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On Four Dimensional Surgery and Applications

by SyLvaIN E. CApPELL!) and JuLIUS L. SHANESON )

Introduction
Let
F(M) S
! l (k> n)
(M*, M) L (v, X)

be a normal map of degree one [B1]; i.e. M " is a smooth n-manifold, Y is a connected
smooth n-manifold, or even just a finite Poincaré complex, b is a linear bundle map
over f, and f has degree one with respect to given (“local” in the nonorientable case)
orientations. Assume also that Y is connected and f | OM:0M—X is a homotopy
equivalence; we do not exclude the case M =0. Let n=n, Y and w:n— { £+ 1} be the
orientation homomorphism; i.e. the first Stiefel-Whitney class. Then there is an in-
variant ¢ (f, b), in an abelian group L (n, w)=L,(x, w), of the normal cobordism
class relative the boundary of (f, b) (see [B1], [B2, p. 7]), which vanishes when f is
itself a homotopy equivalence. For n={e}, this invariant was defined by Browder
and Novikov (see [B1], [N]), and earlier by Kervaire and Milnor [M2], [K4] in a
special case. The general case is due to Wall [W2], [W3]. (Our notation is slightly
at variance with [W3].) The functors L, are periodic of period four; i.e. L,=L,.,
and o (f, b)=a ((f, b) x CP?), where CP? is the complex projective plane.

Perhaps the two most important widely used properties of this invariant are the
following:

(i) If n=5, then o (f, b)=0 if and only if (f, b) is normally cobordant relative
the boundary to (g, ¢), where g is a homotopy equivalence.

(if) Let n>6, and suppose Y=Zx1I and h:(M, 0M)—(Z, dZ) is a homotopy
equivalence. Let c:v*(M)—n* be a linear bundle map over h. Let yeL,(rn, w). Then
3 a normal cobordism relative the boundary,

v(W)Snx I
! l
w Lzx1
of (h,c)=((f|0-W,b|0_W) to the homotopy equivalence /|0, W:0, W—Zx]1
with a (f, b)=1.
This property is a consequence of the Plumbing theorem of Kervaire-Milnor for
n={e}. The general case is due to Wall [W3]. The absence of such results for n=4, 5

1) Both authors were partially supported by an NSF Grant.



On Four Dimensional Surgery and Applications 501

is a serious obstacle to the study of 4- and 5-manifolds. In this paper we prove the
following (S2 =2-sphere, # denotes connected sum, and #(S? x §?) denotes ¢ copies
of §%x S?).

THEOREM 2.1. Let

y(M) > g

! !
(M, M) 5 (7, X)

be a normal map as above. Let M have dimension four. Then o ( f, b)=0 if and only if
for some t=0, (f,b) # t(S*x8?)=(f # idysz xs2) b # idy52 x52)) is normaily co-
bordant relative the boundary to a homotopy equivalence.

In order to obtain this result, we solve a special case of the embedding problem
for two-spheres in four-manifolds. Say P is a connected smooth four-manifold, and
M=P # (S*>xS8?). Let éen, (M) be a class on whose Hurewicz image in H, (M)
the 2nd Stiefel-Whitney class of M vanishes. Suppose 3t satisfying this condition
also, with the intersection number [K1] [W2] &-t in Z[n, M | equal one.

THEOREM 2.2. (Compare [W1]). The class & is represented by an embedded
sphere in M # (S*x S?) if and only if the self intersection invariant u(¢) (see §1 for
the definition) vanishes, in which case there is an embedding such that the inclusion of
the complement of the image into M # (S*x S?) induces an isomorphism of funda-
mental groups.

As an application of 2.1, we find some new four-manifolds:

THEOREM 2.4. Let RP* denote real projective four-space. Then, for some >0, 3
a smooth manifold K that has the simple homotopy type of (RP*) # t(S*x S?) but is
not diffeomorphic or even smooth or P.L. h-cobordant or normally cobordant to
RP* # 1(S%x S?).

So far as we know, this is the first such example knownin dimension four 2). The
manifold K is stable in the sense that Vr>0, K # r(S?x S?) is never diffeomorphic
to RP* # (t+r) (S? x §?). K is topologically 4-cobordant to RP* # ¢ (S? x §2).

Property (ii) for n odd is related to (i) for n even in that, loosely speaking, a non-
trivial obstruction in L,(rm, w) is obtained by constructing a normal cobordism
(= “doing surgery”) in two different ways to get a homotopy equivalence from a
suitable normal map in dimension (n—1) with vanishing surgery invariant, and
gluing the results together along the normal map of dimension (n—1). Hence we can
use our methods to obtain the following type of result:

2) The products of suitable 3-dimensional lens spaces with a circle yield examples of normally
cobordant homotopy equivalent 4-manifolds that are not diffeomorphic.
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Special case of THEOREM 3.1. Let yeLs(n, w), and let Y, Z, h, M, and c be as
in (ii), but with n=5; i.e. dimM =4. Then if Z=Q # r(S*x S?) for a sufficiently
large r, 3 a normal cobordism ( f, b) as in (ii), with o (f, b)=.

The same method of proof also leads to new examples of non-trivial 5-dimensional
h-cobordisms; see Prop. 3.3. The minimum value we need for » depends upon y; see
§3 for more details.

The splitting theorem of [C], valid in dimensions at least six and generalizing [F1],
led to algebraic splitting theorems for the Wall groups, just as [F1] led to the
formula [S1]

L(Zx n)=L,_,(n)® L,(n),

omitting the orientation map from the notation. In general, this algebraic splitting
involves the groups LZ (n, w), where B Wh () is a subgroup of the Whitehead group
of 7 invariant under the conjugation in Z [r] determined by g—»w(g) g~* for gen;
these groups are the target of an invariant representing, in high enough dimensions,
the obstruction to performing surgery to get a homotopy equivalence with torsion
in B. For Bc B’, there is an exact sequence analogous to that of [S1, Prop. 4.1] re-
lating I2and I®. Theorem 3.1 below is just the generalization of the special case
B=Wh(rn) already mentioned above to the general case L% (n, w). Theorem 2.1 can
also be generalized in this way; this generalization is not of any use to us here.

In [S1] and [S2] an algebraic splitting theorem for the groups L, (n) was used, in
a very special case, to obtain information about 5-manifolds with fundamental group
Z; for example, a splitting theorem for homotopy equivalences into closed, fibered
5-manifolds over S* [S2, Theorem 1.2] was proven. Let (¥, X)=(V, U)x (—1,1)>
> (¥, U) be a manifold pair, dim Y'=5, Y connected, ¥ connected, with codimension
one submanifold pair with trivial normal bundle, or even a suitable Poincaré pair
(i.e., a B-Poincaré pair for suitable B — see §4) and subpair, with n, V—n, Y an in-
clusion that is (algebraically) 2-sided (§4). We consider a homotopy equivalence

h: (W3, 0W)— (Y, X),
(W, W) a smooth manifold pair, 4 transverse to (¥, U), and
h|oWw:(0W; oW —h™'U,h™'U) = (X; X — U, U)

a homotopy equivalence of triples. We say that 4 is S-split if, for some V'< X ob-
tained by exchanging trivial 2-handles in the right (in particular V' =V # ¢(S*x S?)-
see §4), h is transverse to ¥’ and

h(W;h™ W, W—=h"V)>(Y;V,Y-V')

is a homotopy equivalence. We say h is S-splittable if it is homotopic relative the
boundary to an S-split homotopy equivalence.
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If Y—V is connected, let B« Wh(r) be the image Wh(n, (Y—¥)) in Wh(n,Y)
under the inclusion induced map. If Y—¥V =Y, uY, has two components, let B be
the subgroup in Wh(zn) generated by the images of Wh(xn,Y;), i=1, 2, under the
natural maps. We say # is algebraically splittable if it has torsion t (h)e B. Using the
algebraic splitting [C] of the Wall groups and the basic results 2.1 and 3.1, we prove
the following:

THEOREM 5.1. Under the above hypothesis, h is S-splittable if and only if it
is algebraically splittable.

In the case n=m,Y is isomorphic to Z x ,7, (V) via an isomorphism consistent
with the inclusion induced map, the algebraic 2-sidedness condition is always satis-
fied. For this case, a somewhat weaker form of 5.1 was proven first by W.-C. Hsiang.
Our proof, even for this case, is independent and quite different from this.

The proof of 2.1 and 3.1 depends on the existence of certain diffeomorphisms of
four-manifolds constructed in §1. In an appendix, we give some further results on
difftomorphisms of four-manifolds that may have independent interest.

