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Pseudo-Hermitian Symmetric Spaces

by R. A. SHAPIRO

§1. Introduction

In contrast to Riemannian symmetric spaces very little is known about the de-
tailed geometric structure of non-Riemannian or so called affine symmetric spaces.
In [2] Berger has classified all the affine symmetric spaces on the Lie algebra level,
but globally little is known. Much of the difficulty arises from the fact that when the
symmetric space is represented as a homogeneous space G/R the isotropy group R
is not compact if G/R is not Riemannian. By restricting ourselves to the generalizations
of Hermitian symmetric spaces the problems become more tractable. In the semi-
simple case the Hermitian symmetric spaces are singled out among all the others by
the presence of central elements in the isotropy subgroup. This is the key fact that
carries through to the case of pseudo-Hermitian symmetric spaces.

In section 2 we discuss the relationship between Lie algebra and global descrip-
tions of pseudo-Hermitian symmetric spaces and show that all these spaces are simply
connected and hence there is a 1-1 correspondence between them and the algebras
they define.

Section 3 deals with an extension of the Borel embedding theorem, which says
that a non-compact Hermitian symmetric space may be holomorphically embedded
in its compact dual. First we define the associated Riemannian symmetric spaces of
non-compact and compact type, A* and 4. Here 4 and 4* are dual Hermitian sym-
metric spaces and their definition depends only upon the complexification (g, r¢).

THEOREM. Let G/R be an irreducible pseudo-Hermitian symmetric space. Then
there exist injections Y: A*—G/R and Y, :G/R— A.

Here i, is the generalized Borel embedding and -y is the ordinary Borel
embedding of A* into 4. Hence any pseudo-Hermitian symmetric space is “‘sand-
wiched” between its associated Riemannian spaces. Alternately, this theorem may be
regarded as a factoring of the standard Borel embedding of A* into A through the
space G/R. We should note that 4 has a representation as a complex flag manifold
G¢/B and that the images of ¥ and y,y are just the orbits through the origin of the
appropriate groups.

In Section 4 we examine Berger’s fibering theorem in the special case of a pseudo-
Hermitian symmetric space. The fiber is a Hermitian symmetric space of non-compact
type and the base is a Hermitian symmetric space of compact type. These are not to
be confused with the associated spaces of Section 3. We show how a pseudo-Hermitian
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symmetric space induces a non-trivial fibering in the associated space of non-compact
type and discuss the relation of these fiberings with the generalized Borel embedding.
Next we give a generalization of the Cartan-Harish Chandra realization of a Hermi-
tian symmetric space as a bounded symmetric domain. An irreducible pseudo-Hermi-
tian symmetric space is embedded in a holomorphic vector bundle over a compact
Hermitian symmetric space and in each fiber the image is a bounded symmetric
domain.

Now we consider a reducible pseudo-Hermitian symmetric space G¢/Rc. We show
that the fibering G¢/Rc— G¢/B is equivalent to the holomorphic cotangent bundle of
A. The inclusions of 4* and G/R into G¢/R. thus define sections over the orbits
Y,V (4) and ¥, (G/R). These sections are then related to the Harish-Chandra real-
izations of A* and G/R.

In section 5 we employ a technique of Griffiths and Schmid, [5], [10], to show
that G/R is k+1 complete in the sense of [1], where k =dim¢K/L. Then this implies
H"(G/R, 4)=0n>k where ¢ is any coherent analytic sheaf on G/R.

I would like to thank Tom Sherman for many helpful hints and suggestions and
Jim Lepowski for a great simplification of Proposition (2.4). The proof given is his.

§2. A pseudo-Hermitian symmetric space M is an affine globally symmetric space
supplied with an almost complex structure J and an indefinite Hermitian structure /
such that the symmetries are isometries of h. The group of isometries (M) is a
transitive real Lie group acting on M and we can write M =G/R where G is the
identity component of I(M) and R is the isotropy group at some point of M. The
real part of 4 is a G-invariant pseudo-Riemannian metric on G/R and so its metric
connection defines the symmetric space structure on M, [9] Theorem 15.6.

(2.1) PROPOSITION. The metricch is Kdhler, J is integrable and the symmetries
are holomorphic.

Proof. Let (X, Y) denote the real part of A(X, Y). Let s be any isometry. We have
(X, Y)+i(X,JY)=h(X, Y)=h(ds X,ds Y)=(ds X,ds Y)+i(ds X, Jds Y). Since his
non-degenerate it follows that ds commutes with J. To prove 4 Kéhler it suffices to
show that J is invariant under parallel translation. Let p, and p, be any two points
on a geodesic and let s be the symmetry at the point midway between p,; and p,. Then
—ds is parallel translation from p, to p,, [6] p. 164. But since J commutes with ds it
must be invariant under parallel translation from p, to p,. It follows immediately
that J is integrable, as is shown in [6] p. 302 for example. Q.E.D.

Recall that for any affine symmetric space the Lie algebra g of G can be decomposed
as a direct sum g =q +r where r is the Lie algebra of R and g is an r-module, identified
with the tangent space to M at the origin, and [g¢, g] =r. That is, G/R is a reductive
homogeneous space with the additional symmetry condition that [g¢,q]<r. The
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involutive automorphism 6 defined by this decomposition is the differential of the
symmetry at the origin. The Lie algebra g together with such a decomposition is called
either an involutive Lie algebra or a symmetric Lie algebra. The subalgebra r is called
a symmetric subalgebra. R may be identified with the holonomy group of the ca-
nonical symmetric connection and r with the holonomy algebra. In order to suitably
decompose an affine symmetric space into irreducible objects we make the standing
assumption that g be semi-simple.

By choosing a basis compatible with the symmetric decomposition g=g +r and
looking at the matrix representations of adx and ady for xeq and yer it is easy to
see that ¢ and r are orthogonal under the Killing form. If g is semi-simple the Killing
form is thus non-degenerate on both r and q. Since g is completely determined as the
orthogonal complement to r the involutive Lie algebra (g, ) may also be denoted by
(g, r). It will frequently be convenient to do so.

If (g, 0) is a semi-simple involutive Lie algebra it is well known that there exists a
Cartan decomposition 7 of g such that t and 6 commute. From this fact it follows
that r acts completely reducibly on ¢ and that r must be a reductive Lie algebra. An
alternate proof of these facts may be obtained as follows. Since the Killing form is
non-degerate on r, r must be reductive by [4] p. 79 Prop. #5 That the semisimple
part of r acts completely reducibly is well known. Now let x be central in 7. Then the
semisimple and nilpotent parts of ad x are polynomials in ad x and so must be central
in r. But any nilpotent central element of r must be orthogonal to all of g and so the
center of r must contain only semisimple elements.

