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Relationen auf komplexen Râumen

BURCHARD KAUP1)

Einleitung

Gegeben sei eine eigentliche surjektive holomorphe Abbildung h:X-> Y (aile in
dieser Arbeit betrachteten komplexen Râume seien reduzierte komplexe Râume im
Sinne von [3]). Ist h endlich, so ist X genau dann Steinsch, wenn X Steinsch ist. (Vgl.
[14, Satz 8 e)] und [11, Seite 64 ff].) Da die holomorph-konvexen Râume in enger
Beziehung zu den Steinschen Râumen stehen (nach einem Satz von Remmert-Cartan
([12], [2, Seite 9]) ist ein komplexer Raum genau dann holomorph-konvex, wenn er
sich eigentlich und holomorph in einen Steinschen Raum abbilden lâsst) kann man
fragen, ob ein analoges Résultat (h sei dabei nicht notwendig endlich) fur holomorph-
konvexe Râume gûltig ist. Eine Richtung ist trivial: ist h eigentlich und Fholomorph-
konvex, dann ist auch X holomorph-konvex. Es bleibt also die Frage: wann ist mit
X auch F holomorph-konvex?

In [14] beweisen Remmert und Stein:

(1) Sind die komplexen Râume X und Y normal, ist h eigentlich und endlich und
bildet hjede Komponente von X auf eine Komponente von Y ab, dann ist mit X auch Y

holomorph-konvex.

Implizit wird in (1) vorausgesetzt, dass X und Y dem schwachen Riemannschen
Hebbarkeitssatz genùgen und dass h offen ist. Es gilt nun (vgl. (4.8)):

(2) Ist h:X->Y eigentlich, offen und surjektiv, genûgen X und Y dem schwachen

Riemannschen Hebbarkeitssatz und ist X holomorph-konvex, dann ist auch Y holomorph-
konvex.

Ist h nicht offen oder genugt Y nicht dem schwachen Riemannschen Hebbarkeitssatz,

dann ist Fi.A. nicht mehr holomorph-konvex, wie die Beispiele 1, 2, 4 in § 5

zeigen. Es kann sogar passieren, dass h bijektiv ist und dass X holomorph-konvex ist,

Fdagegen nicht (Beispiel 1).

Dem Beweis von (2) liegt folgende Idée zugrunde: ist X holomorph-konvex,
h:X-+ Y holomorph, eigentlich und surjektiv, dann bildet man zu h'.X-^Y und

x) Die Anfertigung dieser Arbeit wurde gefôrdert durch den Schweizerischen Nationalfonds.
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p : X-*X (X sei die Remmertsche Reduktion von X, vgl. [12], [2]) das Pushoutdiagramm

xXy
4 lr (*)

s

in der Kategorie der geringten Râume (vgl. [8]). Dann gilt:

(3) Y holomorph-konvexoP ist komplexer Raum und r (oder s) ist eigentlich.

Man beweist nun (2), indem man zeigt, dass (unter den Voraussetzungen von (2)
und mit den Bezeichnungen von (*)) P Quotient von X nach einer eigentlichen end-
lichen offenen analytischen Âquivalenzrelation ist (eine Àquivalenzrelation heisst

analytisch, wenn ihr Graph eine analytische Menge ist), und dass X dem schwachen
Riemannschen Hebbarkeitssatz genugt. Ein Satz von Holmann ([6, Satz 10]) liefert
dann, dass P ein komplexer Raum ist; dann ist Y holomorph-konvex wegen (3).

Ein wesentliches Teilresultat zum Beweis von (2) mittels (3) ist also der Nachweis,
dass s auf X eine eigentliche analytische Âquivalenzrelation erzeugt. Es erweist sich
als zweckmâssig, dazu sofort die folgende allgemeine Frage zu stellen :

gegeben sei eine symmetrische, reflexive, analytische Teilmenge jR von XxX, die

Projektion pR:R-+X, (x, y) h-»x, sei eigentlich. (Wir werden R dann kurz eine eigentliche

analytische Relation auf X nennen; vgl. § 1). Unter welchen Voraussetzungen
ist dann die von R auf X erzeugte Âquivalenzrelation R00 (zur Définition von i?00

vgl. § 1) eigentlich und analytisch?

Das Hauptergebnis dieser Arbeit lautet (vgl. (2.1)):

(4) SATZ. R sei eine eigentliche analytische Relation auf dem komplexen Raum

X, i?00 sei die von R erzeugte Àquivalenzrelation. Xr sei die grôsste offene R^-saturierte

Teilmenge von Xmit der Eigenschaft, dass die Beschrânkung von R°° aufX' eine eigentliche

analytische Àquivalenzrelation auf X' ist. Dann ist A : X—X' analytisch in X,
es ist A Rao(TR) (zur Définition von TR siehe §1). Ist R offene Relation fd.h. die

Abbildung pR ist offen), dann ist A TR; ist R endliche Relation (d.h. die Fasern der

AbbildungpR sind endlich), dann ist A R™{T°R), wobei T°R {xeX; die R™-Àqui-

valenzklasse von x hat unendlichviele Elemente).

Als Korollar ergibt sich sofort:

(5) R sei eine eigentliche endliche analytische Relation aufdem komplexen Raum X.

Sind aile Àquivalenzklassen von R°° endlich, dann ist R°° eine eigentliche analytische

Âquivalenzrelation.
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Beispiel 5 in § 5 zeigt, dass man (R sei eine eigentliche, endliche Relation) allein
aus der Endlichkeit von R°° nicht auf die Eigentlichkeit von R00 schliessen kann ; man
braucht dafiir zusâtzliche Informationen uber jR, z.B. dass R analytisch ist.

Aus (5) und dem bereits erwâhnten Satz von Holmann aus [6] ergibt sich die fol-
gende Existenzaussage fur Pushouts zu holomorphen Abbildungen (vgl. (4.3)):

(6) p\X-+ Y, q:X-*Z seien offerte eigentliche endliche holomorphe Abbildungen,

r:Y-^P9 s:Z-+P sei der zu p und q in der Kategorie der geringten Ràume gebildete
Pushout. Genugen die komplexen Ràume X, Y und Z dem schwachen Riemannschen

Hebbarkeitssatz und sind aile Fasern von r (oder s) endlich, dann ist P komplexer Raum
und die Abbildungen r und s sind eigentlich, offen und holomorph.

Beispiel 3 in § 5 zeigt, dass in (6) die Yoraussetzung ,9X, Y und Z geniigt dem

schwachen Riemannschen Hebbarkeitssatz" nicht ûberflûssig ist.

