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On Four Dimensional Surgery and Applications

by Sylvain E. Cappell1) and Julius L. Shaneson1)

Introduction

Let

vk(M) X yjk

l ï (k>n)

be a normal map of degree one [Bl]; i.e. Mn is a smooth «-manifold, Fis a connected
smooth «-manifold, or even just a finite Poincaré complex, b is a linear bundle map
over/, and/has degree one with respect to given ("local" in the nonorientable case)

orientations. Assume also that Y is connected and/ | dM\dM-+X is a homotopy
équivalence; we do not exclude the case dM=0. Let n=n1 Y and w:ti->{ + 1} be the

orientation homomorphism; i.e. the first Stiefel-Whitney class. Then there is an
invariant o{f b), in an abelian group lïn(n9 w)=Ln(n, w), of the normal cobordism
class relative the boundary of (/, b) (see [Bl], [B2, p. 7]), which vanishes when/is
itself a homotopy équivalence. For n {e}, this invariant was defined by Browder
and Novikov (see [Bl], [N]), and earlier by Kervaire and Milnor [M2], [K4] in a

spécial case. The gênerai case is due to Wall [W2], [W3]. (Our notation is slightly
at variance with [W3].) The functors Ln are periodic of period four; i.e. Ln=Ln+4,
and (t(/, b)=a((f b) x CP2), where CP2 is the complex projective plane.

Perhaps the two most important widely used properties of this invariant are the

foliowing:
(i) If n^5, then a(f b)=0 if and only if (/, b) is normally cobordant relative

the boundary to (g, c), where g is a homotopy équivalence.

(ii) Let n^69 and suppose Y=ZxI and h:(M, dM)-+(Z, dZ) is a homotopy
équivalence. Let c:vk(M)-*rjk be a linear bundle map over h. Let yeLn(n, w). Then
3 a normal cobordism relative the boundary,

v{W)^ri x I
ï l

of (h, c) ((/| d.W,b\ d-W) to the homotopy équivalence/1 d+ W:d+
with a(f b) y.

This property is a conséquence of the Plumbing theorem of Kervaire-Milnor for
n {e}. The gênerai case is due to Wall [W3]. The absence of such results for « =4, 5

x) Both authors were partially supported by an NSF Grant.
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is a serious obstacle to the study of 4- and 5-manifolds. In this paper we prove the
following (S2 =2-sphere, # dénotes connected sum, and t(S2 x S2) dénotes t copies
oîS2xS2).

THEOREM2.1. Let

v (M) -> y\

i l

be a normal map as above. Let M hâve dimension four. Then &(f b)=0 ifand only if
for some t^O, (fb) # t(S2xS2) (f# idt(S2xS2), b # id^*^) is normally co-
bordant relative the boundary to a homotopy équivalence.

In order to obtain this resuit, we solve a spécial case of the embedding problem
for two-spheres in four-manifolds. Say P is a connected smooth four-manifold, and
M=P # (S2xS2). Let Çen2(M) be a class on whose Hurewicz image in H2(M)
the 2nd Stiefel-Whitney class of M vanishes. Suppose 3t satisfying this condition
also, with the intersection number [Kl] [W2] £-t in Z^M] equal one.

THEOREM 2.2. (Compare [Wl]). The class £ is represented by an embedded

sphère in M # (S2 x S2) if and only if the self intersection invariant /i(^) (see §1 for
the définition) vanishes, in which case there is an embedding such that the inclusion of
the complément of the image into M # (S2 xS2) induces an isomorphism of funda-
mental groups.

As an application of 2.1, we find some new four-manifolds:

THEOREM 2.4. Let RP4 dénote real projective four-space. Then, for some t^O, 3

a smooth manifold K that has the simple homotopy type o/(RP4) # t (S2 x S2) but is

not diffeomorphic or even smooth or P.L. h-cobordant or normally cobordant to

R?4#t(S2xS2).
So far aswe know,this is the firstsuch example known in dimension four2). The

manifold K is stable in the sensé that Vr^O, K # r(S2 x S2) is never diffeomorphic
to RP4 # (t + r) (S2 x S2). K is topologically /z-cobordant to RP4 # t (S2 x S2).

Property (ii) for n odd is related to (i) for n even in that, loosely speaking, a non-
trivial obstruction in Ln(n, w) is obtained by constructing a normal cobordism

"doing surgery") in two différent ways to get a homotopy équivalence from a
suitable normal map in dimension (n-l) with vanishing surgery invariant, and

gluing the results together along the normal map of dimension (n-l). Hence we can
use our methods to obtain the following type of resuit:

2) The products of suitable 3-dimensional lens spaces with a circle yield examples of normally
cobordant homotopy équivalent 4-manifolds that are not diffeomorphic.
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Spécial case of THEOREM 3.1. Let yeL5 (te, w), and let Y, Z, K M, and c be as

in (ii), but with n 5; Le. dimM=4. Then if Z=Q # r(S2xS2)for a sufficiently
large r, 3 a normal cobordism (/, b) as in (ii), with a(f9 b) y.

The same method ofproof also leads to new examples of non-trivial 5-dimensional
/z-cobordisms; see Prop. 3.3. The minimum value we need for r dépends upon y; see

§3 for more détails.
The splitting theorem of [C], valid in dimensions at least six and generalizing [FI],

led to algebraic splitting theorems for the Wall groups, just as [FI] led to the

formula [SI]

omitting the orientation map from the notation. In gênerai, this algebraic splitting
involves the groups LBn(n9 w), where Bc Wh(7c) is a subgroup of the Whitehead group
of n invariant under the conjugation in Z[tc] determined by g-^w(g)g~1 for gen;
thèse groups are the target of an invariant representing, in high enough dimensions,
the obstruction to performing surgery to get a homotopy équivalence with torsion
in B. For BcB'9 there is an exact séquence analogous to that of [SI, Prop. 4.1] re-

lating L^and L*. Theorem 3.1 below is just the generalization of the spécial case

B=Wh(n) already mentioned above to the gênerai case LB5(n9 w). Theorem 2.1 can

also be generalized in this way ; this generalization is not of any use to us hère.

In [SI] and [S2] an algebraic splitting theorem for the groups Ln(n) was used, in

a very spécial case, to obtain information about 5-manifolds with fundamental group
Z; for example, a splitting theorem for homotopy équivalences into closed, fibered

5-manifolds over S1 [S2, Theorem 1.2] was proven. Let (F5, X)zd(F, U) x (-1, 1)=>

3 (F, U) be a manifold pair, dim F=5, Fconnected, Fconnected, with codimension

one submanifold pair with trivial normal bundle, or even a suitable Poincaré pair
(i.e., a 5-Poincaré pair for suitable B - see §4) and subpair, with n^V-^n^ an
inclusion that is (algebraically) 2-sided (§4). We consider a homotopy équivalence

h:(W5,dW)-+(Y9X)9

(W,ôW)2l smooth manifold pair, h transverse to (F, U)9 and

h | ôW:(ôW; ôW - h~lU9 /T'i/)-* (X; X - U9 U)

a homotopy équivalence of triples. We say that h is S-split if, for some F'cl ob-

tained by exchanging trivial 2-handles in the right (in particular V' V # t(S2xS2)-
see §4), h is transverse to V and

h:(W ; /TV, W - h^V')-* (Y; F', Y - F')

is a homotopy équivalence. We say h is S-splittable if it is homotopic relative the

boundary to an S-split homotopy équivalence.
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If 7- V is connectée, let BczWh(n) be the image Wh(?r1 (Y- V)) in Whf^F)
under the inclusion mduced map If Y— V— Yx u Y2 has two components, let B be

the subgroup in Wh(7i) generated by the images of Wh(7r17l), * 1,2, under the

natural maps. We say h is algebraically sphttable if ît has torsion x(h)eB. Using the

algebraic splittmg [C] of the Wall groups and the basic results 2 1 and 3.1, we prove
the followmg

THEOREM 5.1. Under the above hypothesis, h is S-sphttable if and only if it
is algebraically sphttable.

In the case n^n^Y\^ isomorphic to Zxa7i1(F) via an isomorphism consistent
with the inclusion induced map, the algebraic 2-sidedness condition is always satis-
fied For this case, a somewhat weaker form of 5.1 was proven first by W.-C Hsiang.
Our proof, even for this case, is independent and quite différent from this.

The proof of 2 1 and 3 1 dépends on the existence of certain diffeomorphisms of
four-manifolds constructed in §1. In an appendix, we give some further results on
diffeomorphisms of four-manifolds that may hâve independent interest.

Using the methods of this paper, one can prove weak forms for dimension five of
the other splittmg theorems of [Cl]. For example, one can dérive a theorem for
splittmg up to /z-cobordism provided a suitable torsion type invariant vanishes.

§1. Diffeomorphisms of Four-Manifolds

This section contains a generalization of some of the results of [Wl] to non-
simply connected manifolds. The most comprehensive results possible are not given ;

we confine ourselves to what we will need to use in this paper.
Let M be a compact, smooth, connected (not necessanly closed) four-mamfold.