Using the methods of this paper, one can prove weak forms for dimension five of
the other splitting theorems of [C1]. For example, one can derive a theorem for
splitting up to A-cobordism provided a suitable torsion type invariant vanishes.

§1. Diffeomorphisms of Four-Manifolds

This section contains a generalization of some of the results of [W1] to non-
simply connected manifolds. The most comprehensive results possible are not given;
we confine ourselves to what we will need to use in this paper.

Let M be a compact, smooth, connected (not necessarily closed) four-manifold.
We fix a closed 4-disk U= M and when appropriate we choose a suitable basepoint
in U, often without explicit mention. Let A =Z [n,; M ] be the integral group ring of
m M, the fundamental group of M. Let H,(M; A)=H,(M; Z), the 2nd integral
homology group of M, M the universal cover of M; this group acquires a (left)
A-module structure via the induced maps of covering translations. Let < M be a
disk lying over U; whenever we choose a basepoint Uc M, we choose the corre-
sponding basepoint in ¥ and use it to determine liftings of maps to M. Let

0:H,(M;Z)x Hy(M;Z)—>Z

be the usual intersection pairing of homology classes; g is m; M-equivariant. For «,
in H,(M; A), we define their intersection number a-f in A by

af= 3 o(xgh)g.

gemiM
Let w:n, M—{£1} be the orientation map; i.e., w(x)=1 iff x preserves orientation
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in M. Let ~ be the antiautomorphism of A defined by (3'; A,8) ™ =Y, w(g) A,g7".
Then this pairing is Z-bilinear, and for teA,

(i) (ta)-p=7(a-p) and (ii) f-oa=(a-p)".

Let w,(M)=w,:H,(M;Z)—>Z, be the second Stiefel-Whitney class, and let
H:ny,(M)-H,(M;Z) be the Hurewicz homomorphism. Let aeker(w,0H), and
let £:S2— M represent «. Then f *1,, is trivial, where T, is the tangent bundle of M.
Hence there is a bundle equivalence of 75.@e* with £ *1,,, €2 a trivial bundle; there
are two such equivalences up to isotopy because 7, (0 (4))=0. It is easy to see that
they both determine isotopic monomorphisms tS?—f*1,,. So, by the immersion
theory of [H3], we have an immersion f: 52— M, representing «, with trivial normal
bundle; and this immersion is unique up to regular homotopy. Given such an immer-
sion, we may take its self-intersection invariant as in [K1], [W2], or [W3]; this de-
termines a well-defined map

p:ker (wyo H) - A/,

where I={A—1 | AeA}. The following properties are satisfied:
(iii) oo =u(cx)+u—(&7 ; (note that the right is really a well-defined element of A)
(iv) p(a+pB)=u(e)+u(p)+o-p (modI); and
) p(Ae)=2u(a) 4.
See [K1], [W2], or [W3] for more details.
Now we begin constructing diffeomorphisms. Let S! x D*c Uc M be a tubular
(disk-bundle) neighborhood of an embedded circle so that there is an embedded disk
C < U which meets S! x dD? transversely with

0C=Cn(S'x D*)=S!x z,

some ze€S?=0D3. Choose a basepoint on the circle S* x O, OeD? the origin.

Suppose given an ambient isotopy ¢, of M, 0<¢<1, so that ¢, preserves base-
point and ¢, l S!x O is the identity map. Then ¢, induces a map of the 2-torus
T? =8 xI/{(x,0)~(x, 1), xeS'} into M, which preserves basepoints. Choosing an
orientation of 72 to be specified momentarily, the image of the orientation class
(under a basepoint preserving lift to M) determines an element we H, (M; A). Given
w, we can use a theorem of Whitney [W6] as in [W1] to find an isotopy that deter-
mines it in this way. We may suppose that ¢, ] S x D? is an orthogonal bundle map
that fixes S* x z pointwise, ze S2=0D>. We may also assume (by transversality) that
0, (C)n(S'xD*)=S'xz

Let ju:H,(M; A)—»H,(M,S'xD*; A) be the natural map. (For AcM,
H,(M, A; A)=H, (M, p~*(4); Z), p the covering projection.) Let [C] and [¢;C]]
denote classes in the target of j, represented by these disks. A homotopy

£:(S* x [0,1]UC, St x 0)> (M, S! x D¥), 0<t<1,
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(identifying S* x 1 =S8* xz=0C) is defined as follows:

f;(x’s)=¢st(xs Z) xesla 0<S< 1, and
f;lc=§0tlc-

Then f, represents [C] and f; represents [ ¢, C]+j,.
So, choosing the appropriate orientation of 72, we have

LEMMA 1.1. [¢,C]=[C]+js.

Let M, and M, be obtained from M by surgery [M2]using S* x D*and ¢, | S* x D3,
respectively; e.g., M, is obtained from the disjoint union of ¢l (M — ¢, (S x D*)) and
D?>x S? by identifying u with ¢, (u) for ueS!x S? and smoothing corners. Let
h: My— M, be the diffeomorphism

((P1 I cl (M — Sl X D3))U (idszsz).

Let xo,€ H, (M,; A) be the class represented by Cu (D? x z); let y, be represented by
O x S2. Let x; and y, be similarly defined. (To do all this, move the basepoint to
(0, z).) By standard arguments, we have the orthogonal decompositions

HZ(Mi;A)':HZ(M;A)('B{xi,yi}A, i=0,1;

the 2nd summand denotes the submodule generated by x; and y,. Clearly n, M;=mn, M,
i=1, 2, and, with respect to the natural identification of these fundamental groups,
h induces the identity on =,.

From Lemma 1.1 it follows easily, using the usual exact sequences and the ex-
cision isomorphisms H, (M;, D*> x S%; A)=~H, (M, S* x D*; A), that

he (x0)=x; + @+ 7yy;, 7yeA.

Clearly Ay (yo)=y;- Now ¢, is homotopic to the identity; it follows from this and
another simple argument with exact sequences, that for e H, (M; A), hy (&) =& +Ay;.
But O=xq-¢=(x; +w+yy,) (E+Ay))=A+w-¢&, as x;-y; =1 and y;-y;=0. So
A=—¢ .
It remains to consider the coefficient y. By considering intersection numbers, we
have

Xo'Xg — X1 X1 =W'® -+ Y + ')7.
This information is not precise enough for our purposes. Hence we assume w,H (w) =
=0. We also assume that the tubular neighborhood of S* x D was chosen so that
wyH (x,)=0. Then w,H (x,;)=0, and we have

#(xo) = u(x1) + n(@) + 7y, (mod ).

Now, we can identify M, with the connected sum (in the interior of M),
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M#(S*xS?%),i=0, 1, exactly as in [W1]. If e and fin H, (M # (S* x S?), A) are the
standard generators of the summand H,(S%x S?; A), they correspond to x;—
—(x;°x;) y; and y;, respectively, under the respective identifications. (Note that
p(x,) and u(x,) are integers.) So we have, so far:

PROPOSITION 1.2. Let weH, (M; A) with w,H(w)=0. Then there is a (base-
point preserving) diffeomorphism

h:M # (S* x §?)—» M # (S* x §?),
inducing the identity on the fundamental group and preserving local orientations with

he(e)=e+ w+7yf,yed with y=— p(w)(modI);
h*(f)=f;

and
he(§)=¢— (&) f, for EeH,(M;A).

Note. Connected sum is well-defined in terms of the “local-orientation™ of a
non-orientable manifold. We assume M has been given a ‘local-orientation”.
That h preserves local orientations means that it induces the identity on
H,(M#(S*xS?); Z')=Z, the top homology group with twisted integer coefficients.
See [W2].

LEMMA 1.3. Let M be as above. Let e, M. Then there is a (base-point pre-
serving) diffeomorphism

g:M# (8% x S > M # (5 x §%)

which preserves local orientations and induces the identity on the fundamental group,
so that

gx(&)=¢ for ¢eH,(M;A),
g« (e) = de

g« (f)=w(8)éf.

Proof. Letf:[0, 1]- M be a closed loop representing 8. Assume fis differentiable.
Then let ¢, be an isotopy of M so that ¢,(*)=f(¢), * the basepoint of M ; this exists
by the isotopy extension theorem. Let y, be a similar isotopy for M # (S x S?).
If & is orientation preserving (i.e., w (6)=1), put g = (@1 ' # idgz xs2)o ). fw(8)=—1,
let g=(p; ' # (id xa))ox,, where a is a diffeomorphism of S? of degree — 1.

