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Generalized Antipodes and the Borsuk Antipode Theorem

by Max K. AGOSTON

The fact that one has the notion of antipodal points on the n-sphere, S*, is often
very useful. The Borsuk-Ulam theorem, which asserts that if f:S" — R" thenthere
exists xeS” with f (x)=f (—x), is a particularly nice result having many interesting
and amusing corollaries. The object of this paper is to define a generalized notion of
when two points on an arbitrary Riemannian manifold are antipodal and then to
exploit this concept to prove a generalization of the Borsuk antipode theorem as
stated in [2, § 33]. It would seem that antipodal points as defined here should prove
useful in other areas of differential geometry and topology. At any rate, it opens up
a new direction for further theorems of the type just mentioned. Some of the interesting
problems that arose in this context are listed in § 3.

§ 1. Generalized Antipodes

All the manifolds considered in this section will be closed and Riemannian.
Recall that a Riemannian manifold is a pair (M", d), where M is a C*-manifold and
d is a Riemannian metric on its tangent bundle. We shall assume basic facts from
differential geometry which can be found in [3]. For example, 4 induces a metric on
M which we shall also denote by d. In addition, all the necessary geodesics which we
require will exist because of compactness.

Note. The metric d will always be fixed, and so we shall omit any reference to it
except in isolated instances where there might be some confusion otherwise.
Let X be a closed subset of M.

DEFINITION. Let ye M. We say that I' is a minimal geodesic between y and X
if I' is a geodesic of M connecting y to a point xe X whose length is equal to the
distance from y to X.

DEFINITION. A4(X)=A4(X,d)={ye M| there are at least two distinct
minimal geodesics from y to X7}.
Elements of A4 (X) are called the antipodal points, or antipodes, of X. This is in
direct analogy with S”, in case X is a point. We shall say that two points x, ye M are
antipodal if xe 4 (»).

Note. Clearly, if xeA(y), then yeA(x), so that we do not have to distinguish
between x being antipodal to y and y being antipodal to x.
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There are easy examples to show that 4 (x) need not be closed; however, we have
the following lemma:

LEMMA 1. The closure of A(x) is the set of cut points of x. (See [3, VIIL. 7] for the
definition of a cut point.)

Proof. We shall only outline the proof which was suggested by F. W. Warner. Let
K be the closure of 4(x), and let C(x) be the set of cut points of x. It is seen easily
from the definitions that 4 (x)< C(x). Since C(x) is closed (see [3]), it follows that
K< C(x). Therefore, to prove the lemma, it suffices to show that A(x) is dense in
C(x).

Now it is also shown in [3] that if ye C(x), then either ye 4 (x) or y is a conjugate
point of x. But conjugate points of x (considered as a subset of the tangent space of M
at x) were studied in [5]. There it was proved that the conjugate locus splits into a
regular and a singular part and that the regular conjugate locus is dense in the
conjugate locus and is a submanifold on the tangent space of codimension one. Let
yeC(x) be a conjugate point. One proves that y belongs to the closure of A4 (x) as
follows: First, one may assume that y belongs to the regular part of the conjugate
locus where one knows something about the behavior of the exponential map.
Finally, one considers the two cases where the order of the conjugate point y is
greater than 1, so that the kernel of the exponential map is tangent to the conjugate
locus, and where the order of the conjugate point is equal to 1.

Remark. Not much seems to be known about the structure of the set of cut points.
C(x) is a strong deformation retract of M—{x}, and M— C(x)is an open ball.

DEFINITION. Ay ={(x,y)e Mx M|yeA(x)}.
§ 2. The Generalized Borsuk-Ulam Theorem

This section is devoted entirely to proving the main result of this paper, namely
Theorem 1, which is a generalized version of the Borsuk-Ulam Theorem. In what
follows, M" will denote as closed manifold with a fixed Riemannian metric d and W™
will be an arbitrary differentiable manifold, not necessarily compact or without

boundary.

