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On a Marinescu Structure on %(X)

E. BINZ AND W. FELDMAN1)

0.1. Introduction

For any completely regular topological space X the R-algebra € (X), the set of
all continuous real-valued functions of X endowed with the pointwise defined oper-
ations, can be represented as the union of subalgebras, each of which is canonically
identified with % (Y") for some locally compact space Y. On each of those subalgebras
% (Y) there is a natural topology, namely the topology of compact convergence.

The collection of all filters on % (X) which have as a basis a convergent filter in
one of those subalgebras, defines a certain type of convergence structure (Limitierung
[1]) on € (X), a so called Marinescu structure. The algebra € (X) endowed with this
structure is referred to as €, (X).

A well-written study of Marinescu structures can be found in [7].

The purpose of this note is to give a description of €;(X). Here we state some
of the properties of €, (X).

The evaluation map  from the cartesian product €;(X)x X into the reals is
continuous. Assigning to each set 4 < X the set

{fe€(X)|f(q)=0 forallged},

we obtain a one-to-one correspondence between the collection of all closed (proper)
ideals in %,;(X) and all non-empty closed subsets of X. In particular, every closed
maximal ideal consists of all functions in € (X) vanishing on a fixed point p in X.

Of some interest to us is the initial topology on % (X) determined by all con-
tinuous seminorms of € ;(X). This topology turns out to be the topology of compact
convergence.

As a consequence €;(X) and %,,(X), the R-vector space € (X) together with
above mentioned topology, have the same dual spaces. In addition we find that the
properties of €;(X) listed so far hold also for €, (X), the algebra % (X) equipped
with the continuous convergence structure [1]. We therefore investigate whether
%;(X) and €,(X) are identical. On a space X having a countable neighbourhood
basis for each point, the identity of %,(X) and %,(X) is equivalent to the local
compactness of X. This is a corollary to the more general theorem 8.

1) Parts of this paper are contained in the thesis of the second author.
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1.1. Definition of the Convergence Structure

Let X be a completely regular topological space. We denote the Stone-Cech com-
pactification of X by BX. It is well-known that every continuous map from X into
a compact space C can be extended to a continuous map from pX into C. Since X
is a dense subspace of X, this extension is unique.

By % (X ), we mean the R-algebra of all continuous real-valued functions on X
(under the pointwise defined operations). Every function fin % (X) can be regarded
as a map from X into R, the one-point compactification of the reals. Hence we can
extend f to a function from SX into R. Clearly if fis bounded, then the extension is
still real-valued. For any f € € (X ), the extension of fto fX, as a function with values
in R, is again denoted by f. Let K < BX be the pre-image under f of the point oo eR.
Since f : BX — R is continuous, K 1 1s a compact subset of fX. The function f restricted
to X is of course real-valued, and thus K, must be a subset of fX\X, the complement
of X in BX. For any space Y such that

XcYcpX,

we identify each continuous real-valued function on Y with its restriction to X.
Therefore given any compact set K< fX\X, the algebra € (BX\K) is contained in
% (X). In particular, the subalgebra € (BX\K,) contains /. We now conclude that

¢(X)= U Z(BX\K),
KcpX\X
where K ranges through all compact subsets of fX\X.

By %,,(BX\K), we mean the algebra ¢ (BX\K) endowed with the topology of
compact convergence. The convergence structure, being the subject of our investiga-
tion, is the finest of all convergence structures on % (X) making the inclusion maps
from €,,(fX\K) into ¥(X) continuous for every compact subset K< fX\X. We
denote the algebra % (X) together with this convergence structure by %;(X), and

notice that this is simply the inductive limit, in the category of convergence spaces,
(see [7]) of the family

{#.,(BX\K): K acompact subset of BX\X} (*)

with the ordering defined by inclusion. Of course the inclusion map from %, (FX\K)
into %,,(BX\K') is continuous whenever K is contained in K'. Since all the spaces
considered in (x) are locally convex topological R-algebras, €;(X) is indeed a
Marinescu space as introduced by H. Jarchow in [7]. We leave it to the reader to
verify that €,(X) is a convergence R-algebra [1], meaning that the operations are
continuous.
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1.2. Completeness of %, (X)

A filter ® on a commutative convergence group G is called Cauchy if ® -0
converges to zero, where “—’’ denotes the difference operation in G. If every Cauchy
filter in G converges to some element in G, then the group is said to be complete.

THEOREM 1. For any completely regular topological space X, the convergence
algebra €,(X) is complete.

