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On Factorization into Prime Ideals

ROBERT GILMER!)

Let r be a regular element of the commutative ring R. It is well known that if r
can be written as a finite product of prime elements of R, then this representation is
unique. We consider here the corresponding question for ideals:

If A is a regular ideal of R such that A can be represented as a finite product of
prime ideals of R, is this representation unique ?

We begin by listing some observations concerning this question.

(1) Without the assumption that A4 is regular, the answer to the question is nega-
tive, even if R is Noetherian with identity. For example, (0) is prime in R for any
integral domain R, and yet (0)=[(0)]" for each positive integer n. If R is the direct
sum of two fields F; and F,, then P=F,®(0) is maximal in R, and P=P" for each
positive integer n.

(2) Even with the assumption that 4 is regular, the answer to the question is
negative, even if R is an integral domain with identity. For instance, P, =P, P, for
any prime ideals P;, P, of a valuation ring R with P, = P, ; more generally the equality
P; =P, P, holds for any prime ideals P;, P, of a Priifer domain with P, = P, [1, Theo-
rem 19.3].

(3) The following result appears as Theorem 30.13 of [1]:

Let A be a nonzero ideal of a Noetherian domain D such that A can be expressed as
a finite product of prime ideals of D. Then this representation is unique if D contains no
identity, and is unique to within factors of D if D contains an identity.

(4) By examining the proof of Theorem 30.13, we can see that the following result,
which we label as (*), is valid.

(*) Let A be a regular ideal of a commutative ring R such that A can be expressed
as a finite product of finitely generated prime ideals of R. Then this representation is
unique if R contains no identity, and is unique to within factors of R of R contains an
identity.

In this paper we exted (*) to the case where A is finitely generated, but the prime
factors of A need not be finitely generated (Theorems 1 and 2). In Proposition 1, we
prove that our results are stronger than (*) by proving that for any positive integers

1) During the writing of this paper, the author received partial support from National Science
Foundation Grant GP-19406.
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k and n, there is an integral domain D, with identity containing prime ideals P,, ..., P,
such that P{' P;*... P, is finitely generated if and only if e; +--- +¢,>k. Our proofs
of Theorems 1 and 2 are independent of (*) and the result cited in (3). Moreover, our
proofs are more elementary than the proof of (30.13) in [1]; these proofs rest on the

following facts.

OBSERVATION 1. If {4;}} is a finite family of ideals of the commutative ring R,
then A A, ... A, is regular if and only if each A, is regular.

OBSERVATION 2. If A is a regular ideal of the commutative ring R and if N is a
multiplicative system in R, then the extension of A to the ring of quotients Ry is regular
in Ry.

RESULT 1. [1, Corollary 5.2] If A and B are ideals of the commutative ring R such
that AB=B, where B is finitely generated, then there is an element x of A such that
xb=b for each b in B: if B is regular, then R has an identity element and A =R.

LEMMA 1. Assume that A and B are ideals of the commutative ring R, where B
is proper, finitely generated, and regular. Moreover, assume that {P,,..., P,} and
{0, ..., Q,} are two families of proper prime ideals of R such that B=AP;'...Py" =
AQ'L... O, where each s, and each t; is positive. Then each minimal element of the set
{Py,..., Pp, Qy, ..., Q,} occurs both as a P; and as a Q , and the corresponding exponents
s; and t; are equal.

Proof. We assume that the labeling is such that P; is a minimal element of
{P.}T U {Q;}1. If ‘¢’ denotes extension of ideals with respect to the quotient ring Rp,,
then

B = A°(Pp)™ = A°(Q5)™,

where w=0 if P;¢{Q;};, while w =1 and P, =Q; otherwise. The assumption w=0
would lead to the equation

B* = B°(P))",

where B° is finitely generated, regular, and proper, and (Py)" is proper in Rp,, in
contradiction to Result 1. Hence w=1 and

B = A°(P;)™ = A°(P5)".
Again, if t;>5, ,we obtain a contradiction, as above, from the equation
B = B(P;)™*.

Therefore s, =¢;, and our proof is complete.
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THEOREM 1. Let B be a proper, finitely generated regular ideal of the commutative
ring R such that B is a product of proper prime ideals of R. Then the representation of

B as a finite product of proper prime ideals is unique.
Proof. Let

B=P...P" and B=0}..0"

be two representations of B as a finite product of proper prime ideals. From the proof
of Lemma 1, it follows that the set S of primes P; such that P;=Q, for some j, and
s;=t;, is nonempty. We assume that S={P,, ..., P}, where r<m and where P,=0Q;
for 1<i<r. Setting A= P*...P;", we have

S, S t t
B =APS . Pim = AQUH: ... O,

and the assumption r<m or r <n would lead to a contradiction of Lemma 1. Hence
r=m=n, and this completes the proof of Theorem 1.

THEOREM 2. Suppose that R is a commutative ring without identity and that B
is a finitely generated regular ideal of R that is representable as a finite product of prime
ideals of R. Then this representation is unique.

Proof. We consider first the case when B=R" is a power of R. It is clear that R is
the only prime factor of B. Hence we need only prove in this case that R"=R™ implies
that m=n. Since R is a ring without identity, this follows immediately from Result 1.

