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Ouverts concaves et théorémes de dualité pour les systémes

différentiels a coefficients constants

B. MALGRANGE

Avertissement

L’article ci-dessous est la reproduction (a I’addition prés de la remarque 5-5) d’un exposé paru
dans le Séminaire Leray 1962-1963. Son but est I’extension aux systémes différentiels a coefficients
constants du calcul de la cohomologie & support ponctuel du faisceau des fonctions holomorphes,
calcul dit & Frenkel et réutilis€ par Andreotti-Grauert dans la théorie des espaces analytiques
concaves; en language plus usuel, il s’agit d’examiner ici les théorémes d’existence, d’approximation
et de dualité pour un systéme différentiel a coefficients constants, dans le complémentaire d’un point,
ou plus généralement dans le complémentaire d’'un compact convexe.

Divers problémes plus ou moins voisins de celui traité ici semblent mériter de I'intérét, par
exemple P'étude des «formules de Green» explicitant la dualité obtenue ici et leur extension aux
systémes a coefficients variables; ou encore 1’étude de la cohomologie a support dans un fermé non
nécessairement compact, cohomologie qui intervient par exemple dans la théorie des «hyperfonctions»
de Sato.

1. Introduction

Nous reprenons ici les notations de [12]: A désigne I’anneau des polynomes
C[X,,..., X,], € (resp. 2') le faisceau des germes de fonctions indéfiniment dérivables
(resp. de distributions) sur R"; 4 opére dans & et &’ par la formule X;f=0f/0x;, et
X; apour transposé — X ;.

Si M est un A-module de type fini, nous noterons & (resp. 2'¥) le faisceau
Hom (M, &) (resp. Hom, (M, ")), en considérant M et A comme des faisceaux
constants.

Dans la suite, nous écrirons toujours Hom pour Hom,, ® pour ® 4 etc.

Soit % un ouvert convexe de R". On sait [12] qu'ona
HY(%; 2'™) ~ Ext* (M, A) ® &' (%) (1-1)
HY (% M) ~ Ext* (M, A) ® 2 (%) (1-2)

ol I'indice ¢ désigne la famille des parties compactes de %, et ou &' (%) (resp. 2(%))
signifie comme d’habitude I'.(%; 2') (resp. I' (% ; &)).
De la premiére relation on déduit un accouplement

H (%; 2'™) x Hom (Ext* (M, 4), € (%))—-C (1-3)

(M désigne le symétrique de M par rapport a I'origine) et 'on voit facilement que 'on
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peut topologiser cet accouplement en munissant le premier terme d’une topologie
d’espace (2.%) et le second d’une topologie d’espace (), de fagon 2 faire de cet
accouplement une dualité (i.e. chaque terme est le dual vectoriel topologique de
I’autre). Nous laisserons au lecteur le soin d’examiner cette question, car nous allons
en traiter une voisine, mais plus délicate: indiquons seulement qu’il faudrait définir
ces topologies par un procédé analogue au paragraphe 2, et qu’ici ces topologies
seraient séparées a cause de [12], théoréme 3-2.
De méme, en partant de (1, 2), on obtiendra un accouplement

H¥(%; €™) x Hom (Ext* (M, A), 2' (%))— C. (1-4)

Mais ici, il se présente des difficultés vectorielles topologiques, que nous n’avons pas
résolues.
Soit maintenant X un compact convexe de R". Considérant ’accouplement (1-4)
pour tousles % convexes contenant K, et passant & la limite, on obtient un accouplement
lim Hf(%; ™) x Hom (Ext*(M, A), 2’ (K))—~C.

(._...__-
u>K

Rappelons maintenant la définition des «groupes de cohomologie a support
dans K» [8]: si Z est un ouvert de R”, K un compact de % et F un faisceau de groupes
abéliens sur %, on désigne par I'y (% ; F) le groupe des sections de F sur % a support
dans K, et par Hg(%; .) le k-iéme foncteur dérivé de I'y (%; .) au sens de [7]. Comme
I'x(;.) est visiblement exact & gauche, on a HQ(%; F)~I'x(%; F); en outre, si
V=% — K, rappelons qu’on a une suite exacte illimitée a droite, et dépendant foncto-
ricllement de F:

0> HY(%;F)>H°(%; F)»H°(V; F)—> Hg (%; F)—>---.

