Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 46 (1971)

Artikel: Représentations d'applications linéaires par des noyaux généralisés
Autor: Poncet, J.

DOl: https://doi.org/10.5169/seals-35532

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-35532
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

425

Représentations d’applications linéaires par des noyaux généralisés *)

J. PONCET

1. Introduction

Si un opérateur autoadjoint 4 (pas nécessairement continu) d’un espace de
Hilbert H, supposé de type dénombrable, a dans son spectre une partie continue, on
peut définir un «systtme complet de vecteurs propres» de cet opérateur comme
éléments de I’antidual d’un espace localement convexe convenable Sy.

S désigne un sous-espace dense de H tel que AS soit dans S, et T une topologie
localement convexe sur S, plus fine que celle qui est induite par H. L’existence de
tels vecteurs propres a été démontrée par plusieurs auteurs, sous certaines hypothéses
(voir par exemple [2]). Nous établirons cette existence d’une maniére rendue trés
simple par le choix particulier de S dans le domaine de A, mais notre probléme
principal est de donner des conditions générales sous lesquelles une application
linéaire continue de Sy dans “S7 faible (°Sy est un espace antiisomorphe a S;) peut
étre approchée par des applications de rang fini représentables par un noyau relative-
ment 4 ce systetme de vecteurs propres.

Ceci fait naturellement intervenir un produit tensoriel (le produit inductif
St® %St de A. Grothendieck [4]) auquel on impose certaines conditions, par exemple,
dans le cas de I’approximation forte, la semi-réflexivité de ce produit complété (voir
5.2 et la remarque 5.3).

L’existence d’une telle approximation constitue 'une des justifications possibles
du formalisme de la «théorie des représentations» de Dirac-Jordan, dans lequel un
opérateur quelconque est supposé représentable par une matrice associée a un
systéeme de vecteurs propres (celd pas seulement pour les opérateurs qui commutent
avec A), ce qui, comme on sait, n’a de signification que dans des cas particuliers.
Nous trouvons que la restriction d’un opérateur de H a S, si elle définit une application
continue de Sy dans “S7 faible, est représentable, sinon par un noyau (ou matrice),
du moins par un noyau généralisé, c’est-a-dire une limite, en un certain sens, de vrais
noyaux. Il existe par exemple toujours un noyau faible de cette application. Le cas de
’approximation forte est plus compliqué (n° 5).

Le fait de considérer les vecteurs propres d’un seul opérateur au lieu d’'un ensemble
commutant ne restreint pas essentiellement la généralité (voir n° 6).

La topologie T de S sera toujours donnée comme la topologie localement convexe

1) Travail préparé avec I’appui du Fonds national suisse et de I’Institut de physique théorique
de I’Université de Genéve.
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la moins fine rendant continues des applications @ ! S:5—- S, ou « est une topologie
localement convexe sur S, donnée une fois pour toutes, et plus fine que celle d’espace
préhilbertien, et w | S parcourt une certaine algebre @5 d’endomorphismes de S qui
contient la restriction 4 | S de A aS. On notera {(x, y)y la forme hermitienne de H,
{Y, x)r ou simplement (Y, x> la forme antilinéaire en x (dans Sy), linéaire en ¥
(dans *S'7) qui met en antidualité Sy et °S7, et {x, ¥) le complexe conjugué de <y, x>

En résumé, nous établirons les points suivants:

Soit A autoadjoint. On peut choisir S dense dans H tel que A4S soit dans S, et que
si @ est une algébre (n° 2) d’endomorphismes de S qui contient la restriction 4 I S
de 4 a S il existe des topologies localement convexes définies comme précédemment
sur S, rendant continus ces endomorphismes, un espace localement compact =, sur
Z , une mesure d¢, une famille d’éléments p, de “Sr, p, étant défini pour presque tout ¢
dans Z,, qui sont éléments propres de I’adjoint *(A | S) (n° 4) avec les propriétés a)
a e) ci-apres:

a) pour x, y dans S,

X, Yop = f (x, pe> {Pe ¥y dE ;

b) S et H s’identifient & des sous-espaces faiblement denses de “S7; donc tout ¥

dans “S7 est limite faible d’éléments x dans S, ce qu’on notera x—-s—n// etona

W, yy = lim f Cx, pe> par ) dé

x—y
pour y dans S;

c) si St est semi-réflexif, on peut remplacer dans b) «faible», «faiblement» par
«fort», «fortement».

