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Generalized Antipodes and the Borsuk Antipode Theorem

by Max K. Agoston

The fact that one has the notion of antipodal points on the «-sphère, S"1, is often

very useful. The Borsuk-Ulam theorem, which asserts that if f:Sn -> Rn thenthere
exists xeSn with/ (x)=f — x), is a particularly nice resuit having many interesting
and amusing corollaries. The object of this paper is to define a generalized notion of
when two points on an arbitrary Riemannian manifold are antipodal and then to
exploit this concept to prove a generalization of the Borsuk antipode theorem as

stated in [2, § 33]. It would seem that antipodal points as defined hère should prove
useful in other areas of differential geometry and topology. At any rate, it opens up
a new direction for further theorems of the type just mentioned. Some of the interesting
problems that arose in this context are listed in § 3.

§1. Generalized Antipodes

Ail the manifolds considered in this section will be closed and Riemannian.
Recall that a Riemannian manifold is a pair (Mn, d), where Mis a C°°-manifold and
d is a Riemannian metric on its tangent bundle. We shall assume basic facts from
differential geometry which can be found in [3]. For example, d induces a metric on
M which we shall also dénote by d. In addition, ail the necessary geodesics which we
require will exist because of compactness.

Note. The metric d will always be fixed, and so we shall omit any référence to it
except in isolated instances where there might be some confusion otherwise.

Let Xbe a closed subset of M.

DEFINITION. Let y e M. We say that F is a minimal géodésie between y and X
if F is a géodésie of M Connecting y to a point xeX whose length is equal to the

distance from y to X.

DEFINITION. A (X) A (X, d) {ye M | there are at least two distinct
minimal geodesics from y to X}.

Eléments of A (X) are called the antipodal points, or antipodes, of X. This is in
direct analogy with Sn, in case X is a point. We shall say that two points x,yeM are

antipodal if xeA(y).

Note. Clearly, if xeA(y), then yeA(x), so that we do not hâve to distinguish
between x being antipodal to y and y being antipodal to x.
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There are easy examples to show that A (x) need not be closed, however, we hâve
the following lemma :

LEMMA 1. The closure ofA (x) is the set of eutpoints ofx (See [3, VIII. 7] for the

définition ofa eutpoint
Proof. We shall only outline the proof which was suggested by F. W. Warner Let

K be the closure of A (x), and let C(x) be the set of eut points of x. It is seen easily
from the définitions that A(x)^C(x). Since C(x) is closed (see [3]), it follows that

K^C(x). Therefore, to prove the lemma, it suffices to show that A(x) is dense in
C(x).

Now it is also shown in [3] that ifyeC(x), then either yeA (x) or y is a conjugate
point of x. But conjugate points of x (considered as a subset of the tangent space of M
dit x) were studied in [5]. There it was proved that the conjugate locus sphts into a

regular and a singular part and that the regular conjugate locus is dense in the

conjugate locus and is a submanifold on the tangent space of codimension one Let

yeC(x) be a conjugate point One proves that y belongs to the closure of A(x) as

follows: First, one may assume that y belongs to the regular part of the conjugate
locus where one knows something about the behavior of the exponential map
Fmally, one considers the two cases where the order of the conjugate point y is

greater than 1, so that the kernel of the exponential map is tangent to the conjugate
locus, and where the order of the conjugate point is equal to 1

Remark. Not much seems to be known about the structure of the set of eut points
C(x) is a strong déformation retract of M— {x}, and M— C(x) is an open bail.

DEFINITION. AM {(x,y)eMxM\yeA(x)}.

§ 2. The Generalized Borsuk-Ulam Theorem

This section is devoted entirely to proving the main resuit of this paper, namely
Theorem 1, which is a generalized version of the Borsuk-Ulam Theorem In what

follows, Mn will dénote as closed manifold with a fixed Riemanman metric d and Wm

will be an arbitrary differentiable manifold, not necessanly compact or without
boundary.