Enfin, si %’ est un autre ouvert avec Kc%'c%, on a des isomorphismes fonc-
toriels en F: Hg(%; F)~Hg (%', F). Pour simplifier I'écriture, nous identifierons ces
groupes et les écrirons simplement Hy (F).

Cela étant, de I’application définie de fagon évidente Hg (F)— H%(%, F) on déduit
une application

HE(F)— lim HY(%;F) (1-6)

[ —
U4=>K

Prenant en particulier F= &M, et K convexe, on en déduit un accouplement
HE (6™) x Hom (Ext*(M, 4), 2’ (K)) - C. 1-7)

L’objet de cet exposé est précisément I’étude de cet accouplement.
Il y aurait lieu évidemment d’étudier aussi I’accouplement analogue déduit de
(1-3), mais il se présente des difficultés vectorielles topologiques supplémentaires.
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Par ailleurs, le lecteur qui désirerait voir la signification de cette étude pourra com-
mencer par examiner les exemples (paragraphe 5).

Remarque (1-8). On voit facilement que pour k=0, (1-6) est un isomorphisme,
mais que pour k>0, (1-6) est surjectif, mais non injectif en général. Dans le cas ou
F=&M, nous dirons plus loin un mot de cette question.

2. Un théoréme de dualité

Soit £ un ouvert de R", et M un A-module de type fini. Considérons une résolu-
tion libre de M.

LA R VA (2-1)

Par application de Hom (M, & (£2)), on en déduit une suite

0 Hom (M, £(Q))— & ()" 3 &(Q)" 5. (2-2)
et par application de .® &” (2) une autre suite

e e @ M@ & (@)—0 (2-3)

ou le symbole * désigne la transposition, et le symbole " la symétrie par rapport
al’origine, ceci pour que (2-2) et (2-3) soient en dualité.

De (2-2), on déduit Ext*(M, &(Q))~kerP,,,/imP,; comme ker P,,, est muni
d’une topologie d’espace (F), Ext*(M, &(Q)) est muni d’une topologie de quotient
non nécessairement séparé d’espace (%) en abrégé «g—F »; en utilisant le fait que
deux résolutions libres de M sont homotopiquement équivalentes, on voit que cette
topologie ne dépend pas de la résolution choisie. Pour k=0, on trouve évidemment
une topologie séparée.

De méme, & partir de la suite (2-3), on munit Tor, (M, &' (Q))~ker P /imP},
d’une topologie d’espace (¢q—2F), indépendante de la résolution de M choisie
(rappelons que & (Q) est un espace de Schwartz, et que, par conséquent, tout sous
espace fermé de 6 () muni de la topologie induite est un (2.%) [5]).

PROPOSITION (2-4). L’accouplement Ext*(M, &(Q))x Tor, (M, &' (2))-C
défini par (2-2) et (2-3) est séparément continu, et met en dualité les séparés associés
(i.e. chacun des séparés associés est le dual fort de I'autre). D’autre part Ext*(M, & (R))
est séparé si et seulement si Tor,_, (M, &' (RQ)) est séparé (cette condition étant vide
par définition si k =0).

La démonstration de la premiére assertion est immédiate. Pour la seconde, il
suffit de remarquer que I'image de P, est fermée si et seulement si I'image de B est
fermée (d’aprés (2), et le fait que & () est réflexif).



490 B.MALGRANGE

N.B. Les raisonnements du type précédent se trouvent explicités pour la premiére
fois dans [14] & notre connaissance. Nous leur donnons ici une forme due 3 A.

Martineau.
Posons maintenant K=R"—Q; dans toute la suite, nous supposerons K compact
(ce qui d’ailleurs ne deviendra utile qu’a partii de (2-7)). On sait (12) qu’on a

H*(Q; &™) ~ Ext*(M, € (Q)) pourk >0
et, en particulier
H*R"; 6") =0 pourk>1.