Proof. Let @ be a Cauchy filter on %;(X). We must find a function ¢ €%, (X)
such that @ converges to ¢. Here, we remark that a filter ¥ on €,(X) converges to
a function g in € ;(X) if and only if there is a compact K< fX\X such that € (fX\K)
contains g and ¥ has a base in €, (fX\K) which is a filter convergent to g in this
space. Now the filter ® —© has a base ¢ in €,,(fX\K) with & convergent to zero
for some compact K< fX\X. Hence any element A of @ contains M — M where
Me®. We will show that M itself is in € (BX\K") for some compact K'=fX\X. Let
g be a fixed element in M. For each f e M, the function f—g is in M — M, and thus
in € (BX\K). This means that

fH(o)=g ' (0)UK.

Therefore M is contained in % (BX\K') where K’ stands for g~ ' (c0) UK. It follows
that @ has a base in € (fX\K’), call it @', Since

¢ (BX\K) = € (BX\K'),

the filter ®' — @’ on %,,(fX\K') has & as a base, and thus @’ is a Cauchy filter in
€., (BX\K'). The completeness of €, (BX\K") implies that @" itself converges to
some function te € (fX\K'). Hence @ converges to 7 in €;(X) as desired.

1.3. Closed Ideals in %;(X)

By an ideal, we mean of course a proper ideal. It is evident that for every non-
empty subset S of X the ideal

I(8)={fe®(X): f(S)={0}}

is closed in €;(X). We conjecture that all closed ideals in €[ (X) are precisely of this
form.

To prove this, let Jo%,;(X) be a closed ideal. We call the set of all points peX
with the property that every function f €J vanishes on p the null-set of J, and denote
this set by Ny (J). It is exactly the intersection of all zero-sets Zy (f) where f runs
through J. By Zx(f), we mean {xeX: f(x)=0}. Since for any function f eJ, there
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is a bounded function geJ such that Zy(f)=Zy(g), we can represent Ny(J) as

M Zx(g),

gelJ°
where J° denotes the collection af all bounded functions in J. Furthermore, the set
J°is a closed idealin %, (X)), and is therefore of the form I(N;x (J°)) where Nyx (J°)
is a non-empty subset of fX. Evidently the ideal J=I(Ny(J)). We will show that J
is all of I(Nx(J)). First, we verify that J° contains all the bounded functions in
I(Nx(J)). Since J° consists of all functions in % (fX) vanishing on Ny (J°), it is
enough to prove that any bounded element of 7(Ny (J)) vanishes on Ny (J°). Clearly
we are done as soon as we know that Ny (J°) is the closure of Nx (/) in fX. Assume,
to the contrary, that Ny (J°) contains Ny (J), the closure in fX of Nx(J), as a proper
subset. For a point ge N4 (J°) outside of Nx(J), we choose in X a closed neighbor-
hood U of ¢ disjoint from Ny (J). There exists a function ge € (X) such that g(g) =1
and g vanishes on the complement of U. We assert that geJn % (BX\K), where K
denotes the compact set Un Ngx(J°) contained in fX\X. Clearly JNn € (BX\K) is a
closed ideal in %,,(BX\K), and therefore consists of all functions vanishing on its
null-set. Since the bounded functions in JN % (BX\K) are precisely the elements of
J°, we conclude that Ngx(J°)n BX\K is the null-set of Jn € (BX\K). The function
g vanishes on Nyx(J°)nBX\K, and therefore g is an element of JN € (BX\K) as
claimed. Thus we know geJ°. On the other hand, g is not an element of I(N;x(/°)),

which is of course J°. Because of this contradiction, we conclude that Ny (J°) =Ny (J),
and thus J° consists of all bounded functions in 7(Ny(J)) where Ny (J) is not empty.
To complete the proof, let f be an arbitrary element of 7(Ny(J)). There is a unit u
in €(X) such that f-u is bounded. Hence f-ueJ°, and therefore (f-u)-1/ueJ. This
implies that J=1(Ax (J)).

We now have established

THEOREM 2. An ideal J in €;(X) is closed if and only if J=I(Nx(J)).

