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Ouverts concaves et théorèmes de dualité pour les systèmes

différentiels à coefficients constants

B. Malgrange

Avertissement

L'article ci-dessous est la reproduction (à l'addition près de la remarque 5-5) d'un exposé paru
dans le Séminaire Leray 1962-1963. Son but est l'extension aux systèmes différentiels à coefficients
constants du calcul de la cohomologie à support ponctuel du faisceau des fonctions holomorphes,
calcul dû à Frenkel et réutilisé par Andreotti-Grauert dans la théorie des espaces analytiques
concaves ; en language plus usuel, il s'agit d'examiner ici les théorèmes d'existence, d'approximation
et de dualité pour un système différentiel à coefficients constants, dans le complémentaire d'un point,
ou plus généralement dans le complémentaire d'un compact convexe.

Divers problèmes plus ou moins voisins de celui traité ici semblent mériter de l'intérêt, par
exemple l'étude des «formules de Green» explicitant la dualité obtenue ici et leur extension aux
systèmes à coefficients variables ; ou encore l'étude de la cohomologie à support dans un fermé non
nécessairement compact, cohomologie qui intervient par exemple dans la théorie des «hyperfonctions»
de Sato.

1. Introduction

Nous reprenons ici les notations de [12]: A désigne l'anneau des polynômes
C [Xu..., Xn~], $ (resp. &) le faisceau des germes de fonctions indéfiniment dérivables

(resp. de distributions) sur R"; A opère dans $ et & par la formule Xjf=df/ôXj, et

Xj a pour transposé — Xj.
Si M est un ,4-module de type fini, nous noterons SM (resp. &M) le faisceau

HomA(M, £) (resp. HomA(M, &')), en considérant M et A comme des faisceaux

constants.
Dans la suite, nous écrirons toujours Hom pour Hom^, ® pour ®A etc.

Soit °ll un ouvert convexe de R". On sait [12] qu'on a

Hkc (*; ®'M) ~ Ext* (M, A) ® *' (*) (1-1)

Hkc (*; êM) ~ Ext*(M, A)® 9(#) (1-2)

où l'indice c désigne la famille des parties compactes de ^, et où g' {%) (resp. &(<%))

signifie comme d'habitude Tc(^; ®f) (resp. Tc{°ll\ <f)).

De la première relation on déduit un accouplement

Hkc {<%; ®'M) x Hom (Ext* (ift, A), * (*)) -+ C (1-3)

(& désigne le symétrique de M par rapport à l'origine) et l'on voit facilement que l'on
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peut topologiser cet accouplement en munissant le premier terme d'une topologie
d'espace (^J^) et le second d'une topologie d'espace (^), de façon à faire de cet

accouplement une dualité (i.e. chaque terme est le dual vectoriel topologique de

l'autre). Nous laisserons au lecteur le soin d'examiner cette question, car nous allons

en traiter une voisine, mais plus délicate : indiquons seulement qu'il faudrait définir
ces topologies par un procédé analogue au paragraphe 2, et qu'ici ces topologies
seraient séparées à cause de [12], théorème 3-2.

De même, en partant de (1, 2), on obtiendra un accouplement

Hkc (°ll\ êM) x Hom (Ext* (M, A), & {%)) -> C. (1-4)

Mais ici, il se présente des difficultés vectorielles topologiques, que nous n'avons pas
résolues.

Soit maintenant K un compact convexe de R". Considérant l'accouplement (1-4)

pour tou s les % convexes contenant K, et passant à la limite, on obtient un accouplement

lim H* {%\ êu) x Hom (Ext* (j#, A\ 2' (K)) -+ C.

Rappelons maintenant la définition des «groupes de cohomologie à support
dans K» [8] : si % est un ouvert de R", K\m compact de % et F un faisceau de groupes
abéliens sur ^, on désigne par TK(fU\ F) le groupe des sections de F sur ^ à support
dans K9 et par H^{%\.) le fc-ième foncteur dérivé de FK(^;.) au sens de [7]. Comme

FK(<%;.) est visiblement exact à gauche, on a H^{%\ F)~FK(%\ F); en outre, si

V=<% — K9 rappelons qu'on a une suite exacte illimitée à droite, et dépendant foncto-
riellement de F:

0-»fl|(*; JF)-+ H°(*; F)->H°(V; F)->«£(«; JF)->.»

