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The Spectra of Hyponormal Integral Operators?)

K. F. CLANCEY and C. R. PutNam

1. Recall that a bounded operator T'=H +iJ on a Hilbert space $) is said to be
hyponormal if

T*T —TT*=D =0, thatis, HJ —JH = —iC,C=4D = 0. 1.1)

It is known that such operators behave to some extent like normal operators; in
particular, sp(H) and sp(J) are just the (real) projections of sp(7’) onto the real and
imaginary axes; see Putnam [5b], p. 46.

Let H have the spectral resolution

H =f).dE,1, (1.2)

and let E(4) be the projection operator associated with an open interval 4. For any
bounded operator 7 (hyponormal or not), let T,=E(4) TE(4), regarded as an oper-
ator on E(4) $ and with spectrum sp (T,). Since H,J,—J,Hy=—iC,, it is seen that
T, is hyponormal on E(4)$ whenever T is hyponormal on §). It was shown in
[5d] that if T is hyponormal, then

sp(T,) < sp (T). (1.3)

In case the self-commutator D of T in (1.1) is compact, the relation (1.3) was proved
by Clancey [2a].
A refinement of (1.3) was proved in [5f] to the following

sp(Ty) n{z:Re(z)ed} = sp(T) n {z:Re(z)ed}, (1.4)

4 being any open interval. In view of the projection properties mentioned above, the
real part of sp (7)) lies in the closure of 4. It was noted in [5f] that, as a consequence
of (1.4),

Im[sp(T)n{z:Re(z) =s}] = O sp(E(4) JE(4)), sed, (1.5)

the intersection being over all open intervals 4 containing s. This relation will be
used below to determine the spectra of certain singular integral operators.
Suppose that

a(x),b(x)eL”(E),a(x)real, b(x)#0a.c.onE, (1.6)

1) This work was supported by National Science Foundation research grants.
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where E is a bounded set of positive measure on the real line. Let T,=H,+iJ,
denote the bounded operator on [*(E) defined by

b(x) [ (1)

(Hof) (x) = xf (x) and (Jof) (x) =~ [a ) f(x)+ == — () dt],

(L.7)

where the integral is interpreted as a Cauchy principal value. It is easily verified that
HoyJo — JoHy = — iCy, Cof = n! (fsb)b, (1.8)

so that C, =0 and hence T, is hyponormal. It is seen that the range of C, is spanned
by the vector bel?(E) and that Hy=x has simple spectrum and that the vectors
{Hgb}, n=0, 1, 2,.... span I*(E).

Conversely, if T=H +iJ is any hyponormal operator on H satisfying

T*T — TT*=D =0 andDhasrank one (1.9)
and
D=(,z)zand {H"z}, n=0,1,2,...,spanH, (1.10)

then T is unitarily equivalent to a singular integral operator T, =H, +iJ, defined by
(1.7). This result was first proved by Xa Dao-xeng [7]; a simpler proof using a result
in [5a] was given by Rosenblum [6], p. 326.

It may be noted that the operator T, above is irreducible by virtue of the condition
that b(x)#0 a.e. on E. To see this, note that if Q7#0 reduces T, then Q reduces
both H, and J,. If feQ, f#0 (that is, f (x)#0 a.e.) and if (f; b) #0, then (Co f) (x)
=n"1(f, b)b(x)#0a.e. on E, and hence {(H;C,f ) (x)},n=0, 1, 2,..., span the space
I?(E), that is, Q =I?(E). If (f, b)=0, then, since f #0, CoHy f #0 for some positive
integer N. Otherwise, by Weierstrass’ theorem, f (x) b(x)=0 a.e. and hence, f (x) =0
a.e., a contradiction. Thus, if g=HJ f#0, one can proceed as above to show that
Q=I*(E).

THEOREM 1. Let Ty=H, +iJ, be the hyponormal operator on I*(E) defined by
(1.6) and (1.7). Then sp(Ty) is the set of numbers z=s+it (s, t real) for which

meas, {xeEnd: —a(x)—|b(x)*—e<t<—a(x)+|b(x)*+¢e} >0 (1.11)
holds for every ¢>0 and for every open interval A containing s.
THEOREM 2. Let T, be defined as in Theorem 1. Then for almost all points

x€E, there exists some vertical segment {x+iy:a,<y=<b.}, where a,<b,, belonging
to the spectrum of T,. In particular, sp(T,) cannot be totally disconnected.
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Theorem 1 generalizes results of Clancey [2a], Theorem 1 and Putnam [5c]. Its proof
will be given in section 2. In a formulation involving a “determining set’ or “deter-
mining function”, Theorem 1 is contained in Clancey [2b] and Pincus [3c]. All of these
proofs, including the one of the present paper, use results of either Pincus [3a] or
Rosenblum [6] together with the relation (1.4) (or (1.5)) established in [5f]. It may
also be noted that in [3c], the operator D of (1.9) is assumed only to be of trace class,
rather than of rank one, and that §) is the least subspace reducing 7 and containing
the range of D.

A hyponormal operator T is said to be completely hyponormal on § if there is
no non-trivial subspace of § which reduces 7 and on which T is normal. A set S of
the complex plane is said to have positive density if for every open disk N,

meas, (SNN)>0 whenever SN N # 0. (1.12)

It was shown in [5d] that if 7"is completely hyponormal then its spectrum has positive
density. The converse question of whether every compact set S is the spectrum of
some completely hyponormal operator is unsettled, although some partial results
have been obtained; see [5g], also Theorem 3 below and the remarks in sectoin 4.