DEFINITION. Given any map f: M" —» W™ we let

A(N)=A(f, d)={(x. y)edu | f(x) = 1)}

THEOREM 1. a. Iff: M" — W™ wheren>m, thendimA(f )=n—m.
b. Iff: M" - W"hasf*.H"(W"; Z,) - H"(M"; Z,) trivial, then A( f ) #9.
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The proof of Theorem 1 is an adaptation of the argument given in [2, § 33]. For
simplicity, we shall assume that M and W are connected. We begin with a technical
lemma which we shall need to be able to perform various constructions.

If Y= M, int (Y') will denote the interior of Y.

Let S=Sy: Mx M — Mx Mbe the involution S(x, y)=(y, x).

LEMMA 2. Let xo€ M. For every open neighborhood O of Ayy< M X M there is a
tubular neighborhood U of the diagonal Ay, in Mx M, a closed n-disk D in M with
xo€int(D), and a closed manifold N" < O — U satisfying

(@) X x0DUID X xS0 —Ay,;

(b) S(U)=U, S(@U)=aU, S(N)=N;

(©) xox (M—intD)u(M—intD)x xo< N, and

(d) we can identify N—(xox (M—intD)u(M—intD)x x,) with S""*x[—1, 1]
in such a way that S(x, t)=(—x, —t) in an open neighborhood of S"~*x0 in S"~ 1 x
x [—1, 1]. (We shall identify S"~* x 0 with S"~1.)

Proof. The picture below may clarify this lemma.

Let 0,={(x, y)e Mx M| dist(y, A(x))<e}. Then O, is an open neighborhood
of 4y, and O,< O for some sufficiently small ¢>0 which we fix. One can easily find a
tubular neighborhood U of 4, such that Un0,=0, S(U)=U, and S(0U)=0U.
Next, let =¢/2 and let D be an n-disk in M—A(x,) which contains x, in its
interior and such that x,x (M—intD)u(M—intD)x x,<O0;. Consider DxD<
S Mx M and identify D with D"so that x, correspondsto the originand geodesics
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correspond to straight lines. (This identification of D with D" does not necessarily
preserve the metric, however.) Define

a:S" ' x[—-1,1]->Dx D

by a(x, 1)=((3) (r—1) x, () (¢+1) x). It is easily checked that a is an imbedding and
S((S" ' x[—1,1]))=a(S"" ' x[—1, 1]). Note that S(a(x, ?))=a(—x, —t). Now
a(S"" ! x{—1,1})=0;,. Suppose a(S" ' x(—1,1))¢0,. The idea will be to push
a(S"" ! x (-1, 1)) into O, in a symmetric manner. ‘

Let (x,t)eS" ' x[—1, 1] and define

B(x,t):[-1,1]->[-1,1]xx[-1,1]x
by B(x,t)(s)=((H) E-1)—s(1+2)/2) x, () (¢+1)+s(1—1)/2)x) for s=0 and
B(x,t) (5)=((® =1 —s(—1)/2) x, ((3) (¢+ 1) +5(t+1)/2) x) for s<0. Next, given
p:S" 1x[—-1,1] »[—1, 1], define

2,:8" 'x[-1,1]-DxD

by au(x3 t)'_:ﬂ(x’ t) (”(x9 t))

CLAIM. We can find a differentiable u with the property that

D) p(x,1)=0=pu(x, —1), forxeS" '; and

() a,(S" 'x[-1,1])<=0,.

This claim is proved by studying the pairs of antipodal points in the ‘plane’
[-1,1]xx[—1, 1] x< D x D. It will be useful to look at the function

6(x,t):[-1,1]-R

given by 0(x,t) (s)=dist(B(x,t) (s), 4y). To be precise, we are interested in
6(x, t)~'[0, 6). Our choice of D enables us to define u by

n(x,t)=0, if 0e6(x,1)"" [0, d),
= inf[0, 1] " 0 (x, t)~* [0, §), if the length (in M) of the
arc[(3) (t—1),(3) (1 + 1)]x isequal to d((3) (t — 1)x, (3) (¢ + 1)x),
=sup[—1,0]n0(x, t)" ' [0, §), otherwise.

It is easy to see that u is well defined and has the desired properties. Furthermore,
one can check that «,, is an imbedding and «, ("~ x [—1, 1]) has the same symmetry
properties with respect to Sas did «(S" ! x[—1, 1]).