In § 1 werden Relationen definiert und elementare Eigenschaften von Relationen
nachgewiesen. § 2 enthâlt das Hauptergebnis uber eigentliche analytische Relationen
und einige direkte Folgerungen daraus. § 3 enthâlt den Beweis des Hauptsatzes aus
§ 2, § 4 enthâlt die oben angedeuteten Uberlegungen iïber holomorph-konvexe Râume,
§ 5 enthâlt einige abgrenzende Beispiele.

§ 1. Vorbereitungen

Aile auftretenden topologischen Râume seien lokalkompakt, insbesondere also

hausdorffsch. Aile auftretenden komplexen Râume seien reduzierte komplexe Râume
im Sinne von [3], aile analytischen Teilmengen seien abgeschlossene Teilmengen. Es sei

N:={0,l,2,...}.
Es sei Zeine Menge. Mit/?, gr.ZxX-^Xbezeichnen wir die kanonischen Projek-

tionen auf die erste bzw. zweite Komponente. Fur RczXxX seien pR bzw. qR die

Beschrânkungen von p bzw. q auf R. Unter einer Relation auf X verstehen wir eine

reflexive, symmetrische Teilmenge R von X x X, d.h. es gilt
a) xeX=>(x> x)eR.
b) (x,y)eR=>(y,x)eR.
Ist R eine Relation auf X9McX9 dann sei R(M): qR(pR1(M))=pR(qR1(M)). R

erzeugt also eine kanonischeAbbildung (die wir wiedei mit R bezeichnen) R : X-* ty (X)
Potenzmenge von X), x h->R(x), mit

a') xeR(x)fùrxeX.
b') xeR(y)=>yeR(x).
Fur McXist R(M)= \JxeM R(jc).-Erfullt umgekehrt R:X-» gj(X) dieBedingungen
a') und b'), dann ist U*e*M x R(x) eine Relation auf X, die wieder mit R bezeichnet
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werde. Wir interpretieren manchmal eine Relation als Teilmenge von XxX9 manch-
mal als Abbildung von X nach ^3 (X).

Es sei X ein (lokalkompakter) topologischer Raum, R eine Relation auf X. R
heisst eigentliche bzw. offerte bzw. endliche Relation, wenn pR : R -? X (und damit auch
qR) eigentlich bzw. offen bzw. endlich ist; dabei heisse eine Abbildung endlich, wenn
aile ihre Fasern endliche Mengen sind. Ist X ein komplexer Raum, dann heisst eine
Relation R auf Xanalytisch, wenn R eine analytische Teilmenge von XxXist.

Es sei R eine Relation auf der Menge X. Dann definieren wir induktiv Relationen
Rn fur jede natiirliche Zahl n ^ 0 folgendermassen : R° (x) := {x}.Rn+1(x): R(Rn(x)).
- Ein geordnetes (« + 1)-Tupel (x09 xn) von Elementen aus Xheisse R-Folge, wenn

m ï=1, ...,«.

(1.1) Es sei R eine Relation auf dem (lokalkompakten) topologischen Raum X.
a) Rn(x) {yeX; es gibt eine R-Folge (x09 xn) mit xo x, xn=y}.
b) R eigentlich o(KcX,K kompakt => R (K) kompakt).

R offeno (U offen in X=>R(U) offen in X),
R eigentlich =>R RczXxX.
R eigentlich =>Rn eigentlich fiir neN.
R offen =>Rn offen fur nelS.

c) X sei ein komplexer Raum, R analytisch und eigentlich. Dann sind aile Relationen

Rn,neN, eigentlich und analytisch. Ist A analytisch in X, dann ist auch R{A)
analytisch in X.
Beweis. a) ist klar.

ad b). Ist R eigentlich, K kompakt, dann ist R(K) qR(pR1(K)) kompakt. - Ist
umgekehrt R(K) fur jedes kompakte K wieder kompakt, dann istpR eigentlich, denn

fiir kompaktes K in X ist pR
* (K) als abgeschlossene Teilmenge der kompakten

Teilmenge KxR(K) wieder kompakt. - Ist^K offen und U offen in X, dann ist R(U)
=pR(qR~1(U)) offen in X. Ist umgekehrt R(U) offen fur offenes U, dann istpR offen:
sei dazu (x, y)eR9 V eine offene Umgebung von x9 U eine offene Umgebung von y,
dann ist xeVnR(U)apR((Vx U)nR); also istp^ offen in jedem Punkt (x9y)eR. -
Dass R RczXxX9 falls R eigentlich ist, folgt sofort daraus, dass fur kompaktes
K9 K' in X auch (K xK')nR kompakt ist. - Dass mit R auch Rn eigentlich bzw. offen

ist, folgt sofort durch Induktion uber n, da Rn+1 (K) R(Rn(K)) fur KaX.
ad c). Induktion iiber n. n 0, 1 ist trivial. Sei bereits R11'1 als eigentlich und

analytisch nachgewiesen. Die Abbildung h : (R9 qR) x x (R"'1^^ i)->lxl, definiert
durch ((jc, y), (y9 z))\-+(x9 z), ist holomorph mit Im h Rn. h ist eigentlich: ist KxKf
kompakt in XxX9 dann ist h~1{KxKf) enthalten in der nach Induktionsvoraus-

setzung kompakten Menge K x R (K) xRn~i(K')xK'; aus dem Remmertschen Abbil-
dungssatz [13, Satz 23] folgt also, dass Rn analytisch in ZxJTist. Aus dem gleichen
Satz folgt, dass R(A) analytisch ist, wenn A analytisch ist.
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Es sei wieder R eine Relation auf der Menge X. Dann ist die Relation R™ mit
jR00 (x) : U«ejv Rn (x) eine Âquivalenzrelation auf X; sie ist die von R auf X erzeugte
Âquivalenzrelation. Fur xeX sei tR(x):= Min {n; Rn(x) Rn+1(x)}; falls ir(x)/

1 (x) fur aile n, sei tr (x) : oo.

(1.2) Ftfr igI sind folgende Aussagen âquivalent: a) t^(x)<«. b) i?"(x)
1P+1(jc). c) Rn(x) Rco(x).

Es sei wieder X ein topologischer Raum, i? eine Relation auf X. Dann sei

Tn°R := {xel; t*(x) > n}, TnK := Î?R,
T°£: p| T?R, TR:= f| Tn^.

iieN neJV

(1.3) a) xer°i?<^T1{(x)=oo.
b) xeTRotr ist in keiner Umgebung von x beschrânkt.

