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Semicontinuity of the Face-Function of a Convex Set
Victor KLEE and MICHAEL MARTIND)

Dedicated to Hugo Hadwiger on His Sixtieth Birthday
Introduction

Throughout this paper, X is assumed to be a closed subset of a topological linear
space E; other conditions on X and E are stated explicitly, sometimes in standing
hypotheses at the beginning of a section. For each point x of X, F(x) is the closure
of the union of {x} with all segments in X that cross x; that is,

F(x)=cl{y:[y, y + A(x — y)] = X for some 4 > 1}.

The set-valued function F'is called the face-function of X, for when X is a finite-dimen-
sional convex body or the boundary of such a body, F(x) is the smallest face of X
that includes x. (In this case the closure in the definition of F(x) is redundant.) The
set of all points of X at which the face-function Fis lower [resp. upper] semicontinuous
is denoted by X, [resp. X,].

Though some of our theorems apply to infinite-dimensional sets, this introduction
describes only the finite-dimensional results. One of our two main results is the follow-
ing.

THEOREM A. If X is the boundary of a d-dimensional convex body then the face-
Sfunction F of X is lower semicontinuous almost everywhere in the sense of category and
upper semicontinuous almost everywhere in the sense of measure. However, when d>3
an example of Corson [4] shows that F may be lower semicontinuous almost nowhere
in the sense of measure and upper semicontinuous almost nowhere in the sense of category.

Actually, the statement that F is upper semicontinuous almost everywhere in the
sense of measure is proved only for d<3, so part of the above theorem remains as
a conjecture.

Now let K be a compact convex set in a locally convex E and let C(K) be the set
of all continuous real-valued functions on K. For each feC(K) let f, denote the
restriction to K of the pointwise supremum of all continuous affine functions on E
that are majorized on K by f. The function f,, which is plainly real-valued, convex,
and lower semicontinuous, is here called the envelope of f. Let K, denote the set of

1) The authors are respectively at the University of Washington, Seattle, U.S.A., and the Univer-
sity of Denver, Denver, U.S.A. Their work was supported in part by the Office of Naval Research,
U.S.A. and that of the first author was also supported in part by the Boeing Scientific Research Labo-
ratories in Seattle.
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all points of K at which all envelopes are continuous. For a finite-dimensional X, the
points of K, were shown by Witsenhausen [17, p. 20] to be precisely the points of
convergence of a certain approximate algorithm for a type of minimax stochastic
control problem associated with K. Plainly int K< K,, and Witsenhausen proved that
K,= K when K is a polytope as well as when K is strictly convex. Kruskal [11] reported
Witsenhausen’s conjecture that K,=K for all finite-dimensional K, disproved it by
a 3-dimensional example, and conjectured that K,= K for all 2-dimensional K. Our
second main result is the following.

THEOREM B. If X is the boundary of a d-dimensional compact convex body K,
and X,= XN K,, then X,< X, and X, is almost all of X in the sense of category. Further,
X,=X when d=2.

Thus Kruskal’s conjecture is proved and it is seen that Witsenhausen’s algorithm
has good convergence properties with respect to category, though not necessarily
with respect to measure.

We are indebted to J. B. Kruskal for supplying a prepublication copy of [11], and
to H. H. Corson, R. R. Phelps, and the referee for helpful comments.

Preparatory Remarks

Semicontinuity is used in the sense of Choquet [3] and Fort [5]. If T'is a topological
space, S(T') the set of all closed subsets of T, and N; a net on a directed set D into

S(T), then
limy, p Ny={teT: for each neighborhood U of ¢, N; eventually intersects U},

l_i_rﬁae pN;={teT:for each neighborhood U of ¢, N, frequently intersects U}.
If Z is a topological space and S is a function on Z into S(T'), then S is said to be
lower [resp. upper ] semicontinuous at the point z, of Z provided thatlim;, , S(z5) = S(zo)
[resp. lim,, S(z;)=S(z,)] for each net z; that converges to zy in Z. When the point
z, admits a countable neighborhood base, these definitions are equivalent to the
corresponding ones that involve sequences rather than nets. When 7" is compact they
are equivalent to requiring that for each open set U which intersects S(z,) [resp.
contains S(z,)] the set {zeZ: U intersects S(x)} [resp. {zeZ:U contains S(z)}] is
a neighborhood of z,,.