Finally, let N=x,x (M—D)U(M—D)xxqua,(S" ' x[—1,1]). N will be a
differentiable n-manifold (after we round off corners) with N < 0,. Conditions (a)-(d)
in the lemma are readily checked. This proves Lemma 2.

Proof of Theorem 1.a. Case 1. Assume W™ is closed and n>m: Let S, O, U, and
N be asin Lemma 2. Let B be the double of By=Mx M—intUandset X=Bx Wx W.
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Define fixed point free involutions R: B— B and T: X~ X by T(b, u, v)=(R(b), v, u),
where R is the double of S| B,. There are natural inclusions S""'<N< B, < B, and
by Lemma 2, S"~!, N and B, are invariant under R. Therefore, X/T, B/R, N/R, and
P"~1=8""1/R are closed manifolds of dimension 2 (n+m), 2n, n, n— 1, respectively.
Now let ¢,e H™"(X/T; Z,) be the dual of i,ueH,,,,(X/T; Z,), where i: B/R x
x Aw—> X/T is the natural inclusion and p is the fundamental class of B/R x 4.
We easily obtain the following fact:

0, belongs to the kernel of H™(X/T; Z,)— H™(X/T—V; Z,) for every} )

open set V'in X/T containing B/R x Ay.

Next, we observe that we can identify N/R with P"# M" in a natural way. In
fact,let S"~ ' x [ —¢, €], €>0, be a collar of $"~! in N with the property that R(x, )=
=(—x, —t), xeS"™!, te[ —¢, ¢]. Such a collar exists for some ¢ by Lemma 2.d. If
wethink of S"as S" ! x [ —¢,e] withS" ™! x eand $" ! x (—¢) collapsed to the north and
south pole, respectively, then we get a natural map 4: N—.S" which we can also assume
to commute with R and the standard antipodal map on S§". A therefore induces a map
A :NJR=P"# M"— P" which essentially collapses the part from M" to a point.
Similarly, we get a map A,: N/R=P"# M"— M" which collapses the part from P"to a
point. (The M" in N/R comes from Lemma 2.c.)

Consider the diagram

X—=B 2 N =2 § < ¢

O D

KI—=BR 3 NR 2 P an
le e
o

where the i; are the natural inclusions and =, p; are the projections. (P"~'=8""'/R=
=S""1/S by Lemma 2.d.) Let ceH' (B/R; Z,), c,e H'(P"; Z,), c,e H' (N/R; Z,),
and c;e H'(P""'; Z,) be the characteristic classes of the involutions on B, S", N,
and S"~1, respectively (see [2, p. 60] for a definition of the ¢’s). By naturality and the
commutativity of (II), we have that if(c)=c,, i5(c;)=c3, Af(c;)=c,, and
i3 (e1)=cs.

Define

Yy:H' (P"; Z,)® H(M; Z,) - H (N/R; Z,)

by ¥ (u+v) =AY (u)+43 (v) for ue H (P"; Z,), ve H'(M; Z,). The following fact is
easily checked:

Y is an isomorphism for i# 0, n and onto for i =0, n. (III)
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Finally, assume f: M"— W™ is a map. Define a cross-section
6:B/R->X|T

by o (p2(x, »))=p1 (%, 3. f (%), f ()),1.e., 7o =1.

LEMMA 3. ifo*(¢,)=c5+13 (v)e H*(N/R; Z,), for some ve H™ (M; Z,).

Proof. By (III), we can write i;'6* (¢,,) =V (u+v) for some ue H™(P"; Z,) and
veH™(M; Z,). Since ¢*(¢,,) depends only on the homotopy class of f, we may
assume that f (D)=y,e W and ¢ (p,(z))=p, (2, o, ¥o) for zeS" ' N= B. In this
way we get a commutative diagram

(of
P —= BIR x Ay,

iy

BIR '—T'>X/T

where a, (z) =(z, yo, yo) for zeP" 1. Then it follows just as in the proof of Theorem
33.1 in [2] that i,'%}'6* (¢,,) = 5. But iy A} =0 and n>m imply that u=c7. This proves
the lemma.

Next, define

4o (f) ={(» y)eOnBo|f(x)=f(y)},
4, (f) = p2(40(f)) = B/R.