Beweis von b). x liegt genau dann in TnR9 wenn es zu jeder Umgebung U von x
yeU mit iR(y)>n gibt. xef)neN TnR besagt also genau, dass es zu jeder Umgebung
U von x und jedem «eN ein yeU mit t^(j)>« gibt, d.h. t^ ist in jeder Umgebung
von x unbeschrânkt.

(1.4) Es sei R eine Relation auf dem topologischen Raum X. Dan gilt:
a) R offen => R°° offen.

IstTR Q, dann gilt:
b) R eigentlich => R* eigentlich.

c) R eigentlich, analytisch => i£°° eigentlich, analytisch.
Beweis. Ad b). Sei K kompakt in X, dann ist xR beschrânkt auf K, etwa t^ (x) ^ N

fur xeK. Dann ist R™ (K) =\JxeKR"(x)=\JxeK RN (x) RN (K) kompakt wegen (1.1)
Ad c). Wegen b) ist R™ eigentlich. Es sei (x,y)eRco gegeben, U sei eine offene

relativkompakte i^°°-saturierte Umgebung von x, dann gibt es ein neN derart, dass

R"3n(UxU) Rnn(Ux U)3(x, j). Da R°° abgeschlossen in XxX ist und Rn

analytisch ist, ist auch R™ analytisch inlxj.
Abschliessend notieren wir noch

(1.5) R sei eigentliche offene Relation auf dem topologischen Raum X. Dann ist
T°R offen in Xfur neN.

Beweis. Zu xeT?R gibt es (da Rn RnaX x X) ein yeX und Umgebungen U von
x, F von y in Zderart, dass (x, y)eRn+l, (Ux V)nRn=0. Da Rn+1 offene Relation
ist, istp((Ux V)nRn+l)<=:T°R eine Umgebung von x in X.
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§ 2. Formulierung der Ergebnisse

(2.1) HAUPTSATZ. R sei eine eigentliche analytische Relation aufdem komplexen
Raum X, R"0 die von R erzeugte Àquivalenzrelation.

a) Es gibt eine grôsste offene R™-saturierte Teilmenge X' von X derart, dass die Be-

schrânkung von R°° aufX' eine eigentliche analytische Àquivalenzrelation aufX' ist.
TR und R00 (TR) sind analytische Teilmengen von X} R™ (TR) ist das Komplement
von Xf in X.

b) Ist R offen, dann ist R™ (TR) TR T°R.

c) Ist R endlich, dann ist TR T°R; ausserhalb von R™ (TR) ist R00 eine endliche

Aquivalenzrelation.
Bevor wir (2.1) im nâchsten Paragraphen beweisen, sollen aus (2.1) einige Folge-

rungen gezogen werden.

(2.2) SATZ. jR sei eigentliche offene analytische Relation aufdem komplexen Raum

X und es sei T°R 0 (d.h. tr(x)<od fur aile xeX). Dann ist die von R erzeugte
Àquivalenzrelation R™ offen, analytisch und eigentlich.

Beweis. Wegen (2.1) b) ist Rco(TR) TR f^R 0> also folgt (2.2) aus (2.1) a).

(2.3) SATZ. R sei eigentliche endliche analytische Relation auf dem komplexen
Raum X, die Àquivalenzrelation R° sei endlich (d.h. R°° (x) ist eine endliche Menge
fur aile xeX). Dann ist R00 eine eigentliche endliche analytische Àquivalenzrelation.

Beweis. Da jR00 endlich ist, gibt es zu jedem xeXein n(x)eN mit Rn(x)(x) RCX) (x),
also ist t^(x)<oo fur xeX, also T°R 0; wegen (2.1) c) ist also R°°(TR) 0, (2.3)

folgt aus (2.1) a).

(2.4) SATZ. R sei analytische (und damit eigentliche) Relation auf dem kompakten
komplexen Raum X. Ist R offen oder endlich, so gilt: R°° analytischoT°R=0.

Beweis. „<=" folgt sofort aus (2.2) und (2.3). - Sei umgekehrt i?00 analytisch; dann
sind insbesondere aile Âquivalenzklassen Rœ (x)=\<JneN Rn(x), xeX, analytische

Teilmengen von X. Da eine echte abzâhlbar-unendliche Vereinigung von analytischen
Teilmengen eines kompakten komplexen Raumes nicht mehr analytisch ist, gibt es zu
jedem xeX ein n(x)eN mit Rco(x)=\Jn=o Rn(x) Rn(x)(x)9 also ist t/?(x)<oo fur
xeX, d.h. T°R 0.

Abschliessend wollen wir noch notieren, was die Bedingung TR T°R anschaulich
bedeutet. Aus (1.3) folgt sofort:

(2.5) R sei eine Relation aufdem topologischen Raum X. TR T°R ist âquivalent
zu folgender Aussage: Ist xQeX mit xR(x^)<oo und ist xR in keiner Umgebung
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von xQ beschrânkt, dann gibt es eine Folge (xn)neN, die gegen x0 konvergiert, mit
rR(xn)=oo fur aliénai.

§ 3. Beweis des Hauptsatzes

Es sei R eine eigentliche analytische Relation auf dem komplexen Raum X. Fur
neN sei Rn+1 : {zeRn+1 ; (Rn+19 z)? (Rn9 z)} ; dabei sei (R\ z) der von R1 in z erzeug-
te analytische Mengenkeim. Ist z.B. zeRn+19 z$Rn9 dann ist sicher zeRn+1. Rn+1 ist
als Trâger der kohârenten Idealgarbe, die Rn als analytische Teilmenge von Rn+1 be-

schreibt, analytisch inlxJ.

(3.1) Fiir neN ist TnR=p(Rn+1), also analytisch in X. (Dabei sei wie immer

p:XxX-+X, (x9 y)\-+x9 kanonisch.) Insbesondere ist also TR analytisch in X.
Beweis. Sei xeT°R. Dann gibt es ein yeX mit (x, y)(=Rn+1, (x,y)$Rn. Also ist

(x, y)eRn+1, also xep(Rn+1% also ist Tll0JRcz/i(jR[>l+1). Da/?(£w+1) abgeschlossen ist,

gilt auch TnRcp(Rn+1). - Sei umgekehrt xep(Rn+1). Dann gibt es ein jeXmit
(x,y)eRn+1.Ist(x9y)$Rn, dann ist xR(x)>n9 also xeT?R. Ist (x,y)eRn, dann gibt
es eine Folge (xi9 yt) in Rn+1— Rn9 die gegen (x, y) konvergiert. Dann ist xteT®R9

wegen x^imx; also xeTnR.

