f, €% (X), fuir die gilt: f, (U V;)={0} und f, (x,) =1,
es folgt:

kaEFVi,B fﬁl‘i=1,...,n

und alle keN,
also
p(kfy) <1 fiiralle keN
=>P(fo) =0.

Nach [4], Thm 2 gilt fiir jedes abgeschlossene Ideal /S % (X):
fel< f(N(I)={0}.

Da Kerp nach Lemma 3 ein abgeschlossenes Ideal ist, folgt wegen f,(K)# {0} also
foé¢Kerp. Dieser Widerspruch zeigt, dass 28 und daher auch U eine endliche Teil-
iiberdeckung von K enthalten.

Das folgende Lemma beschliesst den 1. Teil:

LEMMA 7. Es sei X ein c-einbettbarer Limesraum, und K wie oben. Dann gilt:

p<p(l)px.



Uber die ¢-Reflexivitit von €, (X) 97

Beweis. Zundchst bemerken wir, dass K nach Lemma 6 kompakt ist. Nun sei
fe€(X) und f(K)<[ -1, 1]. Definiert man g=(fA 1) v(—1), so folgt (f—g) (K)=
={0} und |g|<]1. Aus (f—g) (K)={0} folgt p(f—g)=0 und wir erhalten:

p()sp(f—-g)+r()<r().

Da p(f)=0 dquivalent zu pg(f)=0 ist, folgt aus der positiven Homogenitit von
p die Behauptung. Zusammenfassend kdnnen wir also sagen:

SATZ 1. Es sei X ein c-einbettbarer Limesraum, dann ist der zu € ,(X) assoziierte
lokalkonvexe Vektorraum € ,(X).
Beweis. Fiir peP definiere man p und K durch:

B(fo) =sup{p (/)| fe€(X),I/I<|fol} fiiralle foe% (X)

und K=N(Ker p).
Nach den obigen Ausfiithrungen ist j eine stetige Halbnorm auf € ,(X), die Menge
K kompakt, und es gilt: p<p(1) pk.

II. Die c-Reflexivitit von € (X)

Fiir einen Limesvektorraum E bezeichne £ E die Menge aller linearen, stetigen
Funktionale auf E, versehen mit der Limitierung der stetigen Konvergenz, und

jpiE— 2. 2E

werde definiert durch jz(f) () =y(f) fiir alle feE und alle y€.Z E. Offenbar ist
JjE ein stetiger Homomorphismus. Wenn j; sogar ein Homdomorphismus ist, dann
nennen wir E c-reflexiv. In diesem Teil wollen wir die ¢-Reflexivitdt von €, (X) fiir
jeden Limesraum X beweisen. Dazu betrachten wir die stetige Abbildung

ix: X > Z%,(X)

definiert durch ix(p) (f)=f(p) fir alle peX und alle fe€(X). Unser Ziel ist es,
zunichst zu zeigen, dass die lineare Hiille von ix(X) (im folgenden kurz mit [ix(X)]
bezeichnet) dicht in £ % ,(X) liegt. Dazu brauchen wir den folgenden, von M. Schro-
der bewiesenen

SATZ 2. Fiir jeden topologischen Vektorraum E ist & E lokalkompakt, d.h. jeder
konvergente Filter enthdlt eine kompakte Menge.

Zum Beweis sei @ ein in £ _E gegen 0 konvergenter Filter, il der Nullumgebungs-
filter in £ und w: % Ex E—R die Auswertung. Dann gibt es Mengen Ue® und
Fel, so dass gilt:

o(UxF)e[-1,1],
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woraus U={yeZE|y(F)=[~-1, 1]}ed folgt. Wir wollen nun die Kompaktheit
von U zeigen. Sei also ¥ ein Ultrafilter auf ¥ und feE. Da F absorbierend ist, gibt
es eine natiirliche Zahl keN, so dass gilt:

o(0x {f}) [~k k],

also konvergiert der Ultrafilter o (¥ % f) in [ —k, k] und daher auch in R gegen eine
Zahl x(f). Es ist nicht schwer zu verifizieren, dass ye.% E gilt und dass ¥ gegen x
konvergiert. Da U abgeschlossen ist, folgt auch yeU. Daraus leiten wir jetzt den
folgenden, fiir unsere Arbeit fundamentalen Satz her. Der urspriingliche Beweis
verwendete eine Integraldarstellung fiir lineare, stetige Funktionale auf %,(X), die
man aus dem Teil (ii) des Beweises von Satz 3 leicht herleiten kann. Der hier wieder-
gegebene Beweis stiitzt sich auf eine Idee von E. Binz und K. Kutzler.

