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Relationen auf komplexen Riumen

BURCHARD KAuprl)

Einleitung

Gegeben sei eine eigentliche surjektive holomorphe Abbildung 4: X — Y (alle in
dieser Arbeit betrachteten komplexen Rdume seien reduzierte komplexe Riume im
Sinne von [3]). Ist 4 endlich, so ist X genau dann Steinsch, wenn X Steinsch ist. (Vgl.
[14, Satz 8 €)] und [11, Seite 64 ff].) Da die holomorph-konvexen Raume in enger
Beziehung zu den Steinschen Réumen stehen (nach einem Satz von Remmert-Cartan
([12], [2, Seite 9]) ist ein komplexer Raum genau dann holomorph-konvex, wenn er
sich eigentlich und holomorph in einen Steinschen Raum abbilden lisst) kann man
fragen, ob ein analoges Resultat (4 sei dabei nicht notwendig endlich) fiir holomorph-
konvexe Rdume giiltig ist. Eine Richtung ist trivial: ist 4 eigentlich und Y holomorph-
konvex, dann ist auch X holomorph-konvex. Es bleibt also die Frage: wann ist mit
X auch Y holomorph-konvex?

In [14] beweisen Remmert und Stein:

(1) Sind die komplexen Rdume X und Y normal, ist h eigentlich und endlich und
bildet h jede Komponente von X auf eine Komponente von Y ab, dann ist mit X auch Y
holomorph-konvex.

Implizit wird in (1) vorausgesetzt, dass X und Y dem schwachen Riemannschen
Hebbarkeitssatz geniigen und dass 4 offen ist. Es gilt nun (vgl. (4.8)):

(2) Ist h: X > Y eigentlich, offen und surjektiv, geniigen X und Y dem schwachen
Riemannschen Hebbarkeitssatz und ist X holomorph-konvex, dann ist auch Y holomorph-
konvex.

Ist A nicht offen oder geniigt Y nicht dem schwachen Riemannschen Hebbarkeits-
satz, dann ist Y i.A. nicht mehr holomorph-konvex, wie die Beispiele 1,2,4 in § 5
zeigen. Es kann sogar passieren, dass 4 bijektiv ist und dass X holomorph-konvex ist,
Y dagegen nicht (Beispiel 1).

Dem Beweis von (2) liegt folgende Idee zugrunde: ist X holomorph-konvex,
h:X — Y holomorph, eigentlich und surjektiv, dann bildet man zu A:X— Y und

1) Die Anfertigung dieser Arbeit wurde gefordert durch den Schweizerischen Nationalfonds.
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p:X - X (X sei die Remmertsche Reduktion von X, vgl. [12], [2])das Pushoutdiagramm
x5y
L (*)
X - P

in der Kategorie der geringten Rédume (vgl. [8]). Dann gilt:

(3) Y holomorph-konvex<>P ist komplexer Raum und r (oder s) ist eigentlich.

Man beweist nun (2), indem man zeigt, dass (unter den Voraussetzungen von (2)
und mit den Bezeichnungen von (*)) P Quotient von X nach einer eigentlichen end-
lichen offenen analytischen Aquivalenzrelation ist (eine Aquivalenzrelation heisst
analytisch, wenn ihr Graph eine analytische Menge ist), und dass X dem schwachen
Riemannschen Hebbarkeitssatz geniigt. Ein Satz von Holmann ([6, Satz 10]) liefert
dann, dass P ein komplexer Raum ist; dann ist ¥ holomorph-konvex wegen (3).

Ein wesentliches Teilresultat zum Beweis von (2) mittels (3) ist also der Nachwesis,
dass s auf X eine eigentliche analytische Aquivalenzrelation erzeugt. Es erweist sich
als zweckmadssig, dazu sofort die folgende allgemeine Frage zu stellen:
gegeben sei eine symmetrische, reflexive, analytische Teilmenge R von X x X, die
Projektion pg: R— X, (x, y) > x, sei eigentlich. (Wir werden R dann kurz eine eigent-
liche analytische Relation auf X nennen; vgl. § 1). Unter welchen Voraussetzungen
ist dann die von R auf X erzeugte Aquivalenzrelation R® (zur Definition von R®
vgl. § 1) eigentlich und analytisch?

Das Hauptergebnis dieser Arbeit lautet (vgl. (2.1)):

(4) SATZ. R sei eine eigentliche analytische Relation auf dem komplexen Raum
X, R™ sei die von R erzeugte Aquivalenzrelation. X' sei die grésste offene R®-saturierte
Teilmenge von X mit der Eigenschaft, dass die Beschrdnkung von R® auf X' eine eigent-
liche analytische Aquivalenzrelation auf X' ist. Dann ist A:=X—X' analytisch in X,
es ist A=R® (TR) (zur Definition von TR siehe §1). Ist R offene Relation (d.h. die
Abbildung py ist offen), dann ist A=TR; ist R endliche Relation (d.h. die Fasern der

Abbildung pg sind endlich), dann ist A=R” (T°R), wobei T°R={xeX; die R®-Aqui-
valenzklasse von x hat unendlichviele Elemente}.

Als Korollar ergibt sich sofort:

(5) R sei eine eigentliche endliche analytische Relation auf dem komplexen Raum X.
Sind alle Aquivalenzklassen von R® endlich, dann ist R* eine eigentliche analytische

Agquivalenzrelation.
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Beispiel 5 in § S zeigt, dass man (R sei eine eigentliche, endliche Relation) allein
aus der Endlichkeit von R* nicht auf die Eigentlichkeit von R® schliessen kann; man
braucht dafiir zusitzliche Informationen iiber R, z.B. dass R analytisch ist.

Aus (5) und dem bereits erwdhnten Satz von Holmann aus [6] ergibt sich die fol-
gende Existenzaussage fiir Pushouts zu holomorphen Abbildungen (vgl. (4.3)):

6) p:X—>Y,q:X—Z seien offene eigentliche endliche holomorphe Abbildungen,
r:Y—P,s:Z— P sei der zu p und q in der Kategorie der geringten Rdume gebildete
Pushout. Geniigen die komplexen Rdume X, Y und Z dem schwachen Riemannschen
Hebbarkeitssatz und sind alle Fasern von r (oder s) endlich, dann ist P komplexer Raum
und die Abbildungen r und s sind eigentlich, offen und holomorph.

Beispiel 3 in § 5 zeigt, dass in (6) die Voraussetzung ,,X, Y und Z geniigt dem
schwachen Riemannschen Hebbarkeitssatz** nicht iiberfliissig ist.