L’espace des applications linéaires continues de S dans “S7 faible s’identifie
comme on sait au dual du produit tensoriel inductif S; ®;%St. On a alors:

d) 4(S®*S) s’identifie & un sous-espace faiblement dense de (Sr®;“Sy)’, toute
application continue F de Sy dans *S7 faible — en particulier tout élément de P et
la restriction & S de tout opérateur continu de H — est comme élément de (S;®;°ST)’
limite faible d’applications de rang fini f qui ont un noyau <{¢| f |#) relativement au
systéme p,; en particulier

P,y =lim [ G pe> S In> Cop ¥ dE
f5F
pour x, y dans S;
e) F est aussi limite forte de telles applications f dans (S ®;°Sy)" sous d’autres
conditions, entre autres: qu’il existe, pour une famille d’opérateurs notés 2, d’un
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espace S®;“S tels que S; ®;“Sy ait la topologie la moins fine rendant continues les
applications

(Q|S®%S):SQRS—>S®,S,

des extensions fermées (n° 3) dans le complété S ®;“S, que l'injection continue de
S®;°S dans I'espace hilbertien H®y“H se prolonge en une injection continue de

S ®4"S dans le méme espace, et que S ®;“S soit semi-réflexif (5.2. et remarque 5.3).
On peut comparer ceci avec d’autres énoncés du type «théoréme des noyaux»,
par exemple celui de I. M. Gelfand et N. Y. Vilenkin ([3], chap. 1). Nos conditions
sont différentes et nous ne supposons pas la nucléarité de S;. Nous avons cependant
noté (n° 6) une conséquence de la condition supplémentaire que Sy soit nucléaire.
Je tiens a remercier ici trés vivement A. Robert, & qui je dois quelques améliora-
tions de texte.

2. Les espaces Sy

Soit @, un ensemble d’opérateurs w (pas nécessairement continus) de H, tel que

1) 'opérateur identité 7 est dans @;

2) il existe un sous-espace S dense dans H, contenu dans le domaine de chaque w,
et les restrictions (e | S) des w a S forment une algébre @5 d’endomorphismes de S.
S’il existe un tel S 'intersection D, des domaines des produits finis d’opérateurs de
@, est le plus grand S qui vérifie 2).

Soit S, I’espace S muni d’une topologie localement convexe « donnée, et plus fine
que celle d’espace préhilbertien, et soit 7" la topologie la moins fine sur S rendant
continues les applications (w | S):S—S,. L'espace Sy ainsi défini est localement
convexe et séparé, et T est plus fine que «. Les endomorphismes (w | S):Sp— Sr sont
continus (car les applications composées (0™ | §)o(w® | S):S7— S, le sont, pour
(@M | 8), (@@ | S) dans & ([1], chap. I)).

3. Le complété S,

Dans les énoncés 3.1, 3.2, 3.3 suivants, il n’est pas nécessaire de supposer que «
est plus fine que la topologie préhilbertienne de S.
Nous voulons démontrer le lemme suivant:

LEMME 3.1. L’injection continue I l S:S;— S, se prolonge en une injection con-

tinue de Sy dans S, si les opérateurs (w | S) sur S, ont des extensions fermées (w | S)
dans S,
Un opérateur Q, continu ou non dans S,, est fermé si pour tout filtre convergent
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Y dans S, tel que Q(y) soit aussi convergent, la limite de y est dans le domaine de
Q et

Q(limy) = lim Q (y).

Soit D Pintersection des domaines des produits finis Py d’opérateurs (w |_§) dans
S,. S est dans D, Soit DY le méme espace muni de la topologie localement convexe V,
la moins fine rendant continues les applications

P:DP 5§ .

V induit T sur S et S, est dans D{P.

Montrons, sous ’hypothése que les (w | S) sont fermés, que I'injection continue
de S, dans DV est en fait une injection continue dans D", ce qui entraine 3.1 en
composant avec I'injection

. G
I:D'" > S,

(la fermeture I de I est évidemment I’endomorphisme identique de S,.) Il suffit de
vérifier que

THEOREME 3.2. D est complet.

Soit ¥ un filtre de Cauchy dans D{" et soit x un point de D{". La condition que
soit de Cauchy dans D{" (resp. converge vers x) est équivalente & la condition [5,
p. 234] que les bases Pg(y)) soient de Cauchy dans S, (resp. convergent vers Pg(x)
dans $,). Mais ¥ est aussi de Cauchy dans S, puisque « est moins fine que V. Soit y
la limite de ¥ dans S,, et montrons que y est dans D'V et que ¥ tend vers y dans DY
(donc que DV est complet).