We fix a closed 4-disk UaM and when appropnate we choose a suitable basepoint
in U, often without explicit mention. Let A Z[n1M] be the intégral group ring of
nxM, the fundamental group of M. Let H2(M; A)=H2(M, Z), the 2nd intégral
homology group of M, iCf the universal cover of M; this group acquires a (left)
/Umodule structure via the induced maps of covenng translations. Let Ça M be a
disk lymg over U, whenever we choose a basepoint UczM, we choose the corre-
sponding basepoint in Û and use it to détermine liftings of maps to J0. Let

Q:H2(AÏ;Z)xH2(iïi;Z)-+Z
be the usual intersection painng of homology classes, q is TtiM-equivanant. For a, p
m H2(M; A), we define their intersection number a-/? in A by

«'/*= Z <?(«,g/0g.
ge tciM

Let w:n1M->{±]} be the orientation map, î.e., w(x) l îff x préserves orientation
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gg~\in AÏ. Let " be the antiautomorphism of A defined by G£g/lgg)~ =£g w(g)Agg
Then this pairing is Z-bilinear, and for teA,

(i) (Ta)-jS T(a-£)and(ii) p-(x (a-p)~.
Let w2 (M) w2:#2 (M; Z)-»Z2 be the second Stiefel-Whitney class, and let

H:n2(M)-*H2(M;Z) be the Hurewicz homomorphism. Let aeker(w2o//), and

let/: S2-»M represent a. Then/*TM is trivial, where tm is the tangent bundle of M.
Hence there is a bundle équivalence of ts2©£2 with/*TM, s2 a trivial bundle; there

are two such équivalences up to isotopy because tt2(O(4))=0. It is easy to see that

they both détermine isotopic monomorphisms tS2-+/*tm. So, by the immersion

theory of [H3], we hâve an immersion/:S2-»M, representing a, with trivial normal
bundle; and this immersion is unique up to regular homotopy. Given such an immersion,

we may take its self-inteisection invariant as in [Kl], [W2], or [W3]; this
détermines a well-defined map

fi: ker (w2 o H -» A/I,
where I={X — 1 \ XeA). The following properties are satisfied:

(iii) a-a=jtf(a)+/i(a); (note that the right is really a well-defined élément of A)

(iv) /i(a+j8)=/*(a)+j*(0)+a-j8 (mod/); and

(v) p(*x)=Xti(*)X.
See [Kl], [W2], or [W3] for more détails.

Now we begin constructing diffeomorphisms. Let S1 xD3czUczM be a tubular

(disk-bundle) neighborhood of an embedded circle so that there is an embedded disk

Ce U which meets S1 x ôD3 transversely with

ÔC^CniS1 x D3) SX x z,

some zeS2 =dD3. Choose a basepoint on the circle S1 x O, OeD3 the origin.
Suppose given an ambient isotopy çt of M, 0<f<l, so that cpt préserves base-

point and (pi | S1 x O is the identity map. Then cpt induces a map of the 2-torus

T2=Sl xl/{(x, 0)~(x, 1), xeS1} into M, which préserves basepoints. Choosing an

orientation of T2 to be specified momentarily, the image of the orientation class

(under a basepoint preserving lift to M) détermines an élément œeH2(M; A). Given

co, we can use a theorem of Whitney [W6] as in [Wl] to find an isotopy that
détermines it in this way. We may suppose that cpx | S1 x D3 is an orthogonal bundle map

that fixes S1 x z pointwise, zeS2=dD3. We may also assume (by transversality) that

Let j*:H2(M;A)^>H2(M, S1xD*;A) be the natural map. (For A a M,

H2(M, A; A)=H2(Si,p~x(A); Z),p the covering projection.) Let [C] and [<PiCj

dénote classes in the target ofy* represented by thèse disks. A homotopy

/^(S1 x [0, ljuCS1 x 0)-*(M,S1 x D3), 0<*<l,
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(identifying S1 x 1 =S1 xz=ôC) is defined as follows:

ft(x9s) <pat(x9z) xeS\ O^s^l; and

ft\C <pt\C.

Then/0 represents [C] and/x represents \j
So, choosing the appropriate orientation of T2, we hâve

LEMMA1.1. [91C]
Let Mo and Mt be obtained from M by surgery [M2] using S1 x D3 and (px | S1 x D3,

respectively ; e.g., M± is obtained from the disjoint union of c\(M—(p1 (S1 x D3)) and
D2xS2 by identifying u with ^(w) for ueS1xS2 and smoothing corners. Let
h:M0-^Mt be the diffeomorphism

Let x0eH2 (Mo; A)be the class represented by Cu (D2 x z); let j>0 be représentée by
0 x S2. Let jq and j^ be similarly defined. (To do ail this, move the basepoint to
(O, z).) By standard arguments, we hâve the orthogonal décompositions

H2(Mt; A) H2(M; A)®{xi9 yt}A, i 0, 1 ;

the 2nd summand dénotes the submodule generated by xt and yt. Clearly n^i =tc1M,
/ 1, 2, and, with respect to the natural identification of thèse fundamental groups,
h induces the identity on n^

From Lemma 1.1 it follows easily, using the usual exact séquences and the
excision isomorphisms H2(Mh D2 x S2; A)^H2(M, S1 x D3; A), that

h(xo) x1 +œ + yyi9 yeA.

Clearly h*(yo)=y1. Now cpx is homotopic to the identity; it follows from this and
another simple argument with exact séquences, that for £e//2 (M; A), h* (Ç) Ç+Ayi.

But 0=xo^ (x1+a> + yj1)-({+^1)=I+co^, as ^-^=1 and J1-^1=O. So

It remains to consider the coefficient y. By considering intersection numbers, we
hâve

*o'*o - x1-x1 co-œ + y + y.

This information is not précise enough for our purposes. Hence we assume w2H(œ)
=0. We also assume that the tubular neighborhood of S1 xD was chosen so that
w2H(xo)=0. Then w2H(xx)=0, and we have

fi(x0) fi(xt) + n(œ) + y, (modJ).

Now, we can identify Mt with the connected sum (in the interior of M),
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M#(S2xS% i 0, 1, exactly as in [Wl]. If e and/in H2(M#(S2 xS2), A) are the

standard generators of the summand H2(S2xS2;A)9 they correspond to *,-
— (xi'xt)yi anc* yh respectively, under the respective identifications. (Note that
fi(x0) and jtf(xi) are integers.) So we hâve, so far:

PROPOSITION 1.2. Let coeH2(M;A) with w2H(œ)=0. Then there is a (base-

point preserving) diffeomorphism

h:M#(S2 x S2)-+M#(S2 x S2),

inducing the identity on the fondamental group and preserving local orientations with

h* (e) e + û> + yf> 7eA with y — fi (co) (mod/) ;

and

h*(t) Z-(t-œ)f, for ÇeH2(M;A).

Note. Connected sum is well-defined in terms of the "local-orientation" of a

non-orientable manifold. We assume M has been given a "local-orientation".
That h préserves local orientations means that it induces the identity on

H4(M# (S2 x S2); Zf) Z, the top homology group with twisted integer coefficients.
See [W2].

LEMMA 1.3. Let M be as above. Let ôs^M. Then there is a (base-point
preserving) diffeomorphism

g:M # (S2 xS2)^M# (S2 x S2)

which préserves local orientations and induces the identity on the fundamental group,
so that

É for ÇeH2(M;A)9
g* (e) ôe

Proof. Let/: [0, 1]-»M be a closed loop representing <5. Assume/is differentiable.
Then let cpt be an isotopy of M so that <Pt(*)=/(O> * ^e basepoint of M; this exists

by the isotopy extension theorem. Let Xt ^e a similar isotopy for M # (S2xS2).
If ô is orientation preserving (Le., w(ô) l),putg (çî1 # ids2 xs*)©/!- Ifw(ô) -1,
let g=(cpïi # (id x a))oXu where a is a diffeomorphism of S2 of degree -1.

LEMMA 1.4. Let M be as above. Suppose in addition that M=P # (S2xS2).
Then there is a (basepoint-preserving) diffeomorphism k of M # (S2 x S2) that pre~
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serves local orientation and induces the identity on nt, so that

M0 É for ZeH2{M;A);
k,(e) e + (X-X)f; and k* (/) /;

for any given élément À ofA.
Proof. It suffices to assume Â=ôen1M. Let e' and/' dénote the classes in

H2(P # (S2 x S2); À) carried by the first and second sphères of S2xS2, respec-
tively. Let ht be a diffeomorphism of (S2xS2)# (S2xS2) with hl(e)=e-\-e\
*i (/)=/> ht(e')=e\ h1(f')=f'-f; this exists by [Wl]. Let g:M # (S2xS2)->
-*M # (S2 x S2) be as in the conclusion of Lemma 1.3 for this ô. Let

hi=g-1o(idP#hl)og.