The involutive Lie algebra (g, 0) is called simple if there do not exist any 8-stable
non-trivial ideals. If g=)  g; is a decomposition of g into simple ideals then either g;
is f-stable or 0 interchanges two ideals g; and g;. Clearly any central element of the
0-fixed point set of g;+60(g;) must be central in all of g;+0(g;) and so if (g, 0) is the
involutive Lie algebra of a pseudo-Hermitian symmetric space each g; must be §-stable.
Indeed, if g=) (g;, r;) is a decomposition into simple involutive Lie algebras, the
almost complex structure J must have a non-zero projection on the center of each r;.
Hence we may limit ourselves to the case where g is simple.

(2.2) PROPOSITION. If g is simple then rc has at most a one-dimensional
center (over C) which may be spanned by an element z with eigenvalues *i on qc.
The eigenspaces q* and q~ are abelian, isotropic and dually paired under the Killing
form, and irreducible as rc-modules.

Proof. Let gc=) V, be a simultaneous eigenspace decomposition of g¢ under the
action of the center of r¢. Since [V,, V3] =r¢, on applying adz with z central in r¢ we
conclude 0=(a(z)+B(z))[V,> V,] and so either a=—f or [V,, V;]=0. In particular
each V,_ with a0 is abelian. Pick some V, with a#0. Let V=V,+V_,and W=}V,
where B# +o. Now V+W=gc and [V, W]=0 and so V+[V, V] is a non-trivial
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ideal of g¢ and so must equal g¢. Let z and z’ be any two central elements of r¢. Then
for some complex number ¢ «(z)=cu(z’) so a(z—cz’)=0 so z—cz' is central in g
and so z=cz'. Since V,=[z,V,] we get (V,, V,)=([z, V., Vo) =(z, [Va V,])=0,
and similarly for V_,. Now V_, must be non-zero and indeed dually paired with V,
since the Killing form is non-degenerate on g¢. Letting V., =¢*, everything is proved
except the irredicubility of g*. Let g* =V, +V, be a decomposition of g* into two
rc submodules. Then we can decompose g~ into two submodules ¢~ =W, + W, with
(Vis W;)=0, i=1, 2. We then have [V, W;] =0 since (r¢, [Vi, Wi])=([r¢, Vi), W)=
<= (V;, W;)=0 and the Killing form is non-degenerate on rc. Hence V; + W, + [V, W,]
is anideal in g¢ so either V; =0or V; =q* and W, =q".

(2.3) COROLLARY. If (g, r) is a simple involutive Lie algebra and r is not semi-
simple then one of the following must be true

1) gcis simple and r has a one dimensional center.

2) galready is a complex simple Lie algebra.

Proof. We have already noted that g must be simple. If g¢ is not simple it is well
known that case 2) holds. So assume that g is simple and that » has central elements z
and z’ which are linearly independent over the reals. By the eigenvalues of adz and
adz’ must appear in positive-negative pairs. But they must also appear in conjugate
pairs so the only possibilities are pure imaginary or real. We may assume that adz
has eigenvalues +1 and adz’ has eigenvalues +i. Let x be an element of g. Then there
are elements x’eq* and x"eq~ such that x=x"+x". Then ix=adz'(x'—x")=adz’
adz(x)eq so g is closed under multiplication by i, and since r=[g, g] all of g is.

Q.E.D.

Remark. In case 1) r acts on q irreducibly. For any decomposition of ¢ into r
submodules would lead to a decomposition of ¢ which we know is irreducible if g¢
is simple. The preceding discussion justifies the following definitions.

DEFINITION. A simple involutive Lie algebra is called a simple irreducible
pseudo-Hermitian Lie algebra if r has a one dimensional center whose adjoint action
on g has pure imaginary eigenvalues. It is called a simple reducible pseudo-Hermitian
Lie algebra in the case where g is complex.

DEFINITION. A pseudo-Hermitian Lie algebra (p.h.l.a.) is a finite direct sum
of irreducible or reducible simple pseudo-Hermitian Lie algebras. If all the simple
summands are either irreducible or reducible we can begin the definition with the
appropriate adjective.

If (g,7)=(g1, 1)+ +(&m rs)=(81++* +&u r1+-- +r;) then the isotropy Lic
algebra r has at least an n dimensional center. Let z; be the element in the center
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of r; with eigenvalues +i on ¢;. Then z=z; +--- +z, is a central element of r with
eigenvalues +7on g, called the canonical central element of r.

We know that every pseudo-Hermitian symmetric space determines a p.h.l.a. We
now investigate the converse question and see that there is exactly one pseudo-
Hermitian symmetric space associated to every p.h.l.a. and that it is simply con-
nected.

Given a p.h.l.a. (g, 0) let G be any connected group with Lie algebra g. Let T be
the 1-parameter subgroup {expzz}. If G has finite center then T is a torus. Let G, =
=centralizer of T..

(2.4) PROPOSITION. Gy is connected.

Proof. We will first prove this under the assumption that G has a finite center.
Let g=p+k be a Cartan decomposition of g which commutes with the canonical
decomposition. Let K be the connected subgroup of G corresponding to k. Then
T< K and K is compact because G has finite center. Let P =expp. It is well known that
G has a unique ““polar decomposition” G=P-K and that exp is 1-1 on p. Since zek
it follows that G, =P;K; where Ky =centralizer of T in K, etc. It is also well known
that in a compact, connected group the centralizer of a torus is connected so all we
need to worry about is P;. Let aeT and expXePr. Then expX=a expXa~'=exp
Ad aX and so (Ada) X=X since exp is 1-1 on p. Thus for all real # we have a (exptX) x
xa !=expt AdaX=exptX so the whole l1-parameter subgroup exptX is in Py hence
P; is path connected.

Now let G have an infinite center Z. Let G* =G/Z and T* ={exptz} in G*. Then
Z<Gr and (Gp)*=Gyr/Z is the centralizer of T* in G*. Since G* has no center
(Gr)* is connected and so G/Gp= G*/G7 is simply connected. It follows that G, must
be connected. Q.E.D.

(2.5) PROPOSITION. G/Gy is a pseudo-Hermitian symmetric space.

Proof. Let @ be conjugation in G by the element expnz. It is easily seen that @
is an involutive automorphism of G whose differential at the origin is 6. Gy is the
identity component of the @-fixed point set and thus is a closed subgroup such that
G/Gy is an affine globally symmetric space where the symmetry at the origin s, is
induced by @. Let J,=adz | q. Since J, centralizes Gr, this defines a G-invariant
almost complex structure J on G/Gy by homogeneity. The Killing form is non-
degenerate on g and admits J, and @ as isometries. Since J is G-invariant this may be
G-translated to give the real part of a G-invariant indefinite Hermitian metric on
G/Gy. To prove that we have a pseudo-Hermitian symmetric space it will suffice by
homogeneity to show that at every point p, J commutes with ds,. Let g be an element
of G such that p =gG;. We have Lg,," @ =0 L, where L denotes left multiplication
in G. Taking differentials and passing to G/R this becomes dLg g, dso =ds, dL,. Now
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using this formula, the invariance of J and the fact that J, commutes with s, we easily
compute that J (,,dso =dsoJ,. Q.E.D.