As the term is used here, a body is a set that has nonempty interior. Hausdorff
k-dimensional measure is denoted y,.

Now suppose that X is a closed convex set or is the boundary of such a set. Then
a face of X is defined as a convex subset C of X such that C contains [p, g] whenever
D, g€ X and C intersects ]p, g[. For xe X, the smallest face of X that includes x is the set

F,(x)={y:[y, y + A(x — y)] = X for some 4 > 1}.
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If X is finite-dimensional, then F(x)=F,(x) and F deserves its name of face-function.
However, the reader should be warned that when X is infinite-dimensional the set
F(x) need not be a face of X. Suppose, for example, that X is a compact Choquet
simplex. Then it may happen that the set ext X of all extreme points of X is dense
in X (Thue Poulsen [16]). On the other hand, it follows from results of Alfsen [1, p. 101]
and Stermer [15, p. 257] that ext X is closed if and only if F(x) is a face of X for all
xeX.

Lower Semicontinuity of the Face-Function

Recall the standing hypotheses that X is a closed subset of a topological linear space
E, F is the face-function of X, and X, is the set of all points of X at which F is lower
semicontinuous.

1.1 THEOREM. If X is locally compact, separable, and metrizable, then X, is a
dense G subset of X.

Proof. Let X,, X,,... be a sequence of compact sets whose union is X. For each
pair of positive integers i and j let W,; denote the set of all points x of X for which
there exists a point ye X; and there exists a sequence x; in X converging to x such that

@) [y, y+A(x—y)] <X for some Ae[1+i~!, 1+i], and

(b) the distance from the point y to the set lim F(x;) is at least i ~".

It follows by routine arguments that X~ X,=J5 -, W, ; and each set W,; is closed.
Hence X, is a G; set.

For each positive integer i and each point x of X, let F;(x)=cl {y:[y,y +A(x—y)] <X
for some Ae[1+i7!, 1+i]}. As each F, is everywhere upper semicontinuous, it follows
from Theorem 12 of Fort [5] and the Baire category theorem that there is a dense G,
subset ¥ of X such that each function F; is lower semicontinuous at each point of V.
Consider an arbitrary point v of ¥ and sequence x; in X converging to v. For each i,

F,(v) < lim F;(x;) < lim F (x;),

and as the last set is closed it follows that
F(v)=cl | F,(v) = lim F(x,). O
: p—

For the X of Theorem A, 1.1 implies X, is a dense G; subset of X. If d<2 the set
ext X is closed and consequently X,=X. We now describe a simple example showing
that if >3 X, may be a small subset of X in the sense of measure. Let C be the unit
circle {(«, 8, 0):a®> +B%=1}, let p=(0, 0, 1), and for each ceC and 1€[0, 1] let

A(c,)=[c,c+Ai(p—0c)]ule,c+A(—p—0)].

For each ne[0, 4] let C" be a Cantor set in C such that y, (C~ C")<n, let K" be the
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convex hull of the set

(U A, 1=m)u( U A(e, 1 —2y),

ceCn ceC~Cn

and let X" denote the boundary of K”. Then
U A4(c, 1 —n) = X"~ X],

ceCn
whence it follows that lim,_,ou, (X)/u, (X")=0 even though X" converges to the
set (U, ccA4(c, 1) as 0.