Then let h2 be a diffeomorphism of (S2 x S2) # (S2 x S2) with itself with

h (e) e + /', h2 (/) /, h2 (ef) e1 - /, h2 (/') /' ;

and let /î2 (idP # h2)oh1.

Now let /*3=idp # (axa) # idS2XS2, where a:S2-*S2 is a diffeomorphism of
degree —1. Then k (h3h2)2 is the desired diffeomorphism.

(Note. In taking connected sum of diffeomorphisms, we must assume they are
the identity on appropriate disks. Clearly this can always be arranged.)

THEOREM 1.5. Let M be a compact, connected, smooth manifold of dimension

four, and suppose M=P # (S2 x S2) for some smooth manifold P. Let œeH2 (M; A),
w2H(œ)=0. Let ÀeA=Z[n1M~] be any élément such that /i(co)=A(mod/). Then

there is a (basepoint-preserving) diffeomorphism q> of M # (S2 x S2) with itself which

préserves local orientations and induces the identity on n1 (M # (S2 x S2)), so that

e + co- kf\ q>*(/) /; and

<?>*(£) £-(M/ for ZeH2(M;A).

(Note, e and/are defined in the paragraph preceding 1.2.)

Proof. Compose a diffeomorphism of Prop. 1.2 with the appropriate
diffeomorphism provided by Lemma 1.4.

One can use Theorem 1.5 and some algebra to build up results on which auto-
morphisms of H2(M # (S2xS2); A) that préserve intersections and self-intersections

can be realized by diffeomorphisms as in 1.5. We do this in an appendix. Hère
we offer the following example to show that, unlike the simply-connected case [Wl],
not every such automorphism can be realized by a diffeomorphism regardless how

many copies of S2 x S2 are added by connected sum.
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EXAMPLE 1.6. Let n be infinité cyclic, let A=Z[n] be the group ring with
involution (E ag^)~1=Zag^~1- Let SUr(A) be as in [W3, §6], see also §3 below
Let (xeSUr(A) be an élément representing a generator of L5(n) Z. Then there îs no
orientation preserving diffeomorphism of

K (S3 xS1)#(S2 xS2)#- -#(S2 xS2)

(connectée sum r times) inducing (idS3XSi)#©a on H2(K, A).
Accordmg to an unpublished resuit of R. Lee, one can take r 1

We outhne the proof. Suppose such a diffeomorphism exists, cp say. Let S2 x D2,
1 ^z<r, be disjoint tubular neighborhoods of the sphères S,2 xpt in the zth copy of
S2xS2. Using the images of thèse tubes under q> to perforai surgery on the normal

map (n, b) n' K-*S3 x S1 the natural projection and b an appropnate bundle map
we obtain a homotopy équivalence h Q-+S3 xS1 that îs normally cobordant [Bl] to
the îdentity, via a normal cobordism whose surgery obstruction îs a generator of
L5 (Z). From the construction, Q îs diffeomorphic to S3 x S1. But by [SI, Thm 5 1]

and penodicity of surgery obstructions [W3], Q x S1 must be the exotic manifold of
[SI, Thm 7.2]. Alternatively, one can apply the arguments of [S3, §2] directly to the

normal cobordism to get a contradiction to Rohhn's theorem [R]

§2. Stable Surgery in Dimension Four and Some New 4-Manifolds

Let (Y, X) be a Poincaré pair, of (formai) dimension four, as defined for example

on page 224 of [W2]. Assume also that Y îs a connected finite complex We may hâve

X=Q. Let £*, k$>4, be a vector bundle of fibre dimension k over Y, and let

vk(W) ± Ck

i ï

be a normal map of degree one which induces a homotopy équivalence of the bounda-

nes; î.e., h \ dW:dW-+dXis a homotopy équivalence, h has degree one with respect

to the (given) local orientations, and b îs a linear bundle map covenng / from the

fc-dimensional normal bundle of the compact smooth manifold W, to £. Given such

a normal map of degree one we define the connected sum (h, b) # (S2 x S2) m the

obvious way. (For the notion of connected sum of Poincaré complexes, see [W3, §2]

Let n=n1X\ let w:n^>{± 1} be the first Stiefel-Whitney class. Then according to

Wall [W2] there îs an abehan group L4(n, w) (often wntten IÏ4(n, w), as in [SI]),
functonal m (n, w), and an invariant a {h, b)eL4(n, w) that dépends only upon the

normal cobordism class relative boundary [Bl], [B2] of (h, b) and vanishes if h îs a

homotopy équivalence. This invariant îs defined as foliows: After a normal co-
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bordism relative the boundary we may assume, as in [W2] for example, that / is

2-connected. By [W2, Lemma 2.4],

is a stably free yl-module. Furthermore, the restriction of intersection numbers to K
defines a non-singular sesquilinear form À.KxK^A which is associated with

li | K:K-+R/I; Le., (K, À, /i) satisfies (P2)-(P6) of [W2, p. 236] with rç l, provided
^T is given a right module structure by xÂ=Ix.

By définition a (h, b) is the class in L4(n, w) of (K, A, /i); Z,4(tt, w) is defined as

the reduced Grothendieck group of non-singular sesquilinear forms over A on stably
free yl-modules; the réduction is carried out by requiring kernels, as defined in
[W2, p. 237] to represent zéro. The détails are as in [W2]. In particular, that a is an
invariant under normal cobordisms relative the boundary is essentially a

conséquence of Lemma 7.3 of [W3].

THEOREM 2.1. Let (7, X) be a Poincaré pair offormai dimension four, with Y
a connectedfinite complex. Let

vk(W) -^ rjk

ï l

be a degree one normal map inducing a homotopy équivalence of boundaries. Then

c(h, b)=0 if and only if 3t^0 such that (h, b) # t(S2 x S2) is normally cobordant

relative the boundary to {h\ b') with h!\(W\ dW')-*(Y # t(S2 x S2), X) a homotopy
équivalence.

To prove 2.1, we note first that

this follows easily from the définition. So the vanishing oîa(h, b) is clearly necessary
for t to exist so that the last statement of the theorem is satisfied.

We will say an élément ÇeH2 (M; A) with w2H(Ç) =0 (see § 1) is strongly primitive
if 3ieif2(M; A) with £-t 1 and w2H(t)=0. The main part of the proof of 2.1 is
also the proof of the next resuit:

THEOREM 2.2. Let M be a compact, connected, smooth four-manifold of the

form P # (S2xS2). Let Çen2(M)=H2(M; A), A=Z{niMl with w2H(Ç)=0, be

strongly primitive. Assume /i(£)=0. Then Ç is represented by a smooth embedding
S2czM # (S2 x S2), with trivial normal bundle, so that the inclusion

M # (S2x S2)-S2c=.M # (S2 x S2) induces an isomorphism offundamental groups.
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Remarks. 1) If ÇeH2(P; A)9 one need not assume w2H(t)=0. For then if
w2H(t)^09 one can show P # (S2x S2)^P # T, T the non-trivial 2-sphere bundle
over S2, and use this to find t' with t'-£ 1 and w2H(t')=0. (Compare [Wl].)

2) If n(Ç)eZczA, one can show that Ç is represented by an embedding satisfying
ail the conclusions of 2.2 except that the normal bundle will not be trivial.

Proofof 2.2. Let e and/dénote, as usual, the classes in H2(M # (S2 x S2); A)
determined by the first and second sphères of the second summand, respectively. Let

teH2(M; A) be such that £«t 1, and w2H(t)=0. Let (p and ^ be diffeomorphisms
of M # (S2xS2) with itself so that

<?*(/) /, <P*(<9 £>

<A*OO e> <A*(/) / + T-ye,
<A*(£) £ - e, M*) t - (y + y) e.

Hère yeyl is some élément with 7=//(t) (mod/). The diffeomorphism ç exists by
Theorem 1.5; ^ exists by composing the appropriate diffeomorphism provided by
Prop. 1.2 with a diffeomorphism that interchanges e with/and leaves everything else

fixed. Then ij/(p(e) t;. This proves the theorem, since e is represented by an embed-

ing, with trivial normal bundle, such that the inclusion of the complément in

M # (S2 x S2) induces an isomorphism of fundamental groups.

Proof of2A. We may assume that h is 2-connected, after a normal cobordism.
Since a {h, b)=0, we may also assume, after replacing W by W # q(S2 xS2) (and

changing notation) if necessary, that K2(W)=kQr(h*:H2(W\ A)-+H2(Y; A)) is a

free yl-module with basis Çl9-..9Çt9Tl9.-.9Tt9 such that

/x(t,) O, 1 < Uj<t, and

By considering (A, b) # (S2 x S2) (and then changing notation) if necessary, we

may assume that W=P # (S2 x S2), some P. Hence, by Theorem 2.1, Çt is
represented by an embedded sphère S2c W # (S2 x S2), as in 2.1. This has a framing
g:S2xD2czW # (S2xS2) and we may use this embedding to perform framed

surgery ([W2], [Bl], [B3]) on the normal map (h, b) # (S2 x S2). Note that because

ti2 (#(£))=0, there is no problem extending the bundle map b to the elementary
cobordism Wx /u(gïl)D3 x P2.