(2.6) PROPOSITION. Let (g, r) be a pseudo-Hermitian Lie algebra. If G is a group
with Lie algebra g and R is a closed subgroup with Lie algebra r, then G/R has a G-
invariant almost complex structure if and only if R =Gr.

Proof. Assume G/R has a G-invariant almost complex structure J. Then J re-
stricted to the tangent space to the origin of G/R gives an endomorphism J, of ¢
such that

a) Ji=—1

b) J, commutes with Ad R restricted to g.

Let gc=) ¢; be a decomposition of g into irreducible Ad R modules. Let a; be the
algebra of endomorphisms of g; generated over the complex numbers by the identity
component of AdR and consider the commuting algebras Hom, (g;, g;).

By Schur’s lemma these are all isomorphic to the complex numbers. Now both
adz and J, are in Hom, (g;, ;) so on g; we must have adz=c;J, where c; is some
complex number (which indeed must be +1 since J§ = —1). Since J, commutes with
AdR this means adz must and thus so must exps adz=Ad exp ¢z. If aeR then
Ad((exprz) a(exp —tz) @™') is the identity on g and since the centralizer of ¢ in
AdR is discrete the curve (expfz)a(exp —tz)a~' must be a single point, which
indeed must be the identity. Hence ae G'r. Q.E.D.

COROLLARY (to proof). On a simple pseudo-Hermitian symmetric space the
almost complex structure is unique up to sign.

Remark. The result of the last three propositions is that every pseudo-Hermitian
symmetric space is simply connected and that there is a 1-1 correspondence between
pseudo-Hermitian Lie algebras and pseudo-Hermitian symmetric spaces. From now
on we shall always denote G by R.

§3. Let (g, r) be a pseudo-Hermitian Lie algebra and g=p+k a Cartan decom-
position whose involution T commutes with the canonical involution 6. Then we have

r=(rnp)® (rank), g=(@np)®(@nk),
k=(qnk)® (rnk), p=(qnp)® (rnp).

Let u=the compact algebra which is dual to the Cartan decomposition of g
That is, u=ip@k=i(gnp)@i(rnp)®(gnk)®(rnk). The algebra u contains the
algebra r*=i(rnp)®(rnk) as a compact subalgebra. Let u* be the non-compact
algebra which is dual to (¥, r*). u*=(gnp)®i(gnk)@i(rnp)®(rnk). Since the
canonical central element of r, z, is contained in rnk it is clear that z is also the
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canonical central element of r* in the algebras u and »*. Hence the involutive Lie al-
gebras (u, r*) and (u*, r*) define Riemannian Hermitian symmetric spaces of the
compact and non-compact type, respectively. By the fact that Hermitian symmetric
spaces are simply connected there is indeed a unique Hermitian symmetric space
associated with each of these algebras. Denote these by 4 and A* respectively.

DEFINITION. Given (g, r), the space A defined above is called the associated
Riemannian space of compact type. The space A* is called the associated Riemannian
space of non-compact type.

It is clear that the definitions of 4 and 4* depend only on the pair of complex Lie
algebras (gc, r¢)- That is, if (g;,r;) and (g,,r;) are two pseudo-Hermitian Lie
algebras such that (g;)c=(g,)c and (r;)c=(r;)c, then the spaces 4 and 4* will be
the same for (g,, r;) and (g,, r,). Indeed, we may get them from (g, r¢) as follows:
Let r* be a compact real form of r¢ and extend this to a compact real form u of ge.
Then since r* is a symmetric subalgebra we may form the dual of » with respect to
r*. Call it u*. Then the spaces associated to (u, r*) and (u*, r*) will give 4 and 4*.

Let (g, r) be a pseudo-Hermitian Lie algebra and (g, r¢) its complexification.
Let G¢ be the connected, simply connected real Lie group with Lie algebra g¢. Let the
groups G, U, U*, R, R*, Rc and Q™ be the connected subgroups of G¢ corresponding
to the subalgebras g, u, u*, r, r*, rc and g~ respectively. It should be noted here that
U and R* are compact and that exp is a diffecomorphism of ¢~ with @7, as follows
from the Iwasawa decomposition for example. G/R is the pseudo-Hermitian sym-
metric space associated with (g, r) and the spaces 4 and 4* are given by U/R* and
U*/R* respectively.

The Borel embedding of A* into A tells us: 1) B=RcQ "~ is a closed parabolic
subgroup such that U/R* is holomorphically diffcomorphic to the complex flag
manifold G¢/B. 2) U*/R* is holomorphically embedded in G¢/B as the open U* orbit
of the identity coset. In particular U* n B=R* [6] Theorem 7.13.

(3.1) THEOREM (Generalized Borel embedding). Let G/R be an irreducible
pseudo- Hermitian symmetric space. Then G/R is holomorphically diffeomorphic to the
G-orbit of the identity coset in G¢/B. This orbit is open.

Proof. Since Rc B the inclusion of G into G defines a map ¥ of G/R onto the G
orbit of the identity in G¢/B. To show ¥ monomorphic we need G n B=R. This is the
content of the next three lemmas.

LEMMA. Gn Q™ ={1}.

Proof. First note that g and ¢~ are disjoint, for if xegng™ then —ix=[zx] is
in g which contradicts the fact that g is a real form of g¢. Hence the group GNn Q™
must be discrete. Assume aeGNQ~ with a#1. Then there is an 4eq~ such that
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a=expA. Conjugate a by the elements of T": (expz) a(exp —7z) =exp (Ad exp#z) A =
=exp (exp? adz) 4 =expe’4. Because z is in g the left-hand side of this equation
must be in G for all real ¢. But expe4 is in @~ for all real ¢ and since exp is 1-1 on
g~ this proves that GN Q™ contains the curve expe”4 which contradicts its being

discrete. Q.E.D.

LEMMA. GNBcR:NG.

Proof. Let acGn B. Then there is an Aeg™ and xeR¢ such that a=(exp4) x.
Again conjugate by the elements of 7, remembering that this group centralizes
Rc:(exptz) a(exp —tz)=(expe4) x for all real z. Therefore (exp—A4)a=x=
= (exp —e"4) (exptz) a(exp—1tz) and so (exptz)a(exp—1z) a~' = (expe™4)
(exp —A4)eQ~ for all real ¢. But since a is in G the left-hand side of this equation
must be in G, and so the last lemma implies that each side of this equation is the iden-
tity. Thus exp A =expe’4 for all real ¢ and so 4 must be zero since exp is 1-1 on g~.
Hencea=xeR,. Q.E.D.