LEMMA 1.4. Let M be as above. Suppose in addition that M=P # (S*x S?).
Then there is a (basepoint-preserving) diffeomorphism k of M # (S*x S?) that pre-
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serves local orientation and induces the identity on n,, so that

ke(£)=¢ for (eH,(M;A);
ke(€)=e+(A—4) f; and ku(f)=f;

for any given element J of A.

Proof. It suffices to assume A=den; M. Let ¢ and f’ denote the classes in
H,(P # (S*xS?); A) carried by the first and second spheres of S?x S?2, respec-
tively. Let s, be a diffeomorphism of (S?xS?) # (S%xS?) with A, (e)=e+e,
ho(f)=f, by(e)=¢€", hy(f')=f"'—f; this exists by [W1]. Let g: M # (§?x S?)—
>M # (S%xS?) be as in the conclusion of Lemma 1.3 for this . Let

hl = g—lo(idp # hl)Og-
Then let &, be a diffeomorphism of (S%x S?) # (S%x S?) with itself with
hh(@=e+fs h(f)=f, h()=¢-f h(f)=,;

and let i, =(idp # hy)oh;.

Now let hy=idp # (axa) # idsz 52, Where @:S*—S? is a diffeomorphism of
degree — 1. Then k= (h3h,)? is the desired diffeomorphism.

(Note. In taking connected sum of diffecomorphisms, we must assume they are
the identity on appropriate disks. Clearly this can always be arranged.)

THEOREM 1.5. Let M be a compact, connected, smooth manifold of dimension
four, and suppose M =P # (S? x S?) for some smooth manifold P. Let weH, (M; A),
w,H(w)=0. Let AeA=Z[n,M] be any element such that u(w)=A(modI). Then
there is a (basepoint-preserving) diffeomorphism ¢ of M # (S* x S?) with itself which
preserves local orientations and induces the identity on n, (M # (S*x S?)), so that

ox(e)=e+w—Af; @ (f)=f; and
05 (E)=¢— (E-w) f for EeH,(M;A).

(Note. e and f are defined in the paragraph preceding 1.2.)

Proof. Compose a diffeomorphism of Prop. 1.2 with the appropriate diffeo-
morphism provided by Lemma 1.4.

One can use Theorem 1.5 and some algebra to build up results on which auto-
morphisms of H, (M # (S?x S?); A) that preserve intersections and self-intersec-
tions can be realized by diffeomorphisms as in 1.5. We do this in an appendix. Here
we offer the following example to show that, unlike the simply-connected case [W1],
not every such automorphism can be realized by a diffeomorphism regardless how
many copies of S2 x S2 are added by connected sum.
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EXAMPLE 1.6. Let n be infinite cyclic, let A=Z[n] be the group ring with
involution () a,g) =) a,g™". Let SU,(A) be as in [W3, §6]; see also §3 below.
Let e SU, (A) be an element representing a generator of Ls(n)=Z. Then there is no
orientation preserving diffeomorphism of

K=(S?>x S")# (8*x S*) #--# (8% x §?)

(connected sum r times) inducing (idgs x51)s@a on H, (K; A).

According to an unpublished result of R. Lee, one can take r=1.

We outline the proof. Suppose such a diffeomorphism exists, ¢ say. Let S x D2,
1<i<r, be disjoint tubular neighborhoods of the spheres S x pt in the ith copy of
S? x S2. Using the images of these tubes under ¢ to perform surgery on the normal
map (n, b) n: K—S?x S' the natural projection and b an appropriate bundle map,
we obtain a homotopy equivalence h:Q—S> x S! that is normally cobordant [B1] to
the identity, via a normal cobordism whose surgery obstruction is a generator of
Ls(Z). From the construction, Q is diffeomorphic to S* x S*. But by [S1, Thm 5.1]
and periodicity of surgery obstructions [W3], O x S' must be the exotic manifold of
[S1, Thm 7.2]. Alternatively, one can apply the arguments of [S3, §2] directly to the
normal cobordism to get a contradiction to Rohlin’s theorem [R].

§2. Stable Surgery in Dimension Four and Some New 4-Manifolds

Let (Y, X) be a Poincaré pair, of (formal) dimension four, as defined for example
on page 224 of [W2]. Assume also that Y is a connected finite complex. We may have
X=0. Let {*, k>4, be a vector bundle of fibre dimension k over Y, and let

w) > ¢
! !
(W, 0W) 5 (Y, X)

be a normal map of degree one which induces a homotopy equivalence of the bounda-
ries; i.e., h ] OW.0W—0X is a homotopy equivalence, 4 has degree one with respect
to the (given) local orientations, and b is a linear bundle map covering f from the
k-dimensional normal bundle of the compact smooth manifold W, to {. Given such
a normal map of degree one we define the connected sum (h, b) # (S?x.S?) in the
obvious way. (For the notion of connected sum of Poincaré complexes, see [W3, §2].)

Let n=mn,X; let w:n— {11} be the first Stiefel-Whitney class. Then according to
Wall [W2] there is an abelian group L, (n, w) (often written L, (n, w), as in [S1]),
functorial in (n, w), and an invariant o (h, b)e L, (n, w) that depends only upon the
normal cobordism class relative boundary [B1], [B2] of (k, b) and vanishes if 4 is a
homotopy equivalence. This invariant is defined as follows: After a normal co-
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bordism relative the boundary we may assume, as in [W2] for example, that f is
2-connected. By [W2, Lemma 2.4],

K=K2(W)=ker(h*HZ(W,A)—*Hz(YaA)), A=Z[n1Y]’

is a stably free A-module. Furthermore, the restriction of intersection numbers to K
defines a non-singular sesquilinear form A:Kx K—A which is associated with
u| K:K—-R/I; ie., (K, 4, u) satisfies (P2)-(P6) of [W2, p. 236] with # =1, provided
K is given a right module structure by x4 =1x.

By definition o (h, b) is the class in L, (%, w) of (K, 4, p); L,(x, w) is defined as
the reduced Grothendieck group of non-singular sesquilinear forms over A on stably
free A-modules; the reduction is carried out by requiring kernels, as defined in
[W2, p. 237] to represent zero. The details are as in [W2]. In particular, that ¢ is an
invariant under normal cobordisms relative the boundary is essentially a conse-
quence of Lemma 7.3 of [W3].

THEOREM 2.1. Let (Y, X) be a Poincaré pair of formal dimension four, with Y
a connected finite complex. Let

(W) > o
1} l
(W, ow) 5 (v, X)

be a degree one normal map inducing a homotopy equivalence of boundaries. Then
o(h, b)=0 if and only if At>0 such that (h, b) # t(S*x S?) is normally cobordant
relative the boundary to (I, b') with b’ : (W', 0W')~>(Y # t(S* x S?), X) a homotopy
equivalence.

To prove 2.1, we note first that

o (h, b) = o [(h, b) # t(S* x $?)];

this follows easily from the definition. So the vanishing of o (h, b) is clearly necessary
for # to exist so that the last statement of the theorem is satisfied.

We will say an element ée H, (M; A) with w,H (&) =0 (see §1) is strongly primitive
if 31eH,(M; A) with ¢-t=1 and w,H (t)=0. The main part of the proof of 2.1 is
also the proof of the next result:

THEOREM 2.2. Let M be a compact, connected, smooth four-manifold of the
form P # (S?x S§?). Let éen,(M)=H,(M; A), A=Z[n,M], with w,H(£)=0, be
strongly primitive. Assume u(&)=0. Then & is represented by a smooth embedding
S?c M # (S? x S?), with trivial normal bundle, so that the inclusion
M # (S?2xS?)—S*cM # (S?x S?) induces an isomorphism of fundamental groups.
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Remarks. 1) If ¢eH,(P; A), one need not assume w,H(7)=0. For then if
w,H (t)#0, one can show P # (S?>x S?)~P # T, T the non-trivial 2-sphere bundle
over S2, and use this to find ©’ with v ¢é=1 and w,H (r')=0. (Compare [W1].)

2) If u(&)eZ < A, one can show that ¢ is represented by an embedding satisfying
all the conclusions of 2.2 except that the normal bundle will not be trivial.

Proof of 2.2. Let e and f denote, as usual, the classes in H,(M # (S?xS?); 4)
determined by the first and second spheres of the second summand, respectively. Let
1€ H,(M; A) be such that ¢-t=1, and w,H(7)=0. Let ¢ and ¥ be diffeomorphisms
of M # (S?x S?) with itself so that

px(e)=e+&, ou(f)=1, 0s(§)=¢,
(P*(T)=T—f’ !ﬁ*(e)=e, w*(f)=f+7"")’e,
Us(@)=¢—e, Yx(r)=1—(r+7)e.