Up to this point, our discussion has been aimed at the case in which X is the
boundary of a finite-dimensional convex body. When X is the boundary of an infinite-
dimensional convex body (or, in particular, is the unit sphere of an infinite-dimensional
separable Banach space), we do not know whether X, is necessarily nonempty or
dense in X. Now suppose, on the other hand, that X is an entire convex set. X is
dense in X when X is a body. But what happens when X is an infinite-dimensional
compact convex set? In the metrizable case, 1.1 implies X, is almost all of X in the
sense of category. In the locally convex case, cl con X;=X by the Krein-Milman
theorem (for plainly X;>extX), but we do not know whether X; must be dense in X.
If X is compact and convex but nonmetrizable and E is not locally convex, must
X, be nonempty?

Continuity of Envelope Functions

Throughout this section, X is the boundary of a compact convex set K in a locally
convex space. The set K, is as defined in the introduction, and X,= X n K,

2.1 PROPOSITION. For any feC(K) and any peKk, f,(p) is the infimum of all
numbers of the form Y o, f (k;), where p=> {ok; is an expression of p as a convex
combination of points k; of K. For any closed face L of K, the envelope of f’s restriction
to L is equal to the restriction to L of f’s envelope.

Proof. The first assertion follows from Lemma 9.6 and Proposition 4.5 of Phelps
[14]. The second assertion is an immediate consequence of the first one and the
definition of a face. [ ]

The following formalizes the idea behind Kruskal’s example [11] of a 3-dimensional
K for which K, # K.

2.2 THEOREM. If F is the face-function of K and F (k) is a face for all ke K, then
K,<K,; that is, F is lower semicontinuous at each point of K.,.

Proof. Consider an arbitrary point p of K~ K, and let k; be a net converging to
p in K such that lim F(k;)$ F(p). By passing to a subnet if necessary, we can find a
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point g of F(p) and a neighborhood ¥V of ¢ that is disjoint from C, the closure of the
union of the sets F(k;). There exist points ve VN F(p) and weK and a number
A€[0, 1] such that p=Av+(1—4) w. Now let f (c)=1 for all ceCu {w}, let f (v)=0,
and extend f to a member of C(K). As fis identically 1 on each of the faces F(k;),
it follows from the second part of 2.1 that f,(k;)=1 for all 5. However, any affine
function g majorized on K by f must have

g(p)=72g()+(1-Agw)<1-14,
so that f,(p) <1, £, is discontinuous at p, and p¢K,. []

2.3 THEOREM. If K is metrizable then the set of points at which the restriction
to X of every envelope function on K is continuous forms a dense G5 subset of X.

Proof. Since K is metrizable there is a sequence f; of functions uniformly dense
in C(K). It follows from [14, p. 19(c) and 4.5] that the sequence f;, of envelopes is
uniformly dense in the collection of all envelope functions on K. Therefore the set
in question is the intersection of the sets of points of continuity of the restrictions of
the f;_, each of which is well known to be a dense G; subset of X. The desired con-
clusion is then an immediate consequence of the Baire category theorem. [

2.4 COROLLARY. If K is a metrizable compact convex subset of a locally convex
space then K, is a dense G subset of K.

2.5 COROLLARY. If X is the boundary of a d-dimensional compact convex body
K then X,c X, and X, is a dense G subset of X.

Proof. The first statement of 2.5 follows from 2.2. In view of 2.3 it suffices for
the second to show that a real-valued, lower semicontinuous, convex function f on
K is continuous at every point of continuity of its restriction to X. This is left to the
reader. [

We do not know, in general, whether X,=X.

2.6 PROPOSITION. X,=X if d<2.

Proof. If F(x) is a segment it follows from the proof of 2.5 that f, is continuous
at x. If x is an extreme point then f,(x)=f (x) as a result of 2.1. It follows easily that
Je is upper semicontinuous at x. []

Upper Semicontinuity of the Face-Function
The standing hypotheses for this section are the same as for the preceding section.