In § 1 werden Relationen definiert und elementare Eigenschaften von Relationen
nachgewiesen. § 2 enthilt das Hauptergebnis iiber eigentliche analytische Relationen
und einige direkte Folgerungen daraus. § 3 enthilt den Beweis des Hauptsatzes aus
§ 2, § 4 enthilt die oben angedeuteten Uberlegungen iiber holomorph-konvexe Riume,
§ 5 enthélt einige abgrenzende Beispiele.

§ 1. Vorbereitungen-

Alle auftretenden topologischen Rdume seien lokalkompakt, insbesondere also
hausdorffsch. Alle auftretenden komplexen Rdume seien reduzierte komplexe Rdume
im Sinne von [3], alle analytischen Teilmengen seien abgeschlossene Teilmengen. Es sei
N:={0,1,2,...}.

Es sei X eine Menge. Mit p, g: X x X - X bezeichnen wir die kanonischen Projek-
tionen auf die erste bzw. zweite Komponente. Fiir Rc X x X seien py bzw. gg die
Beschrankungen von p bzw. g auf R. Unter einer Relation auf X verstehen wir eine
reflexive, symmetrische Teilmenge R von X x X, d.h. es gilt
a) xeX=>(x, x)eR.

b) (x,y)eR=(y, x)eR.

Ist R eine Relation auf X, Mc X, dann sei R(M):=qg(pr (M))=pr(qz ' (M)). R
erzeugt also eine kanonische Abbildung (die wir wieder mit R bezeichnen) R: X — B (X)
(=Potenzmenge von X), x — R(x), mit

a’) xeR(x)fir xeX.

b) xeR(y)=yeR(x).

Fiir M = X ist R(M )=, R (x).—Erfiillt umgekehrt R: X — P (X) die Bedingungen
a’) und b’), dann ist |, x{x} x R(x) eine Relation auf X, die wieder mit R bezeichnet
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werde. Wir interpretieren manchmal eine Relation als Teilmenge von X x X, manch-
mal als Abbildung von X nach P (X).

Es sei X ein (lokalkompakter) topologischer Raum, R eine Relation auf X. R
heisst eigentliche bzw. offene bzw. endliche Relation, wenn pg: R — X (und damit auch
ggr) eigentlich bzw. offen bzw. endlich ist; dabei heisse eine Abbildung endlich, wenn
alle ihre Fasern endliche Mengen sind. Ist X ein komplexer Raum, dann heisst eine
Relation R auf X analytisch, wenn R eine analytische Teilmenge von X x X ist.

Es sei R eine Relation auf der Menge X. Dann definieren wir induktiv Relationen
R" fiir jede natiirliche Zahl n>0 folgendermassen: R® (x) : = {x}. R"*!(x) := R(R"(x)).
— Ein geordnetes (n +1)-Tupel (x,, ..., x,) von Elementen aus X heisse R-Folge, wenn
(x;-1, x;)eR firi=1, ..., n.

(1.1) Es sei R eine Relation auf dem (lokalkompakten) topologischen Raum X.

a) R"(x)={yeX; es gibt eine R-Folge (X, ..., X,) mit xo=x, Xx,=y}.

b) R eigentlich<> (K< X, K kompakt= R(K) kompakt).

R offen<> (U offen in X=> R(U) offen in X).
R eigentlich=R=Rc X x X.

R eigentlich=> R" eigentlich fiir neN.

R offen=> R" offen fiir neN.

c) X sei ein komplexer Raum, R analytisch und eigentlich. Dann sind alle Relationen
R", neN, eigentlich und analytisch. Ist A analytisch in X, dann ist auch R(A)
analytisch in X.

Beweis. a) ist klar.
ad b). Ist R eigentlich, K kompakt, dann ist R(K)=gg(pg ' (K)) kompakt. — Ist
umgekehrt R (K) fiir jedes kompakte K wieder kompakt, dann ist p, eigentlich, denn
fiir kompaktes K in X ist pg ' (K) als abgeschlossene Teilmenge der kompakten Teil-
menge K x R(K) wieder kompakt. — Ist pg offen und U offen in X, dann ist R(U)=
=pr(qz ' (U)) offen in X. Ist umgekehrt R(U) offen fiir offenes U, dann ist pg offen:

sei dazu (x, y)eR, V eine offene Umgebung von x, U eine offene Umgebung von y,

dann ist xe VN R(U)<pg ((V x U)n R); also ist pg offen in jedem Punkt (x, y)eR. -

Dass R=Rc X x X, falls R eigentlich ist, folgt sofort daraus, dass fiir kompaktes

K, K’ in X auch (K x K')n R kompakt ist. — Dass mit R auch R" eigentlich bzw. offen

ist, folgt sofort durch Induktion iiber n, da R**!(K)=R(R"(K)) fiir K< X.

ad c). Induktion iiber n. n=0, 1 ist trivial. Sei bereits R"~! als eigentlich und
analytisch nachgewiesen. Die Abbildung 4: (R, gg) X x (R"™1, pgn-1) = X x X, definiert

durch ((x, y), (», z))> (x, z), ist holomorph mit Im 4= R". 4 ist eigentlich: ist K x K’

kompakt in X x X, dann ist A~' (K x K') enthalten in der nach Induktionsvoraus-

setzung kompakten Menge K x R(K) x R~ (K') x K'; aus dem Remmertschen Abbil-
dungssatz [13, Satz 23] folgt also, dass R" analytisch in X x X ist. Aus dem gleichen

Satz folgt, dass R(A) analytisch ist, wenn A analytisch ist.
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Es sei wieder R eine Relation auf der Menge X. Dann ist die Relation R® mit
R (x):= U,e~ R"(x) eine Aquivalenzrelation auf X; sie ist die von R auf X erzeugte
Aquivalenzrelation. Fiir xeX sei 1z (x):=Min {n; R*(x)=R"*!(x)}; falls R"(x)#
# R"*1(x) fiir alle n, sei 15 (x) : = 0.

(1.2) Fiir xeX sind folgende Aussagen dquivalent: a) tz(x)<n. b) R"(x)=
=R"*"1(x). ¢) R"(x)=R*(x).

Es sei wieder X ein topologischer Raum, R eine Relation auf X. Dann sei

TR := {xeX;tx(x)>n}, T,R:=TR,
T°R:= (N TCR, TR:= () T,R.

neN neN

(1.3) a) xeT°R<>1x(x)=c0.

b) xeTR<>1y ist in keiner Umgebung von x beschrdnkt.

Beweis von b). x liegt genau dann in T,R, wenn es zu jeder Umgebung U von x
yeU mit 1z (y)>n gibt. xe(,e~ T,R besagt also genau, dass es zu jeder Umgebung
U von x und jedem neN ein ye U mit 75 (y)>n gibt, d.h. 1 ist in jeder Umgebung
von x unbeschrénkt.