Soient (w® | S),i=1,...,n des éléments de B5. (0¥ |S) (¥) est une base de
Cauchy dans S, donc converge vers z) dans S$,, et (0™ | S) (»)=z") puisque
(@™ | S) est fermé. De méme (0™ | S) (0 | S) () est une base de Cauchy dans S,
qui converge vers z?, et (0® | S) zV)=z?, (0@ |S) (0¥ | S) (y)=2?, etc.;
finalement (0™ | S)...(w™ | S) (V) est de Cauchy dans S, et si z est so limite, on a

(0™ I S) (z" V) =z = (o™ | S) (@™ V| 8)... (@] S) (y):

y appartient au domaine de chaque Pg, donc 3 D'V et par I’équivalence des conditions
ci-dessus, ¥ converge vers y dans D",

THEOREME 3.3. Si S, est semi-réflexif et si les (w | S) ont des extensions fermées

dans S,, Sy est aussi semi-réflexif.
En effet, S est séparé et s’identifie par la définition de D{" a un sous-espace fermé

d’un produit d’espaces isomorphes a S,.
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Dans le cas particulier ou S, est préhilbertien, S,=H on peut prendre w** —
s’il existe pour chaque @ — comme (_cm—), et supposer a priori que les w sont fermés
dans H:ow=w**. Alors Sy est semi-réflexif, D, de n° 2 est D), et D{" est complet
et semi-réflexif.

Remarque 3.4. PsD est dans D™ et les restrictions des Pg 3 D" engendrent une
algébre d’endomorphismes continus de D{". En particulier la restriction de (w [ S)
a S, est continue. Comme la restriction de (co—_|—S_) a St est (w | S), on voit que les
restrictions des ((:)TS) 4 S, forment une algébre &5 d’endomorphismes continus de
Sr qui sont les prolongements par continuité des (w | S) & Sr.

4. L’antidual *S7

Par la définition de S du n° 2, I’antidual °S7; contient un sous-espace qui s’identifie
a H, car Sy a une topologie plus fine que celle d’espace préhilbertien, donc “St
contient I’antidual de H qu’on peut identifier a H.

Nous définissons 1’adjoint *(w | S) comme opérateur sur *Sy par la condition
Ko | S)v, xpr=<v, (0 | §) XDy (x est dans Sy). *(w | S) coincide avec I'adjoint
habituel (@ | S)* sur le domaine de celui-ci identifié & un sous-espace de *Sy.

Si on considére (w | §) comme opérant sur S identifié & un sous-espace de “St,
on peut définir une extension (@ ] S)" a “St par la condition

{w | S) v, x)r = (v, 0*x)r

pourvu que w* appartienne a ¢, ce qu'on peut aussi écrire
o] S) v, x)r =<0, (0| S)* xDr

puisque (w | S)* est une extension de w*. On a donc (w | S)' =*(w* | S). Si w est
symétrique dans H, on a o*x=wx=(w|S)x et les égalités de définitions de
*(@| S) et (w | S) donnent *(w | §)=(w | S)".

La continuité de *(w | S) et (w | S)’ sur Sy fort ou faible résulte de [1, chap. IV,
§4, cor. de prop. 6].

Il y a moins d’ensembles bornés dans St que dans H, donc “St fort induit sur H
une topologie moins fine que celle de H. Soit e ’application identique de S dans
*St. Alors eo(w | S):Sr—“St fort est continue. Dans la suite on notera simplement
(@ | S) pour ec(w | S).

Remarque 4.1. D’aprés [1, chap. IV, §2], si v est dans S, (v, x> est une somme
finie ) (v, (@’ | S) x), avec v; dans *S,, donc v=Y; *(' | S) v; (en identifiant *S,
a un sous-espace de *Sy).
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THEOREME 4.1. a) S est faiblement dense dans °Sy. b) si Sy est semi-réflexif
S est fortement dense dans °S7.

L’injection continue / | S:Sy—>H a une transposée injective *(/ | S):*H— Sy
puisque Sy est dense dans H. L’image de ‘(1 | S) est donc dense dans St pour toute
topologie sur S compatible avec la dualité (S, S7), en particulier pour la topologie
faible (et aussi la topologie de Mackey) et la topologie forte si S, est semi-réflexif.

