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Foliations and Compact Lie Group Actions

by J. S. PASTERNACK 1)

§ 1. Introduction

This paper is about smooth foliations and contains as an application of the main
result a theorem on the existence of almost free compact Lie group actions.

Let M be a smooth (i.e., C*) manifold admitting a smooth foliation. Let T( M) be
the tangent bundle of M, let E be the sub-bundle of 7( M) consisting of tangents to the
leaves of the foliation and let v be the normal bundle to the leaves v=T(M)/E. The
Bott integrability criterion [5] gives that

Pont” (v; R) =0 for r>2-dim(v) (1.1)

where Pont™ (v; R) contained in H*(M; R) is the real Pontryagin ring generated by
the real Pontryagin class of v.

The main result of this paper, Theorem I (properly stated in Section 2), is that for
the special case when the foliation admits an appropriate Riemannian structure

Pont” (v; R) =0 for r>dim(v). (1.2)
Furthermore, in this special case if v is an orientable bundle, then
Pont{’(v;R) =0 for r>dim(v), (1.3)

where Pont} (v; R) is Pont* (v; R) with the real Euler class x(v) adjoined. In other
words, we make an additional differo-geometric assumption on the foliation and
prove a stronger result for the normal bundle. It is known that (1.2) is not true for
an arbitrary foliation, but to the best of the author’s knowledge it is unknown
whether or not (1.1) is a best possible result on the rational characteristic classes of
the normal bundle.

A Lie group acting smoothly on a manifold generates a smooth foliation of the
manifold whenever all of the orbits of the group action are of the same dimension.
The leaves of the foliation are the orbits. In case the Lie group is compact the foliation
generated by the action will be shown to satisfy the hypothesis of Theorem I and in
Section 5 we prove as a Corollary to Theorem I the following result on almost-free
compact Lie group actions. (An action is almost free if all the isotropy groups are
discrete.)

1) The author is a Battelle Seattle Research Center Visiting Fellow. During most of the period
when this paper was prepared, he received support from NSF Contract GP 7905.
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COROLLARY 1. Let M be a smooth n-manifold admitting an almost free action of
a compact k-dimensional Lie group. Then letting T=T (M)

Pont” (T; R)=0 for r>n—k.

It is interesting to note that Corollary 1 and also Theorem I are false for
the integral Pontryagin rings. In Section 6 an example is given of a specific 4-
manifold admitting an almost free action of the circle group, but p, (T)#0 where
11 (T)e H*(M; Z) s the first integral Pontryagin class.

Corollary 1 can be extended without difficulty following a general idea of Bott [5],
(cf., p.92in [12)).

COROLLARY 2. Suppose M is an n-dimensional manifold admitting an action of
a k-dimensional compact Lie group the action being almost free off a singular set X.
Then letting T=T(M)

Pont®(T; R) < j”(H” (M, M — Z;R)) for r>n—k

where j©: H" (M, M—ZX; R)— H® (M; R) is inclusion.

It would be interesting to have for each wePont"(T), r>n—k, a recipe for
neH® (M, M—Z; R) satisfying @ =7 (y) in terms of the local invariants of ¥ and
the behavior of the action near X. This program has been carried out in case k=1
and M orientable by Bott [4], and, Baum and Cheeger [2]. The general case is an open
problem.

This paper will assume a knowledge of the theory of characteristic classes and of
the Chern-Weil theory although essential results of the latter will be reviewed. The
author wishes to thank Professor Raoul Bott for his help and encouragement in this
research, and Professor André Haefliger for his suggestions which considerably
simplified the definition of an R-foliation and the proof of Theorem 1.

§ 2. R-Foliations

The manifolds considered in this paper are smooth finite dimensional paracompact
Hausdorf spaces. On a manifold M an R-foliation?) of codimension g is given by the
following data:

(1) Anauxiliary g-dimensional Riemannian manifold B.

(2) An open covering {U,};.; of M for I some indexing set and for each i/ a smooth
submersion f;: U, — B.

(3) For xeU;n U; there is an isometry y7; from a neighborhood of f;(x) onto a
neighborhood of f;(x) satisfying f; =770 f; on a neighborhood of x.