On déduit de 1a et de la suite exacte des Hg, rappelés dans I’introduction les
propriétés suivantes:
On a une suite exacte

0 — Hg (™) > Hom (M, € (R")) > Hom (M, & (Q)) - Hg (6¥) - 0. (2-5)
Pour k>2, on a un isomorphisme
Hg (™) ~ Ext* "1 (M, € (Q)). (2-6)

Nous munirons les espaces Hg (&™) des topologies d’espace (q—F ) définies par
ces relations (pour k=0, cette topologie est évidemment séparée). D’autre part, la
proposition (2-4) nous donne leurs duals (i.e. ceux des séparés associés), pour k=>2.
Examinons les cas k=0 et k=1. Nous devons pour cela considérer I’application
(déduite de I'injection évidente &’ (2)— &’ (R")

M & Q) M®E (RY).

Nous poserons N, =ker (i), N, =im (7).

Comme M® &' (R") est séparé (cela résulte aussitdt de [10], théoréme 3-2, ou
[12], théoréme 3-2), N, peut encore €tre muni d’une topologie d’espace (q— Z%).
Pour que N, soit séparé, il faut et il suffit que I'image de i soit fermée; comme 7 est
continue (évident), il revient au méme de vérifier que I'image de I’application 7 déduite
de i en passant aux séparés est continue; en transposant, on obtient donc ceci:

N, est séparé si et seulement si Hg (6™) est séparé.
Reste 4 examiner N, ; on a un isomorphisme (algébrique)
N, ~ &' () n P& (R")P|BLE (Q)™

Comme Pf& (R est fermé ([10], théoréme 3-2), N, peut encore étre
d’une topologie d’espace (g— 2F); il sera séparé si et seulement si P&’ (Q)"* est
fermé; en transposant on trouve donc ceci:
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N, est séparé si et seulement si Ext' (M, &' (Q)~ HE (&™) est séparé.

On voit encore que ceci a lieu si et seulement si M® & (Q) est séparé; on voit aussi
que, dans tous les cas, la topologie que nous venons de définir sur N; coincide avec
celleque I’on déduit de 'injection N, MRE (). Enfin, (raisonner comme a la prop-
osition (2-4)) les séparés associés 3 Hg (€M) et N, (resp. Hyx (€M) et N,) sont en dualité.

Considérons maintenant la suite exacte (ici, I’hypothése «K compact» est es-
sentielle)

06 (Q)—» &' (R")> 2'(K)—-0. 2-7)

Tensorisant avec M, et tenant compte de la platitude de &' (R") sur 4 [12], on
trouve les résultats suivants
On a une suite exacte

0- Tor, (M, 2" (K))»M® & (Q)->-M® & (R)>MQ 2'(K)->0 (2-8)
d’ou des isomorphismes (qui seront, par définition, des isomorphismes topologiques)

Nox=2M® 2' (K)

N, ~ Tor, (M, 2’ (K)).

Pour k > 1, on a des isomorphismes (encore topologiques, par définition)

Tor,1 (M, 2' (K)) = Tor, (M, &' (RQ)). (2-9)

Finalement, on obtient le résultat suivant:

THEOREME (2-10). Soit K un compact de R".
a) Pour tout k>0, 'accouplement défini par (2-4)—(2-9)

Hy (6M) x Tor, (M, 2’ (K))—> C

est séparément continu et met en dualité les séparés associés.
b) Pour que HE(&M) soit séparé, il faut et il suffit que Tor,_, (M, 2’ (K)) soit séparé
(cette condition étant vide par définition si k =0).

3. Quelques considérations vectorielles topologiques

(A) Nous allons étudier la topologie de Tor; (M, 2’ (K)). Pour cela remarquons
que si % désigne un ouvert, on a un isomorphisme algébrique
2 (K)~ lim 2’ (%)

—_—
U>K
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d’olt un isomorphisme algébrique
Tor, (M, 2'(K)) ~ lim Tor,(M, 2'(%)). (3-1)
U>K

Si maintenant L est un voisinage compact de K, on considére le dual de Z(L),

Jp—
noté 2 (L)';si Lc%, on a des applications de restriction évidentes

2 (@) 2(L) - 2 (L).
Donc on aencore
Tor, (M, 2' (K)) =~ lim Tor,(M, 2(LY). (3-2)
[*]
Lok

—————
Nous munirons D (L)  de sa topologie de dual fort de D (L); c’est donc un espace

(2%); comme au paragraphe 2, les Tor, (M, 2 (L)) sont alors munis de topologies
d’espaces (9 — 2.%) et leur limite inductive de la topologie de «limite inductive locale-
ment convexe». On a alors le résultat suivant:

PROPOSITION (3-3). L’isomorphisme (3-2) est un isomorphisme topologique,
lorsque le premier membre est muni de la topologie définie au paragraphe 2, et le
second de celle qui vient d’étre définie.