COROLLARY 1. A maximal ideal in € ;(X) is closed if and only if it consists of
all functions in € (X) vanishing at a fixed point in X.
For every point pe X there is a continuous R-algebra homomorphism

ix(p): ¢;(X)-R,

defined by ix(p) (f)=f(p) for every f €€ (X). Assigning to each point peX the
homomorphism iy (p), we obtain a map

ix: X > Hom € (X),

where S om €;(X) denotes the set of all continuous R-algebra homomorphisms
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from %;(X) onto R. Since an element of # o %;(X) is determined by its kernel,
a closed maximal ideal in €, (X), we deduce from corollary 1

COROLLARY 2. The map iy is surjective.
1.4. The associated locally convex topology of %, (X)
First, let us demonstrate that, in general, €, (X) is not topological; more precisely

THEOREM 3. %,(X) is topological if and only if X is locally compact. If X is
locally compact, then € (X)=%¥,,(X).

Proof. If X is locally compact, then % (X)is of the form % (fX\K), where K=pX\X
is a compact subset of fX. The inclusion map from %, (BX\K") into €_,(X) is con-
tinuous for any compact set K'< X\ X. Thus %,,(X) is the finest of all convergence
structures making the inclusion maps continuous, i.e., €;(X) coincides with %, (X)
and hence is topological.

Conversely, assume that €;(X) is topological. Since the neighborhood filter of
zero has a base in € (fX\K) for some compact K< fX\X and every neighborhood of
zero is absorbent, we have

€(X) = ¢ (BX\K).

If there were a compact K’ < BX\X strictly containing K, then the neighborhood filter
of zero in €,,(BX\K") would be strictly coarser than the neighborhood filter of zero
in €,,(BX\K). This is apparent since two locally compact spaces Z and Z' are
homeomorphic if and only if €¢,,(Z) and %,,(Z’) are bicontinuously isomorphic
(see [3]). Therefore K must be equal to fX\X which means X is locally compact.

In view of the fact that €;(X) is not, in general, topological, we wish to determine
the associated locally convex space %,;(X) of %,;(X). The topology of %,,(X) is
generated by all the continuous seminorms on %, (X).

Let

be a continuous seminorm. We construct a seminorm p which majorizes p and is
more convenient to work with. For a compact set K< fX\X, we denote by py the
restriction of p to ¥ (fX\K). Clearly

px: %, (BX\K) >R

is continuous. Therefore we can find a compact set Qx < fX\K such that a constant
multiple a of the seminorm

Sox: .. (BX\K) >R,
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defined by sy, (f)=5uDp,cq, | f(¢)l, majorizes px. This implies that for any function
feF(BX\K),

P (f) =sup{pk(g):lgl <I|fl and ge¥®(BX\K)}

is a real number less than or equal to asg, (f). Since for every function ge % (X) the
relation |g|<| f| implies that ge € (fX\K), we know that

p(f)=sup{p(g): gl <I|f| and ge%(X)}

is identical to fg(f). Of course every function in % (X) is an element of € (8X\K)
for some compact K< fX\X. It is not difficult to verify that the maps

p: €1 (X)-R
and
Px: €., (BX\K) >R for any compact K < BX\K,
sending each f €% (X) to p(f) and each fe€(BX\K) to px(f) respectively, are

seminorms. Since p restricted to € (BX\K) is px, we conclude that p itself is a con-
tinuous seminorm. Furthermore, p has the following properties

F(f)=5(f1) forall fe?(X)

and
P(f)<p(g) forall f,ge?(X) with |f]<lgl.

LEMMA 1. The kernel P of P, the set of all functions f €€ (X) with p(f)=0, is a
closed ideal in € [ (X) consisting of all elements in € (X) vanishing on a compact subset
of X.

Proof. P is clearly a linear subspace of € (X). To show it is an ideal, let geP.
For an arbitrary element f € (X), we consider

((=nv f)An)
where n denotes the function of constant value neN. Now
Pg'((=nv f)An))< p(g-m)=n-p(g)
and hence g-((—nv f) An)eP. The Fréchet filter generated by the sequence

(g'((—n v f) A n))neN

converges to g- fin € ;(X). Since P is obviously closed, g- fis an element of P. Thus
Pis a closed ideal in € (X), and therefore consists of all functions in % (X) vanishing
on its non-empty null-set Q = X (see theorem 2). It only remains to prove that Q is
compact. We can express P as the union of the kernels of jix for all compact K< fX\X.
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On the other hand, the kernel P¢ of fy contains the kernel Hy of s, .. Hence we have

NﬁX\K (P K) < NpX\x (HK) .

But Ny x (Hy) is nothing else but Q. Since Q is contained in the intersection of the
null-sets of Py,

QCmQIO
K

where K runs through all compact subsets of fX\X. The fact that (g Qk is a compact
subset of X implies that Q is compact.