THEOREME 4.2. Si linjection continue j,:S,— H se prolonge en une injection
continue j,:S,— H, si les (o | S) ont des extensions fermées (w | S) (n° 3) dans S,
et si S, est semi-réflexif, alors il existe une injection continue de Sy dans °Sy fort et
l'image de S =Sy est fortement dense dans °S'y.

Par 3.1 on a une injection de Sy dans S,, donc dans H du fait de Iinjection Jj,,
ce qui permet, en utilisant encore 3.3, d’appliquer 4.1 b) & I’espace algébrique §
de Sy et (°S;)’ (=Sy) fort. S est donc dense dans “S fort. D’ailleurs I'injection de
S dans S} s’obtient en composant les injections

ST—)H"‘)aS’T.

Comme S est dense dans S, son image est donc dense dans S} fort.
5. Le produit S;®;"St

Nous désignons dans ce n° 5 par Sy ’espace préhilbertien .S dans H.

Le produit tensoriel inductif [4] Sy ®,;°Sy a une topologie plus fine que celle de
I’espace préhilbertien Sy®y°Sy (Uespace S®4S muni de la forme hermitienne)
définie par

(X1 ®@%1, %, ® ay2>H®H = X1, %205 V2, Y1 u

puisque lapplication canonique ¥:(x, y)—»>x®y de Sy x°Sy dans Sp®y°Sy est
continue.

Soient o™, »'® dans &, de n°l: o ® “w™ est continue de S;®;%S; dans
Sp® %Sy, donc 0@ *w'? est continue de S;®,°Sy dans SE®4°Sy; et ¥V ® ‘0w
est aussi continue de ST®,°Sr dans St®;"St puisque cette application est associée
a l'application bilinéaire

(x, ¥) = ¥ (0Px, ‘@)

séparément continue de Sy x °Sy dans S;®,;%Sr.

THEOREME 5.1. %(S®°S) s’identifie @ un sous-espace faiblement dense de
(Sr®;°Sr)’; et toute application linéaire continue de Sy dans °Sy faible — en particulier
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'application définie par (o | S), ou un opérateur continu de H restreint @ S:S— H, en
identifiant H a un sous-espace de Sy — est limite faible dans (S;®;°Sy)’ d’applications f
de rang fini (qui sont des éléments de *(S®“S)).

Ceci est une conséquence de 4.1 a) par le fait que la topologie de S;®,°Sy est
plus fine que celle de Sy®y“Sy ce qui permet d’identifier S® S a un sous-espace de

a(ST®iaST)"

L’approximation forte. Soit f une topologie localement convexe donnée sur S® *S,
plus fine que celle de Sy® y“Sy.
Soit @, une famille d’opérateurs pas nécessairement continus, notés 2, du com-

plété Sﬁ“(;)S. On suppose que le domaine de chaque Q contient S®’S et que &,
contient les opérateurs de la forme (0 | $)@(w?® |S), oit (@ |S), (@?® | S)

appartiennent & @ (n° 1). On suppose aussi qu’il existe un sous-espace X de S®;°S’
qui contient S®“S et tel que les restrictions (Q | £) & X forment une algébre Pg ;

d’endomorphismes de Z, et que chaque (2 | Z) posséde une extension fermée (Q | X)
dans S®;“S.

THEOREME 5.2. Si S;:®,°Sy a la topologie la moins fine rendant contmues les
applications (2 | S®“S):S®“S — S® ,,“S sil’ mjectzon continue ]ﬂ S®p°S—-H ® u"H
se prolonge en une injection continue j4: S® "S- H ® u"H et si S® S est semi-réflexif

alors *(S®*S) et (S ®,°Sr) s’identifient & des espaces fortement denses de (S+®,;°St)’.
En particulier les applications de Sy dans °St faible définies par les (w | S) et les
restrictions & S d’opérateurs continus de H (H étant identifié a un sous-espace de *°St)
sont limites fortes (dans (Sr®,°St)’) d’applications de rang fini f.

La démonstration est analogue a celle de 4.2.

Soit X, I’espace X muni de la topologie localement convexe 7 la moins fine rendant
continues les (2 | 2):2 - S®,°S.

ST® %S est semi-réflexif comme sous-espace fermé d’un espace semi-réflexif Z
D’autre part, il est sous-espace, avec topologie plus fine, de E,,, puisqu’on a une
1n]ect10n continue de Z dans % 5 par 3.1, (2] 2) ayant une extens1on fermée dans
Zp S ®p ?S. Comme on a une injection contmue de Zﬂ dans H ® u'H par hypothese,
on a donc une injection j; continue de ST® 4Sr dans son antidual “(ST® “Sr) fort.