Nous nous bornerons a établir ce résultat pour k> 2, en laissant au lecteur le soin
d’examiner les cas k=0, 1.

Montrons d’abord que I'isomorphisme

Tor, (M, 2’ (K)) = lim Tor, (M, 2'(L))
LoK

est un isomorphisme vectoriel topologique lorsqu’on munit le second membre de la
topologie de limite inductive localement convexe. Posant Q; =R"— L, cela revient,
par définition a établir 'isomorphisme vectoriel topologique

Tor,_, (M, &' (Q)) ~ lim Tor,_, (M, & (2,)).
L>K

Pour cela, désignons par N, _, () le noyau de I’application
& @I g (o)

muni de la topologie induite par &’ (Q)*-!, et définissons de méme N,_, (2,); on 2
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¢videmment une application continue

lim Ne_; (2L) - N1 (Q)

_—

L>K
qui est un isomorphisme algébrique. Comme & () est un espace (#) de Schwartz,
c’est encore un isomorphisme topologique (cf. [5], théoréme 12 et théoréme 3). En
passant au quotient, on trouve facilement le résultat cherché.

Pour établir (3-3), il suffit maintenant de démontrer ceci:

A A S
a) Iapplication Tor, (M, 2’ (L))-Tor, (M, 2 (L)) est continue

b) si L' < L, Papplication Tor, (M, @ (L)')—Tor, (M, 2' (L)) est continue.
Ces deux faits résultent facilement du lemme suivant (détails laissés au lecteur):

LEMME (3-4). Soit E un espace (q— %) dont le séparé associé est complétement
réflexif, E' un espace (q— DF), et o une forme bilinéaire séparément continue Ex E'—C
induisant une dualité entre les séparés associés. Soit (F, F', B) un autre systéme vé-
rifiant les mémes hypothéses; soit u une application linéaire E—F et u' une application
linéaire E'—F' transposées 'une de I'autre i.e. vérifiant NecE, Nf'eF' B(u(e),f’)=
(e, ("))

Alors u et u’ sont continues.

Montrons d’abord ceci: si eeE est adhérent 4 0, u(e) est adhérent & 0. En effet,
on aalors, VfeF:a(e, f)=0 et ceci caractérise I’adhérence de 0. Pour tout f '€ F’, on
a donc B(u(e),f')=a(e,u' (f'))=0, d’ol le résultat. On voit de méme que, si
f'e0,onau (f')e.

Pour achever la démonstration, il suffit de démontrer que les applications # et @’
déduites de u et u’ par passage aux séparés associés sont continues. Or, elles sont
transposées I'une de 1’autre, donc faiblement continues. Donc (théoréme du graphe
fermé) # est continue; et, par conséquent, & est aussi continue. (En fait, ’hypothése
«complétement réflexif» n’est intervenue que parce qu’on supposait chacun des
séparés associés £, £’ dual fort de I'autre. Il suffirait en fait de supposer que E est
un espace (g— %) et que £’ est le dual de E et de faire les mémes hypothéses sur F
et F'.)

Remargque (3-5). Prenons M =A; on voit immédiatement que la topologie qu’on
a mise sur D' (K)~AQ® 2’ (K) admet 5(_1:(-5’ pour séparé associé (donc n’est jamais
séparée elle-méme). On pourrait penser a topologiser Tor, (M , 9'(K)) en le considé-
rant comme le k-iéme groupe de cohomologie de la suite exacte déduite de (2-1) par
application de .® 2’ (K), et en utilisant la topologie précédente sur 2’ (K). On voit
facilement que I’on obtient ainsi une topologie plus faible que celle que nous avons
précédemment obtenue [utiliser le lemme précédent; I’application «transposée» a
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considérer sera la suivante, que nous laissons au lecteur le soin de définir
Ext"(M, 2 (K)) - HE (6™)].

