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Some Congruence Theorems for Closed Hypersurfaces
in Riemann Spaces

(Part II1: Method based on Voss’ Proof)

by Heinz HoPF t (Ziirich) and YosHIE KATSURADA (Sapporo)

Introduction

An idea that gives congruence of two hypersurfaces concerning a transformation
group by a relation between the invariant of the corresponding points of these hyper
surfaces was first introduced by H. Hopf and K. Voss [1], that is, in that paper
congruence relations of two closed curves on a plane and of two closed surfaces in
3-dimensional euclidean space have been given by the relation of the mean curvatures.

K. Voss has generalized these theorems to hypersurfaces in an (m + 1)-dimensional
euclidean space (m+12=3) and also given the congruence relations in case of Gauss
curvatures or the r-th mean curvatures H, r=1, 2,..., m [2]. A. Aeppli has developed
analogous statements for a central transformation group (a homothetic transformation
group with the center 0) [3].

The present authors wished to generalize these theorems to Riemann spaces. In the
previous papers [4], [5], we gave the generalized theorems relating to the first mean
curvature.

The purpose of the present paper is to investigate a general theorem relating to
the Gauss curvature or the r-th mean curvature, that is, to generalize to an orientable
Riemann space R™*! with constant Riemann curvature the following theorems given
by K. Voss:

THEOREM (K. Voss). Let W™ and W™ be two orientable closed hypersurfaces in
an (m +1)-dimensional euclidean space and let p and p be the corresponding points of
these hypersurfaces, and let K(p) and K(p) be that Gauss curvatures at these points
respectively. Assume that the second fundamental forms of W™ and W™ are positive
definite. If all straight lines (pp) are parallel to one another and if K(p)=K(p) for all
pEW™, then the hypersurface W™ is produced from W™ by simple translation in the
direction of (pp). (W™ and W™ are therefore congruent mod the translation group).

THEOREM (K. Voss). Let W™ and W™ be to orientable closed hypersurfaces in
an (m+1)-dimensional euclidean space and let p and p be the corresponding points of
these hypersurfaces, and let H,(p) and H,(p) be the r-th mean curvatures at these
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points respectively, for some r=1,2,..., m. Assume that the second fundamental forms
of W™ and W™ are positive definite. If all straight lines (pp) are parallel to one another
and if H,(p)=H,(p) for all pe W™, then the hypersurface W™ is produced from W™
by simple translation in the direction of (pp). (W™ and W™ are congruent mod the
translation group.)

§ 1. Generalized Theorems

We suppose an (m+1)-dimensional orientable Riemann space with constant
curvature S™* ! of class C”(v=3) which admits an infinitesimal isometric transforma-
tion

F=x"+&(x) o1 (1.1)

(where x* are local coordinate in S™*! and ¢! are the components of a contravariant
vector £). We assume that orbits of the transformations generated by & cover S™*1
simply and that £ is everywhere continuous and #0. Let us choose a coordinate
system such that the orbits of the transformations are new x'-coordinate curves, that
is, a coordinate system in which the vector £/ has components & =", where the symbol
&' denotes Kronecker’s delta; then (1.1) becomes as follows

#=x'+ 6 ot (1.2)
and S™* ! admits a one-parameter continuous group G of transformations which are
1—1-mappings of S™** onto itself and are given by the expression £'=x'+8{7 in
the new special coordinate system ([6]).

Now we consider two orientable closed hypersurfaces W™ and W™ of class C*
imbedded in $™*! which are given as follows

W'":x’:=x‘:(u°‘) 'i=1,...,m+1 o=1,...,m } (1.3)

W s =x"(u*) + 6it (u*) )
where u* are local coordinates of W™ and 7 is a continuous function attached to each
point of the hypersurface W™. We shall henceforth confine ourselves to Latin indices
running from 1 to m +1 and Greek indices from 1 to m, and to two hypersurfaces W™
and W™ which do not contain a piece of a hypersurface covered by the orbits of the
transformations, which is expressed by f (x%, ..., x™ 1) =0.