Enfin, si W est un autre ouvert avec J£c= W c <2r, on a des isomorphismes fonc-

toriels en F:H^{^\ F)~Hx(%\ F). Pour simplifier l'écriture, nous identifierons ces

groupes et les écrirons simplement H^ (F).
Cela étant, de l'application définie de façon évidente H|(F) -> Hkc(% F) on déduit

une application

H*(F)^ lim ff*(*;JF) (1-6)

Prenant en particulier F= $M, et K convexe, on en déduit un accouplement

H| (<?M) x Hom (Extfc (jfr, A), & (K)) -> C. (1-7)

L'objet de cet exposé est précisément l'étude de cet accouplement.

Il y aurait lieu évidemment d'étudier aussi l'accouplement analogue déduit de

(1-3), mais il se présente des difficultés vectorielles topologiques supplémentaires.
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Par ailleurs, le lecteur qui désirerait voir la signification de cette étude pourra
commencer par examiner les exemples (paragraphe 5).

Remarque (1-8). On voit facilement que pour k=0, (1-6) est un isomorphisme,
mais que pour k>0, (1-6) est surjectif, mais non injectif en général. Dans le cas où
F= #M, nous dirons plus loin un mot de cette question.

2. Un théorème de dualité

Soit Q un ouvert de R", et M un v4-module de type fini. Considérons une résolution

libre de M.

-^>APl^>APo-*M-*0. (2-1)

Par application de Hom (M, ê (Q)), on en déduit une suite

0 - Hom (M, g (O)) -> g (Q)po * g (Q)P1 ^ • • • (2-2)

et par application de.® g1 (Q) une autre suite

IX g' (fl)" -^ g' (Q)po -? M ® <T (G) - 0 (2-3)

où le symbole * désigne la transposition, et le symbole A la symétrie par rapport
à l'origine, ceci pour que (2-2) et (2-3) soient en dualité.

De (2-2), on déduit Ext* (M, <f (G))~kerPfc+1/imP*; comme ker Pk+1 est muni
d'une topologie d'espace {&\ Ext* (M, ê (Q)) est muni d'une topologie de quotient
non nécessairement séparé d'espace {&) en abrégé «q — ^y>\ en utilisant le fait que
deux résolutions libres de M sont homotopiquement équivalentes, on voit que cette

topologie ne dépend pas de la résolution choisie. Pour k—0, on trouve évidemment
une topologie séparée.

De même, à partir de la suite (2-3), on munit Torfc(j#, gr(Q))~kerPj*/imP£+1
d'une topologie d'espace (q — ^^), indépendante de la résolution de M choisie

(rappelons que g (Q) est un espace de Schwartz, et que, par conséquent, tout sous

espace fermé de g' (Q) muni de la topologie induite est un (^J*") [5]).

PROPOSITION (2-4). L'accouplement Extk(M, g(Q))xTork(fà9
défini par (2-2) et (2-3) est séparément continu, et met en dualité les séparés associés

(i.e. chacun des séparés associés est le dualfort de Vautre). D'autre part Extk (M, S (Q))
est séparé si et seulement si Torfc _i(A?, ê' {Q)) est séparé (cette condition étant vide

par définition si k=0).
La démonstration de la première assertion est immédiate. Pour la seconde, il

suffit de remarquer que l'image de Pk est fermée si et seulement si l'image de P* est

fermée (d'après (2), et le fait que g (Q) est réflexif).
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N.B. Les raisonnements du type précédent se trouvent explicités pour la première
fois dans [14] à notre connaissance. Nous leur donnons ici une forme due à A.
Martineau.