Des exemples simples montrent que cette seconde topologie est en général
strictement plus faible que la premiére. Par exemple, si K est un point, le séparé
associé & Tor (M, 2’ (K)) pour la seconde topologie est toujours 0, alors que pour
la premiére, cet espace est s€paré si p. ex. M est elliptique! (c.f. paragraphe 4).

(B) En vue d’étudier I’accouplement (1-7), nous allons topologiser

Hom (M, 2’ (K)); pour cela, L étant un compact vérifiant L>K, nous considérons
la suite exacte déduite de (2-1):

0 - Hom (M, @ (L)) - @ (Ly™ > 9 (L)

(naturellement, si nous prolongions cette suite, elle ne serait plus exacte, et conduirait
a des Ext que nous n’étudierons pas ici).
n—— . e
On met sur Hom (M, 2(L)’) la topologie de sous espace de 2 (L)?°: c’est donc
un espace (2.%) (séparé); et on met sur Hom (M, 2’ (K)) la topologie localement
convexe déduite de I'isomorphisme algébrique

Hom (M , 2'(K))= lim Hom (M , 9 (L)’). (3-7)
1ok

On peut probablement démontrer que Hom (M, 2’ (K)), muni de cette topologie,
est un espace (q— 2%) (nous le vérifierons en tout cas au prochain paragraphe
lorsque K est convexe, et lorsque M est un module de torsion, ou bien est sans
torsion). Ce qui nous importe ici pour les applications est le résultat suivant:

THEOREME (3-8). L’espace Hom (M, 2’ (K)) est séparé si et seulement si M est
elliptique.

(Rappelons que M est elliptique si, pour tout ouvert £, le noyau de ’application
P :&(Q)°—&(Q)P* est formé de fonctions analytiques; pour que M soit elliptique,
il faut et il suffit que le support de M n’ait pas de points réels a I'infini [11], [13].)

Tout d’abord, si M est elliptique, le résultat est bien connu; rappelons-en rapi-
dement la démonstration:
On a visiblement un homorphisme topologique (U ouvert)

Hom (M, 2’ (K)) ~ lim Hom (M, 2’ (U)).
U=K

Mais, M étant elliptique, est & fortiori hypoelliptique, d’oit un isomorphisme to-
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pologique
Hom (M, 2' (K)) ~ lim Hom (M, & (U))
—_—

U>K

(en particulier les éléments de Hom (M, 2’ (K)) sont des germes sur K de fonctions
indéfiniment dérivables, donc analytiques).

Il en résulte que si @ est un point de K, M® &’ (a) s’envoie dans 'espace des formes
linéaires continues sur Hom (M, 2’ (K)). Prenons alors fe Hom (M, 2’ (K)); dire que,
YaeK, ces formes linéaires annulent f signifie que f est nul ainsi que toutes ses dérivées
sur K. Par prolongement analytique, fest donc nul.

Réciproquement, supposons que M ne soit pas elliptique. Il existe alors [9], [13]
un fe Hom (M , 9 (R”)) dont le support rencontre K, mais est contenu dans un demi-
espace P vérifiant Pn K=0. L'image f de f dans Hom (M, 2’ (K)) n’est donc pas
nulle; mais f est limite dans Hom (M, 2’ (R")) d’une suite de ses translatées dont le
support ne rencontre pas K. On en déduit aussitot que toute forme linéaire continue
sur Hom (M, 2’ (K)) annule f; donc fest adhérent2 0. C.Q.F.D.

4. Cas ol X est convexe

Nous supposons maintenant K convexe. Je dis qu’alors ’homorphisme cano-
nique (algébrique)

M ® 2’ (K) - Hom (Hom (M, 4), 2’ (K)) (4-1)

est un isomorphisme. En effet, reprenons la résolution (2-1) de M; par application de
Hom(., A), on trouve une suite exacte

0— Hom (M, A) — AP 53 4P
et par application de Hom (., 2’ (K)) on trouve, parce que 2'(K) est injectif [12], la
suite exacte

2" (K)" iy (K)? — Hom (Hom (M, 4), 2’ (K))—0

comparant avec la suite exacte déduite de (2-1) par application de .Q 2’ (K), on
trouve le résultat cherché.

