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tJber die ^-Reflexivitât von C£X)

von H.-P. Butzmann

Fiir einen Limesraum X bezeichne <%£X) die R-Algebra aller stetigen, reellwertigen
Funktionen aufX, versehen mit der Limitierung der stetigen Konvergenz und P (%\ (X))
die Menge aller stetigen Halbnormen auf #\(X). Die von P(^(Z)) auf <^(X) in-
duzierte Topologie - die feinste lokalkonvexe Topologie, die grôber ist als die
Limitierung der stetigen Konvergenz - heisst die zur Limitierung der stetigen Konvergenz
assoziierte lokalkonvexe Topologie. Wir werden im 1. Teil dieser Arbeit zeigen, dass

sie mit der Topologie der gleichmâssigen Konvergenz auf kompakten Mengen zu-
sammenfâllt, wenn X zu der Klasse von Limesrâumen gehôrt, die wir nach [1] c-
einbettbar nennen.

Fiir einen Limesvektorraum E bezeichne Su\E die Menge aller linearen, stetigen
Funktionale auf E, versehen mit der Limitierung der stetigen Konvergenz, und der
Raum E soll ^-reflexiv heissen, wenn der natûrliche Homomorphismus von E in
3?J£CE ein Homôomorphismus ist. Im 2. Teil werden wir die -c-Reflexivitât von
^C{X) fur jeden Limesraum X beweisen.

Im 3. Teil werden wir schliesslich zeigen, dass 3?J£JE die (topologische) Vervoll-
stândigung von E ist, wenn E ein lokalkonvexer, topologischer Vektorraum ist. Also
ist E in diesem Falle genau dann ^-reflexiv, wenn E vollstândig ist. Die Resultate der

Teile 1 und 2 entstammen der Dissertation des Autors. Viele Beweise sind jedoch
vereinfacht und verkùrzt wiedergegeben. Die Anwendungen dieser Ergebnisse auf
topologische insbesondere lokalkonvexe, topologische Vektorrâume wurden zusam-

men mit E. Binz gefunden.

I. Die assoziierte lokalkonvexe Topologie von ^C(X)

Es sei (E, A) ein Limesvektorraum und P(E) die Menge aller stetigen Halbnormen
auf (E9 A). Die Menge P(E) induziert auf E eine lokalkonvexe Topologie t, die grôber
als A ist. In der Tat ist t die feinste lokalkonvexe Topologie auf E, die grôber ist als A,
und daher heisst (E, t) der zu (E, A) assoziierte lokalkonvexe Vektorraum. Fur
(E, A)=%{X) soll er ^XC{X) genannt werden. Bezeichnen wir mit ^4(X) die Menge

^(Z), versehen mit der Topologie der gleichmâssigen Konvergenz auf kompakten
Teilmengen von X, so ist die Identitât von V^X) in Vtd(X) immer stetig. Nun soll

in diesem Teil gezeigt werden, dass sie fur einen ^-einbettbaren Limesraum X ein

Homôomorphismus ist, d.h. in diesem Falle ist der zu Va (X) assoziierte lokalkonvexe
Vektorraum
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Es sei X ein Limesraum und K^ X kompakt. Definiert man

durch

/»*(/) sup|/(x)| fur aile feV(X),
xeK

so ist pK eine stetige Halbnorm auf &C(X). Weiterhin erzeugt das System {pK \ K^X,
K kompakt} die Topologie der gleichmâssigen Konvergenz auf kompakten Mengen
auf ^(X). Es bezeichne P wiederum die Menge aller stetigen Halbnormen auf fé^(X),
dann ist die Homôomorphie von

âquivalent zu der Aussage: Zu jedem/?eP existieren eine kompakte Menge Kç^Xund
eine réelle Zahl a>0 mit der Eigenschaft: p^ctpK.