Next, we will show that j is majorized by a constant multiple of the supremum
seminorm s over Q. Let f e ¥(X), and consider

g=((—s{®) v f) as(f)).
By the previous lemma, we have
F(f -g)=0.
Furthermore,
B()—B@I<B(f —2),
and hence p(f)=p(g). From the inequality |g] <s( f), we conclude that
F(f)<p(s(f)=s(f)p(1).
Therefore we have proved
THEOREM 4. The associated locally convex space of €,(X) is €,,(X).

The associated locally convex space of €, (X) coincides with the locally convex
inductive limit of the family

{#.,(BX\K): K is a compact subset of fX\X}.

Thus we may state

COROLLARY 1. The locally convex inductive limit of the family
{€.,(BX\K): K is a compact subset of BX\X}

is €,,(X).
For any convergence vector space E over R, its dual £ (E) is identical with the
dual of the associated locally convex space of E. Therefore

COROLLARY 2. 2(%,(X))=%(%.,(X)).
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1.5. Functorial Properties of %, (X)

Let X and Y denote completely regular topological spaces. Every continuous map
t:X->Y

induces a homomorphism
t*: €, (Y)- %;(X),

defined by t*( f)=fot for every f €€ (Y). To see that ¢* is continuous, we consider
the restrictions

tx: €..(BY\K) > €, (X)

where ¢y denotes t* | €(BY\K), and verify that 7§ is continuous for every compact
set KcBY\Y. To this end, we extend ¢ to a map

i1 BX - BY .

For each compact K< BY\Y, we know #~*(K) is a compact subset of fX\X. Further-
more, for a compact K< BY\Y the map 7§ is induced by

£ (BX\F~* (K)): BX\F™* (K) - BY\K ,
which we denote by #. That is, t5(f)=fotk for all f €€ (BY\K). Clearly
tx: €., (BY\K) » €., (BX\i™ ' (K))

is continuous for every compact K< fY\Y, and therefore ¢* itself is continuous.
On the other hand, let

u: €, (Y) = €, (X)

be a continuous R-algebra homomorphism sending unity to unity. We will now show
that u is of the form ¢* where ¢ maps X into Y continuously. The homomorphism u
induces a continuous map

u*: Bom & (X) = HomE;(Y)

defined by u* (h) =hou for every he #om € (X ). The index s denotes the topology
of pointwise convergence. Corollary 2 of theorem 2 implies that the map i;:Z —
HomE(Z) is a homeomorphism for any completely regular topological space Z.
Thus we have a continuous map ¢ from X into Y defined by t=iy ! cu*oiy. Now it is
easy to verify that ¢* is equal to u.
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To summarize these facts, we state

THEOREM 5. A homomorphism
u: €;(Y)~ %, (X)

taking unity to unity is continuous if and only if there exists a continuous map t: X - Y
such that u=t*.

For maps 7: X — Y and s: Y — Z between completely regular topological spaces,
we have the obvious identities

(Sot)* = t*oS*
and

. 1% .

ldX - ld@(x).

1.6. Realcompact Spaces

Let X be a completely regular topological space. As before, the zero-set Zzx(f)
of a function f € ¥ (X ) means the set of all points pe X where f vanishes.
Here, we consider the collection

(#%)  {%.,(BX\Zsx): Zsx = BX\X is a zero-set}

This is a subfamily of the family of all topological algebras %,,(BX\K) for K a
compact subset of X\X. As in section 1.1, it is clear that the union of all % (BX\Z;yx)
for Z;x a zero-set outside of X is again % (X). Under the natural ordering (as in
section 1.1), the collection (*x) is an inductive system, and we denote the inductive
limit of this system by %, (X).

It is easy to see that €;.(X) is actually the finest convergence structure on % (X)
obtainable as an inductive limit of a subfamily of the family of all ¥_, (fX\K) for K
a compact subset of fX\X. Of course the identity,

(exx)  id: € (X) > % (X),

is continuous. Our main concern in this section is to determine under what conditions
this identity is a homeomorphism.

If every compact subset of fX\X is contained in a zero-set in fX\X, then clearly
the identity (***) is a homeomorphism. Conversely, assume that

id: €,(X) - €, (X)
is continuous. Therefore we have a continuous injection
id*: %OMS%I' (X) - XOMS%I (X) H

where #om & ;. (X) denotes the set of all continuous R-algebra homomorphism
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from ;. (X) onto R together with the topology of pointwise convergence. For both
X and its Hewitt realcompactification vX the convergence algebras €,.(X) and
% (vX) are identical, since any zero-set contained in BX\X is already contained in
BX\vX (see [6], p. 118). Thus

Hom & (X)= HomE, (vX).
In view of (I), we conclude that the map
ix: VX > HomE . (X)

is continuous. This tells us that id*.i,x maps vX injectively into 3 0»,%;(X), which
is homeomorphic to X. Hence X must be realcompact.