Again, an argument as in (33.2) of [2] establishes the following:

For every open neighborhood V of A,(f), ¢5+43(v) belongs to the
kernel of H™(N/R; Z,)- H™(N/R—V; Z,). In particular, c3+43(v) § (1V)
can be represented by a cocycle «,, with supportin V' n N/R.

LEMMA 4. 0 cieH"(N/R; Z,).

Proof. Clearly it suffices to show that the map A}: H"(P"; Z,)=Z,- H"(N/R;
Z,)=2Z, is not trivial. But this follows from the fact that (4,),:H,(N/R;Z,)~
—H,(P"; Z,)is an isomorphism.

Now, consider the diagram

o £ INRL) — §® (VR 0 AN,y

-3
i

¢ gH™ (BR; Z,) 5 K™ (Ay(1): 1),

where j; and j; are induced by the natural inclusions. Suppose that j; (¢*~™)=0.

*
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Consideration of the support of representative cocycles for c3+25(v) and "™,
together with (IV), would show that ¢} =(c%5+43(v))-¢"3™=0. But this contradicts
Lemma 4.

It follows that

iz (™) #0. V)

Observe that A(f)=B,<B. Let A'(f)=p,(A(f))=4,(f). There is a commu-
tative triangle of inclusion maps

¢ e H™ (BR1,) A H™ (A4lf); 72)
j*
H™ (A(£);Z,).

Assume that j*(¢"~™)=0. Then there is an open neighborhood of the closure of
A'(f) such that the support of ¢"™™ lies outside of this neighborhood. In fact,
it is easy to see that there is some O and U in Lemma 2 so that the support of ¢"™™
will lie outside some open neighborhood of the corresponding 4, (f). Therefore,
iy (" ™)=0. Since this contradicts (V), we have proved that j*(c""™)#0, i.e.,
i*#0. It follows that dimA'(f)>n—m and dimA(f)>n—m. This finishes the
proof of Case 1.

Case 2. W™ arbitrary and n>m: This case follows from Case 1 as in [2, 33].

Proof of Theorem 1.b. Suppose f:M"—W" and f*:H"(W;Z,)—» H"(M; Z,)
is trivial. As before, the case of general W reduces to the case W is closed. Therefore,
from now on we assume that W is closed, and we shall keep the same notation as in
the proof of Theorem 1.a.

Define F: B— W x W by F(x,y)=(f (x), f (¥)). We may assume that f (D)=y,
and F(z)=(y,y,) for zeS" ! x[—1,1]=N, since everything will only depend
on the homotopy classes of f and F. Then F | N is an equivariant map with respect
to Rand Sy. In fact, F(N)S Wv W=W xy,Uy, x W. Finduces a map

F:NR=P'#M'>W v W/Sy=W.

Let N, =(xox (M—intD))u (S" ! x[0, I])SN and consider the commutative
diagram

H (w Yo, vz'l)

///\\

KM Zg) = HU(M,D;2) = KN, S 2,) S H(NRP™ 1) =H' (N/R. ).
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Since f * =0 and all the horizontal maps are isomorphisms, we get
Ff=0. (VI)
Using the diagram
Y1 ——— XfT

Lo

NR X {yg X Yo) = B/R X Ay,

where Y=Nx (Wv W) and an argument similar to the one for (33.4) in [2], we
see that

iai5 (@) =c2®1. (VID)

Letos =0 | (N/R): N/R-Y/T.

LEMMA 5. 63is (9,)=c3e H"(N/R; Z,).

Proof. Let ny == | (Y, T), so that m,05=1. Set y,=n}(c3)e H"(Y/T; Z,). Then
o3 (ya)=03ni(ch)=c3 and i} (y,)=iint(c})=c3®1. By (VI) we have that
i3 (7a+15 (90)) =2 @1 +c3®1 =0. Thus

Yn+1is (@,) lies in the image of } (VIID)
Je:H"(Y/T, NIRx (yoxyo); Z,)— H"(Y|T; Z,).