Posons maintenant K=Rn — Q; dans toute la suite, nous supposerons K compact
(ce qui d'ailleurs ne deviendra utile qu'à partii de (2-7)). On sait (12) qu'on a

Hk (Q; êM) ^ Ext*(M, g (Q)) pour k > 0

et, en particulier

Hfe(Rn;^M) 0 pour fc^l.
On déduit de là et de la suite exacte des HK, rappelés dans l'introduction les

propriétés suivantes :

On a une suite exacte

0 -? fl£ (<fM) -? Hom (M, g (RM)) -> Hom (M, g (Q)) -> h£ (<fM) -» 0. (2-5)

Pour k ^ 2, on a un isomorphisme

HkK (<fM) * Ext*~* (M, g (Q)). (2-6)

Nous munirons les espaces H^{êM) des topologies d'espace (q—^) définies par
ces relations (pour k=0, cette topologie est évidemment séparée). D'autre part, la

proposition (2-4) nous donne leurs duals (i.e. ceux des séparés associés), pour k^2.
Examinons les cas fc=0 et k — \. Nous devons pour cela considérer l'application
(déduite de l'injection évidente g' {Q)-*£r (Rn)

Nous poserons Nx =ker (/), A^o =im(ï).
Comme Nt®é"(Rn) est séparé (cela résulte aussitôt de [10], théorème 3-2, ou

[12], théorème 3-2), No peut encore être muni d'une topologie d'espace {q-Q)^\
Pour que No soit séparé, il faut et il suffit que l'image de / soit fermée; comme i est

continue (évident), il revient au même de vérifier que l'image de l'application ï déduite
de / en passant aux séparés est continue; en transposant, on obtient donc ceci :

No est séparé si et seulement si H^ ($M) est séparé.

Reste à examiner iV^ona un isomorphisme (algébrique)

Nx a g1(Q)ponPfg''(HT/A*''W1

Comme Pfg'(R*Yl est fermé ([10], théorème 3-2), Nt peut encore être

d'une topologie d'espace (q—@&r); il sera séparé si et seulement si P*$'(fï)pi est

fermé ; en transposant on trouve donc ceci :
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Ni est séparé si et seulement si Ext1 (M, g1 (Q) ~ #| (éM) est séparé.

On voit encore que ceci a lieu si et seulement si ]Q[®é"(Q) est séparé; on voit aussi

que, dans tous les cas, la topologie que nous venons de définir sur Nt coïncide avec

celleque l'on déduit de l'injection N^Ai®^' (Q). Enfin, (raisonner comme à la
proposition (2-4)) les séparés associés à H% (<^M) et No (resp. H^ (éM) et Nt) sont en dualité.

Considérons maintenant la suite exacte (ici, l'hypothèse «K compact» est

essentielle)

0 -> g' (Q) -+ g' (Rn) -> 9' (K) -> 0. (2-7)

Tensorisant avec AÏ, et tenant compte de la platitude de <£"(R") sur A [12], on
trouve les résultats suivants

On a une suite exacte

0 -> To^ (JET, 9' (K)) -? Û ® g' (Q) -> tâ ® g' (Rn) -» Aï ® 9' (K) -> 0 (2-8)

d'où des isomorphismes (qui seront, par définition, des isomorphismes topologiques)

N0~AÏ®@' (K)

Pour k ^ 1, on a des isomorphismes (encore topologiques, par définition)

Torfc+! (Jfr, 9' (K)) - Tor, (J&, *' (O)). (2-9)

Finalement, on obtient le résultat suivant:

THÉORÈME (2-10). Soit K un compact de R".

a) Pour tout Jc^O, l'accouplement définipar (2-4)-(2-9)

Hl (#M) x Tork (Û, 9' (K)) -? C

est séparément continu et met en dualité les séparés associés.

b) Pour que H^ (éM) soit séparé, ilfaut et il suffit que Tor* _ x (Û9 9' (K)) soit séparé
(cette condition étant videpar définition si k=0).

3. Quelques considérations vectorielles topologiques

(A) Nous allons étudier la topologie de Tork(i<ï, @'{K)). Pour cela remarquons
que si % désigne un ouvert, on a un isomorphisme algébrique

c« lim
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d'où un isomorphisme algébrique

Torfc (JGT, S' (K)) a lim Tor, (jfr, & (4r)). (3-1)

Si maintenant L est un voisinage compact de K, on considère le dual de @(L),
noté @ (L )' ; si L c^, on a des applications de restriction évidentes

&'(<%)->'@(L)'-+@'(L).