Mais par 4.1. b), Sréi"ST ayant une topologie plus fine que celle qui est induite
par H <§) u"“H, et étant semi-réflexif, I'image par j; de STéi“ST est fortement dense dans
“(Sr®,°Sy)’, donc aussi I'image de S;®;*St-

Remarque 5.3. Les condmons de validité de 5.2 sont automatiquement satlsfaltes
si Pinjection S;®;°Sr— H ® u°H se prolonge en une injection continue de ST® “Sr
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dans H®yx°H et si ST(:@,-“ST est semi-réflexif, en prenant pour B précisément la
topologie de S;®,"S; et pour @, l'algebre engendrée par les endomorphismes con-
tinus de la forme (0™ | S)® (0@ | S), X étant S@°S.

Sur la question générale du prolongement d’une injection continue en une injection
continue, on peut consulter [5, chap. IV].

6. Le noyau généralisé d’une application de S, dans °S;. faible

A étant un opérateur autoadjoint de H, qu’on suppose d’abord & spectre continu,
on sait d’apres les théorémes de réduction de [6, chap. VII, théorémes 7.2, 7.9, 7.10,
7.15] que H est somme hilbertienne d’une suite de sous-espaces fermés H, tels que la
restriction 4, de 4 & H, soit autoadjointe et & spectre simple. Chaque H, est isomorphe
a un espace I?(dg,), do,=d||E(A)f,| étant une mesure sur une droite d,, E(A) la
famille spectrale de A, et f, (vecteur cyclique dans H,) tel que H, soit engendré par
les vecteurs E(1)f,. Si J, est I'isomorphisme en question, I’opérateur JAJ ! est
équivalent & la multiplication par A sur I?(dg,). Dans la suite, on écrit 4, pour
J,A,J, 1. Si E,(A) est la restriction de E(1) 2 H,, on a

A = f 4 dE, (1).

Comme H, est engendré par les éléments E(A) f,, E, () est constant au voisinage d’un
point u si et seulement si E, (1) f, I'est, donc si et seulement si ce voisinage est dg,-
négligeable. Autrement dit, le support de dg, noté supp(dp,) est le spectre de A,
(le complémentaire dans d, de 'ouvert des points au voisinage desquels E, (1) est
constant).

Sur I’espace localement compact =, réunion des droites d, introduisons la mesure
do somme des mesures dg,. H est isomorphe a I?(dg) par un isomorphisme J qu’on
peut appeler la somme des J,.

Si A a des valeurs propres, il leur correspond par réduction des H,, & une dimension,
supp (do,,) est un point, Z, est une réunion de droites et d’une partie discréte réunion
des supp (do,,).

Soit S, I’ensemble des fonctions continues A support compact dans supp (dg,)
et soit S la somme directe des S,: S est dense dans H et AS est dans S. C’est aussi
I’ensemble des fonctions continues & support compact dans la réunion =/ des
supp (de,). Soit « une topologie localement convexe sur S plus fine que la topologie
préhilbertienne, et telles que les formes linéaires g,:h— k(&) soient continues pour
tout & dans =’, (donc presque partout dans =), 4 étant continue a support compact
dans Z’,. Par exemple, on peut prendre pour S, la somme directe des .S, munis de la
topologie de la convergence uniforme sur supp(dg,), du fait que dg, est bornée.
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Soient alors @, Pg, S; comme au n° 2. On suppose que A est dans @,,. Les formes

antilinéaires p,:h— k(&) sont dans Sy pour presque tout £€Z,. Dorénavant, nous
noterons d¢ pour do (). Pour toute paire x, y dans S on aura, en posant Ag=A | S

THEOREME 6.1. {x, y>p=[{%,p> {pe y> d& et (*Aspy x) ={p, Asx)=
2 (E){pe x) ot *Agp:=a (&) pe, a (&) étant réelle, et d'ailleurs continue sur E',; si Y
est dans °S7,

Wy =tim [ Gxpe> ey
xiw
ol x—snlj signifie que { est limite faible d’éléments x de S dans *S7, et si Sy est semi-
réflexif on a méme

Y, y> =lim | <{x, ps» {pe, y) di

X

uniformément en y sur tout ensemble borné de Sy, x —\ signifiant que  est limite
forte d’élément x de S dans °Sry.

Les deux derniéres identités sont des conséquences immédiates de 4.1.