So let (h\ b'), h'\W'-> F, be the normal map obtained by performing this elementary

normal cobordism.

W' d(W # (S2 x S2) - g (S2 x D2))ugD3 x S1.
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Hence, by Van Kampen's theorem and the last assertion of 2.2 about our embedding,

g induces an isomorphism of fondamental groups. In fact, g is 2-connected, and

essentially the same argument as in the proofof Theorem 3.3 of [W2] now shows that
K2(W) is a free module over A with basis £2,..., Çt9 t2>~-> t* with /*(£*)= A* (tO

Çi-Çj=ii"tj=O for 2^i,j^t, and ii'rj=ô'j. Continuing inductively, we obtain
the resuit.

In the preceding proof we can actually hâve that W is diffeomorphic to W. For
the 2-sphere which we used in surgery was the image of S2 xptaW # (S2xS2)
under a diffeomorphism, and we can obtain the framing from the standard framing
of S2 xpt via this diffeomorphism. So we hâve

COROLLARY 2.3. Let

v*(P) A Ck

ï i

be a normal map ofdegree one that is a homotopy équivalence on the boundary. Assume

that k is 2-connected and dim (Y, X)=4. Suppose that a{k, c)=0. Then

(P # r(S2xS2), dP) has the same homotopy type as (Y # t(S2xS% X) for
some t^O and r^O.

We conclude this section with examples of four-manifolds that hâve the same

(simple) homotopy type, but are not diffeomorphic or even smoothly or P.L. A-co-

bordant.
For any closed four-manifold M, we say that two degree-one normal maps

ï i ; i,2,
M, ^M

are équivalent if 3 a bundle équivalence b\nx-*r\2 such that (fl9 bbt) and (/2, b2) are

normally cobordant. A theorem due to Sullivan, at least in the simply-connected case,

asserts that the équivalence classes of normal maps into M are in one-one correspond-
ence with [M; G/O], the set of homotopy classes of maps of M into the classifying
space G/O for stable fibre-homotopy trivializations of vector bundles. (See [S4], [Bl],
[W3].) Let rj (/, b) dénote the class in [M; GjO] represented by (/, b); if/is a homotopy

équivalence, b is irrelevant and so we write rj(f), and call this the normal
invariant of/. We write a: [M; G/O^L^M; wM) for o(f, b)=a{r\{f, b)).

Now let M=RP4 be real projective four-space; i.e., the quotient of S4 by the

antipodal map. Then, as in [M4], [W4], [M; G/O]=Z4 and

<r.[M;G/O]-+L4(Z2,--) Z2
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is the natural non-tnvial map. (Recall that m thèse low dimensions there îs no diffei-
ence between G/PL and G/0.) So if 0e [M; GjO~\ is the generator, there is a normal

map

with a(f, b)=0 and n(f b)=20^O. (In fact, n is équivalent to v(M).)
We may assume, as usual, that/is 2-connected. Let K=K0 # r(S2 x S2). Then

by Cor. 2.3, K, for suitable r, has the homotopy type of M # t(S2 x S2), some t^0,
actually ît has the simple homotopy type of this manifold, as Wh(Z2)=0.

Suppose that K were A-cobordant to M # t(S2xS2). Using the /z-cobordism,

ît is easy to find a normal map (/', br), with/':M # /(S2 x S2)-*M, équivalent to

(/, b). Smce n2M=0, we may perforai surgery using the f copies of S2 xpt contained

in M # f(52x5f2). The resuit is a homotopy équivalence h:M-*M with rç(/j)
=207*0. But every homotopy équivalence of RP4 with îtself is homotopic to the

identity. So we hâve proven most of the following:

THEOREM 2.4. Let M=RP4 be real projective four-space. Then 3, for some

t^O, a smooth manifold K that has the (simple) homotopy type of M # t(S2xS2)
but is not diffeomorphic or even smooth or P.L. normally cobordant to M#t(S2 xS2);in
fact for ail r^O, K # r(S2 x S2) is not h-cobordant to M # (t+r) (S2 x S2). K is

unique up to h-cobordism, and is topologically h-cobordant to M # t(S2 x S2).
The assertion about K # r(S2 x S2) follows easily. The uniqueness up to h-co-

bordism is a conséquence of the fact that L5 (Z2, — )=0 [W4]. Since [M; G/Top]
=Z2®Z2, as follows from results of [K5], the image of 20 m [M; G/Top] is trivial,
the last statement follows from this and results of [K5]. One can also show that

K-pt is not diffeomorphic to M # t(S2 x S2)-pt.
Using the results of this section, one can actually show that K is smoothly h-

cobordant to M # N, N a suitable simply-connected almost parallelizable manifold

of index sixteen. Of course, this mdicates that 2.3 is really not needed for this

example. The présent method applies to give non-trivial éléments of £?(M) for other

M4, but to deduce the existence of new manifolds, one also needs to solve the techni-

cal problem of what normal invariants are represented by homotopy équivalences of

M with îtself. (See [Bl], [S4], [W3] or §§3, 5 below for the définition of ^(Af

§3. Realizing Surgery Obstructions

In order to prove our splittmg theorem, we hâve to generahze slightly the surger>

obstructions in [W3] in dimensions 4k+1 ; this is done in [SI] and in [C] more gênera*
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ly. Let n be a finitely présentée goup and let w:tt-> { +1} be a homomorphism. Let
yl Z[V| be the intégral group ring, with involution (Xag^)~==Zw(^)ag^~1- Let
Bcz Wh(7c) be a subgroup that is invariant under the involution * induced on Wh(^);
Le., B=B*.

Let Kr (Kr, cpr, nr) be the kernel ([Wl, §4], [W3]) of dimension 2r. That is Kr is

a free vl-module with basis el9..., er,fl9 ...,/„ cpr is a non-singular sesquilinear form
associated with/ir:Xr->yl//(see§2aboveand [Wl], [W3])and<pr(e,, ej) (pr(fhfj)
=/zr(ei)=jur(/J)=O and (pr(eufj)==^ij- Let U?(A) be the group of automorphism
of Kr whose torsion, with respect to the basis {ei9..., er,/i, ...,/r} (hereafter called the
standard basis) lies in B. Let TU?(A)czU?(A) be those automorphisms that leave

j^,..., er}A invariant and induce an automorphism of this module with torsion B,
with respect to this basis. Let cr0 be defined by <to(^i)=/i, 0"o(/i)=^i> and ff0

=identity on {£2>---> enf2>~->fÙA> and let RU?{A) be the subgroup generated

by TU? (A) and <70.

There is a natural inclusion of U?(A) in (7B+1 (A); we extend ae l/rB(/l) by setting
a(er+1)=er+1 and a(/r+1)=/r+1. Let C/B(^)=lim,_00 l/^yl), and let iWB (A)
^lim^nRU?(A). Then as in [W3, Theorem 6.3] for the case £ {0}, RUB(A) is a

normal subgroup containing [UB(A), UB(A)~\. So we define an abelian group

Llk+1(n,W)=UB(A)IRUB(A).

When J5=Wh(7r), we omit it from the notation.
Let Fbe a Poincaré complex and a finiteconnected CWcomplex. Let Ce: Wh(% V)

be a subgroup. We say F is a C-Poincaré complex if the fundamental class (in
Hm(V, Z*)) has a représentative on the chain level (possibly infinité), cap product
with which induces a homotopy équivalence of the (finitely supportée) co-chains

C*(F; ZfoK]) with the chains Q(F; Z[nxV]) with torsion in C. Let (F, Z) be a
Poincaré pair, with Y and X finite CW complexes and Y connected, and with
{nxY, wY) (n, w). Let BaWh(n) be as above. Let Vl9..., Vs be the components of
Z, and let Cic:Wh(7r1F/) be the inverse image of B under the natural map. Let
Ô [F] [FJ +¦.. + [FJ. Then we say (F, X) is a B-Poincarépair if [F]etfm+1 (F, Z;
Z') has a chain représentative cap products with which induces a chain homotopy
équivalence from C*(Y; A) to Q(F, X; A) with torsion in B; and if F^ is a Cr
Poincaré complex with fundamental class [Kj. For #={0}, we hâve a slight gener-
alization of a finite Poincaré pair as defined in [W3, §2]. In particular, a manifold
pair is a ^-Poincaré pair.

Let (F, X) be a JS-Poincaré pair as in the preceding paragraph. Let

v(M) X rj

l i
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be a degree one normal map. Assume h \ ôM:dM-+X is a homotopy équivalence.
Assume the images in Wh (% Y) of the torsions of the restrictions of h to components
of dM are ail in B. (This is siightly more restrictive than necessary.) We then say that
h | dM is a B-homotopy équivalence. Assume dimF=4fc + l, k^l. Then, there is an
invariant a (h9 b)eL4k+1(n, w) of the normal cobordism class relative the boundary
of (h, b). It vanishes when h is also a homotopy équivalence with torsion in B, î.e.,

for h a B-homotopy équivalence ofpairs. The détails are as in [W3, §6] for B {0}. In
particular, a(h9b)=a((h,b)xCP2), where CP2 dénotes the complex projective
plane.