Es sei P die Menge aller Halbnormen peP, fur die gilt:

i})p(f)=p(\f\) fur aile feV{X)

(ii) p(f)<p(g) fur alle/und g aus V{X) mit |/| =f^g.
Wir werden zunâchst zeigen, dass die von P und P erzeugten Topologien ùberein-

stimmen. Dazu brauchen wir die beiden folgenden Lemmata:

LEMMA 1. Es sei X ein Limesraum. Definiert man fiir eine beliebige Teilmenge

r0F {feV(X) | es existiert ein geF mit |/| < \g\},

dann konvergiert ein Filter 0 auf^c^X) genau dann gegen Null, wenn F06 gegen Null
konvergiert, dabei sei F06 der von {F0F | Fe6} erzeugte Filter.

Den Beweis fûhrt man durch einfaches Ausrechnen.

LEMMA 2. Es sei \j/ eine positiv homogène, in Null stetige Abbildung von

in R, dann ist xj/ beschrànkt, d.h. fiir jedes/oefé7(X) ist diefolgende Menge beschrânkt:

Beweis. Es seifoe%(X) und Afo {feV(X) \ -fo<f<f0}- Nehmen wir an, dass

nicht beschrânkt ist, dann gibt es zu jeder natûrlichen Zahl neN eine Funk-
tion gneAf0 mit:

n9 also l
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Andererseits gilt aber

- /o < gn < /o fûr aile neN

o < — < — fur aile neN,
n n n

woraus folgt, dass die Folge (gjn) gegen Null konvergiert. Da \j/ in Null stetig ist,
erhalten wir daraus die Konvergenz von ij/ (gjri) gegen Null, also einen Widerspruch.

Nun definieren wir fur jedes peP

durch:

P(fo) *Mp(f)\feV(X)9\f\<\fo\] fur aile foe<V(X).
Nach Lemma 2 ist p wohldefiniert, und es ist nicht schwer zu verifizieren, dass p
eine Halbnorm auf ^(X) ist. Wir beweisen daher nur die Stetigkeit von p:

Es konvergiere 9 gegen Null in V^X), dann konvergiert nach Lemma 1 auch

ro6 gegen Null. Dap stetig ist, gibt es zu jeder positiven reellen Zahl e > 0 ein Fe e 0 mit
den Eigenschaften:

Fe F0Fe und p(Fg)G(-e,e).
Sei/oeFe und |/|<|/0|, dann gilt/eFe und daher /?(/)<£, woraus wir jp(/0)<e
erhalten. Also gilt: |f(i7e)£[-e, e].

Daher gibt es zu jeder stetigen Halbnorm peP eine stetige Halbnorm peP mit
der Eigenschaft: p^p, woraus folgt, dass P und P in der Tat dieselbe Topologie
2luî<£(X) erzeugen.

Das folgende, sehr einfach zu beweisende, Lemma bildet den Schlûssel des Be-

weises dafùr, dass P die Topologie der kompakten Konvergenz auf ^(X) erzeugt:

LEMMA 3. Fur jedes peP ist der Kern von p ein abgeschlossenes Idéal in ^C(X)-
Beweis. Der Kern jeder stetigen Halbnorm auf fé\(X) ist ein abgeschlossener

Unterraum von ^(X), also bleibt zu zeigen, dass Kerp gegen Multiplikation mit
Elementen aus ^(X) abgeschlossen ist.

Sei also peP,foeKerp und ge^ÇC). Definiert man

gn ("" H v g) A 5 fur aile neN,
so konvergiert die Folge (gn) gegen g und die Folge (gn/0) gegen gf0. (Dabei bezeichne

„ v " bzw. „ a " das (punktweise definierte) Supremum bzw. Infimum zweier Funk-
tionen und n die konstante Funktion mit dem Wert n.) Weiterhin gilt:

\fogn\<n\fo\ fur aile neN
=>P (fogn) < P (nfo) "P (/o) 0 •

Also liegen alle/og,, im Kern von/?. Da/? stetig ist, folgt, dass/ogeKer/> gilt.
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Fur ein Idéal I^€ÇC) definiere man

N(I) {xeX\f(x) 0 fur aile fel}.
Man rechnet leicht nach, dass N(Kerp) kompakt sein muss, wenn sich peP durch
das Vielfache einer Supremumsnorm ùber eine kompakte Menge majorisieren lâsst.