Donc on a encore

Tor, (ti, S)' (K)) a lim Tor, (JET, 0(L)'). (3-2)

Nous munirons T)(L)' de sa topologie de dual fort de 3)(L); c'est donc un espace

); comme au paragraphe 2, les Torfc(iCf, @(L)') sont alors munis de topologies
d'espaces (q—^^) et leur limite inductive de la topologie de «limite inductive localement

convexe». On a alors le résultat suivant:

PROPOSITION (3-3). L'isomorphisme (3-2) est un isomorphisme topologique,
lorsque le premier membre est muni de la topologie définie au paragraphe 2, et le

second de celle qui vient d'être définie.
Nous nous bornerons à établir ce résultat pour &^2, en laissant au lecteur le soin

d'examiner les cas k=0, 1.

Montrons d'abord que l'isomorphisme

Û= lim ft

est un isomorphisme vectoriel topologique lorsqu'on munit le second membre de la

topologie de limite inductive localement convexe. Posant QL=Rn — L, cela revient,

par définition à établir l'isomorphisme vectoriel topologique

Tork_! (ifiT, ê' (Q)) a lim Tork_x (itf, ê' (OL)).

Pour cela, désignons par Nk_x (Q) le noyau de l'application

muni de la topologie induite par (^/(Q)Pk"i, et définissons de même Nk-t (QL); on
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évidemment une application continue

lim N*-i(flL)->tf*-)

qui est un isomorphisme algébrique. Comme #(Q) est un espace (J*") de Schwartz,
c'est encore un isomorphisme topologique (cf. [5], théorème 12 et théorème 3). En

passant au quotient, on trouve facilement le résultat cherché.

Pour établir (3-3), il suffit maintenant de démontrer ceci :

a) l'application Tor^ifà, &'(L))->Tork(tâ, @{L)') est continue

b) si L'czZ, l'application Torfc(M, @>(L)')->Tork(AÏ9 2' (L)) est continue.
Ces deux faits résultent facilement du lemme suivant (détails laissés au lecteur) :

LEMME (3-4). Soit E un espace {q —^) dont le séparé associé est complètement

réflexif, E' un espace (q — Ç&tF), et a uneforme bilinéaire séparément continue ExE'-+C
induisant une dualité entre les séparés associés. Soit (F, F', /?) un autre système
vérifiant les mêmes hypothèses; soit u une application linéaire E-+F et ur une application
linéaire E'-*Ff transposées l'une de Vautre i.e. vérifiant VeeE, V/'eF' P(u(e),f')
«MOT)).
Alors u et u' sont continues.

Montrons d'abord ceci: si eeE est adhérent à 0, u(e) est adhérent à 0. En effet,
on a alors, V/eF:a(e,/) =0 et ceci caractérise l'adhérence de 0. Pour toutf'eF', on
a donc P(u(e),f')=oc(e, w'(/'))=0, d'où le résultat. On voit de même que, si

/'eQ,onaw'(/')eÔ-
Pour achever la démonstration, il suffit de démontrer que les applications û et û'

déduites de u et u' par passage aux séparés associés sont continues. Or, elles sont
transposées l'une de l'autre, donc faiblement continues. Donc (théorème du graphe
fermé) û est continue; et, par conséquent, û' est aussi continue. (En fait, l'hypothèse
«complètement réflexif» n'est intervenue que parce qu'on supposait chacun des

séparés associés Ë, Ë' dual fort de l'autre. Il suffirait en fait de supposer que E est

un espace (q—^) et que Ë' est le dual de Ë et de faire les mêmes hypothèses sur F
et F.)

Remarque (3-5). Prenons M=A; on voit immédiatement que la topologie qu'on
a mise sur D'(K)~A®@'(K) admet @(K)f pour séparé associé (donc n'est jamais
séparée elle-même). On pourrait penser à topologiser Tor^JÔ, &(K)) en le considérant

comme le A>ième groupe de cohomologie de la suite exacte déduite de (2-1) par
application de ,(g)&(K), et en utilisant la topologie précédente sur &'(K). On voit
facilement que l'on obtient ainsi une topologie plus faible que celle que nous avons
précédemment obtenue [utiliser le lemme précédent; l'application «transposée» à
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considérer sera la suivante, que nous laissons au lecteur le soin de définir

Des exemples simples montrent que cette seconde topologie est en général
strictement plus faible que la première. Par exemple, si K est un point, le séparé

associé à Torfc(M, S'(K)) pour la seconde topologie est toujours 0, alors que pour
la première, cet espace est séparé si p. ex. M est elliptique! (cf. paragraphe 4).