LEMMA. RcnG=R.

Proof. Rc Rcn G and both of these groups have the same Lie algebra, r. They
both centralize T and so are connected, hence equal.

Now a dimension count shows that ¥ (G/R) is open. To show § holomorphic it
suffices to show that it is almost complex, and by homogeneity it is enough to show this
at the origin. The tangent spaces to the origins of G/R and G./B may be respec-
tively identified with ¢ and gc/b where b=rc+q . Let x be in g and write x=x" +x~
with x*eq™ and x”eq~. Then dy:q—gc/b is given by diy (x)=x modb=x"* modb
and so dy (Jox)=dy (ix* —ix™)=ix" modb =i dy (x). Q.E.D.

The remainder of this section will be devoted to proving the following theorem.

(3.2) THEOREM. Let y, denote the generalized Borel embedding of G/R into its
associated Riemannian space of compact type, U/R*. Let \, denote the Borel embedding
of the associated Riemannian space of non-compact type U*/R into U/R*. Then
¥, (U*/R*) <y, (G/R).

Before giving the proof we will recall some work of G. D. Mostow that will be
used heavily.

DEFINITION. Let g be any Lie algebra and e a subspace of g such that [x [ x, y]]€e
for all x, yee. Then e is called a Lie triple system.

(3.3) THEOREM (Mostow). Let g=p+k be a Cartan decomposition of a semi-
simple Lie algebra. Let e be a Lie triple system contained in p and f = {xep l (x, e)=0}
be the orthogonal complement to e in p. Let K be the connected Lie subgroup correspond-
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ing to k. Then G=K-exp ( f)-exp(e) is a topological decomposition of G. The expression
of g as the product k-a-b with ke K, acexp( f') and beexp (e) is unique.

Proof. See [8]. A proof is also given in [6] p. 218. For the relation between Lie
triple systems and totally geodesic submanifolds see [6] p. 189.

(3.4) COROLLARY. In the notation already established, we have the following
unique topological decompositions:

a) G = K-exp(rnp)-exp(q N p) b) G = K-exp(qnp)-exp(rnp)
c) U*=R*exp(i(kngq))-exp(png) d) U*=R*exp(png)-exp(i(kng)).

Now we can give the proof of (3.2)

Proof. Let k, be the semi-simple part of k. Then (ky, rnk,) is a (Riemannian)
Hermitian pair, since r Nk, contains the canonical central element z of r and z acts
non-singularly on g, =q¢nk,. Let g; be the —ieigenspace of adzin (¢,)c. Let B, be the
connected subgroup corresponding to (rnk,)c®q; , K, the subgroup corresponding
to k,, L the subgroup corresponding to rnk,, B=Q R¢, and K| the subgroup
corresponding to k* =i(k,; nq) +(k, N r).

If k has a center, it must be contained in r nk. For r=centralizer ;(2), so if z, is
centralin k then [z;, z] =0so z, isin r. Hence g "k =q N k,. Now we claim that

(3.5) expi(gnk)cK-B.

The Borel embedding theorem applied to K;*/L tells us that as subspaces of (K, )¢/B;,
K{/L is contained in K,/L, i.e., K{'-L<K,-L-B,. Hence K< K;-L-B,*L. Now by
the Cartan decomposition for a semi-simple group of non-compact type
K{=expi(gnk,)L.So we obtain

expi(qnk;)=K;'L-B;-L<=K-B

since L R Ggand B; = B. Now expi(gnk)=expi(¢qnk,)=K"B.

Finally, U*=exp(¢np)expi(qnk)-R* by Corollary (3.4c). So U*:B=
=exp(¢np)expi(gnk)-B since R*B=B and by (3.5) this is contained in
exp(¢np)-K-B. By (3.4) G=exp(gnp)exp(rnp)-K. So G:-B=exp(gnp)exp
(rnp) K- B. This clearly shows that U*-BcG-B. But y,(U*/R*)=U*-B/B and
¥1(G/R)=G-B/Bsoy,(U*/R¥)cy, (G/R). Q.E.D.

We may describe this theorem by the following diagram

G/R
v U1
VRN

U*/R*W U/R*
where Y=y ;' y,, which shows how the Borel embedding of U*/R* into U/R*
“factors” through G/R.
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§4. We will begin by stating and proving a theorem of Berger on the fibering of an
affine symmetric space, paying special attention to the specific features arising in the
case of a pseudo-Heimitian symmetric space [2], [7].

Recall that if H is any closed subgroup of G, then G—G/H is a principal G-bundle
with structure group H. If Fis any manifold on which H acts smoothly, then we may
form the associated bundle with fiber F. This is denoted G®x F—G/H. It is a fiber
bundle with base G/H, fiber F and structural group H. G ®yF is realized as the quo-
tient of the Cartesian product G x F under the equivalence relation (g, f )~ (g*h, h*f)
where h*f denotes the action of # on fand g- A is just group multiplication.

(4.1) THEOREM (Berger fibering). The irreducible pseudo-Hermitian symmetric
space G[/R is a C® fiber bundle. The base is a Hermitian symmetric space of compact
type, the fiber a Hermitian symmetric space of non-compact type and at each point the
symmetry commutes with the projection on the base.

Proof. In view of (2.4) we may work entirely with subgroups of the complex
group G¢. Consider the subalgebra g, =png+k nr. This is an involutive Lie algebra
which in general need not be semi-simple. However if g, has a center then as in the
proof of (3.2) we see that it must be contained in knr. So with respect to the sym-
metric space structure we lose nothing if we assume g, semi-simple. Let G; and L be the
connected Lie subgroups of G¢ corresponding to g; and knr respectively. Then
G;/L=F is an Hermitian symmetric space of non-compact type. Note that since the
polar decomposition G; =exp(pnq)-L is unique, F is diffeomorphic to exp(pngq).

Let K be the connected Lie subgroup of G corresponding to k. Then K must be
compact. By the same reasoning as above we may assume that k is semi-simple and
K/L is an Hermitian symmetric space of compact type.

Consider now the principal bundle K— K/L and the associated bundle with fiber F.
This may be written K ®, exp(p n ¢) where the action of L on exp(pngq) is given by
conjugation. This action makes sense because r N k normalizes p N gq.