Then we can take the family of the hypersurfaces

Wr(t)=(1-6)w"m+tW™ 011,

generated by W™ and W™ whose points correspond along the orbits of the trans-
formations where W™ and W™ mean W™ (0) and W™ (1) respectively. Thus according
to (1.3), W™ (t)is given by the expression

Wh(t):x'(u t) = (1 — ) X' (u*) + tx°(w*) 0=5t<1, (1.4)
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and (1.4) may be rewritten as follows
W ():x*(u% t) = x*(u*) + Sitt(u®) 0=t (1.5)

Let us denote the normal unit vector of W™(¢) by n'(¢) and its derivative with
respect to ¢ by n'’(¢). Then g;; being the metric tensor of S™** and differentiating the
following relations with respect to ¢,

ox’ (u, t . :
;m (1) ( ) =0, gn(n’()=1,
since the transformation group G is isometric, that is, dg;;/0x' =0, we have
. 0x (u, t) ox’ (u, t)
i nC- NS ; t —— " 7}=0 , 1.6
gln aua Jn' ( ) dt ( a ( )
gn' (H)n'’ (1) =0. (1.7

From (1.6) (1.7) and

ox* 0x' (u, 1) _5 0t
dt\ ou* ou®’ '
we get

0t (£) = — g% (1) 7,04, (1) ‘9"‘(“ t), (1.8)

where g*#(t) is the contravariant metric tensor of W™(¢) and t, means dt/du”.
Throughout this paper repeated lower case Latin indices call for summation 1 to m+1
and repeated lower case Greek indices for summation 1 to m. And also for its co-
variant differential along W™ (¢) we have

on"*(t) =dn" (t) + I'n"’ (t) X, du?, (1.9)
where I'; is the Christoffel symbol with respect to the metric tensor g;; of S™*! and
x} means dx' (u, t)/du’.

Let us give henceforth the derivative with respect to ¢ by the dash. Calculating
(6n')’, we have

on' =dn' + in’ () xd w”,
(6n'Y = (dn'y + (%) v’ (1) x}, du”
+ Tin’ (8) x, du” + Tin’ (1) (x}) du?,

since G is isometric, that is, dg;;/0x" =0, we have or; ;/0x' =0. Consequently we obtain
the following relation between én’* and (6n*)’

(6n'y =én" + Iiyn’ () v, du’. (1.10)
We claim that the following theorems hold
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THEOREM 1.1. Let K and K be the Gauss curvature of W™ and W™ respectively.
Assume that the second fundamental form of W™ (t), 0t <1 is positive definite. If the
relation K = K holds for each point pe W™, then W™ and W™ are congruent mod G.

Proof. We consider the following differential form of degree m—1 attached to
each point p on the hypersurface W™ (¢)

((n', 047, 0, ..., 5n))d-e-:f' Jeg(n', d,1, on, ..., on)

= (—1)" /g, 017, Xppseees Xq_,) (1.11)
x by (f)... b5 (e) dult Ao A duPr-t

where g is the determinant of the metric tensor g;; of S™*', the symbol ( ) means

a determinant of order m + 1 whose columns are the components of respective vectors,

b,s(?)is the second fundamental tensor of W™ () and b, (¢) denotes b,, (1) g7 ().
Then the exterior differential of the differential form (1.11) becomes as follows

d((n’, 0,7, 0n, ..., 5n)) = (((5n’, 0,1, 0n, ..., on)) (1.12)
+((n', 6(6y) 7, on, ..., 6n)) + ((n', 6, dx, on, ..., én)), '

because since S™* ! is a space of constant curvature, we have

((n', 647, 0n, 6n, ..., 6n)) = 0.
Because G is isometric, the quantity »;(t) 5‘1\/ g*(¢) is independent of 7, where
g* (t) means the determinant of g4 (¢), we have

(((6nY', 8,7, dm, ..., 6n)) = (= 1)"(m — 1)! K'n; (1) 6\t dA(1) (1.13)
where dA (¢) is the area element of W™ (¢ ), and using (1.8), we obtain

((n', 6, d1, 6n, ..., 6n)) = (= )" (m — 1)!

1 bt 1.(n iy2 *
TP a8 e da()

where B*(¢) means the cofactor of an element b, (¢) in the determinant |b,,(¢)|
divided by g*(¢).

By making use of (1.10), (1.12), (1.13), (1.14) and the relation

6(8y) = I'yxd du?,

y (1.14)

we have
d((n', 8,7, 6m, ..., 6n)) = (= )" (m — 1)! {K’ni(t) 51t dA(1)
1
+

B 1.0 i 2 [ %\
s (1) vty (ms (1) 59) % /2* (1) dA(t)}

+ ((n', <y x3 du’, 3, ..., n))
— ([’ () v, dw’, 8,3, Om, ..., 5m)).
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Next we shall prove that
((n', o jyx) au?, bm, ..., 8n)) — (0’ (1) T, A, 8y7, On, ..., on)) = 0. (1.15)

For the first term of the left-hand member of (1.15), making use of (1.8), we can see
the following

((n', <l xI du?, om, ..., 6n)) = (= 1)" "L, (¢) 8

X ((Lj1%3, 8% (1) TpXs Xays o5 X, _,) (1.16)
bt (1)... bgrot (£) du” A duPt A .. A dufrt,

Lete,,..;, ., and g,,..,, bethe e-symbol of S™* ! and of W™ (¢) respectively,

8i1...im+1di \/g eil...im.,.l H] 8a1...amdff vV g (t) eau Am ?
the symbol e;, ...; ., meaning plus one or minus one, depending on whether the
indices iy, ... i,,+, denote an even permutation of 1, 2,..., m+1 or odd permutation,
and zero when at least any two indices have the same value, and also the symbol
€,,...a,, meaning similarly for the indices «y, ..., «,, running from 1 to m.