(B) En vue d'étudier l'accouplement (1-7), nous allons topologiser

Hom(Af, &(K)); pour cela, L étant un compact vérifiant L^>K9 nous considérons

la suite exacte déduite de (2-1) :

0 -* Hom (M,

(naturellement, si nous prolongions cette suite, elle ne serait plus exacte, et conduirait
à des Ext que nous n'étudierons pas ici).

On met sur Hom (M, &(L)') la topologie de sous espace de @(L)'po: c'est donc

un espace (@&r) (séparé); et on met sur Hom (M, &(K)) la topologie localement

convexe déduite de l'isomorphisme algébrique

Hom (M, 9f (K)) lim Hom (M, ^(L)'). (3-7)

On peut probablement démontrer que Hom (M, £$' (K)), muni de cette topologie,
est un espace (q—^^) (nous le vérifierons en tout cas au prochain paragraphe

lorsque K est convexe, et lorsque M est un module de torsion, ou bien est sans

torsion). Ce qui nous importe ici pour les applications est le résultat suivant :

THÉORÈME (3-8). L'espace Hom (M, 3>' (K)) est séparé si et seulement si M est

elliptique.
(Rappelons que M est elliptique si, pour tout ouvert Q, le noyau de l'application

Px\ê{Q)po-+ê{Q)pi est formé de fonctions analytiques; pour que M soit elliptique,
il faut et il suffit que le support de M n'ait pas de points réels à l'infini [11 ], [13].)

Tout d'abord, si M est elliptique, le résultat est bien connu; rappelons-en
rapidement la démonstration :

On a visiblement un homorphisme topologique (U ouvert)

Hom (M, .0'(£))<* lim Hom (M, ®'(U)).
V=>K

Mais, M étant elliptique, est à fortiori hypoelliptique, d'où un isomorphisme to
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pologique

Hom(M, &' (K)) ~ lim Hom(M, éT(U))

(en particulier les éléments de Hom (M, Q}' (K)) sont des germes sur K de fonctions
indéfiniment dérivables, donc analytiques).

Il en résulte que si a est un point de K, Û®$r (a) s'envoie dans l'espace des formes
linéaires continues sur Hom (M, 2' (K)). Prenons alors fe Hom (M, 2' (K)); dire que,
VaeK, ces formes linéaires annulent/signifie que/est nul ainsi que toutes ses dérivées

sur K. Par prolongement analytique,/est donc nul.
Réciproquement, supposons que M ne soit pas elliptique. Il existe alors [9], [13]

an fe Hom (M, 3t* (Rn)) dont le support rencontre K, mais est contenu dans un demi-

espace P vérifiant PnK=0. L'image /de/dans Hom (M, @'(K)) n'est donc pas
nulle; mais /est limite dans Hom (M, S'(Rn)) d'une suite de ses translatées dont le

support ne rencontre pas K. On en déduit aussitôt que toute forme linéaire continue
sur Hom (M, &' (K)) annule/; donc/est adhérent à 0. C.Q.F.D.

4. Cas où K est convexe

Nous supposons maintenant K convexe. Je dis qu'alors l'homorphisme canonique

(algébrique)

M (g) $' (K) -> Hom (Hom (M, A), 9' (K)) (4-1)

est un isomorphisme. En effet, reprenons la résolution (2-1) de M; par application de

Hom A), on trouve une suite exacte

0 -> Hom (M, A) -> Apo ^i APl

et par application de Hom &(K)) on trouve, parce que @'(K) est injectif [12], la
suite exacte

2' (K)Pl ^> 3' (K)po - Hom (Hom (M, A), 2' (K)) -> 0

comparant avec la suite exacte déduite de (2-1) par application de .®@'(K)9 on
trouve le résultat cherché.