Now we show that this associated bundle is diffeomorphic to G/R. Consider the

mapping
K x exp(pnq)— G/R
a b abR

Since (ax, x 'bx)—axx~'bx R=abx R=abR for all xeL, this map is constant on
equivalence classes and hence yields a map y: K® ; exp(p ngq)— G/R which is an epi-
morphism by (3.4b). We now show that y is a monomorphism. Let (a,, b;) and
(a,, b,) be two representatives of equivalence classes in K®,exp(pngq) and assume
x(ay, by)=yx(ay, b,). Then a,-b; =a, b, c for some ceR. Since R/L is a Riemannian
symmetric space, R=L-exp(pnr), c=x"1-d with x"'eL and deexp(pnr). Hence
a;-by=a, b,x ' -d=(ayx~') (xb,x"')-d. Since Lc K and exp(pngq) is stable under
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conjugation by L, the uniqueness of the decomposition (3.4) shows that ¢, =a,x ™!
and b;=xb,x™' and d=identity. Hence (a,, b,) and (a,, b,) represent the same
element of K®exp(p nq) and so x is indeed a monomorphism.

Finally, let n:G/R—K/L be the projection of the bundle G/R onto the base
space. Let’s prove that = commutes with the symmetry ©. First let us describe 7.
If xeG has the unique decomposition x=k-a-b, acexp(pnq), beexp(pnr) given
by (3.4) then n(x, R)=kL. Now X is given by conjugation with the element s =expnz
and since exp(p ng) and exp(p nr) are stable under this conjugation, @ (x)=sxs=
= (sks) (sas) (sbs) is the unique decomposition of Z(x) given by

Hence nX (x) =sksL =skL =ZXn (x). Q.E.D.

In the general affine symmetric case the fiber need not be a symmetric space. All
that is known is that topologically it is Euclidean. Also, in general there is a further
complication because K need not be compact, for we have no reason to limit ourselves
to subgroups of the complex group G. In this case the non-compact part of K is
factored out and put in with the fiber.

(4.2) THEOREM. Each pseudo-Hermitian symmetric space G[R induces the
structure of a fiber bundle in the associated Riemannian symmetric space of non-compact
type. Both the base and fiber are Hermitian symmetric spaces of non-compact type. The
fiber is the same as in (4.1).

Proof. We will show U*/R* is diffeomorphic to the bundle K* ® , F—»K*/L the
notation being the same as in (§3). As before, define y*:K*®, F>U*->U*/R*
which is onto because of (3.4). The fact that y* is a monomorphism is proved from
the uniqueness of the decomposition (3.4) exactly as was done for y in the last
Theorem. Q.E.D.

Consider the maps K—~»G—G/R and K*—G*—G*/R*. Since L R and R* they
induce maps «: K/L—G/R and B: K*/L— U*/R*,.

(4.3) PROPOSITION. o and B are monomorphisms.

Proof. Since L, K* nR* and KN R all have the same Lie algebra rnk and L is
connected, it will suffice to show that the latter two groups are connected, but this fol-
lows by (2.4) applied to the Hermitian pairs (K*, L) and (X, L). Q.E.D.

This proposition is no surprise, for « and B are just the injections of the base
spaces K/L and K*/L into the fiber bundles as the zero sections.

We have a map i:K*® F->K®_F defined by i=yx ¢y, :K* Q@ F-U*/R*~>
—G/R— K@ F. When restricted to the fiber over the origin i is just the identity and
when restricted to the base i is just the Borel embedding of K*/L into its dual K/L.
Thus we have interpreted the inclusion of Theorem (3.2) in terms of the fiber structure.

We will now give a simple but interesting generalization of Harish-Chandra’s
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realization of an Hermitian symmetric space of non-compact type as a bounded
symmetric domain.

(4.4) THEOREM. G/R can be holomorphically embedded in a holomorphic vector
bundle over the compact Hermitian symmetric space K/L. Interms of the fibering given
by (4.1) each fiber is mapped holomorphically into a bounded symmetric domain in
the corresponding fiber of the vector bundle, and on the base K/L the mapping is the
identity.

Proof. Consider the fibering K@ F of G/R given by (4.1). Harish-Chandra’s
results applied to F=G,/L may be described as follows. Every element of G, can be
uniquely written as an element of (G;)¢ as x”yx™ where x eexp(pngq)~, yeL¢ and
x"eexp(png)*. Here, as usual, (p ng)* denotes the +i eigenspace of adz in (p N g)
etc. Then A:G,/L—(pngq)~ defined by A(x"yx*L)=log(x~) is the realization of
G,/L as a bounded symmetric domain in (png)~. Also, 4 is holomorphic [6]. L
acts on (pnq)~ by conjugation and on G,/L by left multiplication. It is clear from the
description of A that A commutes with this action so L, and indeed even L, leaves the
image of A in (png)~ stable. Now form the complex vector bundle K® (pngq)”
associated to the principal bundle K— K/L. Since A commutes with the action L, the
map A:Kx F-»Kx (pngq)~ defined by 4 (a, b)=(a, A(b)) induces a map A: K®F-
—»K®;(pnq)” whichis easily seen to satisfy all the requirements except the assertion
of holomorphicity. Of course we may regard A as defined on G/R by means of y .

We induce a holomorphic structure on our complex vector bundle by means of the
C * bundle isomorphism

K®L(png) > Kc®p,(png)”

l l
K/L K¢/By

where B, is the parabolic subgroup L¢ exp(pngq)~. Since exp(png)~ acts trivially
on (png)~ itis clear that B leaves A(F) stable.

Since A is holomorphic on exp(p n¢q) and the almost complex structure on pN¢
is the restriction of that on g it follows that J and d4 commute at all points yR with
yeexp(png). Now all elements of K commute with A so dL,-dA,=dA,,-dL, for
xeK. From G=K exp(png)-R it follows that J and dA commute at all points of
G/R and so A is holomorphic. Q.E.D.

Let us now consider the case of a reducible pseudo-Hermitian symmetric space
G¢/Re. Consider the projection G¢/Rc—Gc/RcQ ™. This is a holomorphic fibering
whose base is the associated Riemannian space of compact type and whose fiberis 0~
which is analytically diffeomorphic to the complex Euclidean space ¢~ under log. W
will examine this fibering in greater detail in the following theorem.
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(4.5) THEOREM. The fibering G¢/Rc—Gc/RcQ™ is analytically equivalent to
the cotangent bundle of the associated compact space G¢/R:Q ™.

Proof. For convenience of notation let us denote the semi-direct product RcQ~
by B, and its Lie algebra by b. Now the tangent bundle of G¢/B is the bundle
Gc ®5(gc/b) where B acts on g¢/b by Ad. This is the same as G ® gg* where the
action of @~ on ¢™ is trivial. Then by the duality of ¢* and g~ under the Killing form
we may identify G ®pqg~ with the cotangent bundle, and since exp is an analytic
diffeomorphism of ¢~ with @~ we may identify the cotangent bundle with Gc®z 0~
where now B acts on @~ by conjugation.