2) R-foliations have previously been studied from a different point of view by B. Reinhart [13].
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Notice that if one drops the condition that B is Riemannian and that the y}; are
local isometries then one recovers a definition equivalent to the usual definition of a
foliation (compare [8]). Not every foliation admits a structure as an R-foliation (cf.
[13] and [12]); for example the Reeb foliation of S is not an R-foliation.

Given an R-foliation if E is the sub-bundle of T(M) satisfying E,=ker(df|,)
for xeU, then E is tangent to leaves of the foliation and v=T(M)/E is the normal
bundle. The main theorem of this paper is the following.

THEOREM 1. For v the normal bundle to an R-foliation of a manifold
Pont” (v; R) =0 for r>dim(v).

Moreover, if v is orientable then
Pont{’(v; R) =0 for r>dim(v).

The proof of this theorem given in Section 4 is based on Chern-Weil construction
of the characteristic classes from the curvature of a connection.

Remark. One can define a pseudo-R-foliation by requiring in the definition that B
be a pseudo-Riemannian manifold (i.e., a manifold with a symmetric non-degenerate
smooth bilinear form on the tangent bundle). Except for the results on the Euler class
Theorem I is true for pseudo-R-foliations, the proof being essentially the same as the
proof to be given for Theorem I.

§ 3. Review of Connections and the Chern-Weil Construction

3.1. Connections

Let M be a smooth manifold with cotangent bundle 7* and let ¥ be a smooth
g-dimensional vector bundle over M. Let I'(+) denote the functor associating to a
vector bundle its vector space of smooth sections. A smooth connection on ¥V is an
operator D:I' (V) — I'(T*® V) satisfying

(i) D(sy + s,) =Ds; + Ds, for s;,s,€I' (V)
(i) D(fs) =df ®s+ fDs for sel(V), fasmooth (3.1
function on M and d the usual exterior derivative .

Given U an open set of M and a framing {s,, s;,...,5,} of ¥ over U then a
connection D defines over U a matrix of 1-forms ||0,;|| satisfying

q
DS,‘ = Z 9,-j®sj.
j=1

The curvature of D, denoted K (D), is the global section of A*(T*)®End (V) (End (V)
is the endomorphism bundle of ¥) which with respect to the framing {s, s,..., 5,}
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over U satisfies

K(D)| U= Hde,.,. ~ i Ou A 9,,,.}. (3.2)
k=1

I
Suppose now that N is a manifold and f: N - M is a smooth map. The connection
D on V pulls back to a connection f ' (D) on the pull back bundle f ~*(¥); locally
over the opensetf ~* (U), { f ~*(sy), ..., f ~*(s,)} framesf ~* (V) and

f_1 (D) (f‘1 (Si)) = k§1 fm (0x) ® f (81) (3.3)

where f (1) is the induced map on 1-forms.
By naturality of the exterior derivative, (3.2) and (3.3) can be combined to yield

K(f7' (@) 1 (U) =K (D) | V), (3.4)

where f ? is the natural induced map on 2-forms.

3.2. Chern-Weil Construction

The Chern-Weil theory exploits the fact that the de Rham cohomology of a
manifold is isomorphic to the singular cohomology with real coefficients. The
idea is to construct from the curvature of a connection on a vector bundle closed
differential forms which represent the real characteristic classes of the bundle.
Good references are [6], [7] and [14], here we briefly describe the results necessary for
our purposes.

Let gl(g, R) be the linear space of g x ¢ real matrices the Lie algebra of GL(g, R).
Suppose ¢ is a symmetric, multilinear real valued map of degree j on gl(g, R),

¢:gl(q, R) x---x gl(q, R) > R.
jfi?nes

The map ¢ is said to be invariant over GL (g, R) if and only if

¢(XA1X—13 XA2X~1’ s XAjX_l) = ¢(A1’ Aza s Aj) (35)

whenever xe GL(q, R) and A4;egl(q, R). The symmetric multilinear maps on gi(g, R)
invariant over GL(q, R) form a graded ring called the characteristic ring of g/(q, R)
over GL(g, R). Elements of this ring are called characteristic maps.