In addition, for any set ¥ with face-function G, the inside I(Y) is defined as the set
of all points ye Y such that G(y)=Y. (This notion is due to Michael [12].)
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3.1 THEOREM. If X is the boundary of a convex body and Y is a maximal convex
subset of X then I(Y)c X,

Proof. Let F and G be the face-functions of X and Y respectively, and consider
an arbitrary point yelI(Y). Then G(y)=7Y by definition, and from the maximality
of Y it follows that F(y)=Y. We want to show that for an arbitrary net x; converging

to y in X, and an arbitrary point pelim F(x;), it is true that pe F(p). As [p, y]<X,
there is a supporting hyperplane H of X such that [ p, y]< H. Any segment in X that
has y as an inner point must lie in A, whence Y < H and it follows from the maximality
of Y that

Y=XnH>sp.

A subset U of a set X is said to be ubiquitous in X provided that every point of X’
belongs to U or is an endpoint of a segment in U.

3.2 THEOREM. If E is complete, metrizable, and separable, and X is the boundary
of a convex body in E, then X, is the union of all sets of the form I(Y), where Y is a
maximal convex subset of X. The set X, is ubiquitous in X.

Proof. With U denoting the union in question, it follows from 3.1 that Uc X,
Any point x of X lies in a maximal convex subset Y of X, and as Y'is closed a construc-
tion of Michael [12, 5.1] and Klee [7, 2.6] produces a point yeI(Y). It is easily verified
that ]x, y]<I(Y) and thus U is ubiquitous. If x¢ U, then F(x) does not contain Y
even though F(v)=7Y for all ve]x, y], and consequently x¢ X,. Thus X,=U. []

If X is as described in Theorem A of the introduction, it follows from 3.2 that X,
is dense in X. We conjecture, moreover, that yu,_, (X~ X,)=0, but are able to prove
this only for d< 3. The proof is based on the following result concerning upper semi-
continuous collections of convex sets.

3.3 THEOREM. Let C be an upper semicontinuous collection of compact convex
subsets of Euclideann-space E" suchthat\ ) Cis a Borel set,and let W=\_c.c(C~I(C)).
Then p,(W)=0 when n<2.

The theorem is trivial when n=1, for then W is countable. Suppose that n=2 and
let J, K, and L denote respectively the collections of all 0-, 1-, and 2-dimensional
members of C. Then (JJ is a G5 set relative to | C and contributes nothing to W,
while L is an F, set and contributes nothing to u, (W). Thus we may (and will) assume
without loss of generality C=K.

Choose a small positive p—— <1/100 will surely suffice. For each pair p, g of
distinct points of E? whose coordinates are all rational, let K(p, q) denote the collec-
tion of all members of K that have one endpoint within || p—q|| of p and the other
within 5| p—q| of g; the set of former endpoints is denoted by W(p, ¢). Then
K={J,, K, q) and W=UJ,,,W(p, ¢), and with the aid of upper semicontinuity
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it follows that for each p, ¢, | JK(p, q) is a Gj set relative to | K. To complete the
proof it suffices to show u, W(p, g)=0.

For each point xe W(p, q), and each ¢ with 0 <g<p, let S(x) be the member of
K(p, ¢) that has x as one of its endpoints and let x, be the point of S(x) whose distance
from x is &. Let W,(p, 9)={x,:xe W(p, q)}. It follows with the aid of upper semi-
continuity that each set W,(p, q) is an F,; set relative to {_JK(p, g) and hence is
u,-measurable. To complete the proof it suffices to show that

™ lxe = yell = llx — yll/2

for all x, ye W(p, q) and O0<e<n, for it then follows that u, W,(p, q)=u, W(p, q)/4,
and, as the various sets W,(p, q) are pairwise disjoint, a contradiction would ensue

if u, W(p, q)>0.