Here yeA is some element with y=u(7) (mod7). The diffecomorphism ¢ exists by
Theorem 1.5;  exists by composing the appropriate diffeomorphism provided by
Prop. 1.2 with a diffeomorphism that interchanges e with f and leaves everything else
fixed. Then Y (e)=¢. This proves the theorem, since e is represented by an embed-
ing, with trivial normal bundle, such that the inclusion of the complement in
M # (S?*x §?) induces an isomorphism of fundamental groups.

Proof of 2.1. We may assume that 4 is 2-connected, after a normal cobordism.
Since o (h, b)=0, we may also assume, after replacing W by W # q(S?x S?) (and
changing notation) if necessary, that K, (W)=Xker(h:H,(W; A)->H,(Y; A)) is a
free A-module with basis ¢4,..., &, T4, ..., T;, such that

Erbj=1rt=p(§)=p(t)=0, 1<i,j<t, and
Ei”rj = 5ij‘

By considering (h, b) # (S?x S?) (and then changing notation) if necessary, we
may assume that W=P # (S?x S?), some P. Hence, by Theorem 2.1, §, is repre-
sented by an embedded sphere S2c W # (S?x S?), as in 2.1. This has a framing
g:S*xD*cW # (§?x S?) and we may use this embedding to perform framed
surgery ([W2], [B1], [B3]) on the normal map (h, b) # (S* x S?). Note that because
7, (0 (k))=0, there is no problem extending the bundle map b to the elementary
cobordism W xIuU ;,D?x D2

Solet (#',b'), h': W'— Y, be the normal map obtained by performing this elemen-
tary normal cobordism.

W' =cl(W # (S* x §%) — g(§* x D*))u,D* x S*.
1 4
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Hence, by Van Kampen’s theorem and the last assertion of 2.2 about our embedding,
¢ induces an isomorphism of fundamental groups. In fact, g is 2-connected, and
essentially the same argument as in the proof of Theorem 3.3 of [W2] now shows that
K,(W') is a free module over A with basis &,,..., &, T5,..., 7, With p(&)=p(7;)=
.—-_.fi-fj:ri-'cj:O for 2<i, j<t, and &;-7;=0"j. Continuing inductively, we obtain
the result.

In the preceding proof we can actually have that W’ is diffeomorphic to W. For
the 2-sphere which we used in surgery was the image of S%xptc W # (S2x S§?)
under a diffeomorphism, and we can obtain the framing from the standard framing
of S x pt via this diffeomorphism. So we have

COROLLARY 2.3. Let

e S ¢
l l
(P*, 0P) 5 (Y4, X)

be a normal map of degree one that is a homotopy equivalence on the boundary. Assume
that k is 2-connected and dim (Y, X)=4. Suppose that o(k, c)=0. Then
(P # r(S*>xS?), 0P) has the same homotopy type as (Y # t(S*xS?), X) for
some t=0 and r>0.

We conclude this section with examples of four-manifolds that have the same
(simple) homotopy type, but are not diffeomorphic or even smoothly or P.L. A-co-
bordant.

For any closed four-manifold M, we say that two degree-one normal maps

V(A’Ii)'l,"’ﬂi
l l i=1’2’
M LM

are equivalent if 3 a bundle equivalence b:1, -1, such that (f;, bb,) and ( f,, b,) are
normally cobordant. A theorem due to Sullivan, at least in the simply-connected case,
asserts that the equivalence classes of normal maps into M are in one-one correspond-
ence with [ M; G/O], the set of homotopy classes of maps of M into the classifying
space G/O for stable fibre-homotopy trivializations of vector bundles. (See [S4], [B1],
[W3].) Let (£, b) denote the class in [M; G/O] represented by (f, b); if fis a homo-
topy equivalence, b is irrelevant and so we write n(f), and call this the normal
invariant of f. We write o:[M; G/O]—= L, (n;M; wM) for o (f, b)=0(n(f, b)).

Now let M =RP* be real projective four-space; i.e., the quotient of S* by the
antipodal map. Then, as in [M4], [W4], [M; G/O]=Z, and

0:[M;G/0] > L,(Z,,-)=1Z,
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is the natural non-trivial map. (Recall that in these low dimensions there is no differ-
ence between G/PL and G/0.) So if e[ M; G/O] is the generator, there is a normal
map

v(Ko)— 1
! !
K, - M

with o (f, b)=0 and n(f, b) =20+#0. (In fact, 7 is equivalent to v(M).)

We may assume, as usual, that f is 2-connected. Let K=K, # r(S? x S?). Then
by Cor. 2.3, K, for suitable r, has the homotopy type of M # t(S? x S2), some ¢>0;
actually it has the simple homotopy type of this manifold, as Wh(Z,)=0.

Suppose that K were h-cobordant to M # t(S?x S?). Using the h-cobordism,
it is easy to find a normal map (f’, b’), with f': M # t(S*x S?)— M, equivalent to
(f, b). Since n,M =0, we may perform surgery using the ¢ copies of S x pt contained
in M # t(S*x S?). The result is a homotopy equivalence h: M—M with n(h)=
=20+#0. But every homotopy equivalence of RP* with itself is homotopic to the
identity. So we have proven most of the following:

THEOREM 2.4. Let M=RP* be real projective four-space. Then 3, for some
t=0, a smooth manifold K that has the (simple) homotopy type of M # t(S*x S?)
but is not diffeomorphic or even smooth or P.L. normally cobordant to M#t(S* x S?);in
fact for all r=0, K # r(S?x S?) is not h-cobordant to M # (t+r) (S*x S?). K is
unique up to h-cobordism, and is topologically h-cobordant to M # t(S*x S?),

The assertion about K # r(S?x S?) follows easily. The uniqueness up to h-co-
bordism is a consequence of the fact that Ls(Z,, —)=0 [W4]. Since [M; G/Top]=
=Z,®Z,, as follows from results of [K5], the image of 20 in [M; G/Top] is trivial;
the last statement follows from this and results of [K5]. One can also show that
K—pt is not diffeomorphic to M # t(S*x S?)—pt.

Using the results of this section, one can actually show that K is smoothly 7-
cobordant to M # N, N a suitable simply-connected almost parallelizable manifold
of index sixteen. Of course, this indicates that 2.3 is really not needed for this ex-
ample. The present method applies to give non-trivial elements of & (M) for other
M*, but to deduce the existence of new manifolds, one also needs to solve the techni-
cal problem of what normal invariants are represented by homotopy equivalences of
M with itself. (See [B1], [S4], [W3] or §§3, 5 below for the definition of & (M).)

§3. Realizing Surgery Obstructions

In order to prove our splitting theorem, we have to generalize slightly the surgery
obstructions in [W3] in dimensions 4k + 1; this is done in [S1] and in [C] more general
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ly. Let = be a finitely presented goup and let w: 7 — {41} be a homomorphism. Let
A=Z[r] be the integral group ring, with involution () o,g)” =) w(g)o,g . Let
Bc'Wh(r) be a subgroup that is invariant under the involution * induced on Wh(r);
i.e., B=B*.

Let x,=(K,, ¢,, u,) be the kernel (W1, §4], [W3]) of dimension 2r. That is K, is
a free A-module with basis e, ..., e,, f1,..., f,, @, is a non-singular sesquilinear form
associated with p,: K,—A/I (see §2 above and [W1], [W3]) and ¢, (e;, e;) =0, (fi, f}) =
=u,(e;)=p.(f;)=0 and ¢, (e;, f;)=0;;. Let U?(A) be the group of automorphism
of k, whose torsion, with respect to the basis {ey, ..., e,, f1, ..., f,} (hereafter called the
standard basis) lies in B. Let TU?(A)cUP(A) be those automorphisms that leave
{e,,..., €,}4 invariant and induce an automorphism of this module with torsion B,
with respect to this basis. Let o, be defined by o,(e,)=f;, 6,(f;)=e;, and o,
=identity on {e,,..., e,, f2,...,f.}4» and let RU’(A) be the subgroup generated
by TU?(A) and o,,.

There is a natural inclusion of U2 (A) in UP, ; (4); we extend ae UF (A) by setting
a(e,r1)=e,+1 and a(f,1,1)=fr+1. Let UB(A)=lim,,, UP(A), and let RU® (A)=
=lim,_, , RU?(A). Then as in [W3, Theorem 6.3] for the case B={0}, RUZ(A) is a
normal subgroup containing [U?(A), U?(A)]. So we define an abelian group

Lis1(m, w) = UB(A)/RUE(A).

When B=Wh(n), we omit it from the notation.