Making use of the relation

—_ i2,03 yim+1
ni (t) Sa¢1...am-1 - Siiz...im+1xa xa; xam_1

we have

(s Ty e 5m) = (= 7 5,0 B Tm (1) i (1)
X Eaay..am- 05 (1) . b; SL(t) du’ A duPt AL A duPmt
=(—-1)"" 1 rn,(t) or I'yng (1) x rﬂsﬁ .97‘8‘"“"'”"b;‘1 (t)...bgn2t (1) dA(1)

Xy Bn—1
and we can see easily the following relation

Earamos €I (2) L B (1) = T PP, g () by (8)
= (m — 1)! B ().

Since B®"(t) is the symmetric tensor, we have

((n', <l jyxidu?, 8n, ... 0n)) = (— 1) (m — 1) n, (1) (1.17)

x 04T ;1 (1) x{yr,,)B””(t) dA (1) '

where I';;; means g;,I";; and the symbol (yB) denotes the symmetric part for the in-
dices y and .

On the other hand, we calculate the second term of the left-hand member of (1.15).
Since G is isometric, that is, 0g;;/0x' =0, we have

0grj 0%k 0gj1
1 f
(o2 + - ) P o

L’ () m (1) =

1
28

1.18
R (1.18)

B (1) (1) = O,
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and we can give the vector 8} by the expression

o =n (1) 81n' (1) + ¢Px;. (1.19)
Substituting (1.19) in the second term of the left-hand member of (1.15) and making
use of (1.18), we have

— ((T'jyn’ (£) T, du’, 8,7, On, ..., 6n))

=— (=" on (6) 8L (T’ (1) 1o 1y Xy oo Xy, ) (1.20)
bt (1) ... b=t (£) du” A duft A A duPmt,

Let us take the relation

7] J — {1\ i) i im+1
€asr..am-18 (t)xﬁgij_( 1) €iig..im+ 1%y Xam— 11 .

Then we have
— (T’ (1) T, du?, 8,7, 6n, ..., 6n)) . . (1.21)
= (= 1)"""(m — 1) tn,(t) 8T ;yn' (¥) x{p7,,B? (£) dA (). )

Thus from (1.17), (1.21) and I';;, +I';;; =0g;;/0x" =0, we can arrive at (1.15)
as follows
((n', <l ;yx2 du?, dn, -+, 6n)) — ((Tjn’ (1) T, du?, (?11, 5{1, )]
= (= 1" (m — D)V 1n (1) 61 (I'yy + Ljiy) n*(2) x{,t4B"" (1) dA(2) = 0.

Finally we have

(- )lm' d((n, 8,7, o, ..., n)) = K'n; (1) 87 dA (1)

(m =~ 1) L (1.22)

+ B (1) 77 (mi (1) 81) /g* (1) dA(1).

V& (1)
Integrating both members of (1.22) over the interval 0S¢ 1, we get
— 1)
(m )1)' j((n 8,7, n, ..., on)) dt = (K — K) n;(0) 6}t dA4 (0)
(1.23)
+ \/g*__w)J‘g* (1)~ 2B (1) dtz,74(n; (0) 61)* dA(0).
0

Furthermore integrating both members of (1.23) over W™ and applying Stokes’
theorem, since W™ is closed, we have

”(K K) n,(0) 8.7 dA (0)

f f NAAIO) f g* (1) 112 B (1) ditz,zy (ny(0) 5})* dA (0) =0,
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making use of the hypothesis K=K, we obtain

f f J*(0) f ¢* (1)~V/2 B (1) dtr,e, (n; (0) 61) dA(0) = 0.

On the other hand, from that the second fundamental form of W™(t) is positive
definite everywhere in W™(¢), 0 <t <1, the quantity

J2*0) f g* ()12 B (1) divp,

becomes positive definite. From that two hypersurfaces W™ and W™ do not contain
a piece of a hypersurface covered by the orbits of transformations, a point on W™
such that 7;(0)5% =0 must be an isolate point. Moreover since T is a continuous
function of W™, we have

T = constant
for all points of W™. Consequently we can arrive at the following result

W' =W modG.