Dans (4-1), considérons les deux membres comme des foncteurs en M; prenant
les foncteurs dérivés, il vient en utilisant encore l'injectivité de 3' (K), des isomor-
phismes:

Torfc (M, S' (K)) ca Hom (Hom (M, A), 2' (K)) (fc > 0). (4-2)

Compte tenu du théorème (2-10), nous avons donc bien obtenu l'accouplement (1-7)
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par une autre méthode (le lecteur vérifiera que c'est bien le même). Au point de vue

topologique, on a le résultat suivant.

THÉORÈME (4-3). Les isomorphismes (4-2) sont topologiques (lorsque le premier
terme est muni de la topologie définie au paragraphe 2, et le second de la topologie
définie au paragraphe 3.B,).

La proposition (3-3) et la définition (3-7) nous ramènent à comparer deux limites
o o

inductives: prenons L et V convexes avec KaL', L'aL; en utilisant Pisomorphisme

(4-2) avec K remplacé par V et l'homomorphisme de restriction 9(L)' -> 9'(L')->
')', on trouvera des applications

Tor,(M, i^L)') -> Hom (Ext* (M, A), 'S{L)') (4-4)

Hom (Ext* (M, A), 9{L)r) -> Torfe (M, 0(L')') (4-5)

et tout revient à démontrer qu'elles sont continues; faisons-le par exemple pour
la première; d'après le lemme (3-4), il suffit de définir une application transposée

Ext* (M, A) ® 9 (L') -? Ext* (M, 9 (L))

on l'obtient immédiatement en considérant l'application canonique

o

et en utilisant le fait que, puisque 2 (L) est plat, on a

Extfc (M, 9 (L)) ~ Ext* (M, A) ® 9 (L) (cf. introduction).

Combinant les théorèmes (2-10), (3-8) et (4-3), nous obtenons finalement le

résultat suivant

THÉORÈME (4-4). Si Kest un compact convexe:

a) l'accouplement (1-7) est séparément continu et met en dualité les séparés associés

aux deux termes (dont les topologies ont été définies auxparagraphes 2 et 3).
b) H% (<^M) est séparé, et, pour k^l,lespropriétés suivantes sont équivalentes

\-El{êM) est séparé
2 - Hom (Extk~x (M, A), 9' (K)) est séparé
3 - Ext*"1 (M, A) est elliptique.

Remarque (4-5). Pour k \, les conditions précédentes signifient que M est

sans torsion (ou si l'on préfère, que c'est «un système surdéterminé»). En effet

Hom (M, A) est toujours sans torsion, et un module elliptique est un module de

torsion, donc on doit avoir Hom (M, A) =0.
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Remarque (4-6). Dans le cas où K est un compact quelconque et où F=é*M on

peut voir par dualité que le noyau de l'application (1-6) est adhérent à 0 dans H& (<fM).

Il en résulte que, si H^{êM) est séparé, (1-6) est un isomorphisme. D'autre part,
korsque K est convexe, on peut voir que le noyau de (1-6) coïncide avec l'adhérence
de 0 dans Hk($m), et que, par conséquent, (1-6) est bijectif si et seulement si H^{^M)
est séparé.

Remarque (4-7). Soient Ket L deux compacts avec KczL. Considérons l'application

Hk(£m)^>Hl{<$m) déduite de l'injection évidente #£(.)-»#l(«) par passage

aux foncteurs dérivés. Pour que l'image de cette application soit dense, il faut et il
suffit que la «transposée» Tor^iiï, &' (L))->Torfc(M, 2' (K)) ait un noyau adhérent
à 0. Supposons en particulier K et L convexes; en utilisant l'isomorphisme (4-3), on
voit que ceci aura heu si Ext* (M, A) est elliptique. En traduisant le résultat précédent
au moyen des isomorphismes (2-5) et (2-6), on en déduit un théorème d'approximation

dans Q qui généralise des théorèmes connus, du type de Runge

5. Exemples

Exemple 1. Soit PeA,P^0. Prenons M=A/AP. On a une résolution de M*

0 -> A ^ A -> M -> 0

d'où immédiatement Ext1 (M, A)~M. D'autre part $M est ici le faisceau des germes
de solutions de l'équation Pf=0. On trouve alors ceci (tout est nul pour k > 2).