For any set S, let S~ denote its closure and int (.S) its interior. There will be proved
the following

THEOREM 3. If S is any compact set for which
S = (int(S))” (1.13)

(so that, in particular, S has positive density), then there exists a singular integral
operator Ty =H,+iJ, defined by (1.6) and (1.7) for which

sp(T,)=S. (L.14)

2. Proof of Theorem 1. It follows from Pincus [3a], p. 375, that tesp(J,), where
Jo is defined by (1.7), if and only if

meas, {xeE: —a(x) = |b(x)]?—e<t< —a(x)+|b(x)*+e}>0

for every > 0. (In this connection, see also Rosenblum [6], p. 323; also the remarks
in Pincus and Rovnyak [4], p. 620.) If the multiplication operator H=H,=x of (1.7)
has the spectral resolution (1.2) then for any open interval 4 (for which En A4 #0),
E(4) J,E(A4) is simply the integral operator J, restricted to En 4. It follows that the
condition tesp(E(4) JoE(4)) reduces to (1.11), and Theorem 1 now follows from
(L.5).
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Proof of Theorem 2. Since b(x)#0 a.e. on E, then
E= |JE,ae,where E,={xe€E: |b(x)]>>1/n} forn=1,2,....
n=1

Hence, E;cE,<:-- and meas,(E—E,)—0 as n—o. Choose N so large that
meas, (E,)>0 for n=N. Thus, at almost all xeE,, where n= N, E, has metric den-
sity 1. For such an x, let L=ess lim supa(¢), where ¢t — x and ¢ is restricted to E,.
Then, in every open interval containing x and for every £>0, there exists a subset of
E of positive measure for which |a(x)—L|<e and |b(x)|*>>1/N. It follows from the
criterion of (1.11) that the segment x +iy, where L—1/N<y<L+1/N, belongs to the
spectrum of Tj,.

3. Proof of Theorem 3. For any Borel set a of the line, let S(«x) denote the set
S(a)=Sn{z:Re(z)ea}. Fork=1, 2,..., let IT, denote a grid of squares in the complex
plane with sides parallel to the axes and of length 2%, We assume that the squares
contain their lower and left sides and that z=0 is a lower left corner of some square
in each grid. Since S is compact then the projection on the x-axis of S is contained
in some interval [¢, d]. Now choose a disjoint family {K,}, p=1, 2, ..., of Cantor sets
of positive measure in [c, d] so that

q
meas1<U Kp)»d——c as g—o. (3.1)
p=1

Denote by Ry, ..., R,, the elements of II; satisfying
chint(S)Eﬂl, j= 1, s By (3.2)

and let Rj,..., R, be respective smaller concentric closed squares of side 27 2. Then
for j=1,..., ny, let K, be the first K, satisfying

meas, (S(K,)"R;)>0 and p,>p;_,. (3.3)

Set A;=S(K,)n R; and let D; be the projection on the x-axis of 4;. Clearly, the set
Q,=Q,—J;2 4; is open. Denote by R;, for j=n, +1,..., n; +n,, the squares in I1,
satisfying

chgz, j=n1+1, saey n1+n2. (3.4)

Again, form concentric squares R;, ;4,..., R, ., of side 272 and, for j=n, +1,...,
ny +ny, let K, be the first K, satisfying (3.3). Repeat the process of forming 4; and
ny+nz

D; for j=n, +1,..., ny +n, and set Q;=0Q,—J}L|"* 4;. If this process is continued
for each ¢ and grid II, one obtains a family of closed sets {4,}, j=1, 2,..., satisfying

closure( A j) =§, (3.5)
=1

J
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Now define functions a(x) and b(x) on (J D; by setting

— a(x) = (value of y-coordinate of the center of R}) on D;, 3.6)
b(x) = (one-half the length of the side of R})'/? on D; . 3.

Then if T, is the singular integral operator given by (1.7) and (3.6) acting on I* (\_ D;)
it follows from Theorem 1 that relation (1.14) holds.

4. Remarks. 1t was shown in [5g] that there exist irreducible hyponormal oper-
ators satisfying (1.9) and having totally disconnected spectra. (An example was also
given in [5e].) In view of the last part of Theorem 1, such an operator T'=H+iJ
cannot be of the type T, =H, +iJ, defined by (1.6) and (1.7). That is, by the result
of Xa Dao-xeng, since T satisfies (1.9), then relation (1.10) fails to hold.

It was shown in Theorem 3 that any compact set equal to the closure of its interior
is the spectrum of some singular integral operator T, =H, +iJ, defined by (1.6) and
(1.7). Of course, the spectrum of a general such operator need not be of this type;
indeed, if a(x)=0 and if b(x) is the characteristic function of a Cantor set E of
positive measure, then (cf. Theorem 1) the spectrum of Ty, is the set Ex[—1, 1].

It is interesting to note that although the spectrum of T, cannot be totally dis-
connected, nevertheless, it may be a Mergelyan Swiss cheese. (Recall that this is a
set X=D—J,Z, D, where D is the closed unit disk and the D, are open disjoint disks
in D with radii r, satisfying ) r,< 00, and for which X is nowhere dense; see Zalcman
[8], p. 69.) The proof of this assertion depends upon a result of W. K. Allard (see
Brennan [1], p. 13) that almost every cross-section of a Swiss cheese is the union of
a finite number of disjoint closed intervals; for details, see Clancey [2b].
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