(1.4) Es sei R eine Relation auf dem topologischen Raum X. Dan gilt:
a) R offen=R> offen.
Ist TR=0, dann gilt:
b) R eigentlich=> R* eigentlich.
¢) R eigentlich, analytisch=- R* eigentlich, analytisch.
Beweis. Ad b). Sei K kompakt in X, dann ist Tz beschrinkt auf K, etwa g (x)<N
fiir xe K. Dannist R* (K)=U,cx R® ()= U ex R (x)=R"(K) kompakt wegen (1.1)
Ad c). Wegen b) ist R® eigentlich. Es sei (x, y)e R® gegeben, U sei eine offene
relativkompakte R®-saturierte Umgebung von x, dann gibt es ein neN derart, dass
R*n(UxU)=R"n(UxU)3(x, y). Da R® abgeschlossen in X x X ist und R" ana-
lytisch ist, ist auch R® analytisch in X x X.
Abschliessend notieren wir noch

(1.5) R sei eigentliche offene Relation auf dem topologischen Raum X. Dann ist
TR offen in X fiir ne N.

Beweis. Zu xe TR gibt es (da R'=R"cXxX ) ein ye X und Umgebungen U von
x, V von y in X derart, dass (x, y)eR"*!, (Ux V)N R"=0. Da R"*! offene Relation
ist, ist p((U x ¥)n R** )= T,R eine Umgebung von x in X.
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§ 2. Formulierung der Ergebnisse

(2.1) HAUPTSATZ. R sei eine eigentliche analytische Relation auf dem komplexen

Raum X, R® die von R erzeugte Aquivalenzrelation.

a) Es gibt eine grisste offene R™-saturierte Teilmenge X' von X derart, dass die Be-
schrénkung von R* auf X' eine eigentliche analytische Aquivalenzrelation auf X' ist.
TR und R* (TR) sind analytische Teilmengen von X, R® (TR) ist das Komplement
von X' in X. L

b) Ist R offen, dann ist R* (TR)=TR=T°R.

c) Ist R endlich, dann ist TR=T°R; ausserhalb von R® (TR) ist R™ eine endliche
Aquivalenzrelation.

Bevor wir (2.1) im néchsten Paragraphen beweisen, sollen aus (2.1) einige Folge-
rungen gezogen werden.

(2.2) SATZ. R sei eigentliche offene analytische Relation auf dem komplexen Raum
X und es sei T°R=0 (d.h. g(x)< oo fiir alle xeX). Dann ist die von R erzeugte
Aquivalenzrelation R® offen, analytisch und eigentlich.

Beweis. Wegen (2.1) b) ist R* (TR)=TR=T°R=0, also folgt (2.2) aus (2.1) a).

(2.3) SATZ. R sei eigentliche endliche analytische Relation auf dem komplexen
Raum X, die Aquivalenzrelation R sei endlich (d.h. R (x) ist eine endliche Menge
fiir alle xeX). Dann ist R eine eigentliche endliche analytische Aquivalenzrelation.

Beweis. Da R® endlich ist, gibt es zu jedem xe X ein n(x)eN mit R*™ (x)=R* (x),
also ist 7z (x)< oo fiir xeX, also T°R=0; wegen (2.1) ¢) ist also R®(TR)=9, (2.3)
folgt aus (2.1) a).

(2.4) SATZ. R sei analytische (und damit eigentliche) Relation auf dem kompakten
komplexen Raum X. Ist R offen oder endlich, so gilt: R® analytisch<>T°R=0.

Beweis. ,,<* folgt sofort aus (2.2) und (2.3). — Sei umgekehrt R analytisch; dann
sind insbesondere alle Aquivalenzklassen R® (x)=|J,.ny R"(x), x€X, analytische
Teilmengen von X. Da eine echte abzihlbar-unendliche Vereinigung von analytischen
Teilmengen eines kompakten komplexen Raumes nicht mehr analytisch ist, gibt es zu
jedem xeX ein n(x)eN mit R® (x)= ;) R"(x)=R"™(x), also ist tx(x)< oo fiir
xeX, d.h. T°R=0. L

Abschliessend wollen wir noch notieren, was die Bedingung TR =T°R anschaulich
bedeutet. Aus (1.3) folgt sofort:

(2.5) R sei eine Relation auf dem topologischen Raum X. TR=T°R ist dquivalent
zu folgender Aussage: Ist xoeX mit tg(xo)<oo und ist tg in keiner Umgebung
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von x, beschrinkt, dann gibt es eine Folge (x,),.n, die gegen x, konvergiert, mit
tr (x,)= 00 fiir alle n>1.

§ 3. Beweis des Hauptsatzes

Es sei R eine eigentliche analytische Relation auf dem komplexen Raum X. Fiir
neNsei R"*1:={zeR"*!;(R"*!, 2)#(R", z)}; dabei sei (R, z) der von R’in z erzeug-
te analytische Mengenkeim. Ist z.B. ze R"*!, z¢ R”, dann ist sicher zeR"*!. R**! ist
als Triger der kohdrenten Idealgarbe, die R" als analytische Teilmenge von R"*! be-
schreibt, analytisch in X x X.

(3.1) Fiir neN ist T,R=p(R**"), also analytisch in X. (Dabei sei wie immer
P: X x X - X, (x, ) x, kanonisch.) Insbesondere ist also TR analytisch in X.

Beweis. Sei xeT.R. Dann gibt es ein yeX mit (x, y)eR**!, (x, y)¢ R". Also ist
(x, y)eR"*1, also xep (R"*1), also ist T R=p(R"*1). Da p(R"*!) abgeschlossen ist,
gilt auch T,Rcp(R"*!). — Sei umgekehrt xep(R"*"). Dann gibt es ein ye X mit
(x, y)eR"* 1. Ist (x, y)¢ R", dann ist 14 (x)>n, also xe T,)R. Ist (x, y)eR", dann gibt
es eine Folge (x;, y;) in R"*!—R", die gegen (x, ) konvergiert. Dann ist x,e T, 'R,
wegen x=limx; also xeT,R.