Dans (4-1), considérons les deux membres comme des foncteurs en M; prenant
les foncteurs dérivés, il vient en utilisant encore I'injectivité de 2’ (K), des isomor-
phismes:

Tor, (M, 2'(K)) ~ Hom (Hom (M, 4), 2’ (K)) (k>0). (4-2)

Compte tenu du théoréme (2-10), nous avons donc bien obtenu I’accouplement (1-7)
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par une autre méthode (le lecteur vérifiera que c’est bien le méme). Au point de vue
topologique, on a le résultat suivant.

THEOREME (4-3). Les isomorphismes (4-2) sont topologiques (lorsque le premier
terme est muni de la topologie définie au paragraphe 2, et le second de la topologie
définie au paragraphe 3.B).

La proposition (3-3) et la définition (3-7) nous raménent & comparer deux limites
inductives: prenons L et L’ convexes avec K< f,’, L c[o,; en utilisant ’isomorphisme
(4-2) avec K remplacé par L’ et ’'homomorphisme de restriction :é-(_Ld)’ >’ (L")~

p— . .
-2 (L'), on trouvera des applications

Tor, (M, 2 (L)) » Hom (Ext* (M, 4), 2 (LY) (4-4)
Hom (Ext* (M, 4), 2 (L)) - Tor, (M, 2 (L)) (4-5)

et tout revient & démontrer qu’elles sont continues; faisons-le par exemple pour
la premiére; d’aprés le lemme (3-4), il suffit de définir une application transposée

Ext*(M, A)® 2 (L) - Ext*(M, 2(L))

on ’obtient immédiatement en considérant I’application canonique
(L)~ 2(@L)~2L)

et en utilisant le fait que, puisque & (i) est plat,ona
Ext*(M, 2 (L)) ~ Ext*(M, 4)® 2(L) (cf. introduction).

Combinant les théorémes (2-10), (3-8) et (4-3), nous obtenons finalement le ré-
sultat suivant

THEOREME (4-4). Si K est un compact convexe:

a) 'accouplement (1-7) est séparément continu et met en dualité les séparés associés
aux deux termes (dont les topologies ont été définies aux paragraphes?2 et 3).

b) Hg (M) est séparé, et, pour k > 1, les propriétés suivantes sont équivalentes

1 — HE (M) est séparé

2-Hom (Ext*"*(M, 4), 2' (K)) est séparé

3-Ext*"'(M, A) est elliptique.

Remarque (4-5). Pour k=1, les conditions précédentes signifient que M est
sans torsion (ou si Ion préfére, que C’est «un systéme surdéterminé»). En effet
Hom (M, A) est toujours sans torsion, et un module elliptique est un module de
torsion, donc on doit avoir Hom (M, 4)=0.
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Remarque (4-6). Dans le cas ou K est un compact quelconque et ot F=&™ on
peut voir par dualité que le noyau de 'application (1-6) est adhérent 4 0 dans H§ (M),
Il en résulte que, si Hg(&M) est séparé, (1-6) est un isomorphisme. D’autre part,
korsque K est convexe, on peut voir que le noyau de (1-6) coincide avec ’adhérence
de 0 dans Hg (&™), et que, par conséquent, (1-6) est bijectif si et seulement si Hg (&™)

est séparé.

Remarque (4-7). Soient K et L deux compacts avec K< L. Considérons I’applica-
tion Hg(&M)—Hf(6™) déduite de injection évidente Hy(.)—H(.) par passage
aux foncteurs dérivés. Pour que I'image de cette application soit dense, il faut et il
suffit que la «transposée» Tor, (M, 2’ (L))—Tor, (M, 2’ (K)) ait un noyau adhérent
a 0. Supposons en particulier K et L convexes; en utilisant I'isomorphisme (4-3), on
voit que ceci aura lieu si Ext* (M, A) est elliptique. En traduisant le résultat précédent
au moyen des isomorphismes (2-5) et (2-6), on en déduit un théoréme d’approxima-
tion dans Q qui généralise des théorémes connus, du type de Runge.

5. Exemples

Exemple 1. Soit Pe A, P#0. Prenons M =A/AP. On a une résolution de M:
0> Ao A—M—0

d’oll immédiatement Ext! (M, 4)~ M. D’autre part & est ici le faisceau des germes
de solutions de I’équation Pf=0. On trouve alors ceci (tout est nul pour k> 2).
HY(6")=0

A) { Hg (6™) ~ coker {6 (R") —» M (Q)}

HZ (6M) ~ & (Q)/P£ (Q).