Let ¥ be a Poincaré complex and a finite connected CW complex. Let Ca Wh(z, V)
be a subgroup. We say V is a C-Poincaré complex if the fundamental class (in
H,(V, Z")) has a representative on the chain level (possibly infinite), cap product
with which induces a homotopy equivalence of the (finitely supported) co-chains
C*(V; Z[n,V]) with the chains Cy(V; Z[n,V]) with torsion in C. Let (¥, X') be a
Poincaré pair, with Y and X finite CW complexes and Y connected, and with
(Y, wY)=(n, w). Let Bc Wh(zn) be as above. Let Vi, ..., ¥, be the components of
X, and let C;=Wh(n,V;) be the inverse image of B under the natural map. Let
O[Y]=[V,]+--- +[V,]. Then we say (Y, X)is a B-Poincaré pair if [Y]eH, (¥, X;
Z’) has a chain representative cap products with which induces a chain homotopy
equivalence from C*(Y; A) to Cy (Y, X; A) with torsion in B; and if V; is a C;-
Poincaré complex with fundamental class [V;]. For B={0}, we have a slight gener-
alization of a finite Poincaré pair as defined in [W3, §2]. In particular, a manifold
pair is a B-Poincaré pair.

Let (Y, X) be a B-Poincaré pair as in the preceding paragraph. Let

v(M) 5

! !
(M, oM) 5 (Y, X)
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be a degree one normal map. Assume A l OM:0M—X is a homotopy equivalence.
Assume the images in Wh(n, Y') of the torsions of the restrictions of 4 to components
of OM are all in B. (This is slightly more restrictive than necessary.) We then say that
h | OM is a B-homotopy equivalence. Assume dim Y =4k +1, k> 1. Then, there is an
invariant o (h, b)€ Ly +, (n, w) of the normal cobordism class relative the boundary
of (h, b). It vanishes when 4 is also a homotopy equivalence with torsion in B, i.e.,
for h a B-homotopy equivalence of pairs. The details are as in [W3, §6] for B={0}. In
particular, o(h, b)=0((h, b)x CP?), where CP? denotes the complex projective
plane.

For k>2, Theorem 6.5 of [W3] asserts that every element of L., (%, w) can be
realized as the surgery obstruction o (4, b) for a suitable normal map in dimension
4k +1.

THEOREM 3.1. Let (Y, X) be a B-Poincaré pair, where (n, w)=(n, Y, wY) and
BcWh(n) satisfies B=B*. Let yeL’.(n, w). Let ac U? (A) be a representative of y.
Let

g:(M # r(S* x S?), 0M) - (Y, X)

be a B-homotopy equivalence of pairs. Then there is a normal cobordism

v(W) S g x I

! !
W AyxI

relative the boundary, from (g, b | M # r(S?>xS?)), to (h|0.W,b| 3. W), so that

(i) h| 0+ W:0,W—Yx1 is a B-homotopy equivalence; and

(ii) The obstruction o (h, b)eL% (n, w), defined in view of (i), is precisely 7.

Proof. 1t suffices to assume Y=M # r(S? x S?) and g is the identity. To get the
general case, one simply realizes (g7!), y and composes with (gx1, c¢x1),
c:vx (M # r(S?x S?))-n a bundle map.

Let K=M # r(S?*x S?). Let e; and f{, 1 <i<r, be the classes in H, (K; A) repre-
sented by the ith copies of S? x pt and pt x S2, respectively. Let e; and f;, 1 <i<r,
denote dimilar classes in H, (K # r(S?x S?); A). This identifies {e,, ..., €,, f1, ..., fr}4
with x, by identifying these classes with the standard basis of K,; note that this
identification is consistent with intersection and u-forms.

Let T,cH,(K # r(S?x S?); A) be spanned over A by {ej, f; | 1<i<r, j#i}u
U {e, fi | 1<i<r}UH,(M; A). Let ¢}, 1 <j<r, be a diffeomorphis of K # r(S*x S?)
with itself so that

(0)x (€)= +ale), (@)e(f))=f, and
(@) (&)=, —(&-a(e;)) fi for &inT;.
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Let ¥, 1<j<r, be a diffeomorphism with

(V)% (e)=¢e;s We(f7)=1] + «(f;), and
W) (@) =¢—(Ea(f)e; for &inTj;.
These exist by Theorem 1.5; note that p(e;)=u(f;)=0, 1<i<r. Let

¢ = ¥101) (V2902) ... (V,0,).

Then @4 (e;) =a(e;) for i=1,..., r; this follows easily from the fact that a(e,)-a(e;) =
=a(f}) a(f;)=0and a(e;) a(f;)=6y, 1<i, j<r.

Now we construct a normal cobordism, as follows. First perform surgery on
trivial circles to get a normal cobordism relative the boundary, (ky, b,), h,: W;—
~»Kx [0, %], withd_W, =Kand hy | 0_W, =(idg,0); and with 0, W, =K # r(S*x §?)
and h; | 9, W, the natural quotient map (i.e., idg # rp, p:S?x S2—S5? of degree
one.) Now let

SixD*c M # r(S* x S?) #r(S? x §%)

be a standard embedding of S* x D? in the ith summand of the first group of % x §%’s;
in particular, S? x D? represents e;. Using the embeddings ¢ | S? x D?, we perform
framed surgery on A, | 0+ W; note that these classes represent elements in the kernel
of the map A, ] 0+ W induces on H, (0, W; A) and that, as in §2, there is no obstruc-
tion to extending the framing. Let (h,, b,) be the resulting normal cobordism, relative
the boundary,

hZ:WZ—-)K X [%, 1].

Let W=W, UW, (recall 0, W, =0_W,), let h=h, Uh, and b=b, Ub,.

Clearly the inclusion 8, W, —\Ji-(S? x D*)c=d,W, induces an isomorphism
of fundamental groups. It follows easily from this and the Van Kampen theorem that
h, | 0+ W induces an isomorphism of fundamental groups. The same argument as in
[W3, §6] now goes through to show that 4 | 0+ W is a B-homotopy equivalence and
that o (h, b)=1y. (In fact, that argument doesn’t go through in general in this dimen-
sion precisely because of the possible lack of suitably embedded two-spheres.) This
completes the proof.

Note that 0, W is diffeomorphic to 0_ W =K. However, let & (M), M* a closed
smooth 4-manifold, denote the smooth (or P.L.) s-cobordism classes of homotopy
equivalences f: Q— M, Q a closed smooth 4-manifold. Then, using Theorem 3.1, for y
the generator of L;(Z), and an argument similar to that of [S3], for example, one
can show the following:

PROPOSITION 3.2. For r sufficiently large, the set of elements in & ((S® x S') #
# r(S? x S2)) with vanishing normal invariant has precisely two elements.
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There are similar theorems for 7* and S2 x T2, i.e., theorems asserting the exist-
ence of an appropriate number of non-trivial elements with vanishing normal in-
variant. By the unpublished result of R. Lee mentioned in example 1.6, we can
actually take r=1. The existence of a homeomorphism representing the non-trivial
element of & ((S>x S') # r(S?x S?)) is equivalent (using [L2]) with the existence
of an almost parallelizable closed topological four-manifold of index eight.

Let A=((a;;)) be a non-singular rxr matrix of A. Let 4*=((a;;)). Then the
matrix

o w)

with respect to the standard basis, determines an element U™"™ (A). Of course, this
represents the trivial element in Ls (7, w). In fact, if we carry out the instructions in
the proof of 3.1 we get an h-cobordism; computing its torsion we have the following
(compare [M1, Thm. 11.1] and [S5]):

PROPOSITION 3.3. Let A be as above. Let K=M # r(S?*x S?), with (n,M, wM)
=(n, w). Then 3 an h-cobordism (W; 0, W, 0_W), with d_W =K and with torsion
(W, K) equal to the element of Wh(n) represented by A.

We leave the details to the reader. A realization theorem for A-cobordisms with
torsion represented by a unit in Z[n] was proven by Stallings in [S5].

§4. S-Splitting up to Normal Cobordism

Let (Y, X') be a Poincaré pair of finite complexes, of formal dimension five, with
X possibly empty. Let

¥V, U)e(Vx[-1,1],Ux[-11]) = (Y, X)

be a Poincaré sub-pair of subcomplexes, ¥V connected, of codimension one and with
a product regular neighborhood. In this situation we will often refer to V as the fibre.
Using a circle smoothly (or P.L.) embedded in a suitable 4-simplex 4 of V and a
smooth (or P.L.) disk it bounds in 4 x [0, 1) that does not meet 4 X0 except at the
boundary, we may exchange a trivial 2-handle as is done in [B3] for manifolds.
Alternatively, we may take a copy of S?x S? embedded trivially in 4 x (0, 1) and
join it up to ¥V —A4’, 4’ = A4 a suitable open disk, by a tube. In either case, we replace
V by V # (S?xS?%). We call this process a trivial exchange of a 2-handle (on the
right).