For k^2, Theorem 6.5 of [W3] asserts that every élément of LA.k+1 {n9 w) can be

realized as the surgery obstruction a (h, b) for a suitable normal map in dimension
4k + 1.

THEOREM 3.1. Let (7, X) 6e a B-Poincaré pair, where (n, w) (n1Y9 wY) and

BcWh(n) satisfies B=B*. Let yeLB5(n, w). Let aeU?(A) be a représentative ofy.
Let

g:(M # r (S2 x S2), dM) -> (Y, X)
èe a B-homotopy équivalence ofpairs. Then there is a normal cobordism

ï i
w iyxi

relative the boundary, from (g,b\M # r(S2x S2)), to (h\d+W,b\d+W), so that

(i) h\d+W:d+ W-* 7x1 is a B-homotopy équivalence; and

(ii) The obstruction a (h, b)el?5(n, w), defined in view of(ï), is precisely y.

Proof It suffices to assume Y=M # r(S2 x S2) and g is the identity. To get the

gênerai case, one simply realizes (g""1)* 7 and composes with (gxl, cxl),
c:vx(M # r(S2x S2))-*rj a bundle map.

Let K=M # r(S2 x S2). Let e\ and//, l^i^r, be the classes in H2 (K; A) repre-
sented by the ith copies of S2 xpt and ptxS2, respectively. Let et and fi9 l^i^r,
dénote dimilar classes in H2 (K # r(S2 x S2); A). This identifies {eu..., er,fl9 ...,/r}^
with Kr by identifying thèse classes with the standard basis of Kr; note that this

identification is consistent with intersection and /i-forms.
Let Tjc:H2(K# r(S2xS2);A) be spanned over A by {e'i9f{ \ l^i<r9j^i}u

u {ei9ft | U^r}uH2 (M; A). Let ^, 1 <;<r, be a diffeomorphis ofK# r(S2x S2)

with itself so that

fs) fi> and

(q>Mt)=t-(t-*(ej))f! for ÉinT}.
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Let \j/J9 1 <7<r, be a diflfeomorphism with

(*,)•(« f-^a (/,))*; for £mT,

Thèse exist by Theorem 1.5; note that fi(el)=pi(fl)=Oi 1 </<r. Let

Then ç>*(eî)=a(e,) for j l, r; this follows easily from the fact that a

Now we construct a normal cobordism, as follows. First perform surgery on
trivial circles to get a normal cobordism relative the boundary, {hub^), h^.W^
->Kx [0, i], with a_ Wi =Zand h±\ 5_ Wi (idX20), and with d+ ^ =K#r(S2xS2)
and /*x | d+W^ the natural quotient map (î.e., idx # rp9 p S2 xS2-*S2 of degree
one.) Now let

S2 x D2 c M # r(S2 x S2) # r(52 x S2)

be a standard embeddmg of S2 x D2 in the ith summand of the first group of S*2 x »S2îs;

in particular, 5,2 x D2 represents e[. Using the embeddmgs cp \ S2 x Z)2, we perform
framed surgery on Ax | ^+ FT; note that thèse classes represent éléments in the kernel
of the map hx | ô+ H^induces on H2(d+ W\ A) and that, as in §2, there îs no obstruction

to extending the framing. Let (h2, b2) be the resulting normal cobordism, relative
the boundary,

Let W=WX u W2 (recall S+Wi =d_W2), let h=h1uh2 and 6=^ u^2.
Clearly the inclusion 3+Pf1~lJj=1(5r2xD2)cz3+FP1 induces an isomorphism

of fundamental groups. It follows easily from this and the Van Kampen theorem that
h2 | d+ W^induces an isomorphism of fundamental groups. The same argument as in
[W3, §6] now goes through to show that h \ d+ W îs a 5-homotopy équivalence and
that a {h, b) y. (In fact, that argument doesn't go through in gênerai in this dimension

precisely because of the possible lack of suitably embedded two-spheres.) This
complètes the proof.

Note that d+ W îs diffeomorphic to d. W=K However, let y (M), M4 a closed
smooth 4-mamfold, dénote the smooth (or P.L.) s-cobordism classes of homotopy
équivalences/: g->M, Q a closed smooth 4-manifold. Then, using Theorem 3.1, for y
the generator of L5 (Z), and an argument similar to that of [S3], for example, one
can show the following:

PROPOSITION 3.2. For r suffiaently large, the set oféléments in &>((S3 x S1) #
# r(S2 x S2)) with vanishing normal invariant has precisely two éléments.
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There are similar theorems for T4 and S2 x T2, i.e., theorems asserting the existence

of an appropriate number of non-trivial éléments with vanishing normal
invariant. By the unpublished resuit of R. Lee mentioned in example 1.6, we can

actually take r \. The existence of a homeomorphism representing the non-trivial
élément of £f((S3 x S1) # r(S2 x S2)) is équivalent (using [L2]) with the existence

of an almost parallelizable closed topological four-manifold of index eight.

Let A=((aij)) be a non-singular rxr matrix of A. Let A*=((aJi)). Then the

matrix

/A O

\° (A*ï

with respect to the standard basis, détermines an élément U™h(n)(A). Of course, this

represents the trivial élément in L5 {n, w). In fact, if we carry out the instructions in
the proof of 3.1 we get an /*-cobordism; Computing its torsion we hâve the foliowing
(compare [Ml, Thm. 11.1] and [S5]):

PROPOSITION 3.3. Let Abeasabove. LetK=M # r(S2x S2), with (ntM9 wM)
(n, w). Then 3 an h-cobordism (W; d+W, d-W), with d_W=K and with torsion

t(W, K) equal to the élément ofWh(n) represented by A.
We leave the détails to the reader. A realization theorem for A-cobordisms with

torsion represented by a unit in Z [tc] was proven by Stallings in [S5].

§4. S-Splitting up to Normal Cobordism

Let (F, X) be a Poincaré pair of finite complexes, of formai dimension five, with

X possibly empty. Let

(F, U)a(Vx [- 1, 1], U x [- 1, 1]) c (F, X)

be a Poincaré sub-pair of subcomplexes, F connected, of codimension one and with

a product regular neighborhood. In this situation we will often refer to F as the fibre.

Using a circle smoothly (or P.L.) embedded in a suitable 4-simplex A of V and a

smooth (or P.L.) disk it bounds in A x [0, 1) that does not meet AxO except at the

boundary, we may exchange a trivial 2-handle as is done in [B3] for manifolds.

Alternatively, we may take a copy of S2 x*S2 embedded trivially in A x (0, 1) and

join it up to V—A', A1 a A a, suitable open disk, by a tube. In either case, we replace

F by F # (S2 xS2). We call this process a trivial exchange of a 2-handle (on the

right).
If F- F is connected, we let B be the image in Wh(7r1 (F- F)) under the map

induced by inclusion. If F- F= Yx u F2 has 2-components, we let B be the image of
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the map

Wh(n1Y1)®Wh(n1Y2)->Wh(n1Y)

which is the sum of the two inclusion induced maps. We will always assume the
following in the rest of this paper :

(i) (7, X) is a 5-Poincaré pair; and

(ii) The map n1V^n1 Y induced by inclusion is a monomorphism.
We consider a homotopy équivalence

h:(W,dW)->(Y,X)

which is transverse3) to (F, U) and split along U on the boundary; Le.,

h\ dW:(dW; h'1 (U), dW - h'1 (U))-+ (X; U,X - U)

is a homotopy équivalence of triples. We say that h is split along V if
h:(W; h'1 (F), W - h'1 (F)) -> (7; F, F - F)

is also a homotopy équivalence. (Because of (ii), this is équivalent to requiring merely
that h | h~1V:h~1V->Vis a homotopy équivalence.) We say h is splittable along F if
it is homotopic relative the boundary to a map that is split along F. (This is the same
as saying that it is homotopic as a map from

{W; h'x(U)9 ÔW - h'1 (U)) -> (Y; U9X-U)
to a split map; to see this, use a boundary collar.)

We say that h is S-splittable along F if it is splittable along some V obtained
from F by a finite number of exchanges of trivial 2-handles on the right.

Note that given h as above, if V is obtained from F by exchanging a trivial 2-

handle, we can find

h':(W; h'1 {VI W - /T1 (V))^(Y; F, Y - F),

homotopic to h as a map of thèse triples and relative the boundary, so that the
inverse image of a suitable cell under h | F is a cell, (A')"1 (^') ^s obtained from
A"1 (F) by exchanging a trivial 2-handle, and

From now on, we assume without explicit mention that, where appropriate, this has

always been arranged.

3) Transversality dépends only upon the linear structure in the normal directions, and so makes
sensé hère; i.e., /r1 (V) is a manifold. From now on, we always assume the appropriate transversali-
ties without explicit mention.
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We say a homotopy équivalence h as above is algebraically splittable if its torsion
zQi)eWh(n1Y) lies in the subgroup B. It is not hard to show, as in [C] anci [F]
for the case n1Y=Zx aG that if h is S-splittable along F, then it is algebraically
splittable.