Tory (M, 2’ (K))=0 donc Hg (€M) est séparé (ce qui était évident &

priori).
B) Tor, (M, 2' (K)) = Hom(M, 2’ (K)) est séparé si et si seulement M est
elliptique .
Tor, (M, 2’ (K)) =0 donc le séparé associé & Hg (€™) est nul (évident
a priori).

Finalement on obtient les résultats suivants:
C) P&(Q)=¢&(Q)siet seulement si P est elliptique (cf. [9], chap. 3).
D) On a un accouplement 6™ (2) x Hom (M, 2'(K)), nul sur im {&" (R")~ & (Q)}
qui n’est autre que I’accouplement défini par la formule de Green. Voir une étude
de ce genre de questions dans [6], par example.
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Remarquons encore qu’ici, I’hypothése «K convexe» est inutile, (on le voit en
établissant directement les résultats précédents).

Example 2. Supposons M de torsion et Ext' (M, 4)=0.
Alors, si K est un compact convexe, on aura

HR (M) = Hg (6M)=0. Autrement dit application
EM(R") — &M (Q) est bijective.  Ici encore I’hypothése «K convexe»

est inutile, il suffirait que (K n’ait pas de composantes connexes relativement com-
pactes (i.e. soit connexe). Cette question est étudiée dans [3]. (C’est d’ailleurs ce
travail qui est a ’origine du présent exposé.)

Remarquons que, dans [11] et [12], nous avions établi ceci: sous la seule hypo-
thése Ext' (M, A)=0, si % est un ouvert convexe relativement compact, I’application
EM(R") > EM(R"—U) est surjective. L’hypothése « M de torsion» permet ici de
passer a la limite suivant les voisinages % de K.

Exemple 3. Supposons Ext' (M, A) elliptique et Ext2(M, A)=0. Pour K compact
convexe, on a alors Hx(6™)=0; autrement dit Ext' (M, &(Q))=0; donc (cf. (2-2))
tout fe & (Q)P* vérifiant P, f=0 est de la forme P, g, ge & (Q)P°

Le méme phénomeéne se produit ici ainsi que dans 'exemple précédent: en sup-
posant seulement Ext2(M, 4)=0, on aurait ce résultat avec Q remplacé par R"—%;
I’autre hypothése permet le passage a la limite.

Exemple 4. Supposons M elliptique. Alors, tous les Ext* (M, A) sont elliptiques
(en effet, on sait que le support de Ext*(M, 4) est toujours contenu dans celui de M).
Par conséquent, dans ce cas, tout les espaces intervenant dans le théoréme (4-4) sont
séparés.

Prenons en particulier n=2m, et identifions C™ 4 R" en posant z;=x; +iX,+,
(1<j<m); prenons pour M le quotient de A par I'idéal engendré par les X;+iX,,, ;;
&M s’identifie alors au faisceau des germes de fonctions holomorphes 0.

On a (calcul immédiat) Ext*(M, 4)=0 si k#m, Ext"(M, A)~M. On trouve
donc ici, pour K compact convexe

Hg(0)=0 sik#m.

HE (0) est séparé, et son dual est isomorphe 2 Hom (M, 2’ (K))~ @ (K). Si maintenant
F est un faisceau analytique cohérent au voisinage de K, on trouve en prenant une
résolution libre de F une dualité

Hg (0) x Ext" *(K; F, 0) - C
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(en fait, il suffirait ici de supposer que K est un compact possédant un systéme fon-
damental de voisinages ouverts d’holomorphie). Ces résultats sont dus 4 Frenkel [4]
et Grothendieck (non publié); comparer avec le cas «algébrique», traité dans [8],
et avec certains résultats d’Andreotti-Grauert [1].

Remarque (5-1). La réciproque du résultat énoncé au début de I’exemple 4 est
vraie: si tous les Ext*(M, A) sont elliptiques, alors M est elliptique (ceci se voit
facilement a I’aide d’un argument de suite spectrale; voir p. ex. B. Malgrange, Some
remarks on the notion of convexity for differential operators, (Colloquium on Differential
Analysis, Tata Institute, Bombay, 1964)).
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