(3.2) JR00 (TR) ist analytisch in X.
Beweis. Nach (3.1) ist TR analytisch in X. Es genugt also zu zeigen, dass es zu

jedem xoeXeine Umgebung U von x0 in Xund n(U)eN gibt, so dass

R00 (TR) n U Rn(U) (TR)nU. (*)

Es sei zunâchst xo$TR. Dann gibt es eine Umgebung U von x0 in X und w(£/)eN
mit Un TR 0 und tr (y) ^n(U) fur yeU. Dann gilt (*) : sei nâmlich xeR°° (TR) n U;
dann gibt es xteTR mit xei*00^). Da xeU9 ist Tjr(x)<w(C/), also xleR0O(x)-=
=JRw(t7)(x), also x€J?"(&)(jc1), also xG£n(t7)(ri*)n t/. Es sei jetzt xoeri^. Da TR
Durchschnitt der analytischen Mengen TnR ist, gibt es zu x0 eine Umgebung U und

n(U)eN mit Ji?n C/= Tn(U)Rn U. Dann gilt wieder (*): es sei xeR°°(TR)n Ugege-
ben. Ist xeTRnU9 dann ist trivialerweise xeRn{U)(TR)nU. Ist x$TR9 dann ist

jcj&T^!,)!*, also TR(x)^n(U)9 und es gibt ein yeTR mit xei^°°(j). Da Tjt(jc)</î(t/),
ist xeRniU)(y)9 also wiederum xeRn(V)(TR)nU. - Damit ist (3.2) bewiesen.

(3.3) Die Beschrânkung von R°° auf X-R™(TR) ist eine eigentliche analytische
Àquivalenzrelation.

Beweis. Da R™(TR) iT-saturiert ist, ist auch X1 \ X-K°(TR) iT-saturiert.
Bezeichnen wir mit R! die Relation auf X\ die sich durch Beschrânkung von R auf
X' ergibt. Da nach Konstruktion r(jR')=0, folgt (3.3) aus (1.4).
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(3.4) Es sei U offen und R^-saturiert in X, die Beschrânkung von R™ auf U sei eine

eigentliche analytische Àquivalenzrdation. Dann ist UnRco(TR) 0.
Beweis. Da U 7?°°-saturiert ist, genûgt es zu zeigen, dass UnTR 0. Es sei xoeU

gegeben. Da iT^analytischist, ist die VereinigungRœn(Ux U)={JneN(Rnn(Ux
x U)) lokal-endlich. Zu jedem yeR00 (x0) gibt es also eine Umgebung F von (xOi y) in
U x U und n(V)'eN derart, dass R™ nV=Rn(V)n V. Da JR00 (x0) kompakt ist, gibt es

also eine Umgebung W von {xo}xRcc(xo) in UxU und n(W)eN derart, dass
i?00 n W= Rn(W)n W. Da pRao :R°°-*X eigentlich ist in einer Umgebung von {x0} x
xRco(x0), gibt es eine Umgebung Z von x0 in X derat, dass p^l(Z)czRco n W=

Rn(w)nW; dann ist aber TR(z)^n(W) fiir zeZ, als

(3.5) Jtf JR offen, dann ist R00 (TR) TR.
Beweis. Es sei xoeX— TR gegeben; zu zeigen ist xo$R™{T£). Zu x0 gibt es eine

offene Umgebung U von x0 und n eN mit tr j>) < « fur je U. Da mit i? auch R"0 offen
ist, ist R™ (U) offen in JTund es gilt xR (y) < n fùryeR™ (U). Also ist i*°° ((7) n Twi? 0

fmm^n, insbesondere ist R<x>(U)nTR <b, d.h. C/n^°°(ri?) 0, also xo£ir (77*).

Zum Nachweis, dass 77£ T0^, falls i* offen oder endlich ist, beweisen wir zunâchst

(3.6) R sei eine eigentliche analytische Relation auf dem komplexen Raum X,fur
aile neN enthalte T*R eine offene dichte Teilmenge von TnR. Dann ist TR T°R.

Beweis. T°RczTR ist klar. - Angenommen, es gibt xeTR, x$T°R. Dann sei U

eine offene relativkompakte Umgebung von x in X mit UnT°R 0. Fur AczX
schreiben wir abkûrzend A' : A n U. Da TR Durchschnitt der analytischen Mengen
TnR ist, gibt es NeN mit TnR'= TR' fur n>N, also enthâlt nach Voraussetzung T?R'
eine offene und dichte Teilmenge von TR' fiir n^N. Nach Wahl von U ist p|»> jv t?r'

T°R' Q. Da TR' Bairesch ist, ist damit auch TR' 0. Das steht aber im Wider-
spruch zu xe TR'.

Die folgende Aussage und (3.6) liefern den Beweis, dass TR T°R, falls R offen
oder endlich ist:

(3.7) Ist R offen oder endlich, dann enthâlt T°R eine offene dichte Teilmenge von

TnRfur aile neN.
Beweis. Ist R offen, dann ist TnR offen in X wegen (1.5), also offen und dicht in

lfR fiir allé neN. - Es sei jetzt jR endlicht. Es genûgt, fur neN zu beweisen:

u) TnR-p(Rn+lnRn) ist offen und dicht in TnR=p{Rn+1).
ad i). Wegen T*R a TnR ist i) âquivalent mit

i nRn).
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Es sei xeTnR-T°Rgegeben. Dann ist xeTnR=p(Rn+1) und rR(x)^n. Es gibt also

einyeXmit (x, y)eRn+1 czRn+1.DatR(x)^n, ist bereits(x,y)eRn,also(x,y)eRn+1n
nRn, also xepiR"*1 nRn).

ad ii). Dap:Rn+1 -? Tl|JR=/7(JRw+1)endlichundeigentlichistunddeshalbnirgeiids-
dichte analytische Teilmengen in nirgends-dichte analytische Teilmengen abbildet, ge-

nûgt es zu zeigen, dass Rn+1 r\Rn nirgends dicht liegt in Rn+1. Das folgt aber (mit
B : Rn+1, A: Rn, C=Rn + 1) sofort aus dem folgenden Lemma:

(3.8) LEMMA. AczB seien analytische Teilmengen eines komplexen Raumes X,
Csei die analytische Menge C : {beB;(B,b)^ (A, b)} (dabei sei (B, b) der analytische
Mengenkeim, den B in b erzeugt). Dann ist Ac\C nirgends dicht in C.