Finally, we need the following définition, introduced in [C] : Let H be a subgroup
of the group G. Then we say H is (algebraically) two-sided in G if VxeG, (HxH=
=Hx~lH) implies xeH. See [C] for discussion of this condition and, in particular,
for the following: if H is normal in G and G/H has no 2-torsion, then H is two-sided
in G, If v+, v_:H->G are one-one group homomorphisms and if AT is obtained from
Z*G by dividing by the least normal subgroup containing ail the éléments tv+(x)
^"^.(x"1), for teZ a generator, xeH (write K=Z*G/{tv+(x) t~l =v_(*)}),
then HczK is 2-sided if and only if v+(H)c:G and v_(H)cG are two sided. In
particular, Gc:GxaZ is 2-sided. If HczG1 and HczG2, let K=Gl*HG2, the amalga-
mated free product. Then HaKis 2-sided if and only if Hcz Gv i 1, 2, are two-sided.

Throughout the rest of this paper we also assume

(iii) n1Vcm1 (Y) is two-sided.

THEOREM 4.1. Let F, U) c F, X) be as above (in particular satisfyin
Let h:(W5, dW)-+{Y9 X) be an algebraically splittable map that is also split along U

on the boundary. Let Ç be a (high-dimensional) vector bundle over Y so that 3 a bundle

mapb:v(W)-+Ç covering h. Then the normal map (h, b) is normally cobordant, relative

the boundary, to an S-splittable homotopy équivalence.
Remark. For the conclusion of 4.1 to hold, one really needs to assume only that

r(h) is in the kernel of a homomorphism Wh(n1 Y)-+K0(nlY) defined by Wald-

hausen. Also, one apparently can eliminate (iii). In the interest of simplicity, we do

not carry out thèse improvements.
Proof of 4.1. We hâve to consider separately the separating and non-separating

cases.

Case L Y- V connected. Let K=nxY, H=nlV, G=n1 (Y- V). Let v+, v_ : F->

-> Y— V be obtained by pushing right and left, respectively, in the bicollar neighbor-
hood of V; e.g., v+(x) (x,%)eVx [ — 1, l]cF, We will also write v+ and v_ for

the respective induced homomorphisms of thèse maps on fundamental groups and

Wall groups. Then (by Van Kampen's theorem)

K Z*G/{tv+ (x) r1 v_ (je) | xeH},

t a generator of Z, and B is the image of the inclusion induced map Wh(G)-^Wh(^);
by naturality B=B*. Using the fact that h \ dWis split, it follows (see [F] [C]) that

h I dW:dW-*Xis a 2?-homotopy équivalence. (See §3 for the définition.)
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Consider the normal cobordism

Then, by Theorem a • p of [C], the surgery obstruction a (3 x CP2) vanishes in L8 (H).
(We omit the orientation homomorphism from the notation.) This also follows from
the existence of a well-defined map LB9(K)->ti8(H) as in [C] or [SI] in the case

K=Z x H. So, by periodicity of Wall obstructions,

So by Theorem 2.1, (E) # t(S2xS2)is normally cobordant, relative the boundary,
to a homotopy équivalence. So by the "cobordism extension theorem", (A, b) is

normally cobordant relative the boundary to a normal map

1 1

Q ^Y
so that g | g~1P:g~1P-*P is a homotopy équivalence, where P is obtained from F
by exchanging trivial 2-handles on the right.

Let YP and Qg- iP be obtained by splitting Tand Q along P and g~1P, respectively.
(So, for example, 7P= Y— Vx( — e, s).) Let (gP, cP), gp.'ôg-ip-^p* be the normal

map induced by (g, c). If we had

in L5(G), we would be finished; we could perform surgery relative the boundary to
get a homotopy équivalence and glue the resuit back up along the codimension one
submanifold (i.e., g~1P) or subcomplex (i.e., P) to get the required homotopy
équivalence. (Compare [SI, Lemma 5.3].)

Let yeL5(H). We exchange further trivial handles on the right if necessary, but
keep the same notation. After doing this, we may find a normal cobordism, relative

boundary, (ë, â), ë:T-+PxI, with 5_T=g"1P and (ê, à) \ d^T=(g, c) \ g~xP, and
with e | d+T:d+T-*Px 1 a homotopy équivalence, so that

this is just Theorem 3.1. By the "cobordism extension theorem", we can find (e9 a),
a normal cobordism relative the boundary, e:R-+YxI, with
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and

(e9a)\e-l(PxI) (ë,â).

Now split alongPxland apply a resuit of Wall (§3 of [W3]) as stated, for example,

in 1.2 of [SI]. This resuit says roughly that if the boundary of a normal map with
connected target has several components, the sum of the images of the surgery
obstructions of each under the natural maps into the Wall group of % of the target of
the normal map vanishes. The resuit in [SI] is stated for dimensions greater than six;
we can handle the présent situation either by taking products with CP2 and using
periodicity or by appealing directly to [W3, Thms. 3.1 and 3.2]. So we hâve, (up to
a sign at least, depending on orientation conventions) :

(4.2) + <t (gP, cP) - <x (>p, aP) v+ (y) - v_ (y).

Thus, to complète the proof, it suffices to show that

for some yeL5(H); for then we would hâve a(eP, aP)=0, and, as above, we would
be done.

Let j*\IÏ5(G)-+LB5(K) be the map induced by inclusion. Algebraically, this is

induced by the extension of coefficients homomorphism of U™h(Gj(Z\_G']) to

Ur(Z [X]). It is not hard to prove from the définitions that

(4.3)

But by [C], the following is exact:

L\ (H)^^È5 (G)-^LB5 {K)

Since a (g, c)=a(h9 b)=0 because h is an algebraically splittable homotopy
équivalence, this complètes the proof.

Case IL Y— V= Y1 u Y2 has two components. The argument in this case is anal-

ogous. If H^n^M, Gi n1Yh i l, 2, K=n1W, then K=G1*HG2. Again we first do

surgery on the codimension one normal map, suitably altered, to get a normal map
that is at least a homotopy équivalence along the (modifîed) codimension one sub-

manifold. When we split, we get two surgery problems. We use the séquence [C]

L5 (H) >L5 (GJ © L5 {G2) >L5 (K)

to show that the direct sum of the two surgery obstructions of thèse problems is in

the image of L5(H) under v+©(— v_). (Hereji'.YiCiYarG inclusions.) Hence thèse

obstructions can be cancelled by extension of a suitable normal cobordism of the

codimension one normal map. We leave the détails for this case to the reader.
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§5. S-Splitting in Dimension Five

Let (7, X)-=>(V, U) be as in §4, and let g\P-+X be a homotopy équivalence that
is split along U. Let S^B(Y, g) dénote the équivalence classes of homotopy
équivalences h: (W, dW)-+(Y, X) that are algebraically splittable and satisfy the following:
3 a diffeomorphism cp.dW^P with g(p=h\dW. The équivalence relation is the
following: h and V-(^i> dW1)-^(Yi X) are équivalent if 3 an /z-cobordism, (Z; W9 Wx\
relative the boundary, of W with Wl9 and a map F:Z^> Yxl satisfying

(a) the torsion of F lies in B,

(b) F | W=(K 0) and F \ Wx =(hu 1)

(c) F | (dZ- Wkj Wy)~ =h x id7.

Note that (a) is équivalent to the assertion that F+(t(Z9 W))eB9 by [Ml, Lemma
7.8].

We define NM(Y, g) to be the équivalence classes of normal maps

ï i
W ±>y

such that 3 a diffeomorphism cp.dW-^P with gq>~f\dW. Two such, (f,b) and

(fi>bi):v(Wi)->£ls are équivalent if 3 a (stable) bundle équivalence b:^^ so

that (/, bb) and (/1? b±) are normally cobordant relative the boundary.
As usual ([Bl], [S4], [Wl]) there is a natural map

Namely, given a homotopy équivalence

h:(W,dW)-+(Y,X)

representing an élément x of ^B(Y, g), we choose a (stable) bundle £ so that there
is a bundle map b:v(W)-+Ç and let r\{x) be represented by (h,b). Theorem 4.1

asserts that r\ (x) always has an S-splittable représentative.
We also need to introduce the Wall group LB4k+2(n, œ). This is the reduced Gro-

thendieck group of triples (K, <p, /i); Â'is a stably free and stably J?-based left module

over A (i.e., a stable class of basis is assumed given up to équivalence with torsion
in B); <p and \x are as in [§4, W2] and satisfy [P2]-[P6] of [W3, p. 236] for the right
module structure on K given by xk =lx (and with r\ -1) ; and Aç : K-*HomA (K; A)
given by Acp(x) (y) q>(y, x) has vanishing torsion modulo B with respect to the

given class of stable bases and its dual (note that the torsion of Aç is only defined

modulo B). The réduction is accomplished by requiring kernels to represent zéro; a
kernel is defined as in [W2, 4.5], with the additional proviso that the basis exhibiting
a triple as a kernel must be in the given class of stable bases.
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For B={0} this is just the définition of [W3] for Ls4k+2(n, œ); for B=Wh(n) it
is essentially the définition of L6 (n, co) in [W2]. In particular, the analogue of [W3,
Thm. 5.8] holds, as well as periodicity under products with CP2 [W3, §9]. Hence we

may define the action of L6(n1Y) on £fB(W, g) as follows:
Let h:(W, dW)->(Y, X) representing xeS?B(W, g) and yeLB6(ntY) be given. Let

b:v(W)-*ï; be a bundle map, as above, covering h. Then 3 a normal cobordism
(H, B), relative the boundary, of (h, b) to (h', b') with h' a 5-homotopy équivalence
and a {H, B) y. We define

It is not hard to check that this is a well-defined action (in particular (y-\-y')-x
y{y' • x)) and that n(x)=rj (y) if and only if x and y are in the same orbit.