Consider the diagram

HPOY/TNUR X (Yo X Yo)iZp) 5 HM(Y/T.7,)

* ¥*
B a0

I;'1'X~ > Hn(N/R]ZZ)-

" (Wyo;Z2)
where f* is the following isomorphism: First, the projection Nx (Wv W)—» Wv W
inducesamap f: Y/T=Nx (Wv W)/T-Wv W[Sy =W with B(N/RX (yo X ¥0))=Vo-
But Y/T—(N/Rx (o x¥0))=Nx W—(N X y,); and since the projection N x W— W
clearly induces an isomorphism H"(W, yo; Z,)— H"(Nx W, Nxyo; Z,), B* has
the same property.

However, F¥=0 by (VI) and o3 jEf* =F7%. Therefore, 63 jo =0. Combining this
fact with (VIIL), we get that o3 (y,+i5 (¢,)) =0. Consequently,c3i5 (¢,) =073 (v,) =¢2,
and Lemma 5 is proved.

The rest of the proof of Theorem 1.b proceeds just as the proof in Theorem 1.a.
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Namely, one has a diagram

HN/R;Z,) . HNRN A1), Z)
iy N

1 (BRZ) —2> HY(A(f). 2y

I
WA (1), Z,)

and one shows successively that j; (1)#0 and j*(1)#0. Otherwise, 1e H® (N/R; Z,)
and c;e H"(N/R; Z,) have disjoint support, i.e., ¢; =1-c5 =0, whichis a contradiction.
j*(1)#0 clearly implies that A ( f )#0. This finishes the proof of Theorem 1.b.

§ 3. Some Applications and Problems
We begin with some amusing corollaries of Theorem 1.

COROLLARY 1. The antipodal relation on S" with respect to an arbitrary Rie-
mannian metric d always agrees somewhere with the standard antipodal relation, i.e.,
for every metric d there exists an x,€S" such that — x,€ A (x,, d).

Proof. Let T:S"—>S", T(x)=—x, be the standard involution and consider the
projection p:S" - P"=S8"/T.

Note. If M" is not a homotopy sphere, then we always have A (x, d)nA(x,d")#0
for arbitrary Riemannian metrics d, d’ on M.

COROLLARY 2. Let T be an involution of a closed Riemannian manifold M" such
that M|T is a C®-manifold. If p: M— M|T is the projection and if p*: H"(M|T; Z,) —
— H"(M; Z,) is trivial, then T(x)e A (x) for some xe M, i.e., T sends some point to an
antipodal point.

Proof. This corollary also follows immediately from Theorem 1.b applied to the
map p.

Another easy consequence is

COROLLARY 3. Suppose M" is a closed Riemannian manifold and M", W" are
oriented. If f: M"— W™ has even degree, then there is an x& M and some y€ A (x) such
that f (x)=f (»).

It was pointed out by the reviewer that Corollary 1, 2, and probably 3 can be
proved directly quite easily without the use of Theorem 1. Namely, one assumes
that they are false and uses the minimal geodesics which then exist between appropriate
pairs of points to arrive at a contradiction by constructing a homotopy between the
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identity map and another map which factors through P” in the case of Corollary 1 and
M/T in the case of Corollary 2. Nevertheless, we decided to list these corollaries here
because they fit naturally within the framework of Borsuk-Ulam type theorems. It
seems reasonable to expect that in time more substantial applications of Theorem 1
will be found. Perhaps the theorem will first have to be improved and we list some
directions which this improvement might take.

(1) It does not appear necessary to have M”" either Riemannian or differentiable.
M" probably only has to be a closed topological manifold with a given metric.
Geodesics would then be replaced by rectifiable paths and 4 (x) would become the
set of ye M which are joined to x by at least two distinct rectifiable paths of minimal
length. The proof of Theorem 1 could then be copied.

(2) Is it sufficient to have W™ be a simplicial complex (which is perhaps locally
finite and countable so that it imbeds in Euclidean space)? This question is raised in
[2] for the special case M=S".

(3) Can one prove a theorem of the following type: Let f: M"— W™ and assume
that f,:H;(M; Z,)— H,(W; Z,) is not one-to-one for some i. Then dim4 (f)>k,
where k is an integer which depends only on i (and of course n and m). Probably the
best way to study this problem which takes into account the connectivity of f is to
consider (2) first.
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