If Y-V is connected, we let B be the image in Wh(n, (Y—¥)) under the mar
induced by inclusion. If ¥Y— V=Y, U Y, has 2-components, we let B be the image 0f
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the map
Wh (Tfl Yl) (’B Wh (7'[1 YZ) - Wh (TC]_ Y)

which is the sum of the two inclusion induced maps. We will always assume the
following in the rest of this paper:

(i) (¥, X) is a B-Poincaré pair; and

(i) The map =, ¥—n, Y induced by inclusion is a monomorphism.

We consider a homotopy equivalence

h:(W,oW)— (Y, X)

which is transverse3) to (¥, U) and split along U on the boundary; i.e.,
h|ow:(eW; k™" (U), oW — h™ ' (U))~> (X; U, X — U)

is a homotopy equivalence of triples. We say that 4 is split along V if
h(W;h P (V), W —h" ' (V)>(Y;V,Y - V)

is also a homotopy equivalence. (Because of (ii), this is equivalent to requiring merely
that i | A~*V:h~*V—>V is a homotopy equivalence.) We say 4 is splittable along V if
it is homotopic relative the boundary to a map that is split along V. (This is the same
as saying that it is homotopic as a map from

(W; h™ ' (U),oW —h™ ' (U))-> (Y; U, X — U)

to a split map; to see this, use a boundary collar.)

We say that 4 is S-splittable along V if it is splittable along some ¥’ obtained
from V by a finite number of exchanges of trivial 2-handles on the right.

Note that given % as above, if V' is obtained from V by exchanging a trivial 2-
handle, we can find

W:(W;h™ ' (V), W —h™ (V)> (Y;V, Y = V),
homotopic to # as a map of these triples and relative the boundary, so that the
inverse image of a suitable cell under &' | V is a cell, (#')™' (V') is obtained from
k™1 (V) by exchanging a trivial 2-handle, and

W) (V)= | V) #idsxse.

From now on, we assume without explicit mention that, where appropriate, this has
always been arranged.

%) Transversality depends only upon the linear structure in the normal directions, and so makes
sense here; i.e., h-1(¥) is a manifold. From now on, we always assume the appropriate transversali-
ties without explicit mention.
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We say a homotopy equivalence 4 as above is algebraically splittable if its torsion
t(h)eWh(z, Y) lies in the subgroup B. It is not hard to show, as in [C] and [F]
for the case m; Y=Zx ,G that if & is S-splittable along V, then it is algebraically
splittable.

Finally, we need the following definition, introduced in [C]: Let H be a subgroup
of the group G. Then we say H is (algebraically) two-sided in G if VxeG, (HxH=
=Hx~'H) implies xe H. See [C] for discussion of this condition and, in particular,
for the following: if H is normal in G and G/H has no 2-torsion, then H is two-sided
in G. If v,, v_: H- G are one-one group homomorphisms and if K is obtained from
Z G by dividing by the least normal subgroup containing all the elements #v, (x)
t~ly_(x71), for teZ a generator, xeH (write K=Z*G/{tv,(x)t ' =v_(x)}),
then Hc K is 2-sided if and only if v, (H)=G and v_(H)<=G are two sided. In
particular, G G x , Z is 2-sided. If Hc G, and Hc=G,, let K=G, x5 G,, the amalga-
mated free product. Then H< K is 2-sided if and only if H= G, i=1, 2, are two-sided.

Throughout the rest of this paper we also assume

(iii) 7, Ven,(Y) is two-sided.

THEOREM 4.1. Let (V, U)<(Y, X) be as above (in particular satisfying (1)-(iii),.
Let h:(W?, 0W)—(Y, X) be an algebraicaily splittable map that is also split along U
on the boundary. Let & be a (high-dimensional) vector bundle over Y so that 3 a bundle
map b:v(W)—¢& covering h. Then the normal map (h, b) is normally cobordant, relative
the boundary, to an S-splittable homotopy equivalence.

Remark. For the conclusion of 4.1 to hold, one really needs to assume only that
z7(h) is in the kernel of a homomorphism Wh(n,Y)—K,(n,Y) defined by Wald-
hausen. Also, one apparently can eliminate (iii). In the interest of simplicity, we do
not carry out these improvements.

Proof of 4.1. We have to consider separately the separating and non-separating
cases.

Case I. Y—V connected. Let K=n,Y, H=m,V, G=n,(Y—V). Let vy, v_:V—
— Y —V be obtained by pushing right and left, respectively, in the bicollar neighbor-
hood of V; e.g., vy (x)=(x,3)eVx[—1,1]c Y. We will also write v, and v_ for
the respective induced homomorphisms of these maps on fundamental groups and
Wall groups. Then (by Van Kampen’s theorem)

K=ZxG/{tv, (x)t" ' =v_(x)| xeH},

t a generator of Z, and B is the image of the inclusion induced map Wh(G)—Wh(K);
by naturality B=B*. Using the fact that | OW is split, it follows (see [F] [C]) that
h|8W:8W—X is a B-homotopy equivalence. (See §3 for the definition.)
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Consider the normal cobordism

b|h-1V

v(h©lV) —— |V
v, k)2 (v, )
Then, by Theorem «- 8 of [C], the surgery obstruction ¢ (5 x CP?) vanishes in Lg (H).
(We omit the orientation homomorphism from the notation.) This also follows from
the existence of a well-defined map L% (K)—Ly(H) as in [C] or [S1] in the case
K=7Z x H. So, by periodicity of Wall obstructions,

c(8)=0.

So by Theorem 2.1, (£) # #(S* x S?) is normally cobordant, relative the boundary,
to a homotopy equivalence. So by the “cobordism extension theorem”, (h, b) is
normally cobordant relative the boundary to a normal map

v(Q)= ¢
! i
0 5Y

so that g | g~ *P:g~'P—P is a homotopy equivalence, where P is obtained from V
by exchanging trivial 2-handles on the right.

Let Yp and Q,-1p be obtained by splitting ¥ and Q along Pand g~ 1p, respectively.
(So, for example, Yp= Y~V x(—¢,¢).) Let (gp, cp), gp: Qg- 1p— Yp, be the normal
map induced by (g, ¢). If we had

o(gp,cp) =0

in Ls(G), we would be finished; we could perform surgery relative the boundary to
get a homotopy equivalence and glue the result back up along the codimension one
submanifold (i.e., g~ 1P) or subcomplex (i.e., P) to get the required homotopy equiv-
alence. (Compare [S1, Lemma 5.3].)

Let ye Ls(H). We exchange further trivial handles on the right if necessary, but
keep the same notation. After doing this, we may find a normal cobordism, relative
boundary, (¢, d), é:T-Px I, with d_T=g 'P and (¢,4)|0-T=(g, c)| g 'P, and
with e ] 0,.T:0,T-Px1 a homotopy equivalence, so that

o(é,d)=y;

this is just Theorem 3.1. By the “cobordism extension theorem”, we can find (e, a),
a normal cobordism relative the boundary, e: R—Y x I, with

R=0Q, (e, a)la_R=(g, c), e'(PxI)=T,
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and
(e;a)| e (P x I)=(¢,4d).

Now split along P x I and apply a result of Wall (§3 of [W3]) as stated, for exam-
ple, in 1.2 of [S1]. This result says roughly that if the boundary of a normal map with
connected target has several components, the sum of the images of the surgery ob-
structions of each under the natural maps into the Wall group of 7, of the target of
the normal map vanishes. The result in [S1] is stated for dimensions greater than six;
we can handle the present situation either by taking products with CP? and using
periodicity or by appealing directly to [W3, Thms. 3.1 and 3.2]. So we have, (up to
a sign at least, depending on orientation conventions):

(4.2) +o(gp cp)—0a(ep ap)=v,(y)—v-(7).
Thus, to complete the proof, it suffices to show that

o(gpcp)=Vy(y)—v-(7)

for some ye Ls(H); for then we would have o (ep, ap) =0, and, as above, we would

be done.

Let j,:L5(G)—L%(K) be the map induced by inclusion. Algebraically, this is
induced by the extension of coefficients homomorphism of UY%(Z[G]) to
U,(Z[K]). It is not hard to prove from the definitions that

(4.3) jxo(gr cp)=0(g: ).
But by [C], the following is exact:

Iy (H) =5 5 (6)——— L (K)
Since 6 (g, c)=0(h, b)=0 because 4 is an algebraically splittable homotopy equiv-
alence, this completes the proof.