Beweis. Es sei aeAnC gegeben. Mit Aa, Ba9 Ca bezeichnen wir die Keime, die

A, B bzw. C in a erzeugen. Zu zeigen ist, dass Aa n Ca dûnn in Ca ist. A erzeuge in a die

Primkeime Al9 Ar, B erzeuge in a die Primkeime Bl9 BS9 Bs+1, Bt\ die Bx

seien so numeriert, dass Bxe{Al9 ...9Ar}o\^x^s. Dann ist Aa Bxu...uBsuAfa9
t. Alsoist AanCa (Blu

Ca.

§ 4. Anwendungen auf Pushouts und holomorph-konvexe Râume

Wie wir schon in der Einleitung angedeutet haben, treten analytische Relationen
bei der Bildung von Pushouts zu holomorphen Abbildungen auf. - Es sei X ein kom-
plexer Raum, R eine Âquivalenzrelation auf X. Dann ist der geringte Raum XjR mit
einem kanonischen Morphismus/?:X-»A7i? wohldefiniert (vgl. [6, §2], [2, §2]). Es

seien jetzt R und S eigentliche analytische Àquivalenzrelationen auf X, die Quotienten
X/R und XIS seien (versehen mit den kanonischen Quotientenstrukturen) komplexe
Râume; Ru S ist eine analytische Relation auf X. Ist X/(R u S)00 ein komplexer
Raum, dann ist

X—P—*XIR= Y

•i 1' (*)

(aile Abbildungen kanonisch) ein Pushoutdiagramm in der Kategorie der komplexen
Râume.

Es sei Y: X/R9 Z : X/S, P : X/(R u S)00 ; />, q, r, s seien die kanonischen
Abbildungen (wie im Diagramm (*)). S*:=(/> xp) (S) cYx 7und R* := (qxq) (R) czZx
x Z sind, da p und q eigentliche holomorphe Abbildungen sind, eigentliche analytische

Relationen auf Y bzw. Z.
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(4.1) Es seien (S*)00 und (i?*)00 die von S* und R* auf Ybzw. Z erzeugten Àquiva-
îenzrelationen.

a) P=7/(S*)œ=Z/(i?*)°°.
b) (i£*)°° ist genau dann eine eigentliche analytische Àquivalenzrelation auf Z, wenn

(S*)00 eine eigentliche analytische Aquivalenzrelation auf Y ist.
Beweis. Ad a). Wir zeigen nur, dass P X/(R*)CO. Dazu ist zu zeigen, dass

A := (p xp)'1 ((i?*)°°) (i?uS)00= \BczX xi Da A eine Àquivalenzrelation ist, gilt
wegen RuScz(p xp)~1(R*)œA, dass BœA. Andererseits ist (p xp)(B) eine

Àquivalenzrelation, die (pxp)(R) R* enthâlt, also gilt (p xp)(B)^(R*)co9 daraus folgt
sofort B =>A.

Ad b). (S*)00 sei eine eigentliche analytische Àquivalenzrelation auf Y. Da
(i?*)00 (qx q)(p xp)'1 ((S*)00), ist (i?*)00 ebenfalls eine eigentliche analytische
Àquivalenzrelation. Die Umkehrung beweist man genauso.

Zur spâteren Yerwendung notieren wir das folgende technische Lemma (dabei
sei (SR)°(x):= {*

(4.2) a) MczY=>S*(M)=p(S(p-1(M))).
b) xeX, neN=>(S*)n(p(x))=p((SRy(x)l
Man sagt, ein komplexer Raum X genuge dem schwachen Riemannschen Hebbar-

keitssatz, wenn fur jede offene Teilmenge U von Zgilt: ist/ : U-+ C stetig und in den

gewôhnlichen Punkten von U holomorph, dann ist/auf ganz U holomorph.
Es gilt nun:

(4.3) SATZ. Der komplexe Raum Xgenuge dem schwachen Riemannschen Hebbar-

keitssatz, R und S seien offene eigentliche analytische Àquivalenzrelationen auf X.

a) Sind R, S und (R u 5)00 endliche Àquivalenzrelationen, dann ist (*) ein Pushoutdia-

gramm in der Kategorie der komplexen Râume.

b) Ist X reindimensional und T°(RkjS) Q, dann ist (*) ein Pushoutdiagramm in der

Kategorie der komplexen Râume.

Der Beweis von (4.3) ergibt sich sofort aus (2.2), (2.3) und dem folgenden Satz

(vgl. [6,satzlO], [7, Satz2]):

(4.4) Der komplexe Raum Xgenuge dem schwachen Riemannschen Hebbarkeitssatz,

R sei eine offene analytische Àquivalenzrelation auf X. Ist X reindimensional oder ist

R diskret (d.h. aile jR-Âquivalenzklassen sind diskret in X), dann ist X/R, versehen

mit der kanonischen Quotientenstruktur, ein komplexer Raum.

Wir wollen jetzt der folgenden Frage nachgehen : Es sei Xein holomorph-konvexer

komplexer Raum, h:X-+ F eine eigentliche holomorphe surjektive Abbildung. Wann

ist Y holomorph-konvex?
Wir werden folgende Bezeichnungen benutzen: X sei ein holomorph-konvexer
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komplexer Raum, die eigentliche holomorphe surjektive Abbildung h:X-+ Yerzeuge
auf X die eigentliche analytische Âquivalenzrelation R.

S sei die folgende Àquivalenzrelation auf X: fur xl9 x2eX sei x1£>x2: <=>(/e

S ist eine eigentliche Âquivalenzrelation auf X und X : X/S ist ein Steinscher

komplexer Raum (vgl. [12], [2, Seite 9]). X heisst Remmertsche Reduktion von X. (Fur
einen beliebigen holomorph-konvexen komplexen Raum Z bezeichnen wir die zuge-
hôrige Remmertsche Reduktion mit Z.) Die kanonische Projektion/?:X-»X ist ein-
fach, d.h. aile ihre Fasern sind zusammenhângend. Bezeichnen wir den geringten
Raum Y/(S*)90 (5* := (hxh)(S)cYxY) mit P, dann haben wir das kanonische
kommutative Diagramm

4 l« (*)
x~*p y/(s*)°°

Es gilt nun:

(4.5) a) Y holomorph-konvex =>P Y.

b) Y holomorph-konvexoP ist komplexer Raum und r ist eigentlich (und damit end-

lich, da X Steinsch ist).
Beweis. Ad a). Y sei holomorph-konvex, Dann gibt es ein kanonisches kommu-

tatives Diagramm von holomorphen Abbildungen

4

Ferner gibt es genau einen Morphismus t:P-+ Y mit ts — q, tr=k. Da Y und P (als

geringte Râume) Quotienten von Y nach Âquivalenzrelationen sind, genûgt es zu
zeigen, dass t bijektiv ist. Dazu genùgt es zu zeigen, dass s auf allen Fasern von q
konstant ist. Es sei A a Y eine Faser von q. A ist eine zusammenhângende kompakte
analytische Teilmenge von Y. Es seien Al9 Ar die Zusammenhangskomponenten
von h'1 (A). Da p auf AQ konstant ist, ist sh(Ae) einpunktig fur g=l, ...,r. Ist
h(Ai)nh(Aj)^09 ist sicherlich sh(Ai)=sh(Aj). Da es zu jedem i mit l^/^r eine

Folge£1,...,(?w(l)mit01 l,en(o igfo
ist sh(Ai)=sh(A1) fur /= 1, r, also ist s auf A konstant.