Now G¢=U-B=U-R;Q". This decomposition is not unique, but if ub=u,b,
then u; 'u=>b,b"1eUn B=R* so for some re R* we have u=u,r and b=r "'b,r. We
can write b uniquely as x-y with xe Rc and yeQ ™, so b, can be uniquely written in
this form as b, =(r ~'xr) (r "'yr). From this discussion it is clear that we get a well
defined map of G¢/R¢ into Gc®pzQ~ by writing a representative g of a coset as
u-x+y with u, x, y as above and sending this to the equivalence class (ux, y). This map
commutes with the projection onto the base space. It is also clear that this map is 1-1.
Indeed if (ux, y)~ (u3x,, y;) then for some be B ux=u,x,b and so u; ‘u=x;bx"'€B
so x;bx~ e R* so be R¢ and uxy=u,x,y, mod R¢. Finally, to show this map is onto
consider a typical representative (g, w) with geG¢ and weQ~. Write g=u-x"y as
before. Then (g,w)=(ux,y, w)~ (uxw) so the coset uxw maps onto (g, w) modB.

Q.E.D.

Remark. As C* bundles the holomorphic cotangent bundle is U®z.q~ — U/R*
which may also be considered the anti-holomorphic tangent bundle. The isomorphism
between U®z«q~ and Gc®pq~ is realized by mapping a class mod R* into the
corresponding class mod B.

The natural embeddings of U*/R* and G/R into G¢/R¢ still give monomorphisms
when composed with the projection 7 to the base space; namely, the Borel embeddings.
Hence they define sections S; and S, in the bundle Gc®zg~ over the open orbits of
U* and G in G¢/B. Recall that these sections may be regarded as ¢~ valued functions
defined on U*B and GB respectively, which satisfy the relation

(4.6) S;(xb)=Adb7'S;(x) i=1,2

for all be B. We now relate these sections S; to the Harish-Chandra embeddings. In
order to do this we will have to recall Harish-Chandra’s map in more detail than was
done before. The reference for the next few paragraphs is [6], Chap. VIII.

Let & be a Cartan subalgebra of u* contained in r*. Then there exists a set of
strongly orthogonal roots 4, and corresponding root vectors E, , with respect to A,
such that {E,+E_, | ae4,} is a maximal abelian subspace a of g*=png+i(kng).
By picking {E,,} as part of a Weyl basis for g¢c we may even assume that 0E,=—E_,
and 0E_,= —E,. Here 0 is the Cartan involution on U*, which is the canonical in-
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volution 0 of G extended to G by conjugate linearity and then restricted to U*.
Let H,=[E,E_,]. Then0H,= — H,so H,eihcr.

(4.7) LEMMA. The map Q" x Rex Q™ —Q*RcQ" is an analytic diffeomorphism
onto an open set of G.
Proof. [6]p.317.

(4.8) LEMMA. exp ), t;,(E,, +E_,,)=exp(} tanht,E, ) exp(}. log cosht;H, )
exp (. tanht,E_, ) where the sums are over the set A, of strongly orthogonal roots.

Proof. [6]p. 316.

Let A=expa. Any element of U* may be written as x-a-x’ with x, x’e R* and
acA. Then Harish-Chandra’s map A sends the coset x-a-R*=xexp Y, t(E, +
+E_,,) R* to Adx(})_tanht,E_,) in ¢~ =(g*)~. It is clear that we do no harm if we
replace this by the map which sends x-a-R* to Adx (), tanh24E_,). We will now
mean this stretched out map when we refer to A.

Note that 4 is also a Cartan subalgebra of U so we can apply the complex Iwasawa
decomposition to write G uniquely as U-expih*N~ where N~ =expn~ and
n~ =) CE_,is the sum of all the negative root spaces with respect to 4 -+ik and some
ordering of the roots. If the roots are ordered in such a way that « is positive if
®(z)=+i then n~ decomposes into a semi-direct sum n~ =q~ +n, where n,=) CE_,
where a positive and «(z)=0. Since exp is a diffeomorphism on n~ this implies that
N~ =Ng- Q" is a semi-direct product, where Ny =exp (n,).

Letting N =exp (ih)- Ng we obtain the following

(4.9) LEMMA. There is a subgroup N of R such that Ge=U-N-Q~ is a unique
decomposition.

Suppose g=u-n-q is a decomposition of an element of expg* according to (4.9).
Then g2=0(g™ ') g=0(¢~*') 6(n~*) ng is a unique decomposition of g> with
0(¢g ' )eQ*, 6(n"')neR; and geQ~ by Lemma (4.7). On the other hand there is
some xe R* such that x~!gx is in 4 and so for some set of real numbers {#;} we have
x"gx=exp ) t,(E,+E_,)sox"'g*x=exp ) 2t;(E,,+E_,)

Using lemmas (4.8) and (4.7) and comparing the two expressions for g2 we get that

(4.10) g =expAdx) tanh 2t,E_, =expi(g)

Under the isomorphism of theorem (4.5) the coset gRc=u-n-qR goes into (u'n,
logg)~ (u-nq, logq) =(g, A(g)) in Gc®pq~ since Q~ acts trivially on ¢~. Hence we
have proved the following

(4.11) THEOREM. On the set expq* the section S, coincides with the stretched
Harish-Chandra embedding A.
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Remark. This is the best possible result along this line. For the orbit of U* in
G¢/B pulls back to U*B=expg*B in G¢ and so by (4.6) S, is completely determined
by its values on expg*.

(4.12) THEOREM. On the set K exp(pnq)=Gg, S, is given by S,(Kg)=A(g)
where A is the stretched out version of the Harish-Chandra map of G,/L into (pq)~.
Furthermore, on the image of A there is defined an analytic monomorphism d such that
deA =S,y where S, is now regarded as a bona-fide section instead of the coordinate
function.

- Remark. Since GB=Kexp(pngq)-B this theorem completely describes S, via
(4.6).

Proof. By 3.4b we can write an arbitrary coset of G/R as kgR with keK and
geexp(png). Now by lemma (4.9) applied to (G,)c we can write g=u-n-q where
ue(G,)cn U, ne(Gy)cn N and geexp(pngq)~. This is a unique decomposition and
(ku)-n-q is thus the corresponding unique decomposition of kg given by (4.9) applied
to G¢.

Under the diffeomorphism of theorem (4.5) kg goes into the class (k-u-n, g)~
~(k-u-n-q,q)=(k-g, 1(g)) by (4.10) applied to exp(p N q) in (G, )¢. Hence S, (kg)=
=A(g). Now A(kgR)=(k, A(g)). Define d(k, A(g))=(kg, A(g)). Then deA=S,°y
and since 4, S,, and  are analytic monomorphisms, d must be also. It also follows
that d is well defined on equivalence classes, a fact which may also be easily verified
directly.