(3.2) R®(TR) ist analytisch in X.
Beweis. Nach (3.1) ist TR analytisch in X. Es geniigt also zu zeigen, dass es zu
jedem x,eX eine Umgebung U von x, in X und n(U)eN gibt, so dass

R*(TR)nU=R"V(TR)n U. (%)

Es sei zunichst x,¢TR. Dann gibt es eine Umgebung U von x, in X und n(U)eN
mit UnTR=0Qund 1¢ (y) <n(U) fiir ye U. Dann gilt (*): sei ndmlich xe R*(TR) n U,
dann gibt es x,eTR mit xeR*(x,). Da xeU, ist tx(x)<n(U), also x;eR®(x)=
=R"U)(x), also xeR"¥)(x,), also xeR"Y)(TR)nU. Es sei jetzt xoeTR. Da TR
Durchschnitt der analytischen Mengen T,R ist, gibt es zu x, eine Umgebung U und
n(U)eN mit TRNU=T,y,Rn U. Dann gilt wieder (x): es sei xe R* (TR)n U gege-
ben. Ist xe TRN U, dann ist trivialerweise xe R"Y)(TR)n U. Ist x¢ TR, dann ist
x¢ T, w)R, also 1 (x)<n(U), und es gibt ein yeTR mit xe R*(y). Da 1 (x)<n(U),
ist xe R*Y)(y), also wiederum xe R"Y)(TR)NU. — Damit ist (3.2) bewiesen.

(3.3) Die Beschrdnkung von R® auf X— R™(TR) ist eine eigentliche analytische
Aquivalenzrelation.

Beweis. Da R*(TR) R®-saturiert ist, ist auch X' := X—R®(TR) R”-saturiert.
Bezeichnen wir mit R’ die Relation auf X”, die sich durch Beschrinkung von R auf
X' ergibt. Da nach Konstruktion T(R")=9, folgt (3.3) aus (1.4).
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(3.4) Es sei U offen und R*-saturiert in X, die Beschrdnkung von R® auf U sei eine
eigentliche analytische Aquivalenzrelation. Dann ist U R® (TR)=0.

Beweis. Da U R™-saturiert ist, genligt es zu zeigen, dass UnTR=0. Es sei xoe U
gegeben. Da R°°| v analytisch ist, ist die Vereinigung R N (U x U)=J,n(R"n (U x
x U)) lokal-endlich. Zu jedem ye R* (x,) gibt es also eine Umgebung ¥ von (x,, y) in
U x U und n(V)eN derart, dass R° n V=R"") n V. Da R*(x,) kompakt ist, gibt es
also eine Umgebung W von {x,} x R®(x,) in UxU und n(W)eN derart, dass
RN W=R"")AW. Da pg.: R® - X eigentlich ist in einer Umgebung von {x,} x
x R® (x,), gibt es eine Umgebung Z von x, in X derat, dass pgra(Z)cR* N W=
=R"™) A W; dann ist aber 1 (z)<n (W) fir zeZ, als ZnTR=0.

(3.5) Ist R offen, dann ist R® (TR)=TR.

Beweis. Es sei xoeX— TR gegeben; zu zeigen ist x,¢ R® (TR). Zu x, gibt es eine
offene Umgebung U von x, und neN mit 7z (y)<n fiir ye U. Da mit R auch R* offen
ist, ist R* (U) offen in X und es gilt 75 (y) <nfiir ye R* (U). Alsoist R (U)nT,,R=0
fiir m>n, insbesondere ist R® (U)nTR=0, d.h. Un R*(TR)=0, also x,¢ R*(TR).

Zum Nachweis, dass TR = 176_1_2-, falls R offen oder endlich ist, beweisen wir zunédchst

(3.6) R sei eine eigentliche analytische Relation auf dem komplexen Raum X, fiir
alle neN enthalte TR eine offene dichte Teilmenge von T,R. Dann ist TR= TOR.

Beweis. T’ R=TR ist klar. — Angenommen, es gibt xeTR, x¢m. Dann sei U
eine offene relativkompakte Umgebung von x in X mit U AT°R=0. Fir AcX
schreiben wir abkiirzend 4’ := 4 n U. Da TR Durchschnitt der analytischen Mengen
T,R ist, gibt es NeN mit T,R' =TR’ fiir n> N, also enthilt nach Voraussetzung T, R’

eine offene und dichte Teilmenge von TR’ fiir n> N. Nach Wahl von Uist (,»y T, R’ =
=T°R'=0. Da TR’ Bairesch ist, ist damit auch TR'=9. Das steht aber im Wider-

spruch zu xeTR’.
Die folgende Aussage und (3.6) liefern den Beweis, dass TR=TP°R, falls R offen

oder endlich ist:

(3.7) Ist R offen oder endlich, dann enthdlt TR eine offene dichte Teilmenge von
T,R fiir alle neN.

Beweis. Ist R offen, dann ist T,R offen in X wegen (1.5), also offen und dicht in
T,,R=_T:°73 fiir alle neN. — Es sei jetzt R endlicht. Es geniigt, fiir neN zu beweisen:
i) T’R>T,R—p(R*"**nR").

ii) T,R—p(R"*1 A R") ist offen und dicht in T,R=p(R"**).
ad i). Wegen T°Rc T,R ist i) d4quivalent mit

T,R — T'R < p(R**' n R").
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Es sei xe T,R— TR gegeben. Dann ist xe T,R=p (R"*!) und 1 (x)<n. Es gibt also
ein ye X mit (x, y)eR"** < R"*1. Da 14 (x)<n, ist bereits (x, y)e R", also (x, y)eR"* ' n
N R", also xep(R"*! A R").

ad ii). Dap:R"*! - T,R=p(R"**)endlich und eigentlich ist und deshalb nirgends-
dichte analytische Teilmengen in nirgends-dichte analytische Teilmengen abbildet, ge-
niigt es zu zeigen, dass R"*! n R" nirgends dicht liegt in R***. Das folgt aber (mit
B:=R"*!, 4:= R", C=R"*?) sofort aus dem folgenden Lemma:

(3.8) LEMMA. AcB seien analytische Teilmengen eines komplexen Raumes X,
C sei die analytische Menge C := {beB; (B, b)# (A, b)} (dabei sei (B, b) der analytische
Mengenkeim, den B in b erzeugt). Dann ist A C nirgends dicht in C.

Beweis. Es sei aeAn C gegeben. Mit 4, B,, C, bezeichnen wir die Keime, die
A, B bzw. Cin a erzeugen. Zu zeigen ist, dass A, C, diinn in C, ist. 4 erzeuge in a die
Primkeime A,, ..., A,, B erzeuge in a die Primkeime B,, ..., B,, B;14, ..., B,; die B,
seien so numeriert, dass B,e{4,, ..., 4,}<>1<7<s. Dann ist A,=B,U...UB;U A4,
wobei A4, diinnin By,; U...uB,=C, ist. Also ist A,nC,=(B;U...0B;UA)N(Bs4, Y
U...UB)=((Byv...uB) N (B+ U...uB))uU A, diinn in C,.