THEOREM 5.1. Let (Y,X)z>(V, U) be as in Theorem 4.1. Let h:(W,dW)->
-*(Y, X) be an algebraically splittable homotopy équivalence (i.e., a B-homotopy
équivalence) with h\ôW already split along U. Then h is Ssplittable along V.

Note. The hypothesis (iii) from §4, algebraic two-sidedness, appears hère only
because it appears in the splitting theorems of [C]. If it can be eliminated there, it can

be eliminated hère.

Proofof 5.1. Let g—h \ dW, and let B be as in §4. Then, using the existence and

uniqueness theorems for 6-dimensional /z-cobordisms, relative the boundary, in terms

of their Whitehead torsion (see [Ml, 11.1 and 11.3], [S5], and [K2]), it is not hard to
show that every représentative of an élément of £?B(Y9 g) is *S-splittable if and only

if some représentative is S-splittable.
Thus, in view of Theorem 4.1 and the preceding discussion, it suffices to study the

action of LB6 (% Y) on an élément of £fB 7, g) represented by an S-splittable homotopy
équivalence

k:(Wl9dW1)-+(Y,X)

with dW1 diffeomorphic to dW via a diffeomorphism (p with {h | dW)oç=k \ cWx.

So we may as well assume (after a change of notation for the fibre) that k is actually

split along V, as well as along the various fibres we shall obtain from Fby exchanging

trivial 2-handles as necessary.

Case I. Suppose Y- Fis connected. Let K=n1 Y, H^n^V, G nl(Y-V), and

let v+, v_ :H-+G be induced as in §4, by pushing Fin the positive and négative
directions. We also dénote by v+ and v_ the respective maps induced on Wall groups. By

[C] (or essentially, by [SI], in case K=Z x H), and by periodicity of the Wall groups,
there is an exact séquence

(5.2)
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Hère y* is induced by inclusion. Again we omit mention of the orientation homo-
morphism.

The homomorphism a can be defined as follows :

Let yeLB6(K)=LBi0(K). Let

v(e) - «

i ï
(Q10,dQ)^(Y,X)xCP2xI

be a normal map so that

dQ d-Qud(d..Q)xI\jd+Q
(with d(d+Q) d(d.Q)x 1), with

e))-»(y,X)x CP2 xO and

i7 d+Q:(d+Q, d(3+6))-> (F, X) x CP2 x 1

split along the pair (F, £/) x CP2, i.e., split along Fx CP2 and on the boundary along
UxCP2; with

and with <t(F, i?) y. (CP2 =complex projective 2-space.) Such a normal map exists
by the realization theorem ([W3, 5.8] for B {0}) for surgery obstructions in dimensions

at least six, by the splitting theorem of [C], and because we hâve assumed the
existence of some split homotopy équivalence of a manifold pair with (Y, X), namely
k. We may also suppose F is transverse to F x /. Let S be the following normal map :

v(F~1 (V x CP2 x /))i £ | F x CP2 x I
ï ï

F"1 (F x CP2 xi) ^ F x CP2 x I,
where F and B are restrictions of F and B, respectively. Then

(The proof that a is well-defined seems to use [W3, §9] as well as the géométrie
splitting theorem of [C]. It seems that in the présent case, by some extra effort, we
might avoid any appeal to [W3, §9].)

Returning to the situation at hand, let us study the action of yeI^6(K) on the
élément of ^B(Y,g) represented by k:(Wu dWx)-+(Y9 X). Choose a bundle map
c:v(W1)->^ covering k. Let (/, b) be a normal cobordism, relative the boundary, of
(k | k~xV9 c | k~xV) # r(S2 xS2) to another homotopy équivalence, with <x(/, 5)
=a(y). For r sufficiently large, this exists by Theorem 3.1.
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Let T be the domain of/, Le.,

f:T->(V#r(S2 x S2))x/.
Let Pcz Y be obtained from V by exchanging r trivial 2-handles on the right. By the
"cobordism extension theorem", 3 a normal cobordism (fl9 b±), relative the boundary,
of (*, c) to (/+, b+), so that (/J"1 (Px/)=f,/1 | T=f, and bt \ T=b. SofcT^
->7x/, withô_T1=Wr1,/1 lô-T^^/i | d+7i=/+, and ^ | 5+Ti=A+.

By the same argument as was used to dérive formula (4.2) in the proof of Theorem
4.1, and using the same notation, we hâve (up to sign) the following in L5(G):

(In (4.2) there was another term on the right, corresponding hère to o{kP, cp)~0.)
By exactness of (5.2), the right side vanishes. Hence we may perforai surgery relative
the boundary on ((/+)P, (b+)P) to get a homotopy équivalence and glue up the re-

sulting normal cobordism along the appropriate parts of the boundaries to get a

normal cobordism (/2, b2) of (/+, b+) to (k2, c2) with k2 a split homotopy
équivalence along P. (Compare [SI, Lemma 5.3].) Let T2 be the domain of/2; we view/2
as a map from T2 to Yx [1, 2] with

Letr=T1ua+TlT2,

f:T->Yx [0,2],
and (/, b) is a normal cobordism relative the boundary from (k, c) to (k29 c2). We

hâve

By définition of a, the right side is just ff((/, b) x CP2), which by construction and

periodicity is just a (y). So oc(a(f, b))=a(y). Let i — y — o{f, b). Then

r [fc] (T + a (/, 6)) • [fc] t • («r (/, b) • [fe]) r • [fc2] ;

hère [k2], for example, dénotes the class of k2 in S^B(Y, g). So it sufîices to show that

t [fc2] has a split représentative along P.

Now, a(r)=0. So, by the exact séquence (5.2), t=j*co, œeL6(G). Let

(k2)P:(ô+T)(k2)-lp^YP

be obtained from k2 by splitting along P and (A^)"1 P. A représentative of t [&2] can

be obtained by first constructing a (six-dimensional) normal cobordism 3l9 relative the

boundary, of (k2)P to another homotopy équivalence, with a(S1)=œ9 and then gluing

up along the portions of the boundary corresponding to Pxl and (k2iP)xI. B}



On Four Dimensional Surgery and Applications 525

(4.3), if S îs the resulting normal cobordism, a (S) =j*a> t. Clearly E îs a normal
cobordism from (k2, c2) to (k3i c3), where fc3 îs split along P. This complètes the

proof of Case I.
(One could also carry out the last part of the argument by appeahng to the "local

character" of surgery obstructions; this says that since z cornes from L6(G), we can
construct a normal cobordism to obtain this élément, relative the complément of a

regular neighborhood of a subcomplex whose fundamental group maps îsomorph-
îcally to G under the inclusion mduced map. In particular, we can construct z without
disturbmg our codimension one submanifolds

Case II Y-V=Y1uY2 has two components Let K=nxV, Ct=nxYl9 i l,2.
Then the proof proceeds in a fashion analogous to the proof for Case I. We use the

séquence [C]

L\ (G,) ® L\ (G2) -4 L\ (K) A È5 (H) A Lh5 (G,)® L\ (G2),

where e(x, y) {h)* x + Ui)* (y), Ji inclusion maps, v(x) (v+(x), -v_(x)), and a

îs defined geometncally using penodicity and codimension one sphtting theorems of
[C]. We leave the détails to the reader.

Âppendix: More Diffeomorphisms of Four-Manifolds

We return to the notation of §1. In particular, Mis a smooth, compact, connected
four mamfold, and A=Z[niM~]. We assume M=P # (S2 x S2). Suppose

is a direct sum décomposition of yl-modules, orthogonal with respect to the
intersection panng, so that Ko has a basis e2,. er, f2,...,fr with et-eJ=fl-fJ=0 and

ei'fj=àiJ9 2^i, j^r. This implies that the 2nd Stiefel-Whitney class vamshes on Ko
because the Euler classes of the normal bundles of immersions representing the above
basis will varnish. Hence \i is defined on Ko ; we assume that /1 (et) \i (ft) =0, 2 < 1 ^ r.