Suppose V is a vector bundle over a manifold M and D is a connection on V with
curvature K(D). The characteristic maps of g/(g, R) can be extended to even dimen-
sional forms with values in the endomorphism bundle and the fundamental fact of the
Chern-Weil theory is the following. For ¢ any characteristic map ¢ (K (D)) is a closed
form where ¢ (K(D))=¢(K(D),...,K(D)) and for each wePont®™(V; R) there
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exists a characteristic map ¢ of degree r/2 satisfying

W= [qs (2% K (D))] (3.6)

where [-] denotes cohomology class in H* (M; R). In fact the total real Pontryagin
class P (V) is given

P(V)= [det (1 + 2% K (D))] (3.7)

where det(-) is determinant. Notice (3.6) implies that the cohomology class of
¢ ((1/2n) K (D)) is independent of the connection D.

If V is orientable choose D so as to preserve a Riemannian metric on V. Then
K(D) is skew symmetric in local orthonormal framings of V. Let so(g) be the linear
space of ¢ x g skew symmetric matrices the Lie algebra of SO (q) and by analogy with
(4.1) define characteristic maps of so(q) over SO(q). Restricting to orthonormal
frames coherent with a prescribed orientation of ¥ characteristic maps of so(g) over
SO (q) can be defined on K(D). The Chern-Weil construction gives analogous to
(4.3) that for each wePont(’ (V'; R) there exists a characteristic map of so(g) over
SO (q) of degree r/2 satisfying

~[o(Lxo)] ”

Notice from (3.8) that the cohomology class of ¢ ((1/27) K(D)) is independent of the
Riemannian metric on V.

§ 4. Proof of Theorem I

Using our previous notation let M be the manifold with a given R-foliation of
codimension ¢ and let E be the sub-bundle of tangents to the leaves, E, =ker (df,-lx).

Let A* be the graded subalgebra of I' (A* (T*(B))) consisting of those differential
forms on B which are invariant under local isometries. Since the y7; are local isometries
A* pulls back to a subalgebra 4* of I'(A* (7T*(M))). Notice that A® vanishes for
r>gq. The next step in the proof is to define on the normal bundle v a connection for
which the differential forms representing the elements of the Pontryagin ring are con-
tained in 4*.

Restricted to any U, the bundle v is canonically isomorphic to the pull back of
T(B) by f;. For t,eT(M )lJc with [z,] denoting the equivalence class in v|, the ca-
nonical isomorphism is given by

[tx] = (x’ (df;)x (tx)) *
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The unique torsion-free Riemannian connection on T'(B) is invariant under local
isometries, in particular under the y;;, and therefore this connection pulls back to a
connection on v. Let D be the Riemannian connection on T(B) and D its pull back

tov.
Since D is invariant under local isometries for any characteristic map ¢

¢ (K (D))eA*.
Furthermore, by (3.4) ¢ (K (D)) is the pull back of ¢ (K (D)) and therefore

¢ (K (D))ed*.

By the Chern-Weil construction Pont™ (v; R)=0 for r>q. Moreover, D preserves
the metric on v pulled back from 7'(B) and therefore if v is orientable Pont{’ (v; R) =0
forr>gq.

§ 5. Compact Lie Group Actions

A smooth right action of a Lie group G on a manifold M is given by a smooth map
w:M x G — M satisfying

(i) u(m,e)=m forall meM where eeG is the identity. } 5.1)

(ii) pu(u(m, g1), g2) = u(m, g,8,) forall g;,g,€G and meM.

On a Riemannian manifold (M, <, >) an action is an isometric action if for every
geGthemap u(-, g): M— Mis anisometry.

PROPOSITION 5.1. A Lie group acting by isometries on a Riemannian n-manifold
(M, <, >) having all orbits of dimension k generates an R-foliation of M with codi-
mension n—k.

Proof. The fact that the orbits are all of the same dimension gives that M has a
foliation with leaves these orbits. We may choose a covering of M by coordinate
charts {(U;; X}, ..., Xf» ¥4, ---» Yo—i)}iex With I some indexing set so that the slice defined
by each fixed value of (y,..., ¥ x) is a connected component of an orbit intersected
with U,. Since the action is isometric following Reinhart [13, pp. 119-124] we can
choose 1-forms w', ..., w{ defined on U, which are zero on all vectors orthogonal to the
orbits and {w\, ..., wi, dy\,..., dyi_,} frames the cotangent space over U, with

n—k

k
<, > I U= ; . 8us (% Y)W, @ w; + ﬂZl 2.5 (¥) dy, ®dyy.
ny A= a, p=
Let (R"~*)* have Riemannian metric

n—k
Y 84(¥) dy.®dy;

a, f=1
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and let B be the disjoint union of the (R" ). The covering {U;};.; with the obvious
surjections into B define an R-foliation of M.  Q.E.D.