§ 4. Anwendungen auf Pushouts und holomorph-konvexe Riiume

Wie wir schon in der Einleitung angedeutet haben, treten analytische Relationen
bei der Bildung von Pushouts zu holomorphen Abbildungen auf. — Es sei X ein kom-
plexer Raum, R eine Aquivalenzrelation auf X. Dann ist der geringte Raum X/R mit
einem kanonischen Morphismus p:X — X/R wohldefiniert (vgl. [6, § 2], [2, § 2]). Es
seien jetzt R und S eigentliche analytische Aquivalenzrelationen auf X, die Quotienten
X/R und X/S seien (versehen mit den kanonischen Quotientenstrukturen) komplexe
Rédume; RUS ist eine analytische Relation auf X. Ist X/(RuUS)® ein komplexer
Raum, dann ist

X—25XR=Y

d b ®)
Z=X|S—>X|(RuS)®=P

(alle Abbildungen kanonisch) ein Pushoutdiagramm in der Kategorie der komplexen
Réume.

Es sei Y:=X/R,Z:=X/S,P:=X/(RuS)®; p, q,r, s seien die kanonischen Ab-
bildungen (wie im Diagramm (#)).$* : = (p xp)(S)= Y x Yund R* : = (¢ x ¢) (R)= Z x
x Z sind, da p und ¢ eigentliche holomorphe Abbildungen sind, eigentliche analy-
tische Relationen auf Y bzw. Z.
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(4.1) Es seien (S*)® und (R*)® die von S* und R* auf Y bzw. Z erzeugten Aquiva-

lenzrelationen.

a) P=1Y/(§*)"=Z/(R*).

b) (R*)® ist genau dann eine eigentliche analytische Aquivalenzrelation auf Z, wenn
(S*)® eine eigentliche analytische Aquivalenzrelation auf Y ist.

Beweis. Ad a). Wir zeigen nur, dass P=X/(R*)®. Dazu ist zu zeigen, dass
4:=(pxp) 1 ((R*)*)=(RuUS)*=:BcX xX. Da 4 eine Aquivalenzrelation ist, gilt
wegen RU Sc(p xp)~! (R*¥)= A, dass Bc A. Andererseits ist (p x p) (B) eine Aquiva-
lenzrelation, die (p xp)(R)=R* enthilt, also gilt (p xp)(B)>(R*)*, daraus folgt
sofort Bo A.

Ad b). (S*)° sei eine eigentliche analytische Aquivalenzrelation auf Y. Da
(R*)* =(gxq)(p xp)~* ((S*)*), ist (R*)* ebenfalls eine eigentliche analytische Aqui-
valenzrelation. Die Umkehrung beweist man genauso.

Zur spiteren Verwendung notieren wir das folgende technische Lemma (dabei
sei (SR)° (x) := {x}, (SR)""* (x) :=S(R((SR)" (x))))-

(4.2) a) McY=S*(M)=p(S(p~'(M))).

b) xeX, neN=(5%)"(p (x))=p ((SR)" (x)). (RY"(a()) =4 ((RS)" ().

Man sagt, ein komplexer Raum X genlige dem schwachen Riemannschen Hebbar-
keitssatz, wenn fiir jede offene Teilmenge U von X gilt: ist f : U — C stetig und in den
gewohnlichen Punkten von U holomorph, dann ist f auf ganz U holomorph.

Es gilt nun:

(4.3) SATZ. Der komplexe Raum X geniige dem schwachen Riemannschen Hebbar-
keitssatz, R und S seien offene eigentliche analytische Aquivalenzrelationen auf X.
a) Sind R, S und (RuUS)® endliche Aquivalenzrelationen, dann ist (x) ein Pushoutdia-
gramm in der Kategorie der komplexen Rdume.
b) Ist X reindimensional und T° (Ru S)=0, dann ist (x) ein Pushoutdiagramm in der
Kategorie der komplexen Rdume.
Der Beweis von (4.3) ergibt sich sofort aus (2.2), (2.3) und dem folgenden Satz
(vgl. [6, satz 10], [7, Satz 2]):

(4.4) Der komplexe Raum X geniige dem schwachen Riemannschen Hebbarkeitssatz,
R sei eine offene analytische Aquivalenzrelation auf X. Ist X reindimensional oder ist
R diskret (d.h. alle R-Aquivalenzklassen sind diskret in X), dann ist X/R, versehen
mit der kanonischen Quotientenstruktur, ein komplexer Raum.

Wir wollen jetzt der folgenden Frage nachgehen: Es sei X ein holomorph-konvexer
komplexer Raum, 4: X — Y eine eigentliche holomorphe surjektive Abbildung. Wann
ist ¥ holomorph-konvex?

Wir werden folgende Bezeichnungen benutzen: X sei ein holomorph-konvexer
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komplexer Raum, die eigentliche holomorphe surjektive Abbildung 4: X — Y erzeuge
auf X die eigentliche analytische Aquivalenzrelation R.

S sei die folgende Aquivalenzrelation auf X: fir x;, x,eX sei x;, 2x,: <(f¢€
GF(X,(DX)=>f(x1)=f(x2)).: N

S ist eine eigentliche Aquivalenzrelation auf X und X := X/S ist ein Steinscher
komplexer Raum (vgl. [12], [2, Seite 9]). X heisst Remmertsche Reduktion von X. (Fiir
einen beliebigen holomorph-konvexen komplexen Raum Z bezeichnen wir die zuge-
hoérige Remmertsche Reduktion mit Z.) Die kanonische Projektion p: X — X ist ein-
fach, d.h. alle ihre Fasern sind zusammenhédngend. Bezeichnen wir den geringten
Raum Y/(S*)* (S*:=(hxh)(S)cYx Y) mit P, dann haben wir das kanonische
kommutative Diagramm

h
X—-Y
o Ls *)
X/IS=X"P= Y/(S*)°°

Es gilt nun:

(4.5) a) Y holomorph-konvex=>P=7Y.
b) Y holomorph-konvex<>P ist komplexer Raum und r ist eigentlich (und damit end-
lich, da X Steinsch ist).
Beweis. Ad a). Y sei holomorph-konvex, Dann gibt es ein kanonisches kommu-
tatives Diagramm von holomorphen Abbildungen

h

X-Y

pl la

X7
k

Ferner gibt es genau einen Morphismus ¢:P— ¥ mit ts=g, tr=k. Da ¥ und P (als
geringte Raume) Quotienten von Y nach Aquivalenzrelationen sind, geniigt es zu
zeigen, dass ¢ bijektiv ist. Dazu geniigt es zu zeigen, dass s auf allen Fasern von ¢
konstant ist. Es sei 4 < Y eine Faser von gq. A4 ist eine zusammenhidngende kompakte
analytische Teilmenge von Y. Es seien A4,, ..., 4, die Zusammenhangskomponenten
von h™'(4). Da p auf A, konstant ist, ist sh(4,) einpunktig fir =1, ..., r. Ist
h(4;)nh(A4;)#0, ist sicherlich sh(A4;)=sh(A4;). Da es zu jedem i mit 1<i<r eine
Folge g, ..., 0,y mito; =1, g,y =i gibt mit h (4, )N h(4,,, )#0firv=1,...,n(i)—1,
ist sh(A;)=sh(4,) fir i=1, ..., r, also ist s auf 4 konstant.