Ad b). „=>" folgt sofort aus a). - „<=". r ist eigentlich, endlich und surjektiv; mit
% ist wegen (4.9) auch P Steinsch, insbesondere holomorph-konvex, also ist auch Y
holomorph-konvex.

Wir sagen, ein komplexer Raum Zhabe die Eigenschaft MAKZ, wenn es zu jedem
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xeXtim maximale analytische kompakte zusammenhângende Teilmenge von Xgibt,
die x enthâlt. Jeder holomorph-konvexe Raum X hat die Eigenschaft MAKZ: die

Fasern der Projektion p:X-^X sind maximale analytische kompakte zusammenhângende

Teilmengen von X. Nicht jeder Raum, der die Eigenschaft MAKZ hat, ist

holomorph-konvex; so hat z.B. jeder holomorph-separable komplexe Raum die

Eigenschaft MAKZ.
Wit benutzen wieder die oben eingefùhrten Bezeichnungen. R*:=(p xp)(R)cX x

x X ist eine eigentliche endliche analytische Relation auf X (da X Steinsch ist, ist

jede eigentliche analytische Relation auf X endlicht), S* ;=(h xh)(S)a Yx F ist eine

eigentliche analytische Relation auf F.

(4.6) SATZ. Mit den obigen Bezeichnungen gilt:
a) Hat Y die Eigenschaft MAKZ, dann sind (7?*)00 und (S*)™ eigentliche analytische

Àquivalenzrelationen auf X bzw. Y. Die Àquivalenzklassen von (S*)00 sind genau
die maximalen analytischen kompakten zusammenhângenden Teilmengen von Y.

b) Ist h offen, dann hat Y die Eigenschaft MAKZ und es ist R* (i?*)00, insbesondere

ist die Relation R* eine eigentliche endliche offene analytische Àquivalenzrelation.

Beweis. Ad a) Wegen (4.1) genùgt es zu zeigen, dass (i?*)00 eine eigentliche analytische

Àquivalenzrelation auf X ist; da jR* endlich ist, genùgt es dazu wegen (2.3) zu

zeigen, dass tr* (p (x)) < oo ist fur aile xeX. (Das ist âquivalent damit, dass (R*)00

eine endliche Àquivalenzrelation ist.) Fur neN sei An: — h(S((RS)n(x))cz Y. An ist

fur aile n eine kompakte analytische Teilmenge von Y. Wir behaupten, dass An

zusammenhângend ist fur aile n:A° h(S(x)) ist sicher zusammenhângend, da

S(x)=p~1(p(x)) zusammenhângend ist. Der Induktionsschritt n^n + \ folgt sofort

aus der folgende Aussage:

(+) Ist MczX und ist h (M) zusammenhângend\ dann ist auch h(S(R(M)))
zusammenhângend.

Da F die Eigenschaft MAKZ hat, und da fur «eN stets AnczAn+1 gilt, gibt es ein

n mit An An+i. Dann ist

also

l(x)) P((Rsy+2(x))

also TR*(p(x))^n + l. - Damit ist gezeigt, dass (R*)œ und (S*)00 eigentliche analytische

Àquivalenzrelationen auf X bezw. 7 sind. Zum Nachweis, dass die Àquivalenzklassen

von (S*)00 genau die maximalen analytischen kompakten zusammenhângenden

Teilmengen von F sind, zeigen wir zunâchst durch Induktion, dass (S*)n(h(x))
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=A((Si?)w(x))zusammenhângendist fùrallexeX. Der Induktionsanfang ist trivial, der
Induktionsschluss n ->n +1 folgt sofort aus +). - Da es zu jedem xeXein «eN gibt
mit (S*)™(h(x)) (S*)n(h(x)), sind aile Âquivalenzklassen von (S*)00 analytische
kompakte zusammenhângende Mengen. Es bleibt zu zeigen, dass r: Y-+ Y/(S*)CO=P
auf allen maximalen analytischen kompakten zusammenhângenden Teilmengen von
Y konstant ist. Dazu genûgt es zu zeigen, dass r auf jeder irreduziblen analytischen
kompakten Teilmenge B von Y konstant ist. Zu B gibt es eine irreduzible kompakte
analytische Teilmenge A von Xmit h(A) B; d&p:X-+X auf A konstant ist, muss r
auf B konstant sein. Damit ist a) bewiesen.

Ad b). Wir uberlegen uns zunâchst, dass wir o.B.d.A. h als endlich voraussetzen
kônnen. Ist nâmlich h nicht endlich, so zerlegen wir h:X-* Fin zwei eigentliche sur-
jektive holomorphe Abbildungen h1\X-^X1 und h2:X1->Y, wobei h^ einfach ist
(d.h. nur zusammenhângende Fasern hat) und h2 endlich. (Vgl. [15, Satz 9], [2, Theo-

rem 3]). Da p\X^X auf allen kompakten zusammenhângenden analytischen
Teilmengen von Xkonstant ist, gibt espi:X1 -»Z mitpxhx —p. Mit X ist also auch Xx

holomorph-konvex, mit h ist auch h2 offen ; ferner ist R* R*, wenn R* ; (Pi><Pi) (Ri),
wobei Rt die durch h2 auf Xx erzeugte Àquivalenzrelation ist. - Wir kônnen also

annehmen, dass h endlich ist. Im Folgenden benutzen wir das folgende, leicht zu
beweisende Lemma:

(4.7) h : X-* Fsei eine offene eigentliche endliche surjektive holomorphe Abbildung,
B und B' seien kompakte irreduzible analytische Teilmengen von 7, es sei beBnB';
A sei eine irreduzible analytische Teilmenge von X mit h(A) B. Es sei aeA mit
h(d) b. Dann gibt es eine irreduzible analytische Menge A' in X mit h(A') B'
und aeA'.