Given a Lie group action u, u:Gx M- M, du(e, m):T(G),®T(M),,— T(M),,
and the image of 7(G),@0 under du(e, m) is the subspace of T(M),, consisting of
the tangents to the orbit through m. Let E, be the collection of all tangents to the or-
bits of u; E, is a vector subbundle of 7(M) if and only if all the orbits are of the same
dimension.

DEFINITION. The action p is almost free if for each me M the isotropy group of
m (subgroup of G fixing m) is a discrete subgroup of G.

PROPOSITION 5.2. If p is an almost free action then E, is a trivial sub-bundle of
T(M).

Proof. Since p is almost free, the map from TG,x M— E, given by (I, m)—
—du (e, m) (1) for [eTG, is injective for each m because du (e, m) (1)=0 would imply
that the group elements exp (#/) fix m. The above map is certainly surjective and tri-
vializes the bundle E,.  Q.E.D.

Proof of Corollary 1. Let u be the almost free action of a k-dimensional compact
Lie group G on an n-dimensional manifold M. Since G is compact there is a metric
on M with respect to which u is an isometric action. By Proposition 5.1, Theorem I
can be applied:

Pont"(T/E,; R)=0 for r>dim(T/E,)=n—k.

Now,

T~E,®T|E,.

Letting P (- ) denote the real total Pontryagin class it follows (cf., Milnor [9])
P(T)=P(E,)UP(T|E,).

But by Proposition 5.2, E,, is trivial and therefore
P(E,) =1eH°(M;R).

Thus P(T)=P(TJE,). Q.E.D.

§ 6. Integral Pontryagin Rings: A Counter-Example

Information on characteristic classes in Theorem I and Corollary 1 has been
deduced exclusively by the Chern-Weil theory and as a result, all of these theorems
are about the real Pontryagin ring. In this section an almost free action of S is
constructed on a 4-dimensional compact unorientable manifold whose first integral
Pontryagin class does not vanish. The example shows that Theorem I and Corollary 1
are false for the integral Pontryagin ring.
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To construct the example we need to use the real blow up. Suppose M is a real
n-dimensional smooth manifold. Choose a point p, pe M. There exists a real smooth
manifold M and a map n, n: M — M, satisfying

(1) n maps M — {n~*(p)} diffcomorphically onto M— {p}

(2) =~ '(p)is areal projective (n— 1)-space.

The point p in M is blown up into a projective space in M by replacing p, by the
set of directions through p.

Topologically the blow-up manifold M is the connected sum of M and a real
projective n-space, RP,. Whenever n is even M is non-orientable. In general, each
Stiefel-Whitney number of T(M ) equals the sum of the corresponding Stiefel-Whitney
numbers of (M) and T'(RP,). For example, the blow-up of one point in the n-sphere
yields RP, - the Stiefel-Whitney numbers of the n-spheres vanish.

Algebraically, the blow-up is described as follows. Let P(T M) be the bundle of
(n—1)-dimensional projective spaces derived from 7M. Choose a coordinate patch
(U; x4, X35..., X,) With x;(p) =0, i=1, 2,..., n. Let (¥}, y5, ..., ¥,) be the dual basis to

0o 0 0
viewed as homogeneous coordinates for P (7 M) I U.
To define M and =, it is sufficient to define n =1 (U).
n ' (U)<P(TM)|U

Tc—l (U) = {(('xh X5 eers xn)a (yla Yas.eees yn)) | xiyj = xjyi
for each unordered pair i, j, 1 <i,j < n}.

For
(%1 X35 05 Xn)s (V15 +ees Yu)) R (V)
(%15 X255 X0)s (Vs ver Yu)) = (X105 X2, 0005 X,) -
There are n coordinate patches coveringz ™! (U)
Vi = {((%15 X25 0> X)> (V1> Y25 o> Yu)) €T~ 1 (U) I y; # 0}
on each V; there are coordinates v}, j=1,..., n. v} =x; for j=iand v} =y;/y; j#i.