Ad b). ,,= folgt sofort aus a). — ,,<=*“. r ist eigentlich, endlich und surjektiv; mit
X ist wegen (4.9) auch P Steinsch, insbesondere holomorph-konvex, also ist auch ¥
holomorph-konvex.

Wir sagen, ein komplexer Raum X habe die Eigenschaft MAKZ, wenn es zu jedem
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x€ X eine maximale analytische kompakte zusammenhingende Teilmenge von X gibt,
die x enthilt. Jeder holomorph-konvexe Raum X hat die Eigenschaft MAKZ: die
Fasern der Projektion p:X— X sind maximale analytische kompakte zusammen-
hingende Teilmengen von X. Nicht jeder Raum, der die Eigenschaft MAKZ hat, ist
holomorph-konvex; so hat z.B. jeder holomorph-separable komplexe Raum die
Eigenschaft MAKZ.

Wit benutzen wieder die oben eingefiihrten Bezeichnungen. R* := (p x p)(R)= X x
x X ist eine eigentliche endliche analytische Relation auf X (da X Steinsch ist, ist
jede eigentliche analytische Relation auf X endlicht), S* := (k x h)(S)< ¥ x Y ist eine
eigentliche analytische Relation auf Y.

(4.6) SATZ. Mit den obigen Bezeichnungen gilt:

a) Hat Y die Eigenschaft MAKZ, dann sind (R*)® und (S*)* eigentliche analytische
Aquivalenzrelationen auf X bzw. Y. Die Aquivalenzklassen von (S*)® sind genau
die maximalen analytischen kompakten zusammenhdngenden Teilmengen von Y.

b) Ist h offen, dann hat Y die Eigenschaft MAKZ und es ist R* = (R*)®, insbesondere
ist die Relation R* eine eigentliche endliche offene analytische Aquivalenzrelation.
Beweis. Ad a) Wegen (4.1) geniigt es zu zeigen, dass (R*)® eine eigentliche analy-

tische Aquivalenzrelation auf X ist; da R* endlich ist, geniigt es dazu wegen (2.3) zu

zeigen, dass tg*(p(x))< oo ist fiir alle xeX. (Das ist dquivalent damit, dass (R*)”

eine endliche Aquivalenzrelation ist.) Fiir neN sei 4,:=h(S((RS)"(x))c Y. 4, ist

fiir alle n eine kompakte analytische Teilmenge von Y. Wir behaupten, dass A4,
zusammenhiingend ist fiir alle n:4°=h(S(x)) ist sicher zusammenhingend, da

S (x)=p~'(p(x)) zusammenhéngend ist. Der Induktionsschritt n—n+1 folgt sofort

aus der folgende Aussage:

(+) Ist McX und ist h(M) zusammenhdngend, dann ist auch h(S(R(M)))
zusammenhdngend.

Da Y die Eigenschaft MAKZ hat, und da fiir neN stets 4, <4, gilt, gibt es ein
n mit A,=A, .. Dann ist

(RS)"“(’C) h 1(A)—h_1(A,,+1) (RS)"”(x)
also

(R¥ (p(x) = p((RS)" " (x)) = P((RS)""*(x)) = (R*)""* (p(x)).

also rR,,(p (x))<n+1. — Damit ist gezeigt, dass (R*)* und (S*)* eigentliche analy-
tische Aquivalenzrelationen auf X bezw. Y sind. Zum Nachweis, dass die Aquivalenz-
klassen von (S*)® genau die maximalen analytischen kompakten zusammenhéngen-
den Teilmengen von Y sind, zeigen wir zunéchst durch Induktion, dass (S*)" (h(x))=
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=h((SR)" (x))zusammenhéingend ist fiir alle xe X. Der Induktionsanfang ist trivial, der
Induktionsschluss » —n+1 folgt sofort aus (+). — Da es zu jedem xe X ein neN gibt
mit (S*)® (h(x))=(S*)"(h(x)), sind alle Aquivalenzklassen von (S*)® analytische
kompakte zusammenhingende Mengen. Es bleibt zu zeigen, dass r: Y — Y/(S*)° =P
auf allen maximalen analytischen kompakten zusammenhidngenden Teilmengen von
Y konstant ist. Dazu geniigt es zu zeigen, dass r auf jeder irreduziblen analytischen
kompakten Teilmenge B von Y konstant ist. Zu B gibt es eine irreduzible kompakte
analytische Teilmenge 4 von X mit 4(4)=B;dap: X — X auf A konstant ist, muss
auf B konstant sein. Damit ist a) bewiesen.

Ad b). Wir iiberlegen uns zunéchst, dass wir 0.B.d.A. 4 als endlich voraussetzen
konnen. Ist nimlich A nicht endlich, so zerlegen wir 4: X — Y in zwei eigentliche sur-
jektive holomorphe Abbildungen A,:X— X; und 4,:X, — Y, wobei A, einfach ist
(d.h. nur zusammenhéngende Fasern hat) und 4, endlich. (Vgl. [15, Satz 9], [2, Theo-
rem 3]). Da p: X — X auf allen kompakten zusammenhingenden analytischen Teil-
mengen von X konstant ist, gibt es p,: X, =X mit p,h, =p. Mit X ist also auch X,
holomorph-konvex, mit hist auch 4, offen; fernerist R* = R}, wenn RY ;= (p; xp;) (Ry),
wobei R, die durch h, auf X, erzeugte Aquivalenzrelation ist. — Wir konnen also
annehmen, dass # endlich ist. Im Folgenden benutzen wir das folgende, leicht zu
beweisende Lemma:

(4.7) h: X — Y sei eine offene eigentliche endliche surjektive holomorphe Abbildung,
B und B’ seien kompakte irreduzible analytische Teilmengen von Y, es sei be BN B’;
A sei eine irreduzible analytische Teilmenge von X mit #(A)=B. Es sei ac A mit
h(a)=>b. Dann gibt es eine irreduzible analytische Menge A’ in X mit 4#(4")=B’
und ged’.