Let L(x) denote the line containing S(x), L' (x) the part of E(x)~ S(x) adjoining x,
and L’'(x) the rest of L(x). If L(x) and L(y) are parallel the inequality (¥) is trivial,
so we assume that L(x) and L(y) intersect and, for notational simplicity, that their
point of intersection is the origin 0. There are four possibilities: (a) 0e L' (x) n L' (y);
(b) 0eL'(x)nL'(y); (c) 0e L' (x)n L' (»); (d) 0eL’(x) n L' (). Denoting ||x| and |y|
by o and f respectively, in case (a), x,=x+exa~ ' and y,=y+eyf ~!, while in case
(b) x,=x—exa~! and y,=y—eyB ~. The two cases will be treated together. We have

1%, — yell =llx + exa™ — (y £ eyB™ )
=lx(1 e ) —y(1 ea™) £ey(@™ — )
=l(1te ) (x—y)xey(B-a)a™ g7}
>l +ea™ | [lx—y|—eax - yl.
It follows that ||x,—y,|| > |lx—yl|l in case (a) and
Ix, = yell = (1 — 2ea™ ) x = yll = Ix = yll/2

in case (b) because ¢ < a/4 in this case. Finally, in case (¢), let § denote the acute angle
between L and M and suppose first that 0 comes between y and y,. Then by the law
of cosines

1% = yll* = (e — B)* + (e + @)* ~ 2( = B) (¢ + a) cos O
=2e(e— B+ a)(1 —cosB) + a® + B> + 2uf cos
> o + B2 — 2aB cos(n — 0) = |x — y|>.

If, instead, y, comes between y and 0, then

lx; = yell* = (e + @)* + (B — &)* + 2(e + @) (B — &) cos 8

and

Ix — y|? = «® + B% + 208 cosb.
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Hence ||x,—y,||>2"%|x—y| if and only if &* 4o +(f—&)% +2a(B —¢) cosO +4ex +
+4e(B—e) cos0>2e(B—e)+2ex cosO. As B—e=0, e2+(B—e)*>>2e(f—¢), and
4ea>2ex cos B, the desired conclusion follows. The same argument handles case (d). []

The assumption of upper semicontinuity was used only to get measurability, but
simple examples show this assumption cannot be completely discarded. In addition,
some geometric condition related to the straightness of the segments is necessary.
For consider a Jordan region J in the plane whose boundary curve has positive
2-dimensional measure, let C be a continuous collection of parallel segments filling
all but two antipodal points of a circular disk D, and let K be the collection of arcs
obtained from the members of C under a homeomorphism of D onto J. Then K is
a continuous collection of pairwise disjoint arcs whose endpoints form a set of positive
2-dimensional measure.

For any collection S of line segments in E? let P(S) denote the set of all endpoints
of the members of S. A subset M of E*is called an endset provided that M= P(S) for
some collection S of pairwise disjoint segments. It follows from 3.3 that when d <2
the d-dimensional Lebesgue measure of any compact (and hence any measurable)
endset in E¢ is zero. However, for d=4 (and hence for all d >4) Bruckner and Ceder
[2] have produced in E? a compact endset of positive d-measure. Their construction
is based on Nikodym’s example [13] of a Cantor set X of positive measure in E2 such
that for each point x of X there is a line in E? intersecting X only at x. It is unknown
whether a compact endset in E° must be of measure zero [10].

3.4 THEOREM. If X is the boundary of a d-dimensional convex body then
Ua—1 (X~ X,)=0 when d<3.

Proof. No restriction on d is required until the end of the argument, when 3.3
is used. Assuming without loss of generality that the convex body in question is
compact and is situated in a d-dimensional Euclidean space E*, we show first that the
body may also be assumed smooth.