DEFINITION. Given any map/: Mn -? Wm we let

A (/) ee A (/, d) ee {(x, y)eAM \ f(x) f(y)}.
THEOREM 1. a. Iff:Mn -+Wmwheren>m,thend\mA(f)^n-m
b. Iff:Mn ->Wnhasf*:Hn(Wn;Z2) -+Hn(Mn;Z2)trivial,thenA{f)t*0.
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The proof of Theorem 1 is an adaptation of the argument given in [2, § 33]. For
simplicity, we shall assume that M and W are connected. We begin with a technical
lemma which we shall need to be able to perform various constructions.

If Fç M, int(Y) will dénote the interior of F.

Let S=SM : M x M -> Mx M be the involution S (x, y) (y,x).

LEMMA 2. Let xoeM. For every open neighborhood O ofAM^ Mx M there is a
tubular neighborhood U of the diagonal AM in Mx M, a closed n-disk D in M with

x0 e int (D), and a closed manifoldNn^O—Usatisfying
(a) x0xdDudDxx0^O-AM;
(b) S(U) U9 S(dU) ÔU9 S(N)=N;
(c) xox(M-'mtD)u(M-intD)xxo^N; and

(d) we can identify N-(xox (M-intZ))u(M-intJD)xx0) with ^"^[-l, 1]
in such a way that S(x, t) — x9—t)inan open neighborhood of Sn~1 x 0 in S11"1 x
x [-1, 1]. (We shall identify Sn~lx0 with Sn~K)

Proof. The picture below may clarify this lemma.

M*M

Let Oe {(x,y)eMxM\dist(y, A(x))<e}. Then Oe is an open neighborhood
of AM and Oe^O for some sufflciently small e>0 which we fix. One can easily find a
tubular neighborhood U of Au such that UnOE=Q, S(U) U9 and S(dU)=dU.

Next, let ô=e/2 and let D be an /i-disk in M-A(x0) which contains x0 in its
interior and such that jcox (M-intD)u(M-intD)xx0^Oô. Consider DxD^
£ Mx M and identify D with Dnso thatx0 corresponds to the originand geodesics
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correspond to straight lines. (This identification of D with Dn does not necessarily
préserve the metric, however.) Define

<x:Sn~l x [-1, 1]-»D x D

by a(x, 0 ((i) (* — 1) *> (i) (* +1) *)• R is easily checked that a is an imbedding and

^(«(^"-^[-l, l]))=a(5n-1x [-1,1]). Note that S(a(x, 0)=a(-x, -f). Now

a^'^t-l, 1})sO,. Suppose a(5tn~1x(-l5 1))$08. The idea will be to push
a (Sw ~ * x — 1, 1)) into Oe in a symmetric manner.

Let(x,r)eSw~1x[-l, 1] and define

/»(*, 0: [" 1, 1] -> [- 1, 1] jc x [- 1,l]x
by ^(x,/)W (((i)(ï-l)-j(l + /)/2)x, (G) ('+!) + *(!-0/2)*) for s^O and

jg(x, 0 (j) (((i) (t- l)-s(t-1)/2) x, ((1) (*+1) +j(/+ l)/2) x) for j<0. Next, given
/i:5r"":Ix[—1, 1] -+[-1, 1], define

VS""1 x [-U]->DxD

CLAIM. We canfinda differentiable \i with theproperty that
(1) n(x, l)=0=/z(x, -l
(2)a|ï(5x[l,l])sO..
This claim is proved by studying the pairs of antipodal points in the 'plane'

[ -1, 1] x x [ -1, 1] x £ /) x Z>. It will be useful to look at the function

0(*,f):[-l>l]-*K
given by 0(x, t) (s)=éist{p(x,t) (s)9AM). To be précise, we are interested in
0(x91)'1 [0, <5). Our choice of D enables us to define \i by

H(x, t) 0, if 0e9(x, t)'1 [0, S),

inf [0,1] n 0 (x, f)"1 [0, 5), if the length (in M) of the

arc[(i) (t - 1), (1) (r + 1)] x is equal to d((i) (t ~ l)x, (i) (f + l)x),
sup [- 1, 0] n 0 (x, 0'1 [0, ^), otherwise.