Convenons maintenant de dire qu’une application linéaire F continue de S, dans
*St faible a un noyau généralisé faible (resp. fort) si F est, comme élément de
(S7®,%S7)’, limite faible (resp. forte) d’applications f qui ont un noyau <{&|f| )
de carré sommable (de Hilbert-Schmidt) pour la mesure produit d¢ dn sur 2, x =,
c’est-a-dire

Fryyy = f Cx, pe> <€V f Ind <oy ¥ dE di

avec

f KELf Ind1? de dny <o

L’énoncé 6.2 n’est autre qu’une transposition de 5.1 et 5.2 en termes de noyaux.

THEOREME 6.2. a) Une application continue F de Sy dans S’y faible, en particulier
application définie par un (w | S) ou la restriction a S d’un opérateur continu de H,
en identifiant H a un sous-espace de Sy, a toujours un noyau faible, et F est méme
limite faible d’applications de rang fini

fix—> Z(gi ® ahi) (x) = Z X, hiDpy &
avec h;, g, dans S, dont le noyau est

Clf > =3 {pe iy <81 Py
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d’ou

(Fx, y) = lim f %, pe> <ELT n> <oy ¥ dE di.
5F

b) Les mémes applications F ont un noyau généralisé fort si S;®;°Sr satisfait aux
conditions de 5.2 ou 5.3. On a alors une identité analogue

CFx, yy =1lim | <x, p> <&|f 0> <py y> d dn.

S-F

Par 6.2 a), ’application identique / | S a un noyau faible. On peut le représenter
de maniére évidente par une série faiblement convergente Y ;{p., g:> <& Dy, S€rie que
nous noterons J (&, n)={¢& ] 7>, ou les g; forment un systéme orthonormé complet
de S.

Soit v, une fonction mesurable pour dp et localement bornée en mesure sur = .
Soit V' I'opérateur de multiplication défini par v,. Son domaine contient S, et si la
restriction V' l S est continue de S dans °S7 faible, elle a toujours un noyau faiblement
convergent qu’on peut représenter d’ailleurs par les deux séries v:6 (¢, ) et v,6 (£, 1),
on peut donc écrire v,0 (¢, n) =v,0 (&, ).

En effet, soit

CClnln> =2, <pe> 8> 8o P>

On a, pour x, y< S, et si W désigne I’opérateur sur S défini par la multiplication par o,

im | (x, p)> v:<El fIn) <p,|¥> A& dy

N-ow

= Vx, py =<x, Wy) = lim | {x, pe> <&l fy|m> v,<py | ¥> dE dn.

N- oo

Remarque 6.3. Si St est nucléaire alors I'injection continue i: S — H est nucléaire
(car i est bornée et H complet) donc la composée de i avec une application continue
est nucléaire, en particulier I’application composée

Sr5>HLHB S,

est nucléaire pour tout opérateur continu de H [4, § 2, chap. II].

Remarque 6.4. Au lieu de partir, comme nous ’avons fait, d’un seul opérateur
autoadjoint, on pourrait se donner une famille d’opérateurs X autoadjoints qui soient
des fonctions Uy (4) d’un opérateur 4 autoadjoint, dont on définit les vecteurs propres
généralisés comme précédemment. Supposant encore que chaque X est représenté par



Représentations d’applications linéaires par des noyaux généralisés 435

un opérateur de multiplication par une fonction X,, dé — mesurable sur Z,, si la
restriction X l S se prolonge en une application continue de S; dans %St faible, celle-ci
a un noyau généralisé au moins faiblement convergent dans (S;®;°Sy)’, méme si S
n’est par tout entier dans le domaine de X, mais ce noyau n’est pas nécessairement
représenté par une série de la forme X, 6 (¢, n).

Autre variante: on pourrait se donner directement un espace localement compact
E, un espace H=I2? associé & une mesure positive de Radon sur E, notée encore d¢,
une famille d’opérateurs autoadjoints B de H représentés comme opérateurs de
multiplication par des fonctions continues B,, opérateurs qu’on supposerait appartenir
a @, (n° 1), S devenant le sous-espace de H des fonctions continues & support compact.
Les fonctions propres (généralisées) simultanées des opérateurs B se définissent de
maniére évidente. Si X est un opérateur de multiplication par une fonction dé-
mesurable, dont la restriction a S se prolonge en une application continue de S, dans
“St, celle-ci a au moins un noyau faible, mais pas nécessairement représentable par
les séries précédentes.
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