If B is not a power of R, then we write

B=RP{ .. P =R'QY...Q",

where {P;}T and {Q,}} are sets of m and n proper prime ideals of R, where s; and ¢;
are positive, and s and ¢ are nonnegative (R°U, for U an ideal of R, is defined to be
U). If N=R—[(UT P,)u (V] Q,)], and if ‘e’ denotes extension of ideals of R to the
quotient ring Ry, then

B = (PO)" . (o™ = (@) .. ()"

in Ry. By Theorem 1, m=n and, by proper labeling, P{ =05 and s;=¢; for 1<i<m.
It follows that P;=Q; for 1<i<n, and we have

— DPSDPS1 Sm __ ptpSt s
B =R°P{*...P," =R'P{*... P;m.

As before, the assumption s> ¢ would lead to the equation R*"* B=B, and to a con-
tradiction of the assumption that R does not contain an identity.

It is clear that Theorems 1 and 2 imply (*). It is conceivable, however, that Theo-
rems 1 and 2 are not actually stronger than (*). That is, if the following statement (**)
were true, then (*) would imply Theorems 1 and 2.
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(**) If {P,}T is a finite family of regular prime ideals of the commutative ring R,
and if ey, ..., e, are positive integers such that P5 ... P," is finitely generated, then each
P; is finitely generated.

We proceed to show that a very strong negation of (**) is, in fact, true.

PROPOSITION 1. Let k and n be positive integers, where k > 1. There is an integral
domain with identity containing prime ideals P;, P,,..., P, such that the product
P{' P5*... P is finitely generated if and only if Y ;- e;>k.

Proof. Let D be a non-Noetherian domain with identity containing distinct ideals
Ay, Ay, ..., Ay such that 4; +A4; +---+4;_is not finitely generated for any nonempty
subset {i;, i,,..., i,} of {1, 2,...,n}?). Let ¢ be an indeterminate over D, and let E, be
the subring D[t**1, t**2 ... t**1] of D[t]; E, is a graded ring with gradation D,
Dt**1 Dr**2 . We set

A — (tk+1, tk+2, s t2k+1), B = (tk+1, tk+2).

It is straightforward to verify that

An _ (tn(k+1) tn(k+1)+1 tn(k+ 1)+k)
- ’ s

cees
for any positive integer n,

A"=B" forn>k, and
B = (tr(k+1), tr(k+1)+1, - tr(k+1)+r) forr < k.

We set C;=B+A4,;t**3 for 1<i<n. Bach C, is a homogeneous ideal of E,, and
Bc C;< A for each i. Hence

ot oot
C3iCY ... Con = AT en = pertten

ife; +---+e,2k, and C5* C32...C," is finitely generated.
If e=e; +:-- +e,<k, then C{* C3%...C;" is a homogeneous ideal of E,, and its
homogeneous component in Dge¢+tD*(e+1) g

(Ai1+Ai2+"'+Ai,.) te(k+1)+(e+1)’

where {iy, i,,..., i} is the set of integers j such that ¢;#0. Because E, is a graded ring
and A; +A;,+---+A4;_ is not finitely generated as an ideal of D, it follows that
C:' C32...C;/" is not finitely generated as an ideal of E,.

The ideals C,; of E, are not prime in E,. To obtain our desired example, we let
D, be the subring of E=E,[X,..., X, ] consisting of all polynomials f such that the

2) Take, for example, D = Z[{X;}*s=1], and for 1 < i < n, take A; = ({X; | j€Si}), where S1, ...,Sn
are distinct infinite subsets of N, the set of positive integers.
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coefficient of X' X32... X" in fis in A{' A%*... A;" for each ey, e,, ..., €,>0. Again D,
is a graded ring with gradation

E.Y AX, Y AFA;ToXEX] o, .

in fact, D, is a graded subring of E, where E has the usual gradation by degree. The
ideal X; En D, =P; is a homogeneous prime ideal of D;: in fact,

Pi = AiXi + AlAleXJ + = AiX'ka.
Hence
PEP ... PEn = ATAS .. ATXDXS ... X2D,

is the set of polynomials fin D, such that the coefficient of Xi* Xi*...X'" in fis zero
if i;<e; for some j, and is in A} A%... ;> otherwise. Hence P;' P52... B¢" is finitely
generated if and only if e, +:-- +e¢,>k.

We remark that the prime ideals P; of Proposition 1 extend to maximal ideals of
the quotient ring (Dy)s, where S=D,— (U] P;). But (D,)s is a quotient ring of
L[Xi,..., X,], where L is the quotient field of E,, and hence (D;)s is Noetherian.

We have no counterexample to (**) in the case where the ideals P; are maximal in
R. In particular, we know of no example of a regular maximal ideal M of a commuta-
tive ring S with identity such that M is not finitely generated, but some power of M
is finitely generated. If such M and S exist, then they also exist with M maximal in a
quasi-local ring S.

The author acknowledges several discussions with Tom Parker concerning facto-
rization into prime ideals. These discussions were helpful in the preparation of this

paper.
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