Suppose X' is the boundary of a compact convex body Y’ in E¢, and let X, denote
the set of all points at which the face-function of X’ is upper semicontinuous. Let B
denote the unit ball of E? and let Y=Y’ + B, a smooth convex body. Let X denote
the boundary of Y, and for each point xeX let x’ denote the unique point of X’
nearest to x. It is well-known that ||x] —x3|| < ||x; —x,| for all x,, x,€X, and hence
the mapping ' carries sets of zero (d— 1)-dimensional Hausdorff measure onto such
sets. Thus the reduction to the case of smooth convex bodies is justified if we can
show that the set X~ X, is carried onto the set X'~ X, by the mapping '. For this it
suffices, in view of 3.2, to show that for any maximal convex subset M’ of X’ there is
a maximal convex M c X such that the restriction to M of the mapping ' simply
translates M onto M'. Indeed, choose x'eI(M’), let J be a closed halfspace supporting
X' at x’, and let b be a point at which B is supported by a translate of J. Then
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the set M=M"'+b is a maximal convex subset of X, with m'=m—b for all me M.

Now suppose X is the boundary of a smooth compact convex body Y in E?, and
let M denote the collection of all maximal convex subsets of X. For each MeM there
is a supporting hyperplane H of X such that M =Xn H, whence it follows from
smoothness that the members of M are pairwise disjoint and by a routine argument
that M is upper semicontinuous. Let S denote the boundary of a d-dimensional simplex
that contains Y and let ¢ be a radial mapping of S onto X. Let T,,..., T; be the
(d—1)-dimensional faces of S, and for 0<i<d let

M, = {(e"'M)nT:MeM}, W= U (C~I(C).

CeM;

As M, is an upper semicontinuous collection of compact convex sets, it follows from
3.3 with n=d—1 that u,_, (W;)=0. But X~ X, = | J§ oW, and the mapping ¢ is known
to be lipschitzian ([6]), so the desired conclusion follows when d<3. []

3.5 PROPOSITION. If X is the boundary of a d-dimensional convex body then X,
is an F,; set.

Proof. Let A denote the set of all points x of X such that x lies in two or more
maximal convex subsets of X. For each i, let A; denote the set of all xeX such that
there are two hyperplanes H' and H" supporting X at x and forming an angle of at
least 1/i and there are points x’€e XN H’ and x"e Xn H” such that

%" = x[1=1/i <[Ix" — x]|.

Then A=|JT 4, and a routine compactness argument shows each set A4; is closed.
Thus A4 is an F, set. Let S=X~ A4, and for each peSlet M, denote the unique maximal
convex subset of X containing p. Then S is a G; set.

For 1<j<d—1, the j-interior int; X is defined as the set of all points x of X for
which there exists a j-dimensional flat J such that x is interior to X nJ relative to J.
Plainly int,_, X is open relative to X, and a routine compactness argument shows
each set int; X is an F, set.

For each pair of positive integers i and j with j<d let

S;; = {peS:M, contains a j-dimensional ball of radius > 1/i}.

Then S;; is closed relative to S and it follows from 3.2 that
d-1 o
X,=8S~ U UlX~int;X)nS;;],
j=1i=1
the difference of a G; and a G,,. []

If X is as described in the conjecture stated in the introduction, it follows from
3.5 that X, is an F,; set, and from 3.4 that X, is almost all of X in the sense of
measure (at least when d<3). Of course X~ X, is countable when d=2. We now
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describe some examples with d=3 showing X, may fail to be either an F, set or a
G; set, and it may be of the first category in X.

Suppose X is the boundary of a d-dimensional convex body and all the maximal
convex subsets of X are 0- or 1-dimensional. By 3.2, X~ X, is the set Z of all endpoints
of 1-dimensional maximal convex subsets of X. Now suppose, in addition, that both
Z and (extX)~ Z are dense in X. As (extX)~ Z is a G set, it follows from the Baire
category theorem that Z is not a G; set and hence X, is not an F, set. With d=3, an
X in which the sets Z and (ext X)) ~ Z are both dense can be constructed by a procedure
used by Klee [8, pp. 99-103] for constructing an X in which the set exp X of all exposed
points of x is not a Gj set. (A point x of X is exposed provided that there is a suppor-
ting hyperplane H of X such that X n H={x}.)