THEOREM 1.2. Let H, and H, be the r-th mean curvature of W™ and W™ re-
spectively. Assume that the second fundamental form of W™(t), 0<t=<1, is positive
definite. If the relation

H =H,

holds for each point pe W™, then W™ and W™ are congruent mod G.
Proof. We consider the following differential form of degree m—1 attached to

each point p on the hypersurface W™ (¢)
def.

((n', 6,7, Onm, ..., On, dx, ..., dx)) = /g(n’, 6,7, 0n, ...,0n,dx, ..., dx)

LSy Pe—

=(=1) " /g (n', 6,7, Xoys eees X5 Xpoee Xp,,_ ) (1.24)
x by (2)...b53= (£) duPt Ao A duPmt A duPr AL A duPret

The exterior differential of the differential form (1.24) becomes as follows

d((n’, 8,7, om, ..., on, dx, ..., dx)) = ((6n', 8,7, on, ..., &n, dx, ..., dx))
+((n', 6(8) 7, Om, ..., n, dx, ..., dx)) + ((n', 8, dx, On, ..., On, dx, ..., dx))

because since S™* ! is a space of constant curvature, it follows that

((n', 647, 8m, ..., on, dx, ..., dx)) =0,
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and also we have
((n', 64 7, 0m, ..., dn, ddx, ..., dx)) = 0.
Making use of (1.8), we have
((n', 6, dr, 0m, ..., On, dx, ..., dx))
= (= 1) g () T, (1) 85 (017 Xgs Xags +es X > Xs +os Xg_1)
x bgt(t)... b=t (t) du? A duft A A duPrt A dut
A A dutm?
= (=17 8% (1) egay. sty €I
x by () ... b1 (1) (my (1) 1) 77, dA(1).
On the other hand, from (1.10) we get
((6n", 8,7, On, ..., 6n, dx, ..., dx))
= (((6ny, 0,7, on, ..., on, dx, ..., dx)) (1.26)
— (10’ (1) 7, du?, 847, 6n, ..., On, dx, ..., dx)).
And after some calculations, we have
(— 1) m!H/n;(2) 8] dA(t) = r((,, (6n), én, ..., on, dx, ..., dx)), (1.27)

because #,(¢) 8" dA (t) is independent of ¢t and dx" =&} dr, that is, the same direction
to §,. Moreover we can prove similarly the following relation as the proof of (1.15)

((n',6(8,) 7, 0n, ..., On, dx, ..., dx))
~((Fjn’ (t) v, du’, 8.7, Om, ..., 6n, dx, ..., dx)) = 0.

Then putting

(= 1)1 68 = 6 g P (1) B (1)
and using (1.25), (1.26), (1.27) and (1.28), we have

d((n', 87, o, ..., on, dx, ..., dx))

(1.25)

(1.28)

_(= ?'_ m HYm (1) 6Lt dA (1) (1.29)

+ (= 1) (m = D) Br,rp(n; (1) 61) dA(D).

Integrating both members of (1.29) over the interval 0 <¢< 1, and putting
1

01 [
0
we have

m (H, — H,) n,(0) 5itd4 (0) + rC,7,(n;(0) 57)* dA(0)

1

_ 1 r—1 )
- i(—~—)1~)~,~ d f (', 8,7, 6n, ..., on, dx, ..., dx)) dt. (1.30)
' 0

(m
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Furthermore integrating both members of (1.30) over W™ and applying Stokes’
theorem

" J j (H, - H) n,(0) 67 d4 (0) + j j (mi(0) 8,)” CPe,5 dA (0)

(-1

1
~(m— 1) f f«nz 817,81, ..., om, dx, ..., dx)) d1.

awm™ 0

Since W™is closed, we have
" [ - 1) m@ e 4a )+ [ (@) 807 Gty a4 0) =0
"
wm wm

using the hypotheses H, = H, and that the second fundamental form of W™ (¢),0< < |,
is positive definite, and from that two hypersurfaces W™ and W™ do not contain a
piece of a hypersurface covered by the orbits of transformations, we can arrive at

7, =0
for all points of W™, consequently we have
T = constant
for all points of W™. Accordingly we can see the following result
W' = W"modG.
This proof follows to the method of that due to K. Voss [2].
Remark. In an euclidean space, if G is translation group, that is, a special isometric

transformation group, Theorem 1.1 and Theorem 1.2 just coincide with theorems of
K. Voss given in the introduction.
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