Beim Beweis dieser Kompaktheit mûssen wir uns jedoch (wegen Lemma 5) auf die
Klasse der ^-einbettbaren Limesrâume beschrânken, die wir deshalb hier kurz be-

schreiben wollen:
Fur einen Limesraum Y bezeichne Jf#mJ££(Y) die Menge aller reellwertigen,

unitâren R-Algebrenhomomorphismen auf 7, versehen mit der Limitierung der

stetigen Konvergenz, und

lY. Y -? Jcom$c\l)
werde definiert durch iY(y) (f)=f(y) fur aile y g Y und alle/e^XT). In [3] wurde

gezeigt, dass iY stets surjektiv ist. Wenn iY sogar ein Homôomorphismus ist, nennen
wir Y, der Terminologie von [3] folgend, ^-einbettbar. Als Beispiele -c-einbettbarer

Limesrâume erwâhnen wir hier die vollstândig regulâren topologischen Râume und

^(7) fur jeden Limesraum Y. Ferner sind Unterrâume ^-einbettbarer Limesrâume
wieder ^-einbettbar.

Unser Ziel ist es nun, fur jeden ^-einbettbaren Limesraum zu beweisen, dass

N(Kerp) fur aile peP kompakt ist und p </?(!) pN(Kerp) gilt. Zum Beweis der
Kompaktheit brauchen wir die folgende Définition und die sich anschliessenden beiden

Lemmata (s. [8]):

DEFINITION. Ein System Hc<p(j) von Teilmengen eines Limesraumes X
heisst Ûberdeckungssystem von X, wenn es zu jedem xeX und jedem gegen x kon-

vergenten Filter # ein Ux^eVi gibt mit xeUx0 und UXt#e<l>.

LEMMA 4. Ein hausdorffscher Limesraum ist genou dann kompakt, wenn es zu

jedem Vberdeckungssystem U von X ein endliches Teilsystem IT ^VL gibt, dessen Ele-

mente X uberdecken.

LEMMA 5. Es sei X ein c-einbettbarer Limesraum und X die von &(X) auf X
induzierte Topologie. Weiter sei U ein Vberdeckungssystem von X. Dann gibt es ein

Vberdeckungssystem SB von X mit den Eigenschaften:

(i) 2B ist Verfeinerung von U
(ii) Ve3B=*X\VeX
Nun kônnen wir die Kompaktheit von N(Kerp) im ^-einbettbaren Fall beweisen:

LEMMA 6. Es sei X ein c-einbettbarer Limesraum, peP und K=N(KQvp), dann

ist K kompakt.
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Beweis. OBdA sei K^0. Nach Lemma 4 reicht es, zu zeigen, dass jedes TJber-

deckungssystem von K eine endhche Teiluberdeckung enthalt. Sei also VL ein tîber-
deckungssystem von K Da K abgeschlossen ist, bildet das System U {Uu(X\K) |

(7e Xt} ein Ûberdeckungssystem fur X. Sei nun 2B ein Ûberdeckungssystem von X,
fur das die Bedingungen (î) und (n) des Lemmas 5 gelten Fur jedes Fe2B und jede

positive réelle Zahl e definiere man.

Es gilt OeFv,e fur aile FefflS und aile 6>0, also ist

{FVte\VeW9 seR, s>0}
eine Filtersubbasis, der erzeugte Filter heisse 6 Da SB ein Uberdeckungssystem von
Xist, konvergiert 9 gegen 0 und wegen der Stetigkeit vonp konvergiert/?(0) gegen 0.

Also gibt es Mengen Fte2B 0 1,...,«) und eine réelle Zahl e>0 mit:

Wir wollen nun zeigen, dass

Û V^K
»=i

gilt. Nehmen wir an, dass es ein xoeK\[Jnl t Vt gibt Da aile Vt in (Z, X) abgeschlossen

sind, existiert eine stetige Funktion/0 eV(X)9 fur die gilt f0 (U V) {0} und/0 (jc0) 1,

es folgt:

kfoeFVt>s fur i l, ,n
und aile feeN,

also

p(kfo)^l fur aile fceN
0

Nach [4], Thm 2 gilt fur jedes abgeschlossene Idéal I^
feIof(N(I)) {0}

Da Ker/? nach Lemma 3 em abgeschlossenes Idéal ist, folgt wegen/0(^)^{0} also

/o^Ker/?. Dieser Widerspruch zeigt, dass 2B und daher auch U eine endhche

Teiluberdeckung von K enthalten.
Das folgende Lemma beschhesst den 1. Teil:

LEMMA 7. Es sei X ein c-einbettbarer Limesrawn, und K wie oben. Dann gilt:
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Beweis. Zunâchst bemerken wir, dass K nach Lemma 6 kompakt ist. Nun sei

feV(X) und/CK)ç[-l, 1]. Definiert man g=(/A 1) v(-I), so folgt (/-g) (K)
{0} und |g|<l. Aus (/-g) (A) {0} folgt p(f-g)=0 und wir erhalten:

Da p(f)=0 âquivalent zu pK(f)=0 ist, folgt aus der positiven Homogenitât von

p die Behauptung. Zusammenfassend kônnen wir also sagen :

SATZ 1. Es sei X ein c-einbettbarer Limesrawn, dann ist der zu %\(X) assoziierte
lokalkonvexe Vektorraum *&Â(X).

Beweis. Fur peP definiere man p und K durch:

P(fo) sup{/;(/) | feV(X), \f\ < |/0|} fur aile foeV(X)
und K=N(Kcrp).

Nach den obigen Ausfuhrungen ist p eine stetige Halbnorm auf ^(Z), die Menge
K kompakt, und es gilt: p^p(l)pK.

H. Die^-Reflexivitâtvon^(Z)

Fur einen Limesvektorraum E bezeichne 3?CE die Menge aller linearen, stetigen
Funktionale auf E9 versehen mit der Limitierung der stetigen Konvergenz, und

werde definiert durch jE(f) 0/0 =iK/) fur alle/e2£ und aile i(fe=Sf/. Offenbar ist

jE ein stetiger Homomorphismus. Wenn jE sogar ein Homôomorphismus ist, dann

nennen wir E -c-reflexiv. In diesem Teil wollen wir die ^-Reflexivitât von ^£{X) fur
jeden Limesraum X beweisen. Dazu betrachten wir die stetige Abbildung

definiert durch ix(p)(f)=f(p) fur aile peX und aile fe^{X). Unser Ziel ist es,

zunâchst zu zeigen, dass die lineare Huile von ix(X) (im folgenden kurz mit [j'xPO]
bezeichnet) dicht in &$C{X) liegt. Dazu brauchen wir den folgenden, von M. Schro-

der bewiesenen

SATZ 2. Fur jeden topologischen Vektorraum E ist J£JE lokalkompakt, dÂ.jeder
konvergente Filter enthâlt eine kompakte Menge.

Zum Beweis sei # ein in &aE gegen 0 konvergenter Filter, U der Nullumgebungs-
filter in E und œ:^£ExE-^R die Auswertung. Dann gibt es Mengen Ue<P und

Felt, so dass gilt:
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woraus 0={^e^E\ ^r(F)£[-l, l]}e# folgt. Wir wollen nun die Kompaktheit
von Ûzeigen. Sei also W ein Ultrafilter auf 0 und/eJE1. Da F absorbierend ist, gibt
es eine natûrliche Zahl fceN, so dass gilt:

a>(Ox{f})çz[-k,lc]f
also konvergiert der Ultrafilter co(W xf) in [ — k9 k~\ und daher auch in R gegen eine

Zahl #(/). Es ist nicht schwer zu verifizieren, dass %e£?cE gilt und dass W gegen %

konvergiert. Da Û abgeschlossen ist, folgt auch %eÛ. Daraus leiten wir jetzt den

folgenden, fur unsere Arbeit fundamentalen Satz her. Der ursprûngliche Beweis
verwendete eine Integraldarstellung fiir lineare, stetige Funktionale auf <Sc{X)i die

man aus dem Teil (ii) des Beweises von Satz 3 leicht herleiten kann. Der hier wieder-
gegebene Beweis stiitzt sich auf eine Idée von E. Binz und K. Kutzler.