Aus (4.7) folgt nun leicht, dass Y die Eigenschaft MAKZ hat. Angenommen, Y
hat nicht die Eigenschaft MAKZ. Dann gibt es eine unendliche Folge B,, B,, ..
irreduzibler kompakter analytischer Teilmengen von Y mit B,n B, #0, B,,, ¢ B
U...UB,. Ist dann A, irreduzibel und analytisch in X mit 4#(A4,)= B, gibt es wegen
(4.7) eine unendliche Folge A,, 4,, --- kompakter analytischer Teilmengen von X
derart, dass 4,n4,,,#0, A,+; ¢+ 4, U...uU A4,. Das widerspricht aber der Tatsache,
dass X die Eigenschaft MAKZ hat. — Zum Nachweis, dass die Relation R* eine offene
Aquivalenzrelation ist, beweisen wir zunichst

(++4) McX= R(p~*(M)) ist S-saturiert in X.

Da R(p~* (M ) =Uszenm R(p™1 (%)), geniigt es zu zeigen, dass R(p~!(X)) S-satu-
riert ist fiir ¥eX. Angenommen, R(p~* (X)) ist nich S-saturiert. Dann gibt es eine
irreduzible Komponente 4, von R(p~! (%)) und eine kompakte irreduzible analytische
Teilmenge A; von X mit A, nA;#0, A1¢R(p™ " (X)). Es sei A4, eine irreduzible
Komponente vonp~ (X) mit h(4;)=h(A4,). Da 4, n A #0,istauch h(4,)nh(A4})#0.
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Wegen (4.7) gibt es nun eine irreduzible analytische Menge A in X so, dass 4, " A, #0
und h(A43)=h(A4}). Wegen A, N A5#0 ist Aycp™!(X), wegen h(d})ch(p™ (%)) ist
also Ajch™'h(p~™!(X))=R(p™!(X)), im Gegensatz zur Voraussetzung. Damit ist
(+ +) bewiesen.

Nun folgt leicht, dass R* bereits eine Aquivalenzrelation ist: fiir XeX ist wegen
(++)S(R(p™1(%)=R(p™ (%)), also ist (R*)*(X)=p(RSR(p™'(%))=p(R(p™'(%))
R*(X); wegen (1.2) ist also R*=(R*), d.h. R* ist eine Aquivalenzrelation. R* ist
sogar eine offene Aquivalenzrelation: ist U offen in X, dann ist R* (U)=p (R (p~1(U)));
mit A ist auch R offen; also ist R(p~ ' (U)) offen in X. Wegen (+ +) ist R(p~*(U))
S-saturiert in X; nach Definition der Quotiententopologie von X =X/S ist also
p(R(p~1(U)))=R*(U) offen in X. — Damit ist (4.6) vollstindig bewiesen.

(4.8) SATZ. Der holomorph-konvexe komplexe Raum X geniige dem schwachen
Riemannschen Hebbarkeitssatz, R sei eine offene eigentliche analytische Aquivalenz-
relation auf X. Ist der Quotient Y := X/R ein komplexer Raum, dann ist er ebenfalls
holomorph-konvex und geniigt dem schwachen Riemannschen Hebbarkeitssatz.

Beweis. h:X — Y sei die kanonische Projektion. Wir iiberlegen zunichst, dass X

dem schwachen Riemannschen Hebbarkeitssatz geniigt. Es sei X:= (X, #), wobei
o die Garbe der Keime der schwach-holomorphen Funktionen auf X ist. X geniigt
dem schwachen Riemannschen Hebbarkeitssatz. Ist i:X— X kanonisch, dann gibt

es (vgl. [5, Seite 52/53]) eine holomorphe Abbildung pX - X mit i p=p.Da X als
geringter Raum Quotient von X ist und i ein Hom&omorphismus ist, ist i ein Iso-
morphismus komplexer Ridume. — Genauso zeigt man, dass Y dem schwachen Rie-
mannschen Hebbarkeitssatz geniigt. - Wegen (4.1) und (4.6) ist P=X/R* der Quotient
von X nach einer eigentlichen endlichen offenen analytischen Aquivalenzrelation,
also komplexer Raum wegen (4.4), also ist ¥ holomorph-konvex wegen (4.5).

Beim Beweis von (4.5) haben wir die folgende Aussage benutzt, dieim Wesentlichen
in [14, Sats 8 €)] und [11, Seite 64 ff] bewiesen wurde:

(4.9) X und Y seien (nicht notwendig reduzierte) komplexe Rdume, h:X — Y sei
eine eigentliche, endliche, holomorphe und surjektive Abbildung. Ist X Steinsch, dann
auch Y.

Der Vollstindigkeit wegen wollen wir den Beweis von (4.9) angeben. Zunéichst
kann man wegen [3] annehmen, dass X und Y reduzierte komplexe Rdume sind, ferner
konnen wir annehmen, dass Y irreduzibel ist. Da es eine irreduzible Komponente von
X gibt, die durch # auf Y abgebildet wird, kann auch X als irreduzibel angesehen
werden. Es seien X*, Y*, h* die Normalisierungen von X, ¥ bzw. A. Mit X ist auch
X* Steinsch, wegen [14, Satz 8 e)] ist mit X* auch Y* Steinsch, wegen [11] ist mit
Y* auch Y Steinsch.
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§ 5. Beispiele

Die weiter unten folgenden Beispiele 1 bis 3 schliessen sich eng an ein Beispiel von
Grauert (vgl. [6], S. 342) an, das deshalb zuniichst angegeben werden soll. Zunichst
definieren wir auf dem C? zwei komplexe Strukturen 7, und &7, folgendermassen:
f1,f2:C* > C? sei gegeben durch f;:(x, y)—(x, ¥%, y%), f2:(x, )= (x+y, y%, ¥®). i
und f, sind eigentliche injektive holomorphe Abbildungen, also sind f; (C?) und £, (C?)
analytische Unterrdume von C>. Es sei nun &7, definiert durch die Festsetzung, dass
f; einen Isomorphismus von (C?, ;) auf f; (C?) erzeugt fiir i=1, 2. Die Singularititen-
menge von (C?, «,) ist genau C x {0}. Die Strukturen 7, und &/, haben die interes-
sante Eigenschaft, dass (C?, &/; n&,) kein komplexer Raum ist; man beweist das
durch Koeffizientenvergleich gewisser Potenzreihen dhnlich wie in [6, S. 342].