Lifting an action of S* to M. The following lemma about the real blow-up is of
central importance in the construction of the example. Let p be contained in M and M
the blow-up manifold for p; S! is the circle group.

LEMMA 6.1. Suppose S* acts on M and the action is almost free on M— {p}, then
the action lifts to an almost free action on M.

Proof of Lemma. Choose <, > to be a Riemannian metric on M with respect to
which S* actsisometrically. Let u be the smooth map defining the action, u: S* x M — M.

S' = {¢”| 6€R]).
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Define E;I(l)by
T (Dl = dutesm) 35

The vector field du (1) is an infinitesimal isometry on (M, <, >). For >0 let

U,.={meM i e(p, m) <e}
where ¢(,) is the Riemannian distance on (M, <, >). Since p is a fixed point of the
isometric action, U, , is stable under the action. The proof of the lemma is now com-
pleted by purely local considerations.

Choose ¢ small enough so that U, . is diffeomorphic to an open set about 0,eTM,
the diffeomorphism given by the exponential map relatice to the Riemannian con-
nection.

At the point p, the infinitesimal generator of the action, Eu_(l), vanishes and the
Lie bracket with respect to 21’71(1) defines a linear map TM,— TM,. Denote this
linear by L, (_Jﬁ(l)) In [10], Kobayashi shows that (dim M) is even and there exists
non-zero real numbers a;, a,,..., a,, and an orthonormal frame for TM,, e,,..., €,

so that relative to this frame of the matrix of L, (CE (1)) is given by

(0 —a; O. ... ... e e ]
a, 0 oO. ... .. ...
0 O 0O —a, 0. ... ..
... .a, 0 0. .....
-. .0 0. (7.1)
0 —Qp2
- Ap/2 0 )

Let xy,..., x, be the dual basis of e,,..., e, on TM,, restricted to exp, 1(U,,,,S) and
viewed as coordinates on U, ,. It is further shown in [10] that the action of pon U, , is

given by
(cosa,0 —sina,0 0 . . . ... ... 3
sina, 0 cosa,8 O . . . . .. . ..
0 0
(7.2)
COS an/ze — sin a,,/29
sin a,,/ze CcoS a,,/29
N : J

The skew-eigenvalues a, a,, ..., a,/, are seen to be integers.
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Denote by P(TM,) the projective space of TM,. Letting (y;,..., ¥,) be homo-
geneous coordinates on P (7M,) relative to the basis e, ..., e,, the matrix in Equation
(7.2) defines an action, ', of S* on P(TM,). Noting the skew-symmetry in matrix
(7.1), ¢’ is almost free. The product action u’x u is almost free on P(TM)|U, ,
Further, n~! (U, ,) is stable under x’ x u and thereby lifts uto M.  Q.E.D.

EXAMPLE 7.1. An action of S* is first defined on complex projective 2-space CP,.
Denote by [z, z;, z,] the equivalence class in CP, of (z, z;, z,)eC*—{(0, 0, 0)} and
define the action u by

(eia’ [ZO’ Z4, 22]) — [209 ele, eiZGZZ] )

The points [1, 0, 0], [0, 1, 0] [0, O, 1] are fixed points of the action u and p is almost
free on

CP, — {[1,0, 0], [0, 1, 0], [0, 0, 1T} .

Blow-up in turn the three fixed points and lift the action, as described in Proposition
7.1, to an almost free action on the resulting blown up manifold. Let M be the blown
up manifold; M is the connected sum of CP, and three copies of real projective
space RP,.

To complete the counter example we now show that p, (T(M))#0 where
p1 (T(M))eH*( M; Z) is the first integral Pontryagin class. Since M is compact and
non-orientable it follows (cf., p. 90 in [3]) that p; (T(M))=(w,(T(M)))?. However,
the Stiefel-Whitney numbers of 7 (M) equal the Stiefel-Whitney numbers of T(CP,)
plus three times the Stiefel-Whitney numbers of T(RP,), and [11]

[wo (T (RP4))]2 =0

and
[w,(T(CP,))]> =p*> BeH*(CP,, Z,).
B#0
Thus p, (T(M))#0.
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