It is easy to see that \i is well defined and has the desired properties. Furthermore,
one can check that o^ is an imbedding and a^S"1"1 x [— 1, 1]) has the same symmetry
properties with respect to S as did a (Sn~x x[—1, 1]).

Finally, let iV=xox (M-D)u(M-D)xxoua/{()Srt-1 x [-1, 1]). N will be a

differentiable «-manifold (after we round off corners) with N^Oe. Conditions (a)-(d)
in the lemma are readily checked. This proves Lemma 2.

Proof of Theorem La. Case 1. Assume Wm is closed and n>m: Let S, O, U9 and

N be as in Lemma 2. Let B be the double of Bo Mx M-int (7and set X=B xWxW.
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Define fixed point free involutions R.B-+B and T:X-+ Zby T(b, w, v) (R(b), v, w),

where R is the double of S | Bo. There are natural inclusions Sn~1^N^B0^B, and

by Lemma 2, S"'1, N and £0 are invariant under R. Therefore, X/T, B/R, N/R, and
pn~x =sn~1/R are closed manifolds of dimension 2 (n + m), 2n, n, n— 1, respectively.

Now let (pmeHm(X/T; Z2) be the dual of i^eH2n+m(X/T; Z2), where i:B/Rx
x Aw-* X/Tis the natural inclusion and \i is the fundamental class oîB/R x zl^.

We easily obtain the foliowing fact :

<pm belongs to the kernel of Hm(X/T; Z2)->Hm(X/T- V; Z2)forevery)
open set V'm Z/jTcontaining B/R xAw.

Next, we observe that we can identify N/R with Pn # Mn in a natural way. In
fact, let Sn ~l x [- s, s], e > 0, be a collar of 5n " * in iV with the property that R(x9t)

— x, —t)9 xeS"'1, te[ — e, e]. Such a collar exists for some s by Lemma 2.d. If
we think ofSn as Sn "x x [- e, e] with S" "1 x e and Sn ~ * x - e) collapsed to the north and

southpole, respectively, then we get a natural map À:N-+Sn which we can also assume

to commute with R and the standard antipodal map on Sn. À therefore induces a map
Àl:N/R=Pn#Mn-*Pn which essentially collapses the part from Mn to a point.
Similarly, we get a map X2 : N/R =Pn # Mn-*Mn which collapses the part from Pn to a

point. (The M" in N/R cornes from Lemma 2.c.)
Consider the diagram

S""1 e S"

"! Ml l
N/R ^ PH £ Pn (II)
lit K *

where the /,. are the natural inclusions and 7C,pj are the projections. (P""1 =Sn~1/R
=Sn-1/S by Lemma 2.d.) Let ceHl{B/R\Z2\ c1eH1{Pn;Z2)9 c^H^N/R; Z2),
and c3eif1(P11"1; Z2) be the characteristic classes of the involutions on B, Sn, N9

and Sn~l, respectively (see [2, p. 60] for a définition of the c's). By naturality and the

commutativity of (II), we hâve that i?(c) c2, **2(c2) c3> ^*(ci)=c2>
^(q) c3.

Define

by t(u + v)=JLÎ(u) + JLÎ(v) for ueH^P"; Z2), veHl(M; Z2). The following fact is

easily checked:

i^ is an isomorphism for i^0,n and onto for i=0,n. (III)
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Finally, assume/: M"-» Wm is a map. Define a cross-section

o:B\R-*X\T
by a (p2 (x9 y)) =pt (x, y,f (x)9 f (y)), Le., na 1.

LEMMA 3. iïa*(<pm) c'ï+At(v)eHm(N/R; Z2)JorsomeveHm(M; Z2).
Proof. By (III), we can write ii(r*((pm)=il/(u+v) for some ueHm(Pn; Z2) and

veHm(M;Z2). Since <r*(<pm) dépends only on the homotopy class of/, we may
assume that f(D)=yoeW and o-(/?2(z))=/71(z,70,j0) for zeSn~1^N^B. In tins

way we get a commutative diagram

where ax (z) (z, yOf y0) for zePn *. Then it follows just as in the proof of Theorem
33.1 in [2] that /**'*<?*(<Pm) c3- But /*A* =0 and n>m imply that u c™. This proves
the lemma.