Let N=M # (S2 x S2). Let ex and/x be the classes represented by the first second
sphères in the second summand. Then

where K^K0®{euf1}A;
thèse are orthogonal direct sums, iu(e1)=)u(/1)=0, and e1mfl l.

LEMMA A.l. 3 diffeomorphisms Gl:N-+N, 2</<r, preserving basepoint and in-
ducing the identity on nxN, so that (0%(ex)=el9 (a% (fx)=fl9 (<r%(el)=eï,
(a% (/,)=/i; (a% {eJ)^eJ and (a% (fJ)=fJforj¥=h 1, and (v% \ L=identity.

Proof. Let cp and ij/ be basepoint preserving diffeomorphisms of N which mduce
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the identity on nxN and satisfy the following: (p*(e1)=e1 +eh <P*(/i)=/i, and

^(O «-«^,)/i for ÇeL@K0; and *M=el9 M/i)=/i+/* MO É-
- (Ç -fi) ex for ÇeL®K0. Thèse diffeomorphisms exist by Theorem 1.5. Let ô =idM #
# (axa), where a is a diffeomorphism of S2 of degree — 1. Then Gi—b(py\t(p is the
desired diffeomorphism.

Let Ur(A) dénote the automorphisms of K which préserve the intersection and

/x-forms. (This is consistent with the notation of §3.) Let Etj dénote the rxr matrix
with the single entry 1 in the (i,j)th position. Let Ir=Ibe the identity rxr matrix.
Let SLr(A) dénote the subgroup of the automorphism group of the free yl-module
{el9..., er}A generated by automorphisms with the following matrices with respect to
the basis el9...9er:

I + XEij9 leA, l<î, 7<r, i*j; (1)

and

1 0

0 1

(2)

Let SLUr (A) cz Ur (A) dénote the subgroup ofautomorphisms that préserve {el9..., er}A

and induce on it an élément of SLr(A). Let RLUr(A) be the group generated by

SLUr(A) and a, where G(ei)=fly cr(/i)=^i, and g | J£0=identity.

THEOREM A.2 (Compare example 1.6). Let <xeRLUr(A). Then 3 a
diffeomorphism (p:N-+N, preserving the basepoint and inducing the identity on ^N, so that

onH2(N;A),

<p* (idL)0a.
Proof. It is obvious how to realize (idL)©o\
Let UUr (A)c Ur (A) be those éléments which restrict to the identity on{el9..., er}A.

Then tbere is a split exact séquence:

l-+UUr(A)-> SLUr(A) $ SLr (A) -> 1 ;

jR dénotes restriction and is split by the following homomorphism H: if /3eSLr(A)
is represented by the matrix A =((av)) over A, then H (A) is represented by

(A O

\O (A*)'

with respect to the basis {ei9 ...,/r}. Hère A* ((aJi))9 where " :A-+A is the involution

in§l.
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So ît suffices to consider separately the cases a =#(/?) and (xeUUr(A). For the

case a =//(/?)> we must consider types (1) and (2), above. For (2), Theorem A.2 îs

just Lemma 1.3. So suppose

A / + XEtJ,

i^j, ÀeA, îs the matnx for a. We can also assume i 1, since if *# 1 we hâve

where ax has matnx I+XElp and a1 îs as in Lemma A.l. So we hâve ot.(e1)

a (?,)=£„ 2</<r, a(/i)=/i for i^y, <x(fJ)=fJ — Xf1. But for this a, the existence of
the required diffeomorphism clearly follows from Theorem 1.5.

Now, with respect to the basis {eu ...,/r}, éléments of UUr(A) hâve the form

where C îs an (rxr) matnx ((c^)) witb ctJ — cJX for i^j and cn=dl—dl for some
JeA Furthermore

// o\// o\ / / o\
\C l)\C l)~\C + C Ij'

i e composition of automorphisms m Ur(A) corresponds to addition of matrices. So

ît suffices to prove our resuit for the case where C has either two off-diagonal non-
zero entnes, ail other entnes being zéro, or only one non-zero entry, on the diagonal.
In the latter case, the resuit follows by conjugating a diffeomorphism given by Lemma
1.4 with a suitable a\ lfckl=-clk, l^k, are the only non-zero entnes, by conjugation
with ak we may assume k 1, in which case ît îs an easy conséquence of Theorem 1.5,

interchanging the rôles of ex and/1? that the required diffeomorphism exists.

REFERENCES

[Bl] Browder, W Surgery on simply-connected mamfolds, to appear.
[B2] Surgery and the theory of différentielle transformation groups, [Proceedings of the Con¬

férence on Transformation Groups, New Orléans, 1967, (Sprmger-Verlag, New York, 1968)].
[B3] Diffeomorphisms of Uconnected mamfolds, Trans Amer. Math. Soc. 128 (1967),

155-163.
[B4] Browder, W. and Levine, J., Fibenng mamfolds over S1, Comment. Math. Helv. 40 (1965),

153-160.
[C] Cappell, S., to appear.
[FI] Farrell, F. T The obstruction to fibenng a manifold over a circle, to appear. (See also Bull.

Amer. Math. Soc. 73 (1967), 734-740
[F2] Farrell, F. T and Hsiang, W.-C, Mamfolds with ni ZxaG, to appear. (See also Bull.

A.M.S. 74 (1968), 548-553.)
[Hl] Hsiang, W.-C. and Shaneson, J. L, Fake ton, (Proceedings of the Athens, Georgia con-



528 SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

ference on Topology of Manifolds, 1969, Markham Press, Chicago, 1970, 19-50). (See also
Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 687-691.)

[H2] Hudson, J. F. P., Piecewise linear topology, (Benjamin, New York, 1969).
[H3] Hirsh, M. W., Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
[Kl] Kervaire, M., Géométrie and algebraic intersection numbers, Comment. Math. Helv. 39

(1965), 271-280.
[K2] Kervaire, M., Le Théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965)

31-42.
[K3] Kervaire, M. and Milnor, J., On 2-spheres in 4-manifolds, Proc. Nat. Acad. of Sci. U.S.A.

47(1961), 1651-7.
[K4] Groups ofhomotopy sphères: I, Ann. of Math. 77 (1963), 504-537.
[K5] Kirby, R. and Siebenmann, L., to appear. (See also Bull. A.M.S. 75 (1969), 742-9.)
[Ml] Milnor, J., Whitehead torsion, Bull. A.M.S. 72 (1966), 358-426.

[Ll] Lashof, R. and Rothenberg, M., Microbundles and smoothing, Topology 3 (1965), 357-388.

[L2] Lashof, R. and Shaneson, J., Smoothing four-manifolds, Inv. Math, to appear.
[M2] A procédure for killing the homotopy groups of dijferentiable manifolds, [Proc. Amer.

Math. Soc. Symp. in Pure Math III (Tuscon, 1961), pp. 39-55].
[M3] Lectures on the h-cobordism theorem, [Princeton University preliminary informai course

notes, (Princeton University Press, 1965)].
[M4] Lopez de Medrano, S., Some results on involutions of homotopy sphères, [Proceedings of the

conférence on Transformation Groups, New Orléans, 1967; (Springer-Verlag, New York,
1968)].

[N] Novikov, S. P., Homotopically équivalent manifolds: I, Amer. Math. Soc. Translations, séries

2, vol. 48, 271-396.
[R] Rohlin, V. A., A new resuit in the theory of 4-dimensional manifolds, Doklady 8 (1952),

221-224.
[SI] Shaneson, J. L., Wall's surgery obstruction groups for ZxG, Ann. of Math. 90 (1969),

296-334.
[S2] Non-simply-connected surgery and some results in low dimensional topology, Comment.

Math. Helv. 45 (1970), 333-352.
[S3] On some nonsimply-connected manifolds, [Proc. Amer. Math. Soc. Symposia in Pure

Math., Vol. XXII, Algebraic Topology (1971), 221-229.]
[S4] Sullivan, D., Triangulating and smoothing homotopy équivalences, [mimeographed notes,

(Princeton Univ., 1967)].
[S5] Stallings, J., On infinité processes leading to differentiability in the complément of a point,

Differential and Combinatorial Topology (a symposium in honor of M. Morse), (Princeton
Univ. Press, 1965), pp. 245-254.

[S6] Seifert, H. and Threllfall, W., Lehrbuch der Topologie, (Teubner, Leipzig, 1934).

[Wl] Wall, C. T. C, Diffeomorphisms of 4-manifolds, Proc. Lond. Math. Soc. 39 (1965), 131-140.

[W2] Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217-276.
[W3] Surgery on compact manifolds, (Académie Press, London, 1970).

[W4] Freepiecewise linear involutions on sphères, Bull. A.M.S. 74 (1968), 553-8.
[W5] Poincaré Complexes: I, Ann. of Math. 86 (1967), 213-245.
[W6] Whitney, H., Differentiable manifolds, Ann. of Math. 37 (1936), 645-680.

Received January 7, 1971


	On Four Dimensional Surgery and Applications