Aus (4.7) folgt nun leicht, dass Y die Eigenschaft MAKZ hat. Angenommen, Y
hat nicht die Eigenschaft MAKZ. Dann gibt es eine unendliche Folge Bl9 B2,
irreduzibler kompakter analytischer Teilmengen von Y mit Bn n Bn+x # 0, Bn+x <£ B± u
u...u2?w. Ist dann Ax irreduzibel und analytisch in X mit h(Ai) Bu gibt es wegen
(4.7) eine unendliche Folge Au A2, ••• kompakter analytischer Teilmengen von X
derart, dass AnnAn+1^Q, An+1<tA1u...\jAn. Das widerspricht aber der Tatsache,
dass XdiQ Eigenschaft MAKZ hat. - Zum Nachweis, dass die Relation i?* eine offene

Àquivalenzrelation ist, beweisen wir zunâchst

(++)Afc:X=>jR(/r1 (M)) ist S-saturiert in X.

Da R(p~x (M))=(J*€m Hp"1 (*)), genûgt es zu zeigen, dass R(p~i(x)) S-saturiert

ist fur xeX. Angenommen, R(p~1(x)) ist nich 5-saturiert. Dann gibt es eine

irreduzible Komponente At von R(p~i (x)) und eine kompakte irreduzible analytische
Teilmenge A\ von X mit A1nA'1^0, A14:R(p~1(x)). Es sei A2 eine irreduzible
Komponente vonp ~1 (x) mit h (A^ h (A2). Da^ni'^ 0, ist auch h (Ax) n h (At)# 0.
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Wegen (4.7) gibt es nun eine irreduzible analytische Menge A2 in Zso, dass A2r\A2^0
und h(Af2) h(A[). Wegen A2nA'2*9 ist A^cp'^x), wegen AC^cAQr^Jc)) ist
also A'1ah~1h(p~1 (x)) R(p~î(x)), im Gegensatz zur Voraussetzung. Damit ist

(+ +) bewiesen.

Nun folgt leicht, dass R* bereits eine Âquivalenzrelation ist: fur xeJC ist wegen
(+ +)S(i?(^-1(x))) i?(^-1(%also ist (R*)H*)=Pfà*(p-\ty)=P{*(p-Hty)
R*(x); wegen (1.2) ist also R* (R*)CO9 d.h. R* ist eine Âquivalenzrelation. R* ist

sogar eine offene Âquivalenzrelation : ist U offen in X, dann ist R* (U) =p (Rip'1 (U))) ;

mit h ist auch R offen; also ist R(p~1(U)) offen in X. Wegen (+ +) ist R(p"x (U))
S-saturiert in X; nach Définition der Quotiententopologie von X XjS ist also

p{R{p~x(U))) R*(U) offen in X. - Damit ist (4.6) vollstândig bewiesen.

(4.8) SATZ. Der holomorph-konvexe komplexe Raum X geniige dem schwachen

Riemannschen Hebbarkeitssatz, R sei eine offene eigentliche analytische Âquivalenzrelation

auf X. Ist der Quotient Y: X/R ein komplexer Raum, dann ist er ebenfalls
holomorph-konvex und geniigt dem schwachen Riemannschen Hebbarkeitssatz.

Beweis. h:X-+ Y sei die kanonische Projektion. Wir uberlegen zunâchst, dass X
dem schwachen Riemannschen Hebbarkeitssatz genûgt. Es sei X : (X, 3^\ wobei

2^ die Garbe der Keime der schwach-holomorphen Funktionen auf X ist. X genûgt

dem schwachen Riemannschen Hebbarkeitssatz. Ist i:X-*X kanonisch, dann gibt

es (vgl. [5, Seite 52/53]) eine holomorphe Abbildung p:X-+Xmit ip=p.D& X als

geringter Raum Quotient von X ist und / ein Homôomorphismus ist, ist / ein Iso-

morphismus komplexer Râume. - Genauso zeigt man, dass Y dem schwachen
Riemannschen Hebbarkeitssatz geniigt. - Wegen (4.1) und (4.6) ist P=XjR* der Quotient
von X nach einer eigentlichen endlichen offenen analytischen Âquivalenzrelation,
also komplexer Raum wegen (4.4), also ist Y holomorph-konvex wegen (4.5).

Beim Beweis von (4.5) haben wir die folgende Aussage benutzt, die im Wesentlichen

in [14, Sats 8 e)] und [11, Seite 64 ff] bewiesen wurde:

(4.9) X und Y seien (nicht notwendig reduzierte) komplexe Râume, h\X^> Y sei

eine eigentliche, endliche, holomorphe und surjektive Abbildung. Ist X Steinsch, dann

auch Y.

Der Vollstândigkeit wegen wollen wir den Beweis von (4.9) angeben. Zunâchst

kann man wegen [3] annehmen, dass Zund Freduzierte komplexe Râume sind, ferner

kônnen wir annehmen, dass Firreduzibel ist. Da es eine irreduzible Komponente von

X gibt, die durch h auf Y abgebildet wird, kann auch X als irreduzibel angesehen

werden. Es seien X*, 7*, /z* die Normalisierungen von X, Y bzw. h. Mit X ist auch

X* Steinsch, wegen [14, Satz 8 e)] ist mit X* auch F* Steinsch, wegen [11] ist mit
7* auch Y Steinsch.
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§5. Beispiele

Die weiter unten folgenden Beispiele 1 bis 3 schliessen sich eng an ein Beispiel von
Grauert (vgl. [6], S. 342) an, das deshalb zunâchst angegeben werden soll. Zunâchst
definieren wir auf dem C2 zwei komplexe Strukturen séx und srf2 folgendermassen:

AJi : C2 -> C3 sei gegeben durch A : (x, y)^ (x, y\ y% f2 : (x, y)^ (x +y, y2, j3). fx
und/2 sind eigentliche injektive holomorphe Abbildungen, also sind/i (C2) und/2 (C2)
analytische Unterrâxime von C3. Es sei nun s/t definiert durch die Festsetzung, dass

ft einen Isomorphismus von (C2, s/t) auf/f (C2) erzeugt fur i= 1, 2. Die Singularitâten-
menge von (C2, es/f) ist genau C x {0}. Die Strukturen s/1 und sé2 haben die intéressante

Eigenschaft, dass (C2, <stf1n£/2) kein komplexer Raum ist; man beweist das

durch Koeffizientenvergleich gewisser Potenzreihen âhnlich wie in [6, S. 342].