SATZ 3. Fur einen Limesraum X liegt \ix(X)~\ dicht in &&. (X).
Der Beweis zerfâllt in drei Teile:

(i) X sei kompakt und topologisch
In diesem Falle stimmt die Limitierung der stetigen Konvergenz auf ^JJC) mit

der iiblichen Supremumsnormtopologie iiberein, mithin ist ^£{X) ein Banachraum.
Den Dualraum &&C(X) versehen wir einerseits mit der iiblichen Normtopologie und
schreiben dafûr &J&AX)* andererseits mit der schwachen Topologie bezûglich
^C{X\ was wir ndt &J$C{X) bezeichnen wollen. Fur dièse Râume sind die folgenden
Identitâten stetig:

sep. (x) H sep. (x) " se$. (x).
Es sei U die Einheitskugel in &J&e(X). Dann konvergiert der von ((l/ri) U)neN

erzeugte Filter in &f€JJC) und daher auch in &$SX) gege^ ^> enthâlt also nach
Satz 2 eine kompakte Menge. Folglich ist C/in J?J£C(X) selbst kompakt. Wir schreiben

im folgenden JJC bzw. U4, wenn wir U als Unterraum von Se$c(X) t>zw- &&*{%)
auffassen. Als Unterraum eines ^-einbettbaren Limesraumes ist \JC selbst ^-einbettbar.
Da der Raum JJe kompakt ist, muss er nach [2], Satz 4 sogar topologisch sein und
daher homôomorph zu Ua. Nun ist aber U^ die abgeschlossene konvexe Huile von
ix(X)v(-ix(X)) (s. [6], V8.6) und daher ist es auch Ue. Also lâsst sich jedes ij/eU
in J&Jtf^X) durch Elemente aus [**C3Q] approximieren. Da U absorbierend ist,
folgt die Behauptung des Satzes im kompakten, topologischen Fall.

(ii) X sei ^-einbettbar
Es sei \\je&'féC(X), dann ist |^| eine stetige Halbnorm auf ^C(X), also gibt es nach

Satz 1 eine réelle Konstante a>0 und eine kompakte Menge K^Xmit:

1*0)1 <«!*(/) fur aile/
Daher gibt es eine lineare, stetige Abbildung x» die das folgende Diagramm kommu-
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tativ macht:

R

Dabei sei r die Restriktionsabbildung. Weil K kompakt, topologisch ist (s. [2], Satz 4),
lâsst sich x in &$C(K) durch Elemente aus [/x(Jf)] approximieren und daher in
&&AX) durch Elemente aus [i*(10].

(iii) Fur einen beliebigen Limesraum Xbezeichne X den Raum Jf?0mJ&a(X). Wir
erinnern daran, dass ix:X-*3ï definiert ist durch ix(jp) (f)=f(p) fur aile peX und

Das folgende Diagramm ist nun kommutativ:

>X
U

Nach [3], Satz 1 ist fy surjektiv. Da X ausserdem ^-einbettbar ist, folgt die Behauptung
des Satzes aus (ii).

Die -c-Reflexivitât von *€JJC) lâsst sich nach diesen Vorbereitungen sehr leicht
beweisen:

SATZ 4. Furjeden Limesraum X ist ^C{X) ein c-reflexiver Limesvektorraum.
Beweis. Man definiere die Abbildung

durch i*(T)=Toix fur aile Te&&je,{X), d.h. man setze /?=^(/x
Mit Hilfe des Satzes 3 verifiziert man sehr leicht, dass i* invers zuy^(X) ist.