Next, define

A0(f) {(x,y)eOnB0\f(x) f(y)},

Again, an argument as in (33.2) of [2] establishes the following :

For every open neighborhood V of A1(f), c2 + A*(i>) belongs to the
kernel of Hm(N/R;Z2)-+Hm(N/R-V; Z2). In particular, <%+X$(v) (IV)
can be represented by a cocycle am with support in Vn N/R.

LEMMA4. 0*cn2eHn(N/R;Z2).
Proof. Clearly it suffices to show that the map k\:Hn(Pn'9 Z2)=Z2^Hn(N/R;

Z2)=Z2 is not trivial. But this follows from the fact that (X^'.H^N/R; Z2)->
-+Hn (Pn ; Z2) is an isomorphism.

Now, consider the diagram

/;^ &+ Hn"m (N/R n A^fljZ

fr î

where j* and y* are induced by the natural inclusions. Suppose thaty*(c"~m)=O.
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Considération of the support of représentative cocycles for c™+À*(v) and cn 2m,

together with (IV), would show that cn2=(c'ï+l*2(v))-cn~2m=0. But this contradicts

Lemma 4.

Itfollowsthat

j*(cn-m)#0 (V)

Observe that A (f c Bo ç B. Let A (/ =p2 (A (f c^ (/ There îs a commu-
tative triangle of inclusion maps

Hnra(A(f),Z2)

Assume that j*(cn~m)=O. Then there is an open neighborhood of the closure of
A'(f) such that the support of cn~m lies outside of this neighborhood. In fact,
ît is easy to see that there is some O and U m Lemma 2 so that the support of cn~m

will lie outside some open neighborhood of the corresponding Ai(f). Therefore,
/2*(cn~m)=0. Since this contradicts (V), we hâve proved that j*(cn~m)^0, i.e.,
7*7*0. It follows that dimA'(f)^n — m and âimA(f)^n—m. This finishes the

proof of Case 1.

Case 2. W™ arbitrary and n > m : This case follows from Case 1 as in [2, 33].

Proof of Theorem l.b. Suppose f:Mn->Wn and f*:Hn(W, Z2)-*Hn(M,Z2)
is trivial As before, the case of gênerai W reduces to the case Wis closed. Therefore,
from now on we assume that W is closed, and we shall keep the same notation as m
the proof of Theorem La.

Define F:5-> Wx W by F(x, y) (/ (x), / (y)). We may assume that / (D) =y0
and F(z) (yo,yo) for zeSn~1 x [—1, 1]^N> since everything will only dépend
on the homotopy classes of/ and F. Then F | N is an equivanant map with respect
to R and Sw. In fact, F(N) c Wv W= WxyouyoxW. Finduces a map

Ft:NIR Pn#Mn-+W v W/Sw W.

Let Nx=(xox (M—int/)))u(5""1x[0, 1])£N and consider the commutative
diagram

Hn(W,yo,Zz)

H"(M,Zt)*H"(M,D1Z2]
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Since/* =0 and ail the horizontal maps are isomorphisms, we get

F* 0. (VI)

Using the diagram

Y/T -X/î

N/R x (y0 x y0) ^ B/R x

where Y=Nx(Wv W) and an argument similar to the one for (33.4) in [2], we
see that

*!*'* (<Pn) cni ® 1 • (VII)

Let 0-3=0-1 (N/R) : N/R^ Y/T.