SATZ 3. Fiir einen Limesraum X liegt [ix(X)] dicht in £ % ,(X).

Der Beweis zerféllt in drei Teile:

(i) X sei kompakt und topologisch

In diesem Falle stimmt die Limitierung der stetigen Konvergenz auf €, (X) mit
der iiblichen Supremumsnormtopologie iiberein, mithin ist €,(X) ein Banachraum.
Den Dualraum #¢ ,(X) versehen wir einerseits mit der iiblichen Normtopologie und
schreiben dafiir £,%,(X), andererseits mit der schwachen Topologie beziiglich
€.(X), was wir mit £ % ,(X) bezeichnen wollen. Fiir diese Rdume sind die folgenden
Identititen stetig:

‘gn%v (X) .‘.‘.i) gc%a (X):ggn%c(x)‘

Es sei U die Einheitskugel in Z,%,(X). Dann konvergiert der von ((1/n) U),cn
erzeugte Filter in £, % (X) und daher auch in £ % (X) gegen 0, enthilt also nach
Satz 2 eine kompakte Menge. Folglichist Uin Z € ,(X) selbst kompakt. Wir schreiben
im folgenden U, bzw. U,, wenn wir U als Unterraum von £ % ,(X) bzw. £ % ,(X)
auffassen. Als Unterraum eines c-einbettbaren Limesraumes ist U, selbst c-einbettbar.
Da der Raum U, kompakt ist, muss er nach [2], Satz 4 sogar topologisch sein und
daher homdomorph zu U,. Nun ist aber U, die abgeschlossene konvexe Hiille von
ix(X)u(—ix(X)) (s. [6], V8.6) und daher ist es auch U,. Also ldsst sich jedes yeU
in & %,(X) durch Elemente aus [ix(X)] approximieren. Da U absorbierend ist,
folgt die Behauptung des Satzes im kompakten, topologischen Fall.

(ii) X sei c-einbettbar

Es sei Yy e£¥%,(X), dann ist || eine stetige Halbnorm auf €, (X), also gibt es nach
Satz 1 eine reelle Konstante >0 und eine kompakte Menge K< X mit:

W ()l < apx(f) fiir alle fe¥(X).

Daher gibt es eine lineare, stetige Abbildung y, die das folgende Diagramm kommu-
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tativ macht:

¢, (X)—¢,(K)

w\- /x
R

Dabei sei r die Restriktionsabbildung. Weil K kompakt, topologisch ist (s. [2], Satz 4),
lasst sich y in £ % ,(K) durch Elemente aus [ix(K)] approximieren und daher in
& £ ,(X) durch Elemente aus [i(K)].

(iii) Fiir einen beliebigen Limesraum X bezeichne X den Raum 5#sx:,%,(X). Wir
erinnern daran, dass iy: X — X definiert ist durch ix(p) (f)=f (p) fiir alle pe X und
alle fe % (X). Das folgende Diagramm ist nun kommutativ:

X x > X
l iy ix
2%,(X)—=2 , 2% (%)

Nach [3], Satz 1 ist 7y surjektiv. Da X ausserdem c-einbettbar ist, folgt die Behauptung
des Satzes aus (ii).

Die c-Reflexivitit von % ,(X) ldsst sich nach diesen Vorbereitungen sehr leicht
beweisen:

SATZ 4. Fiir jeden Limesraum X ist € (X) ein c-reflexiver Limesvektorraum.
Beweis. Man definiere die Abbildung

i*: £ L% (X)>€,(X)

durch i*(T)=Toiy fiir alle TeXL¥L % ,(X), d.h. man setze i*=%,(ix) I.SP.?,%(X ).
Mit Hilfe des Satzes 3 verifiziert man sehr leicht, dass i* invers zu jg, (x) ist.