Case II. Y-V =Y, UY, has two components. The argument in this cese is anal-
ogous. If H=n,M, G,=n,Y;, i=1,2, K=n, W, then K=G, *; G,. Again we first do
surgery on the codimension one normal map, suitably altered, to get a normal map
that is at least a homotopy equivalence along the (modified) codimension one sub-
manifold. When we split, we get two surgery problems. We use the sequence [C]

v @ (—v-) G+ (j2)
Ls (H)_—’Ls (G1) ®Ls (Gz);“"ﬁs (K)

to show that the direct sum of the two surgery obstructions of these problems is in
the image of Ls(H) under v, @®(—v_-). (Here j;: Y;= Y are inclusions.) Hence these
obstructions can be cancelled by extension of a suitable normal cobordism of the
codimension one normal map. We leave the details for this case to the reader.
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§5. S-Splitting in Dimension Five

Let (Y, X)=(V, U) be as in §4, and let g:P—X be a homotopy equivalence that
is split along U. Let ¥2(Y, g) denote the equivalence classes of homotopy equiv-
alences h: (W, 0W)— (Y, X) that are algebraically splittable and satisfy the following:
3 a diffeomorphism ¢:0W;—»P with go=h | 0W. The equivalence relation is the
following: h and hy : (W, 0W,)— (Y, X') are equivalentif 3 an h-cobordism, (Z; W, W,),
relative the boundary, of W with W, and a map F:Z— Y x [ satisfying

(a) the torsion of F lies in B,

(b) F| W=(h,0)and F| Wy=(hy, 1)

() F|(0Z—WouW,)” =hxid,.

Note that (a) is equivalent to the assertion that F (t(Z, W))eB, by [M1, Lemma
7.8].

We define NM (Y, g) to be the equivalence classes of normal maps

(W) ¢

| !
W—f»y

such that 3 a difffomorphism ¢@:0W—P with go =f ] oW. Two such, (f, b) and
(f1, by):v(W,)—¢,, are equivalent if 3 a (stable) bundle equivalence b:¢—¢&; so
that ( f, bb) and (f;, b,) are normally cobordant relative the boundary.

As usual ([B1], [S4], [W1]) there is a natural map

n: 2 (Y,g)>NM(Y,g).
Namely, given a homotopy equivalence
h:(W,oW) - (Y, X)

representing an element x of #?(Y, g), we choose a (stable) bundle £ so that there
is a bundle map b:v(W)—¢ and let n(x) be represented by (h, ). Theorem 4.1
asserts that #(x) always has an S-splittable representative.

We also need to introduce the Wall group L%, . , (m, »). This is the reduced Gro-
thendieck group of triples (K, ¢, 1); K is a stably free and stably B-based left module
over A (i.e., a stable class of basis is assumed given up to equivalence with torsion
in B); ¢ and yu are as in [§4, W2] and satisfy [P2]-[P6] of [W3, p. 236] for the right
module structure on K given by x4 =J1x (and with n = —1); and A¢: K—Hom,(K; A)
given by A¢(x) (»)=¢(», x) has vanishing torsion modulo B with respect to the
given class of stable bases and its dual (note that the torsion of A¢ is only defined
modulo B). The reduction is accomplished by requiring kernels to represent zero; a
kernel is defined as in [W2, 4.5], with the additional proviso that the basis exhibiting
a triple as a kernel must be in the given class of stable bases.
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For B={0} this is just the definition of [W3] for L, , (n, ®); for B=Wh () it
is essentially the definition of L¢(n, w) in [W2]. In particular, the analogue of [W3,
Thm. 5.8] holds, as well as periodicity under products with CP?[W3, §9]. Hence we
may define the action of Lg(n;Y) on #2(W, g) as follows:

Let h: (W, 0W)—(Y, X) representing xe 2 (W, g) and yeL’, (n, Y) be given. Let
b:v(W)—¢ be a bundle map, as above, covering A. Then 3 a normal cobordism
(H, B), relative the boundary, of (k, b) to (h’, b") with A" a B-homotopy equivalence
and o (H, B)=7. We define

y-x=1[h,Db].
It is not hard to check that this is a well-defined action (in particular (y+y’)-x
=v+(y'-x)) and that n(x)=n(y) if and only if x and y are in the same orbit.

THEOREM 5.1. Let (Y, X)>(V, U) be as in Theorem 4.1. Let h:(W, 0W)—
— (Y, X) be an algebraically splittable homotopy equivalence (i.e., a B-homotopy
equivalence) with h l OW already split along U. Then h is S-splittable along V.

Note. The hypothesis (iii) from §4, algebraic two-sidedness, appears here only
because it appears in the splitting theorems of [C]. If it can be eliminated there, it can
be eliminated here.

Proof of 5.1. Let g=h | 0W, and let B be as in §4. Then, using the existence and
uniqueness theorems for 6-dimensional #-cobordisms, relative the boundary, in terms
of their Whitehead torsion (see [M1, 11.1 and 11.3], [S5], and [K2}), it is not hard to
show that every representative of an element of #2(Y, g) is S-splittable if and only
if some representative is S-splittable.

Thus, in view of Theorem 4.1 and the preceding discussion, it suffices to study the
action of L% (n; Y) on an element of &2 (Y, g) represented by an S-splittable homotopy
equivalence

k: (W, 0W,) = (Y, X)

with oW, diffeomorphic to OW via a diffcomorphism ¢ with (h| W )o@ =k | oW,
So we may as well assume (after a change of notation for the fibre) that k is actually
split along V, as well as along the various fibres we shall obtain from ¥V by exchanging
trivial 2-handles as necessary.

Case I. Suppose Y—V is connected. Let K=n, Y, H=m,V, G=n,(Y—V), and
let v,, v_: H—G be induced as in §4, by pushing ¥V in the positive and negative direc-
tions. We also denote by v, and v_ the respective maps induced on Wall groups. By
[C] (or essentially, by [S1], in case K=Z x H), and by periodicity of the Wall groups,
there is an exact sequence

V4~V

(5.2) I'(G)—L—IB (K)—— I' (H) 25 1% (G).
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Here j, is induced by inclusion. Again we omit mention of the orientation homo-
morphism.

The homomorphism « can be defined as follows:

Let ye L} (K)=L%,(K). Let

v(Q) - ¢
!
(01°,80) 5 (Y, X) x CP? x I

be a normal map so that

00=0_Qud(0-Q)xIuad,Q
(with 8(0,0)=0(3_Q) x 1), with

F|0.0:(6-0,8(0-Q0))— (Y, X) x CP* x 0 and
F10,0:(0,0,8(8:0))~ (Y, X) x CP? x 1

split along the pair (V, U) x CP?, i.e., split along ¥ x CP? and on the boundary along
Ux CP?; with

F|(0(2-Q) x I))=(F|2(2-Q)) x idy;

and with ¢ (F, B)=y. (CP? =complex projective 2-space.) Such a normal map exists
by the realization theorem ([W3, 5.8] for B={0}) for surgery obstructions in dimen-
sions at least six, by the splitting theorem of [C], and because we have assumed the
existence of some split homotopy equivalence of a manifold pair with (Y, X), namely
k. We may also suppose F is transverse to ¥ x I. Let = be the following normal map:

VFTH(V x CP2 x I)) 3 &|V x CP? x I

! !
F'wxcP*xI) 5 vxcP*x1,

where F and B are restrictions of F and B, respectively. Then
a(y) =0 (E)e Ly (H) = Ls (H).

(The proof that o is well-defined seems to use [W3, §9] as well as the geometric
splitting theorem of [C]. It seems that in the present case, by some extra effort, we
might avoid any appeal to [W3, §9].)

Returning to the situation at hand, let us study the action of yeL% (K) on the
element of S2(Y, g) represented by k:(W,, 0W,)—~(Y, X). Choose a bundle map
¢:v(W;)—¢ covering k. Let (f, b) be a normal cobordism, relative the boundary, of
(k| k=¥, c|k™1¥) # r(S?x S?) to another homotopy equivalence, with ¢ (f, b)=
=a(y). For r sufficiently large, this exists by Theorem 3.1.



524 SYLVAIN E.CAPPELL AND JULIUS L.SHANESON

Let T be the domain of f] i.e.,
f:T->(V#r(S>xS?))x1I.