§5. Let k =dim¢K/L. In this section we use a technique of Griffiths and Schmid [5] to
show that G/R is k +1 complete in the sense of Andreotti and Grauert. In particular
this means that H"(G/R, ¢)=0 for all n>k where ¢ is any coherent analytic sheaf
on G/R. [1]. A C* real valued function ¢ on a complex manifold M is called an
exhaustion function if ¢ ™! (— o0, c] is compact for every real number c. We say that
M is k-complete if it has an exhaustion function ¢ whose Levi form —8d¢ has
dim¢ M —k +1 positive eigenvalues at every point of M. Denote the image of y (G/R)
in G¢/B by D. The idea is to give two different Hermitian metrics to the canonical line
bundle over D and to obtain the exhaustion function as the ratio of these metrics.
The Levi form will then be given as the difference of the metric curvature forms and
thus may be directly calculated from the differential geometry of D.

We shall have need of the following special basis for g*. Let 4 be a Cartan sub-
algebra of r which is stable under 7. Since ze/ and ad z is non-singular on ¢, & must
be a Cartan subalgebra of g. Let {E, ,} be a Weyl base for g¢ with respect to A¢ and 7.
Recall that this means that gc=h¢ + ), CE,, is a root space decomposition of g¢ and
that (5.1) tE,=—E_, and (E,, E_;)=0,4. Since hccrc any E, is either in g¢ or r¢
so we can write ¢ " =), CE, where 4 = {all roots a such that a(z) = +i}.

The tangent bundle of G/R may be described as the associated bundle G X gg—
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—G/R. Recall that the Killing form restricted to ¢ gives the real part of the natural
pseudo-Hermitian structure #; on G/R. The tangent bundle of G¢/B is the associated
bundle G¢ X pgc/b. Since [q~, ¢* ] =r this is bundle isomorphic to G¢ X g+ =T where
now B=RcQ"~ acts by Ad R. with Q7 acting trivially. The Borel embedding of G/R
into G¢/B induces the inclusion of tangent bundles G x zg— G¢ % pqc/b, where xeg—x
modb. Under the isomorphism of G¢ x pge/b with T this is given on fibers by
X - 1(X~iJX). Denote this map of G x g g onto T'[, by M. Note that M is a C* bundle
diffeomorphism onto the holomorphic bundle T | p which defines the holomorphic
structure on G X rq.

We will now define two different Hermitian (indefinite) structures on 7. The first,
Hy, will be U-invariant and negative definite on the whole bundle and the second,
H,, will be G-invariant, indefinite and possibly degenerate; but on the restriction of
T to D it will at least be non-degenerate. On g we define two Hermitian forms in
terms of the complex Killing form. Here ¢ is the involution determined by the real
form g.

H(x y)=(x1(y), H (xy)=(x,0(y))-

Identify sections of 7' with functions S:Ge¢—g* such that S(gx)=Adx"'S(g) for
x€B. Then for any two sections S; and S, define

HU(SI,SZ)g = Ht(Ad gS1(g), AdgS, (g)) ’
HG(SI,SZ)g = .lfId (Ad gSl (g), Ad gS2 (g)) .

If xeB then Hy(S; S;).x=Hy(S;,S,), and similarly for H,;. Thus we have two well-
defined pseudo-Hermitian structures on 7 which are U-invariant and G-invariant
respectively. Since U acts transitively on G¢/B it may easily be seen, by using (5.1) for
example, that Hy is everywhere negative definite. On T | p Hg is non-degenerate since
o interchanges ¢* and ¢~ and these spaces are dually paired under the Killing form.

At each point pe G¢/B there is a linear transformation of the complex vector space
g™ such that Hs(S;S,),=Hy(4,S;S,), Since 4, is given as an Hermitian matrix
det A, is real. Let us give a different interpretation of det4,. On the holomorphic line
bundle L=G¢ x gA"q* we have two Hermitian metrics y, and 75 induced in the
standard manner by Hy and H, respectively. At any point p these two metrics differ
by a scalar multiple which is just det4,. That is, given any section 5, ys(S, S )=
=detA,yy(S, S),. This proves that det4, is C* on G¢/B. We may adjust the signs
of y, and y4 to make them both positive on D. With this done, we have yg = +det 4yy.

We claim that ¢ (p)=—log+det4, is an exhaustion function for D, where the
sign is chosen to make +detA, positive on D. This choice can be made because Hg
is non-degenerate on the connected set D and so det 4, is never zero on D. Since detA
is C* on all of G¢/B it will suffice to show that e~ ® = +det 4 is zero on the topological
boundary of D. We follow the line of proof given in [5, §8].
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(5.2) PROPOSITION. Ifp is on the topological boundary of D then det A, =0.

Proof. 1t will suffice to prove that H; is degenerate at p. Let p=xB and denote
(Adx) b=>b' etc. If p is on the boundary then the orbit G'p cannot have an interior
since the boundary is stable inder G. Hence the isotropy algebra at p must have
strictly higher dimension than the isotropy algebra at the origin, so dimr<dimgnbd'.
Passing to the complexification and noting that (g bd’)c=b"Nno(b') we get dimre<
<dimb'no(b’). Now lemma 2.10 of [12] p. 1133 says dimbd' no (b')=dim(re) +
+dim(¢*) no(g*). Since dimre=dim(rc)’ we are assured that (¢7) no(g™) is
non-empty. Let #' and v’ be elements of g™’ such that ¢ (v")=u’. There exist u, v in
gt s.t. w'=x-uand v'=x-v. Then Hg(q", v),g=(q*", c(v"))=(¢"", u')=(q", u)=0
since g " is isotropic. _ Q.E.D.

Now the Levi form of ¢ is —dd¢ =00 logys—00 logyy=—Ag+Ay where Ag
and Ay are the curvature forms of the canonical Hermitian metric connections of y¢
and y, on the holomorphic line bundle L |,. Note that for a line bundle we may
identify the curvature tensors with the curvature forms.

Let V be the canonical G-invariant symmetric space connection in the tangent
bundle of G/R. Let V' be the connection induced on T lD by M, viz. (ViS)p, =
=(MVagp—15,D7'S), where peG/R. Extend everything to the complex tangent
spaces by complex linearity. We write (¢*)c as ¢* +jg* with j2=—1, being careful
not to confuse j with the almost complex structure i of the real space g ™.

(5.3) PROPOSITION. V' is the canonical connection determined by Hg.

Proof. We must show that V'H;=0 and that relative to a locally holomorphic
frame field V'’ is given by a matrix of complex 1-forms of type (1, 0). From [9] Theorem
15.6 we know that V is the metric connection of any G-invariant metric on G/R. In
particular it is the metric connection of the real part of Ag. Since A is Kéhler we know
that Vig=0. A simple computation shows that Hg (X, IMY)=4hs(X, Y) and so it
follows that V'Hg=0. Let {S;} be a locally holomorphic frame field and {W;;} the
matrix of 1-forms such that VyS;=) W;;(X)S;. Since V is Kéhler the W;; are all
of type (1, 0). The corresponding 1-forms {W;;} for V' relative to the holomorphic
frame field MSIMN ™1 =S, are given by W/;(X)=IMW,;(M 'X)IM~'. Note that
MJ =i implies that M preserves the type of complex vector fields. Hence W;; van
nishes on all anti-holomorphic vector fields since W;; does. Hence W) is also of type
(1, 0). Q.E.D.