3.6 EXAMPLE. For d>3 there is a d-dimensional compact convex body with
boundary X such that p,;_,(X;)=0 and X, is of the first category in X.

Proof. Let Y' denote the union of all segments joining the point (0, 0, 1) to a point
of the semicircle {(x, B,0):2>0, a®+B%=1}, and let Z denote the union of the
semidisk {(«, B, 0):a0=>0, «*+B%<1} with the triangle con{(0, 1,0), (0, —1, 0),
(0,0, 1)}. Let K'=conY’'=conZ, a 3-dimensional convex body (half of a truncated
circular cone) whose boundary is Y’ U Z. By a slight perturbation of Y’, moving Y’
to a nearby position Y while leaving invariant the points of Y’ n Z, Corson [4] con-
structs a convex body K=con Y such that the boundary of Kis Yu Z and the follow-
ing conditions are satisfied: ext Y is dense in Y, exp Y is an F, set, the set W=extY~
~exp Y is dense in ext Y, and every exposed point of Y~ Z is an endpoint of a seg-
ment in Y~ Z. It follows that Y,c Y~ W, Y,=extY, and Y,nY,cYNnZ. As Wis a
dense G; set in Y, it follows from the Baire category theorem that Y, is not a G; set
in Y and is of the first category in Y. Further, it follows from 3.4 that u,(Y;)=0.

Four copies of the above example Y (or, rather, of its intersection with a suitable
halfspace) can be fitted together to form a slight perturbation of a double cone
resulting in a 3-dimensional compact convex body with boundary X such that X,
is not a G set in X and is of the first category in X, and u, (X;)=0. Successive double
cones over this set X result in similar examples in higher dimensions. []

Our discussion has thus far been aimed at the case in which X is the boundary of
a finite-dimensional convex body. When X is the boundary of a convex body in a
metrizable linear space E that is complete and separable, it follows from 3.2 that X,
is dense in X. To see that the completeness assumption cannot be abandoned, let
X be the unit sphere of the subspace of /() consisting of all points having only
finitely many nonzero coordinates. To see that the separability assumption cannot be
abandoned, let X be the unit sphere of the space /(¥;). In each case the set X, is empty.
Now suppose, on the other hand, that X is an entire convex set. Then X,>I(X)
and hence X, is dense in X if 7(X)#0 (in particular, if X is centrally symmetric or
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is complete, metrizable, and separable). If X is a body then X, =int X, If X is the unit
ball of /2(¥,) in the weak topology, then X is compact and metrizable and X, is an
F, set of the first category in X. If X is the intersection of the unit ball of /*(¥X,) with
the positive cone of /% (¥,), in the weak topology, then X is compact and X, is empty.

Continuity of the Face-Function

With X denoting a closed subset of a topological linear space E, let X,=X,n X,,
the set of all points at which the face-function of X is continuous. Then X, =intX
when X is a convex body. Suppose, on the other hand, that E is an infinite-dimensional
separable Banach space, and let Z; denote the space of all compact convex subsets
of E, metrized by the Hausdorff metric. Then Z is a complete metric space and those
XeZg for which X, is nonempty form a first category subset of Z;. To see this, note
that X,=0 whenever extX is dense in X, and then apply two results of Klee [9, 2.1
and 2.2].

Note that u, (X,)=0 in the example of 3.6; indeed, X, is the union of a finite
number of rectifiable arcs. To obtain an unbounded 3-dimensional convex body with
boundary X such that X, is empty, fit together two copies of the Y of 3.6 so as to
obtain a perturbation of a circular cone that has the same base as the cone; then send
the base to infinity by a projective transformation.

We do not know whether X, may be empty when X is the boundary of a bounded
convex body in a complete metrizable separable space E of dimension d>3. However,
it seems probable that X, may be empty when d>3 but not when d=3.
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