To continue our investigation, without loss of generality we can regard X as a
realcompact space. Since by assumption

id: €;(X) > % (X)

is continuous, we know that the inclusion map from %, (fX\K) into €. (X) is con-
tinuous for any compact K< pX\X. Thus the neighborhood filter of zeroin %, (fX\K)
has a basis in €,,(BX\Z;x) for some zero-set contained in BX\X. Because every
neighborhood of zero in %,,(BX\K) is absorbent, € (BX\Z;sx)> % (BX\K) meaning
that Z,;y > K. To summarize, we have extablished the following

THEOREM 6. Let X be a realcompact space. € (X) is identical to €. (X) if and
only if every compact set in BX\X is contained in some zero-set in BX\X.

We note that in the case of a realcompact locally compact space X, the convergence
algebra %;(X) coincides with €. (X) if and only if fX\X is a zero-set, i.e., X is
g-compact.

More generally, assume that %;.(X) is topological for a realcompact space X.
By arguing as in section 1.4, we conclude that X is of the form pX\Z;x for some
zero-set Z;y. This means that X is o-compact and locally compact.

Therefore, we can state

THEOREM 7. Let X be a realcompact space. The convergence algebra €.(X) is
topological if and only if X is locally compact and o-compact.

As an example of a realcompact space X for which %,;(X) and %,.(X) do not
coincide, consider the reals together with the discrete topology.

1.7. Universal Representation of %, (X )

For a completely regular topological space X, the homomorphism

d: € (X) > €, (H om,€(X)),
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defined by d(f) (h)=h(f) for all fe¥(X) and all he Fom €;(X), is called the
universal representation [2] of €;(X). The subscript ¢ indicates the continuous con-
vergence structure (Limitierung der stetigen Konvergenz [1]) on the sets #om € (X)
and € (Hom,€(X)).

We first investigate the continuous convergence structure on 5 os €, (X).

The space #om, €, (X) is homeomorphic to X [3], and thus the continuous
convergence structure on #om €, (X) is the topology of pointwise convergence.
Since the evaluation map

w: %€ (X)xX->R
(defined by w(f, p)=1(p) for all f €€ (X) and all peX) is continuous, the identity
id: €,(X) - %.(X)

is continuous. Furthermore, the sets 5 om €;(X) and # on €,(X) are identical
(corollary 2 of theorem 2) which means that

id: Hom,C,(X) > Hom, € (X)

is continuous. On the other hand the identity map from 5 0%, %, (X )into 5 6%, (X)
is clearly continuous (the subscript s indicates the topology of pointwise convergence).
It follows that

Hom,C(X) = HomE(X),
which is homeomorphic to X via the map iy defined earlier. Therefore
i;’: (go (”0%5%1 (X)) - %o (X)

is a bicontinuous isomorphism, and of course ix.d is the identity map on € (X).
Our main problem is thus to determine whether #,;(X) and €,(X) coincide. So
far, we can say the following

THEOREM 8. Let X be a completely regular topological space. If there is a point
q in X having a countable base of neighborhoods and no compact neighborhood, then
€.(X) cannot be an inductive limit of topological vector spaces over R.

Proof. Any inductive limit of topological vector spaces over R has the property
that for each filter & converging to zero, there exists a coarser filter ¢’ convergent to
zero with )

LD =0

for every real number 4 unequal to zero.
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Our aim is to show that under the assumption of the theorem, ¥, (X) fails to
satisfy this condition.