BEISPIEL 1. (Zwei komplexe Strukturen Ox => 02 auf einem komplexen Raum X
derart, dass (X, (9X) holomorph-konvex, (X, 02) nicht holomorph-konvex.) Es sei P1 der

komplex-projektive Raum der komplexen Dimension 1, zwei Punkte a1 ^a2eP1 seien

gegeben. Dann sei (X, 0J := C2 xP1, versehen mit der ùblichen Mannigfaltigkeits-
struktur. (X, (P2) mit 62ci01 gehe aus (X, 0X) folgendermassen hervor: Man ersetze

in (X, 0t) die Untermannigfaltigkeit C2 x {at} durch (C2, j^t) x {at} fur /= 1, 2. Das
soll genauer bedeuten: Man bilde (den nach [8, (1.8)] existierenden) Pushout zur
Einbettung C2 x {a^ c; (X, Ox) und zur kanonischen Abbildung C2 x {a^ -> (C2, j/j)
x{at} in der Kategorie der komplexen Râume und ersetze in dem so erhaltenen

Pushout durch émeute Pushoutbildung C2x{a2} durch (C2, <$/2)x{a2}. (X, Ox) ist
trivialerweise holomorph-konvex, (X, (92) ist jedoch nicht holomorph-konvex: dazu
sei h: (X, @1)-+(X, O2) kanonisch; zu h konstruieren wir, wie vor (4.5) angegeben,das

Diagramm (*) vor (4.5). Man ûberlegt sich nun leicht, dass dann P in kanonischer
Weise zu (C2, j/x n stf2) isomorph ist, also kein komplexer Raum ist; wegen (4.5) ist
also (X, (92) nicht holomorph-konvex.

BEISPIEL 2. (X holomorph-konvex, R eigentliche endliche analytische Àquivalenz-

relation auf X, Y: X/R komplexer Raum mit der Eigenschaft MAKZ, Y nicht
holomorph-konvex.) Wir definieren zunâchst weitere komplexe Strukturen s/3, sf4,
stfs auf C2 folgendermassen: sf3 sei definiert durch die Festsetzung, dass

gii(C29 j/1)-*(C2, s/3), (x,>>)>-»(x, j + l), ein Isomorphismus ist; j/4 sei

definiert durch die Festsetzung, dass

g2 : (C2, *53^2)i—> (C2, «5/4), (x,y)\-+ (x, y — 1), ein Isomorphismus ist ; se5 : jt/3 n s/4.
(C2, jtf5) ist also komplexe Mannigfaltigkeit ausserhalb von C x {1} und C x { — 1};
(C2, eî/5) hat auf C x {1} die gleichen Singularitâgen wie (C2, s/x) auf C x {0}, auf
C x { — 1} die gleichen Singularitâten wie (C2, j/2) auf C x {0}. - Tsei die Âquivalenz-
relation auf C2, die jeweils die Punkte (x, y) und(x, -j)indentifiziert. Die holomorphe
Abbildung g : C2 -» C2, (x, j)h-> (x, y2 -1), erzeugt einen Isomorphismus (C2, j/5)/T-+
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-> (C2, j/x n ja/2). - Wir definieren jetzt X: der komplexe Raum X gehe (âhnlich
wie in Beispiel 1) ans der Mannigfaltigkeit C2xP1 dadurch hervor, dass man
(aeF1 sei gegeben) in C2xPx die Untermannigfaltigkeit C2x{a} ersetzt durch
(C2, stf5) x {a}. X ist holomorph-konvex, die Remmertsche Reduktion von X ist
(C2, <%?5). R sei die Àquivalenzrelation auf X, die jeweils die Punkte ((x, y), b) und
((*> —y)> b) identifiziert; dabei sei beP1 mit b + a fest gegeben. Wegen [5, (1.8)] ist
Y: X/R ein komplexer Raum, Y ist jedoch nicht holomorph-konvex: bildet man
zur kanonischen Projektion h\X-+ Fdas vor (4.5) beschriebene Diagramm (*), dann
ist P^(C2, s/5)/T^(C2, <£/1ns/2) kein komplexer Raum, wegen (4.5) ist also Y
nicht holomorph-konvex.

BEISPIEL 3. (R, 5,(^0 5)°° offerte eigentliche endliche analytische Àquivalenz-

relationen aufX; X/R, X/S komplexe Râume, X\ (R u S)00 kein komplexer Raum.) Wir
benutzen die gleiche Bezeichnung wie in Beispiel 2. Es sei X die disjunkte Vereini-

gung von X3 : (C2, <z/3) und X4 : (C2, <s/4). R sei die Àquivalenzrelation auf X,
die jeweils (x, y)eX3 mit (x, —y)eX3 identifiziert und (x, y)eXAr mit (x9 —y)eX^. S sei

die Àquivalenzrelation auf X, die jeweils (x, y)eX3 identifiziert mit (x, y)eX4. Dann
ist X/S=(C2, s/s), XI(RvS)co (XIS)IT=(C2,j/5)IT^(C2,^1njf2), also ist

XI(RuS)00 kein komplexer Raum.
Die Idée, das oben zitierte Beispiel von Grauert fur die Beispiele 2 und 3 nutzbar

zu machen, stammt im Wesentlichen von dem bereits zitierten Beispiel von Holmann
in [6, S. 342].

BEISPIEL 4. (X irreduzibel, holomorph-konvex, R eigentliche endliche Àquivalenzrelation

auf X, Y: X/R komplexer Raumt Y hat nicht die Eigenschaft MAKZ,
ist also nicht holomorph-konvex.) Es sei wieder Ar: CxP1, zwei Punkte a^beP1
seien fest gegeben. R sei die Àquivalenzrelation auf X9 die fur n eN jeweils die Punkte

(n, a) und (n + \,b) identifiziert. Y: X/R hat die geforderten Eigenschaften.

BEISPIEL 5. (X réelle Mannigfaltigkeit, R eigentliche endliche Relation aufX, R00

endliche Àquivalenzrelation, R™ nicht eigentlich, folglich (wegen (1.4)) TR^=T°R=0).
Es sei X. R xS\ parametrisiert durch X={(x, (p); xeR9 O^qxln}. Dann sei fur
0< v<«, veN (jeweils modulo 2n gerechnet)

R(z):= {z} sonst. R ist eigentlich und endlich, Rœ ist endlich, aber nicht eigentlich,

denn
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ist kompakt, R°° (K) ist nicht kompakt, da die Folge

in R™ (K) liegt, nicht jedoch ihr Limes (0, n).
Beispiel 5 zeigt, dass fur nichtanalytische eigentliche endliche Relationen R i.A.

^"ist, dass also die Endlichkeit von jR°° nicht die Eigentlichkeit von Rœ

inpliziert.
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