III. Lokalkonvexe, topologische Vektorriume

Es sei E ein topologischer Vektorraum, dann ist £ _E nach Satz 2 lokalkompakt,
und daher sind €, (% ,E) und %2 ,E lokalkonvex, topologisch (s. [8]). Liegt weiter-
hin jg(E) dicht in £, % E, so ist Z,(jg) die inverse Abbildung zu jg y und £ .E
daher c-reflexiv. Ist umgekehrt j;(E) nicht dicht in £ % E, so gibt es nach dem Satz
von Hahn-Banach ein nichttriviales Funktional ¢ auf % % E, das auf j;(E) ver-
schwindet. Man sieht leicht, dass Y ¢ jo (£ E) gilt, £ E also nicht c-reflexiv sein
kann. Damit haben wir bewiesen:

SATZ 5. Es sei E ein topologischer Vektorraum, dann ist £ E genau dann c-reflexiv,
wenn jz(E) dicht in £, 2 E liegt.



100 H.-P.BUTZMANN

Ist £ sogar lokalkonvex, so ist £ nach [7], S. 252 homSomorph und isomorph
zu einem Unterraum von % (X), wobei X ein geeigneter lokalkompakter Raum ist
und € (X) die Topologie der gleichméssigen Konvergenz auf kompakten Mengen
trégt, die jedoch in diesem Falle mit der Limitierung der stetigen Konvergenz zu-
sammenféllt (s. [8]). Das folgende Lemma zeigt, dass j; in diesem Falle stets ein
Homdomorphismus auf jz(E) ist:

LEMMA 8. Es sei X ein Limesraum und A<% ,(X) ein Unterraum. Dann ist j,
ein Homéomorphismus auf j ,(A).
Zum Beweis betrachten wir das folgende kommutative Diagramm:

A Z > €,(X)
le l Je.x)
Lol ce
gﬂg‘GA ——-_—_—> gcgcgﬂ (X)

Die Behauptung folgt dann aus der Hom6omorphie von jg_(x).

Bevor wir die c-Reflexivitit von £ E beweisen, wollen wir bemerken, dass ein
Limesvektorraum vollstdndig heisst, wenn in ihm jeder Cauchy-Filter konvergiert.
Abgeschlossene Unterrdume vollstindiger Limesvektorrdume sind vollstindig und
vollstindige Unterrdume separierter Limesvektorrdume sind abgeschlossen. Weiter-
hin ist €,(X) fiir jeden Limesraum X vollstdndig (s. [S], Satz 2) und daher auch
Z Z E firr jeden Limesvektorraum E, woraus folgt, dass c-reflexive Limesvektor-
rdume vollstindig sind. Damit kdnnen wir den folgenden Satz formulieren:

SATZ 6. Ein Limesvektorraum E ist genau dann c-reflexiv, wenn die folgenden
drei Bedingungen gelten:
(i) jg ist ein Homoomorphismus auf jg(E);
(ii) E ist vollstindig;
(iii) Jedes lineare, stetige Funktional auf ¥ E ldsst sich linear und stetig auf € E
fortsetzen.
Zum Beweis betrachten wir das folgende kommutative Diagramm:

E— iz —> 2%,(E)

J'E\ z€
N

£ 2LE

dabei bezeichne e die Einbettung von Z_E in € ,(E) und iy sei wie im ersten Teil
definiert.

Da die Bedingung (iii) dquivalent mit der Surjektivitdt von £ E ist, ist die Not-
wendigkeit von (i)-(iii) klar. Umgekehrt liegt nach Satz 3 die lineare Hiille von
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ig(E) dicht in £ %, (E), mit (iii) folgt dann, dass Z (e) (iz(E)), also jz(E) dicht in
£, 2 E liegt. Nach (ii) und (i) ist jz(E) abgeschlossen und daher j (E)=2% % ,E,
woraus mit (i) die Behauptung folgt.

Wenn nun E lokalkonvex, topologisch ist, dann ist €,(<£,E) topologisch und
daher gilt fir £ F die Bedingung (iii) des Satzes 6. Da Z E als abgeschlossener
Unterraum von %,(E) vollstdndig ist und da jz nach Lemma 7 ein Hom&omorphis-
mus auf j;(E) ist, folgt aus Satz 5 und Satz 6 der

SATZ 7. Es sei E ein lokalkonvexer, topologischer Vektorraum. Dann ist £ E ein
c-reflexiver Limesvektorraum, und jy ist ein Homdomorphismus auf einen dichten Teil-
raum von £, ¥ E.

Als Korollare erhalten wir:

SATZ 8. Fiir einen lokalkonvexen, topologischen Vektorraum E ist ¥, % E die
(topologische) Vervollstindigung von E.

SATZ 9. Ein lokalkonvexer, topologischer Vektorraum ist genau dann c-reflexiv,
wenn er vollsténdig ist.
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