HL Lokalkonvexe, topologische Vektorrâume

Es sei E ein topologischer Vektorraum, dann ist 2£JE, nach Satz 2 lokalkompakt,
und daher sind ^c{^cE) und &J&£lokalkonvex, topologisch (s. [8]). Liegt weiter-

hinjE(E) dicht in &C&CE, so ist &c(jE) die inverse Abbildung zuj^cE und -âfri&

daher -c-reflexiv. Ist umgekehrty'jg^) nicht dicht in «3?\5B'JE, so gibt es nach dem Satz

von Hahn-Banach ein nichttriviales Funktional \j/ auf &e&cE, das auf jE(E) ver-
schwindet. Man sieht leicht, dass ^tJ^E^e^) Silt, ^^ also nicht ^-reflexiv sein

kann. Damit haben wir bewiesen:

SATZ 5. Es sei E ein topologischer Vektorraum, dann ist ££CEgenou dann creflexiv,
wennjE(E) dicht in &J&JS, liegt.
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Ist E sogar lokalkonvex, so ist E nach [7], S. 252 homôomorph und isomorph
zu einem Unterraum von ^(X), wobei X ein geeigneter lokalkompakter Raum ist
und ^(X) die Topologie der gleichmâssigen Konvergenz auf kompakten Mengen
trâgt, die jedoch in diesem Falle mit der Limitierung der stetigen Konvergenz zu-
sammenfâllt (s. [8]). Das folgende Lemma zeigt, dass jE in diesem Falle stets ein
Homôomorphismus auf jE(E) ist:

LEMMA 8. Es sei X ein Limesraum und A^,^C(X) ein Unterraum. Dann ist jA
ein Homôomorphismus aufjA(Â).

Zum Beweis betrachten wir das folgende kommutative Diagramm:

Ja Jv

*c*'e
> sejep. (x)

Die Behauptung folgt dann aus der Homôomorphie
Bevor wir die ^-Reflexivitât von ££\E beweisen, wollen wir bemerken, dass ein

Limesvektorraum vollstândig heisst, wenn in ihm jeder Cauchy-Filter konvergiert.
Abgeschlossene Unterrâume vollstândiger Limesvektorrâume sind vollstândig und
vollstândige Unterrâume separierter Limesvektorrâume sind abgeschlossen. Weiter-
hin ist ^SX) fur jeden Limesraum X vollstândig (s. [5], Satz 2) und daher auch
SejeJE fur jeden Limesvektorraum E, woraus folgt, dass ^-reflexive Limesvektorrâume

vollstândig sind. Damit kônnen wir den folgenden Satz formulieren:

SATZ 6. Ein Limesvektorraum E ist genou dann c-reflexiv, wenn die folgenden
drei Bedingungen gelten:

(i) jE ist ein Homôomorphismus aufjE{E);
(ii) E ist vollstândig;
(iii) Jedes lineare, stetige Funktional auf S?CE lâsst sich linear und stetig auf

fortsetzen.

Zum Beweis betrachten wir das folgende kommutative Diagramm:

e—tB—*se<e.{E)

sejefi
dabei bezeichne e die Einbettung von 3?JE in ^(£) und iE sei wie im ersten Teil
definiert.

Da die Bedingung (iii) âquivalent mit der Surjektivitât von J£CE ist, ist die Not-
wendigkeit von (i)-(iii) klar. Umgekehrt liegt nach Satz 3 die lineare Huile von
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iE(E) dicht in &$C{E\ mit (iii) folgt daim, dass &£ë)(iE(E)\ also jE(E) dicht in
&C&CE liegt. Nach (ii) und (i) ist A(^) abgeschlossen und daher y£(£)=^J^£,
woraus mit (i) die Behauptung folgt.

Wenn nun E lokalkonvex, topologisch ist, dann ist ^(j^jE) topologisch und
daher gilt fur ££JE die Bedingung (iii) des Satzes 6. Da 3?CE als abgeschlossener
Unterraum von fé\(E) vollstândig ist und dayE nach Lemma 7 ein Homôomorphis-
mus aufjE(E) ist, folgt aus Satz 5 und Satz 6 der

SATZ 7. Es sel E ein lokalkonvexer, topologischer Vektorraum. Dann ist ££\E ein

c-reflexiver Limesvektorraum, und jE ist ein Homôomorphismus auf einen dichten Teil-

raum von Su\Sâ\E.
Als Korollare erhalten wir:

SATZ 8. Fur einen lokalkonvexen, topologischen Vektorraum E ist 3?OS£CE die

(topologische) Vervollstàndigung von E.

SATZ 9. Ein lokalkonvexer, topologischer Vektorraum ist genou dann c-reflexiv,
wenn er vollstândig ist.
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