Let {Q,.}men be a countable collection of open sets in X that form a base for the
neighborhood filter at g. We define inductively a certain system of nested neighbor-
hoods of q. Let N, =X and let {O, ,} be an open covering of X with no finite sub-
covering. Set

U1=Oian19

where O% is a member of {O, ,} containing ¢g. Assume that the closed respectively
open neighborhoods N; and Uj are defined. Choose N; ., to be a closed neighborhood
of ¢ contained in U,, and let {O,., ,} be a covering of N;,, by open sets in X having
no finite subcovering. We pick U,,, to be an open neighborhood of ¢ contained in

0/410Qis1 "Ny,

where O}, is a member of {O;,, ,} with geO},,. With this system of respectively
closed and open neighborhoods of ¢,

N,cU cN,cl,...,
we construct a filter @ that does not satisfy the condition mentioned above. Let
-11
={rescoi o< )
: n o n
and let
T.={fe®(X): f (W;) ={0}}

for x #¢, where we choose W, as follows: Since x #g¢, the point x lies in N, but not
in N, for some natural number r. Let W, be a closed neighborhood of x contained
in

r
nl 0}: N Nr+1
J=

where O7 is a member of the covering system {O; ,} containing x. It is clear that the
sets {T,:neN} and {T,:xeX and x#gq} generate a filter ® convergent to zero in
%.(X). Assume that there exists a coarser filter @’ in ,(X) convergent to zero with

A0 =0

for every real number 1 #0. To the interval [ —1, 1], there is a set F’e®’ and a neigh-
borhood N, of g such that

F'(N)={f (p): feF and peN;}
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is a subset of [ —1, 1]. For A equal to 1/2k, we have

L ey e[ 2t L

S— [ RS, ——a

2k T2k "2k
and (1/2k) F'e®’. Thus (1/2k) F’ contains a finite intersection of elements of the
form T, and T,, say

m Tnm m Tx’

neN xeX

where N is a finite subset of N and X is a finite subset of X\{g}. Now we claim that

N, ¢ U~ WeL Niyt
xeX
Our construction guarantees that for a fixed W,, either W, is a subset of the comple-
ment of N, or W, is contained in an element of the open covering {0, ,}. Further-
more, N, ., is contained in Of. Since the open covering {O, ,} has no finite sub-
covering, the claim is true. Therefore, we can find a function ge% (X) vanishing on
Uxex W,U N, with g taking on the value 1/k for some point in N, and |g| <1/k.
This function is certainly not in (1/2k) F’ but it is in U,cy T,0 Uxex Te» and this
contradiction establishes the theorem.

2.1. Consequences for %, (X)

In this section, we demonstrate consequences of the theory developed in 1.1 to
1.7 in investigating closed ideals in €, (Y) for a convergence space Y, and in de-
termining both the associated locally convex topological space of ,(X) and the dual
space of €,(X), where X is a completely regular topological space. The results we
obtain can be found in [4] and [S] respectively; however, the proofs given here are
simpler than those provided in [4] and [5].

First, we look at closed ideals in %,(Y).

Let Y be an arbitrary convergence space. To this space we associate a completely
regular topological space as follows: Any two points p, ge Y are said to be equivalent
if f (p) = (q) for all real-valued continuous functions f. As usual, the set of all these
functions is denoted by € (Y). The quotient set defined by the above equivalence
relation is called Y’. Any function f €% (Y) defines a function

f':Y->R
by sending each je Y’ to f(p). The initial topology induced by the family
{f':fe®(Y)}



On a Marinescu Structure on % (X) 449

is, of course, completely regular. The set Y’ together with this topology is again
denoted by Y.
The obvious projection

n:Y->Y
induces an isomorphism (with respect to the usual R-algebra structure)
n*: F(Y')->%(Y)

defined by n*(g)=gon for all ge¥(Y’). This isomorphism is continuous if both
algebras carry the continuous convergence structure. Hence for any closed ideal J in
€,(Y) (the algebra € (Y) together with the continuous convergence structure), the
ideal n*~*(J)<=¥,(Y’) is closed. Since the identity map,

id: €, (Y)->%,(Y")

is continuous, we conclude that n*~* (J) is closed in €, (Y"). Therefore, we know by
theorem 2 that it is of the form I(N) where N= Y’ is a closed non-empty subset. It
is clear that I(n~!(N))=J. Since an ideal of the form (M) for any non-empty subset
of Y is closed in €,(Y), we have the following result

THEOREM 9. For any convergence space Y, an ideal J in €,(Y) is closed if and
only if it is of the form I(Ny(J)).
Another application of the theory developed in chapter 1 is the following theorem

THEOREM 10. Let X be a completely regular topological space. The associated
locally convex space of €,.(X) is €,,(X).

Proof. Clearly the identity from %_(X) into the locally convex topological vector
space €,,(X) is continuous. Since

id: &, (X) - €, (X)

is also continuous, in view of theorem 4 the proof is complete.
By reasoning as in the proof of the last theorem, we obtain

THEOREM 11. For any completely regular space X the spaces £ (% (X)),
Z(4.(X)), and £ (%,,(X)) are identical.
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