COROLLARY. The extension of V' to L | p by the derivation rule is the Hermitian
metric connection of y; and its curvature tensor is the extension of the curvature of V'
by the derivation rule.

(5.4) PROPOSITION. In terms of the Killing form on g¢ the G-invariant curvature
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formonL l p IS given at the origin by
Ao (% ¥) = 3 (2 [I1X, M1Y]).

Proof. Let W and W’ denote the curvature tensors of V and V' respectively.
We have W' (X, Y)=MW (M 'X, M 1Y) M. For simplicity let M 1 X =X", etc.
Then at the origin we have W(X'Y')=—ad[X’, Y'] Iq and W'(X, Y)=-M
ad [ X, Y]|q M1, for X, Ye(qg*)c. Since [X'Y']erc, ad[X’, Y] commutes with
It and we obtain W’ (X, Y)= —ad [X", ¥Y"]|,+. Hence the curvature induced on L |, by
W' is then Ag(X, Y)=—tracead [X’, Y']|,+. Now O=trad[X’, Y']|,.=trad[x",
Y’]ch+tr ad[X’, Y'],.. But r¢ is reductive so the latter trace is zero and we can
conclude that trad[X'Y’] ]q+ =—trad[X'Y']|,-. Finally (z, [X’, Y'])=trad:z
ad[X'Y])|,c=itrad[X'Y]|,s—itrad[X’, Y']|,- =2itrad[X’, Y']|,».  Q.E.D.

Now let V be the U-invariant canonical connection on U/R*. In the same manner
as before we induce a U-invariant connection V' on 7. Again we have a C® vector
bundle isomorphism M:U X g.q*—G¢ x gg™ which is an isometry of A; on each
fiber and V3 S=MVy -1 xyM ~'S.

As before we see that V' is the Hermitian metric connection of Hy on T. Calcu-
lating the U-invariant curvature tensor at the origin gives Wy (X, Y)=MW,(M "X,
M7 'Y)M '=—ad[M 'X, M~ 'Y]|,. for X, Ye(q")c.

On L this gives (5.5) Ay (X, Y)=3(z, [M ~'X, M 1Y]).

(5.6) LEMMA. IfXisinq" then
MX)=M(X)=(X—ijX) and M(c X))=M(1(X))=(X + ijX).

Proof. We will give the proof for IR, the other case being similar. Write X as
(X+0(X):)—i(iX +0(iX)s) which is of the form 4 +iB with 4 and B in g. Apply
M, remembering that ¢ interchanges ¢* and ¢~, to get M (X) =W (4) +jV(B)=
=3(4—iJA)+j}(B—iJB)=(X—ijX). Similarly write o(X) as }(¢(X)+X)+
+i4 (o (iX)+iX)and apply M to get Mo (X) =X +ijX. Q.E.D.

(5.7) PROPOSITION. Ay is positive definite on D.

Proof. By invariance it will suffice to check this at the origin, and since Ay is of
type (1, 1) it will suffice to check this on a basis of holomorphic complex tangent
vectors. Let {E,} be a Weyl base as in (5.1). Then {E, | «(z)= +i} is a basis for ¢"
over C. Let X,=E,—ijE,. Then by (5.5) and (5.6) we obtain

Ay (X.X;) =5 (2, (B eEp]) = - (2 [Ew E-]) =+ (B E-p) = 1005

Q.ED.
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(5.9) PROPOSITION. On (gnk)¢ c=(q¥)c Ag=Ay and on (qop)é Ag=—Ay.
The spaces (g k)¢ and (q N p)& are orthogonal under both Ay and Ag.

Proof. The first two statements follow from the fact that =1 on (gnk)c=gc
and 0 =—1 on (¢ p)c<=gc. Orthogonality follows because (¢ " k)¢ and (g p)c are
stable under ¢ and 7 and these two spaces bracket together into (pnr)c which is
orthogonal to (k N r)c under the Killing form of g. Q.E.D.

Let p=dimc(¢np)* and k=dimc(¢nk)*. From the preceding calculations it is
evident that the Levi form of ¢ has at least p positive eigenvalues at every point of D.
Now dim;G/R=dimcq* =p+k and dimcK/L=3% dimgK/L=% dimgz(gnk)=
=4} dim¢(gnk)c=dim¢c(gnk)™ =k so Dis k +1 complete as claimed.

COROLLARY. If 4 is any coherent analytic sheaf on G/R then H"(G/R, ¢)=0
forn>k.
Proof. This follows from [1, pg. 250].

Appendix

The following is a list of pseudo-Hermitian symmetric spaces taken from Berger’s
classification of all the affine symmetric spaces [2]. These are the entires marked
4 Kéhler”, which indicates the presence of the canonical central element of r.

The letter T denotes the on-dimensional torus which is the non-discrete center of
the isotropy subgroup and C* denotes the complex torus C— {0}. S(A4 x B) means the
connected subgroup corresponding to the matrices

A ] 0
0 [ B

with the restriction trace 4 +trace B=0. The other notation is standard, see [6]
Chap. IX, for example. There the matrix groups are described explicitly.

Classical Simple Irreducible Pseudo-Hermitian Symmetric Spaces

SL(2n,R)/SL(n,C) x T

SU*(2n)/SL(n,C) x T

SU(n—i,i)/S(U(h, k)x U(n—i—h,i—k))
S0*(2n)/SO*(2n —2)x T

SO0*(2n)/U (n — k, K)
SO(n—k,k)/SO(n—k,k—2)xT

SO(2(n — k), 2k)/U (n — k, k)
Sp(n—i,i)/U(n—i,i)

el A ol ol o
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Exceptional Simple Irreducible Pseudo- Hermitian Symmetric Spaces

1. EZ/SO*(10)x T 5 EJEIxT
2. E!/SO(6,4)x T 6. E}E}xT
3. E}/SO(8,2)xT 7. EE}xT
4. E2/SO*(10)x T 8. E3E}xT

Simple Reducible Pseudo- Hermitian Symmetric Spaces

1. SL(n,C)/S(L(n—k C)x L(k,C)) 4. Sp(n, C)/SL(n,C)x C*
2. SO(n,C)/SO(n—2,C)x SO(2,C) 5. ESSO(10,C)x C*
3. SO(2n,C)/SL(n,C) x C* 6. ES/ES x C*
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