Let Pc Y be obtained from V by exchanging r trivial 2-handles on the right. By the
“cobordism extension theorem”, 3 a normal cobordism ( f;, b, ), relative the boundary,
of (k,c) to (f+,b,), so that (f)™* (PxI)=T, f; | T=f, and b, | T=b. So f,: T,~
->YxI, witho_T, =W, f; | 0_.T, =k, f; | 0.T,=f,,and b, | 0. T, =b,.

By the same argument as was used to derive formula (4.2) in the proof of Theorem
4.1, and using the same notation, we have (up to sign) the following in Ls(G):

O'((f+)P’ (b+)P) =Vy (“ (Y)) — V- (‘x (V))

(In (4.2) there was another term on the right, corresponding here to o (kp, cp)=0.)
By exactness of (5.2), the right side vanishes. Hence we may perform surgery relative
the boundary on ((f+)p, (b+)p) to get a homotopy equivalence and glue up the re-
sulting normal cobordism along the appropriate parts of the boundaries to get a
normal cobordism (f5, b,) of (f4, b,) to (k,, ¢;) with k, a split homotopy equiv-
alence along P. (Compare [S1, Lemma 5.3].) Let T, be the domain of £, ; we view f,
as a map from T, to Y x [1, 2] with

(k2:2)=f5 |0+ T5:0. T, > Y x 2.
Let T=T, U,,r, Ty, and let (f, b)=(f}, b1) v (f2, b2);
f:T_)YX [0:2]9

and (f, b) is a normal cobordism relative the boundary from (k, c) to (k,, c,). We
have

a(o(f, b)) =a(c(f, b) x CP?).

By definition of a, the right side is just o ((f, ) x CP?), which by construction and
periodicity is just & (y). So a(c(f, b))=a(y). Let t=y—0(f, b). Then

y[k] = (v + o (£, b)) [kK] = 7*(c (/> b) [K]) = 7" [k:] ;

here [k,], for example, denotes the class of k, in #2(Y, g). So it suffices to show that
7[k,] has a split representative along P.
Now, a(7)=0. So, by the exact sequence (5.2), T=j,w, weLgs(G). Let

(k2)p: (04 T_)(kz)- 1ip— Yp

be obtained from k, by splitting along P and (k,)~* P. A representative of t [k,] can
be obtained by first constructing a (six-dimensional) normal cobordism Z,, relative the
boundary, of (k,)p to another homotopy equivalence, with ¢ (Z;)=w, and then gluing
up along the portions of the boundary corresponding to PxI and (k; 'P)x 1. By
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(4.3), if Z is the resulting normal cobordism, ¢(Z)=j,w=1. Clearly Z is a normal
cobordism from (k,, ¢,) to (kj, c3), where kj is split along P. This completes the
proof of Case L.

(One could also carry out the last part of the argument by appealing to the “local
character”” of surgery obstructions; this says that since = comes from Lg(G), we can
construct a normal cobordism to obtain this element, relative the complement of a
regular neighborhood of a subcomplex whose fundamental group maps isomorph-
ically to G under the inclusion induced map. In particular, we can construct ¢ without
disturbing our codimension one submanifolds.)

CaseIl. Y—V=Y,UY, has two components. Let K=n,V, C;=n,Y,, i=1,2.
Then the proof proceeds in a fashion analogous to the proof for Case I. We use the
sequence [C]

Ls(G,) ® L (G,) > Ly (K) S Ls (H) > Ls (G,) @ Ls (G,),

where &(x, ¥)=(Jj; )« X +(J2)x (), J; inclusion maps, v(x)=(v, (x), —v_(x)), and «
is defined geometrically using periodicity and codimension one splitting theorems of
[C]. We leave the details to the reader.

Appendix: More Diffeomorphisms of Four-Manifolds

We return to the notation of §1. In particular, M is a smooth, compact, connected
four manifold, and A=Z[n;M]. We assume M =P # (S*x S?). Suppose

H,(M; A)=L®K,

is a direct sum decomposition of A-modules, orthogonal with respect to the inter-
section paring, so that K, has a basis e,,..., €, f3,....,f, with e;-e;=f;:f;=0 and
e;'f;=90;;, 2<i, j<r. This implies that the 2nd Stiefel-Whitney class vanishes on K,
because the Euler classes of the normal bundles of immersions representing the above
basis will varnish. Hence p is defined on K, ; we assume that u(e;)=u(f;)=0,2<i<r.

Let N=M # (S?x S?). Let e; and f; be the classes represented by the first second
spheres in the second summand. Then

H,(N; A)=L®K, where K=K,®{es, fi}s;

these are orthogonal direct sums, u(e,)=u(f;)=0, and e, -f; =1.

LEMMA A.1. 3 diffeomorphisms o‘: N— N, 2<i<r, preserving basepoint and in-
du?ing the idenﬁty on Tth, so that (ai)* (el)‘_"ei’ (Gi)* (f1)=fi, (Gi)* (ei)zela
()% (F)=f1; (0")s (¢;)=¢; and (¢*)s (f;)=f; for j#1, i, and (¢*), | L=identity.

Proof. Let ¢ and  be basepoint preserving diffeomorphisms of N which induce
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the identity on m; N and satisfy the following: ¢, (e;)=e; +e;, 04 (f;)=f;, and
Px(£)=C— (8 e;) fy for LeLDK,; and Yy le)=e;, Yu(f1)=fi+fi Yu(E)=¢-
—(¢-£1) e, for £e LOK,. These diffeomorphisms exist by Theorem 1.5. Let 6 =id,, #
# (axa), where a is a diffcomorphism of S? of degree —1. Then ¢’ =0¢ ¢ is the
desired diffeomorphism.

Let U,(A) denote the automorphisms of K which preserve the intersection and
u-forms. (This 1s consistent with the notation of §3.) Let E;; denote the r x r matrix
with the single entry 1 in the (i, j)th position. Let I, =1 be the identity r x r matrix.
Let SL,(A) denote the subgroup of the automorphism group of the free A-module
{e,..., €,} 4 generated by automorphisms with the following matrices with respect to
the basis ey, ..., e,:

I+ AE;;, Aed, 1<i, j<r, i#j; (1)
and
(+g N
1 0
(2)
. 0 1/

Let SLU,(A)< U, (A) denote the subgroup of automorphisms that preserve {e,, ..., ,} 4
and induce on it an element of SL,(A). Let RLU,(A) be the group generated by
SLU,(A) and o, where o (e;)=f;, o (f;)=e,, and ¢ | K, =identity.

THEOREM A.2 (Compare example 1.6). Let acRLU,(A). Then 3 a diffeo-
morphism @:N— N, preserving the basepoint and inducing the identity on m; N, so that
on H,(N; A),

0y =(id) @ a.

Proof. It is obvious how to realize (id,)®a.
Let UU, (A) < U, (A) be those elements which restrict to the identity on {e;, ..., &} 4.
Then there is a split exact sequence:

1 - UU,(A) - SLU,(A) > SL,(A) > 1;

R denotes restriction and is split by the following homomorphism H: if feSL,(A)
is represented by the matrix 4 =((a;;)) over A, then H(A) is represented by

(6 wr)

with respect to the basis {e, ..., f,}. Here 4* =((a_j,-)), where ~:A— A is the involution
in §1.
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So it suffices to consider separately the cases o =H(f) and ae UU,(A4). For the
case a=H(f), we must consider types (1) and (2), above. For (2), Theorem A.2 is
just Lemma 1.3. So suppose

A=1+ }»Eij >
i#]j, A€/, is the matrix for a. We can also assume i=1, since if i# 1 we have

a= (")t ()«
where o; has matrix I+AE, ;, and ¢° is as in Lemma A.1. So we have «(e;) =e, +4e;,
a(e;)=e;, 2<i<r, a( f;)=f; for i#j, a(f;)=f;—f;. But for this «, the existence of

the required diffeomorphism clearly follows from Theorem 1.5.
Now, with respect to the basis {ey, ..., f,}, elements of UU,(A) have the form

(c 7)

where C is an (rxr) matrix ((c;;)) With ¢;;=—c;, for i#j and c;;=d;—d; for some
de A. Furthermore

(e 7)(e D=lere 1)

1.e., composition of automorphisms in U, (4) corresponds to addition of matrices. So
it suffices to prove our result for the case where C has either two off-diagonal non-
zero entries, all other entries being zero, or only one non-zero entry, on the diagonal.
In the latter case, the result follows by conjugating a diffeomorphism given by Lemma
1.4 with a suitable ¢*. If ¢;; = — é,, [#k, are the only non-zero entries, by conjugation
with ¢* we may assume k=1, in which case it is an easy consequence of Theorem 1.5,
interchanging the roles of e, and f}, that the required diffeomorphism exists.
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