* coker {êM (Rn) -> SM (û)}A)

Tor0 (M, & (K)) 0 donc H^ (*fM) est séparé (ce qui était évident à

priori).
Torj (M, & (K)) Hom(i&, & (K)) est séparé si et si seulement M est

elliptique.

Tor2 (M, & (K)) 0 donc le séparé associé à H| (iM) est nul (évident
à priori).

Finalement on obtient les résultats suivants.
C) PS (fi) g (fi) si et seulement si P est elliptique (cf. [9], chap. 3).
D) On a un accouplement SM(fi) x Hom(M, 9'{K% nul sur im {£M(W)-+<$M (Q)}

qui n'est autre que l'accouplement défini par la formule de Green. Voir une étude
de ce genre de questions dans [6], par example.
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Remarquons encore qu'ici, l'hypothèse «K convexe» est inutile, (on le voit en

établissant directement les résultats précédents).

Example 2. Supposons M de torsion et Ext1 (M, A) =0.
Alors, si Kcst un compact convexe, on aura

H% (êM) Hz (SM) 0. Autrement dit l'application

êM (RM) -» êu (Q) est bijective. Ici encore l'hypothèse « K convexe »

est inutile, il suffirait que QK n'ait pas de composantes connexes relativement
compactes (i.e. soit connexe). Cette question est étudiée dans [3]. (C'est d'ailleurs ce

travail qui est à l'origine du présent exposé.)

Remarquons que, dans [11] et [12], nous avions établi ceci: sous la seule hypothèse

Ext1 (M, A)=0, si °U est un ouvert convexe relativement compact, l'application
êM{Rn)^êM{Rn-%) est surjective. L'hypothèse «M de torsion» permet ici de

passer à la limite suivant les voisinages % de K.

Exemple 3. Supposons Ext1 {M, A) elliptique et Ext2(M, A) =0. Pour K compact
convexe, on a alors #|(#M)=0; autrement dit Ext1 (M, <sf(£))=O; donc (cf. (2-2))

tout/eê(Q)PI vérifiant P2/=0 est de la forme Ptg, geê(Q)po
Le même phénomène se produit ici ainsi que dans l'exemple précédent: en

supposant seulement Ext2(M, A)=09 on aurait ce résultat avec Q remplacé par Rn — °M\

l'autre hypothèse permet le passage à la limite.

Exemple 4. Supposons M elliptique. Alors, tous les Ext* (M, A) sont elliptiques
(en effet, on sait que le support de Extk(M, A) est toujours contenu dans celui de M).
Par conséquent, dans ce cas, tout les espaces intervenant dans le théorème (4-4) sont

séparés.

Prenons en particulier n=2m, et identifions Cm à Rn en posant Zj=Xj + ixm+J

(1 ^j^m); prenons pour M le quotient de A par l'idéal engendré par les Xj + iXm+j',
êM s'identifie alors au faisceau des germes de fonctions holomorphes (P.

On a (calcul immédiat) Extk(M,A)=0 si k^m9 Extm(M, A)~M. On trouve
donc ici, pour K compact convexe

Hl(O) 0 si k ^ m.

hk (0) est séparé, et son dual est isomorphe à Hom (M, & (K))^ 0 {K). Si maintenant

F est un faisceau analytique cohérent au voisinage de K, on trouve en prenant une

résolution libre de F une dualité

HkK (0) x Extm"fe (K; F, Q) -> C
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(en fait, il suffirait ici de supposer que K est un compact possédant un système
fondamental de voisinages ouverts d'holomorphie). Ces résultats sont dus à Frenkel [4]

et Grothendieck (non publié); comparer avec le cas «algébrique», traité dans [8],
et avec certains résultats d'Andreotti-Grauert [1].

Remarque (5-1). La réciproque du résultat énoncé au début de l'exemple 4 est

vraie: si tous les Extk(M, A) sont elliptiques, alors M est elliptique (ceci se voit
facilement à l'aide d'un argument de suite spectrale; voir p. ex. B. Malgrange, Some

remarks on the notion ofconvexityfordifferential operators, (Colloquium on Differential
Analysis, Tata Institute, Bombay, 1964)).
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