LEMMA5.
Proof. Let nï=n\ (Y, T), so that 7^03 1. Set yn n*(cn2)eHn(Y/T; Z2). Then

îï cn2 and it{yn) itnX{cn2) cn2®\. By (VII) we hâve that

In + i* Mlies in the image of
j*6:Hn(Y/T, N/R x (y0 xy0); Z2)-+Hn(Y/T; Z2). J

^ ;

Consider the diagram

HntY/T,N/R x(yox yo),Z2) -p— HnlY/T,ZJ

l2) pr^ Hn(N/R;Z2),
•1

where j8* is the following isomorphism: First, the projection Nx (Wv W)-* Wv W

induces a mapjS:7/r=Arx(PFv W)/T-*Wv W/Sw Wwithp(N/Rx(yoxyo))=yo.
But Y/T-(N/Rx(y0 xyo))=Nx W-(Nxyo)\ and since the projection Nx W-> W

clearly induces an isomorphism Hn(W,y0; Z2)-+Hn(NxW, Nxy0; Z2), j8* has

the same property.
However, F*=0 by (VI) and <r|y|j8*=Ft. Therefore, a%jZ=Q. Combining this

fact with (VIII), we get that g% (yn + /5* ((pn)) 0. Consequently,^^* {(pn)=0% (yn) c2,

and Lemma 5 is proved.
The rest of the proof of Theorem l.b proceeds just as the proof in Theorem l.a.
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Namely, one has a diagram

and one shows successively that y* (1)^0 and y* (1)^0. Otherwise, IeH°(N/R; Z2)
3Lndc%eHn(N/R; Z2) hâve disjoint support, i.e., C2 l *C2=0,which is a contradiction.

j*(l)#0clearlyimplies thatv4(/)#0. Thisfinishestheproofof Theorem l.b.

§ 3. Some Applications and Problems

We begin with some amusing corollaries of Theorem 1.

COROLLARY 1. The antipodal relation on S" with respect to an arbitrary Rie-
mannian metric d aïways agrées somewhere with the standard antipodal relation, i.e.,

for every metric d there exists an xdeSn such that —xdeA (xd, d).
Proof. Let T:Sn-+Sn, T(x) — x, be the standard involution and consider the

projection/?:Sn -> Pn=Sn/T.

Note. If Mn is not a homotopy sphère, then we always hâve A (x, d)nA (x, d') ^ 0

for arbitrary Riemannian metrics d, d'on M.

COROLLARY 2. Let Tbe an involution ofa closed Riemannian manifold Mn such

that M/Tis a C^-manifold. Ifp: M-> M/T is the projection andifp*:Hn(M/T; Z2) -»
-» Hn(M; Z2) is trivial, then T(x)eA (x)for some xe M, i.e., T sends some point to an

antipodalpoint.
Proof. This corollary also follows immediately from Theorem l.b applied to the

map/?.
Another easy conséquence is

COROLLARY 3. Suppose Mn is a closed Riemannian manifold and Mn, Wn are
oriented. Iff: M"-» Wn has even degree, then there is an xe M and some yeA (x) such

thatf(x)=f(y).
It was pointed out by the reviewer that Corollary 1, 2, and probably 3 can be

proved directly quite easily without the use of Theorem 1. Namely, one assumes
that they are false and uses the minimal geodesics which then exist between appropriate
pairs of points to arrive at a contradiction by constructing a homotopy between the
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identity map and another map which factors through Pn in the case of Corollary 1 and

M/Tin the case of Corollary 2. Nevertheless, we decided to list thèse corollaries hère

because they fit naturally within the framework of Borsuk-Ulam type theorems. It
seems reasonable to expect that in time more substantial applications of Theorem 1

will be found. Perhaps the theorem will first hâve to be improved and we list some
directions which this improvement might take.

(1) It does not appear necessary to hâve M" either Riemannian or differentiable.
Mn probably only has to be a closed topological manifold with a given metric.
Geodesics would then be replaced by rectifiable paths and A (x) would become the

set of je M which are joined to x by at least two distinct rectifiable paths of minimal
length. The proof ofTheorem 1 could then be copied.

(2) Is it sufficient to hâve Wm be a simplicial complex (which is perhaps locally
finite and countable so that it imbeds in Euclidean space)? This question is raised in
[2] for the spécial case M=Sn.

(3) Can one prove a theorem of the foliowing type: Let/: M"-> Wm and assume
that /*:#*(M; Z2)~*Hi{W\Z2) is not one-to-one for some /. Then dim^i(/)^Â:,
where k is an integer which dépends only on / (and of course n and m). Probably the

best way to study this problem which takes into account the connectivity of/is to
consider (2) first.
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