BEISPIEL 1. (Zwei komplexe Strukturen O, > 0, auf einem komplexen Raum X
derart, dass (X, 0,) holomorph-konvex, (X, 0,) nicht holomorph-konvex.) Es sei P! der
komplex-projektive Raum der komplexen Dimension 1, zwei Punkte a; #a, P! seien
gegeben. Dann sei (X, 0,):= C? xP', versehen mit der iiblichen Mannigfaltigkeits-
struktur. (X, 0,) mit 0, <0, gehe aus (X, 0,) folgendermassen hervor: Man ersetze
in (X, 0,) die Untermannigfaltigkeit C* x {a;} durch (C?, &;) x {a;} fiir i=1, 2. Das
soll genauer bedeuten: Man bilde (den nach [8, (1.8)] existierenden) Pushout zur
Einbettung C? x {@,} 5 (X, 0,) und zur kanonischen Abbildung C? x {q,} - (C?, <,)
x{a,} in der Kategorie der komplexen Rdume und ersetze in dem so erhaltenen
Pushout durch erneute Pushoutbildung C? x {a,} durch (C?, &,)x{a,}. (X, 0,) ist
trivialerweise holomorph-konvex, (X, 0,) ist jedoch nicht holomorph-konvex: dazu
sei h: (X, 0,)— (X, 0,) kanonisch; zu & konstruieren wir, wie vor (4.5) angegeben,das
Diagramm (*) vor (4.5). Man iiberlegt sich nun leicht, dass dann P in kanonischer
Weise zu (C?, &/, N &7,) isomorph ist, also kein komplexer Raum ist; wegen (4.5) ist
also (X, 0,) nicht holomorph-konvex.

BEISPIEL 2. (X holomorph-konvex, R eigentliche endliche analytische Aquivalenz-
relation auf X, Y := X/R komplexer Raum mit der Eigenschaft MAKZ, Y nicht
holomorph-konvex.) Wir definieren zunéchst weitere komplexe Strukturen &7, &7,
&/ s auf C? folgendermassen: &5 sei definiert durch die Festsetzung, dass

g1:(C?, ) (C?, #3), (x,y)—(x, y+1), ein Isomorphismus ist; 7, sei defi-
niert durch die Festsetzung, dass

g2:(C?, o)) (C?, ,), (x,y)— (x,y —1),ein Isomorphismusist; &5 : = &/ 3 N .
(C?, ;) ist also komplexe Mannigfaltigkeit ausserhalb von Cx {1} und Cx{—1};
(C?, ) hat auf Cx {1} die gleichen Singularitigen wie (C?, «7,) auf C x {0}, auf
C x {1} die gleichen Singularititen wie (C?, &,) auf C x {0}. — T'sei die Aquivalenz-
relation auf C?, die jeweils die Punkte (x, y) und (x, —y)indentifiziert. Die holomorphe
Abbildung g:C* - C?, (x, y) (x, y* — 1), erzeugt einen Isomorphismus (C?, &)/T -
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- (C?, o N &,). — Wir definieren jetzt X: der komplexe Raum X gehe (ihnlich
wie in Beispiel 1) aus der Mannigfaltigkeit C2xP! dadurch hervor, dass man
(aeP! sei gegeben) in C*>xP! die Untermannigfaltigkeit C2 x {a} ersetzt durch
(C?, &5)x{a}. X ist holomorph-konvex, die Remmertsche Reduktion von X ist
(C?, ;). R sei die Aquivalenzrelation auf X, die jeweils die Punkte ((x, y), b) und
((x, —), b) identifiziert; dabei sei beP' mit b+#a fest gegeben. Wegen [5, (1.8)] ist
Y := X/R ein komplexer Raum, Y ist jedoch nicht holomorph-konvex: bildet man
zur kanonischen Projektion 4: X — Y das vor (4.5) beschriebene Diagramm (*), dann
ist Px(C?, &5)/T=(C? &/, o,) kein komplexer Raum, wegen (4.5) ist also ¥
nicht holomorph-konvex.

BEISPIEL 3. (R, S,(RuUS)® offene eigentliche endliche analytische Aquivalenz-
' relationen auf X; X/R, X|S komplexe Ridume, X/ (R S)® kein komplexer Raum.) Wir
benutzen die gleiche Bezeichnung wie in Beispiel 2. Es sei X die disjunkte Vereini-
gung von X; := (C?%, &7;) und X, := (C?, &/,). R sei die Aquivalenzrelation auf X,
die jeweils (x, y)e X5 mit (x, —y)e X; identifiziert und (x, y)e X, mit (x, —y)e X,. Ssei
die Aquivalenzrelation auf X, die jeweils (x, y)e X; identifiziert mit (x, y)e X,. Dann
ist X/S=(C? s), X/(RuS)*=(X/S)/T=(C? s)[Tx(C? ,Nn,), also ist
X/(RuU S)® kein komplexer Raum.

Die Idee, das oben zitierte Beispiel von Grauert fiir die Beispiele 2 und 3 nutzbar
zu machen, stammt im Wesentlichen von dem bereits zitierten Beispiel von Holmann
in [6, S. 342].

BEISPIEL 4. (X irreduzibel, holomorph-konvex, R eigentliche endliche Aquivalenz-
relation auf X, Y:= X/R komplexer Raum, Y hat nicht die Eigenschaft MAKZ,
ist also nicht holomorph-konvex.) Es sei wieder X := C xP!, zwei Punkte a#beP?
seien fest gegeben. R sei die Aquivalenzrelation auf X, die fiir neN jeweils die Punkte
(n, @) und (n+1, b) identifiziert. ¥ := X/R hat die geforderten Eigenschaften.

BEISPIEL 5. (X reelle Mannigfaltigkeit, R eigentliche endliche Relation auf X, R®

endliche Aquivalenzrelation, R® nicht eigentlich, folglich (wegen (1.4)) TR#T°R=0).
Es sei X:=R x S!, parametrisiert durch X={(x, ¢); xeR, 0<¢ <2x}. Dann sei fiir
0<v<n, veN (jeweils modulo 27 gerechnet)

1 v—1 1 v+1
R(—1~, 3’%)::{(1, --vzn), (~, . 2n), (—, . Zn)}
n n n n n n n n

R(z):= {z} sonst. R ist eigentlich und endlich, R* ist endlich, aber nicht eigentlich,
denn

K:={(%, 0); neN+} U {(0, 0)}
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ist kompakt, R® (K) ist nicht kompakt, da die Folge

1 1 n
—,n)l=—, —2n
(2n ) (Zn 2n )

in R* (K) liegt, nicht jedoch ihr Limes (0, =).
Beispiel 5 zeigt, dass fiir nichtanalytische eigentliche endliche Relationen R i.A.

TR#T°R ist, dass also die Endlichkeit von R® nicht die Eigentlichkeit von R®
inpliziert.
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