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Riemann-Roch-Transformationen und Kobordismen

URS WURGLER

1. Einleitung

Ist @:h* — k* eine natiirliche stabile Transformation zwischen multiplikativen
Kohomologiefunktoren und sind M, N kompakte differenzierbare A*- und k*-
orientierte Mannigfaltigkeiten, f: M — N eine stetige Abbildung, so ist im allgemeinen
das Diagramm

k* (M) L, k* (N)
o1 o1 (1.1)
h* (M)-L5 h* (N)

nicht kommutativ. Mit f; bezeichnen wir dabei den Umkehrhomomorphismus, vgl.
[2], [3] fiir ausfiihrliche Diskussionen bzw. Abschnitt 3 der vorliegenden Arbeit. Fiir
alle xeh* (M) gilt aber

LHO(x)=0O[f (x)] (1.2)
wobei
O(x) = 9100 (x) (1.3)

gesetzt wurde und wir mit ¢ den Thomisomorphismus des (stabilen) Normalen-
biindels von M bzw. N bezeichnen.

Die Relation (1.2) ist ein formaler Ausdruck fiir verschiedene Sdtze vom Typus
Riemann-Roch-Grothendieck und stammt von E. Dyer [3]. Ist ® multiplikativ, so
ldsst sich (1.2) in der Form

fil@(x)vO(1y)] = fi[6(x)]vO(ly) (1.4)

schreiben.

Setzt man A (M)=h* (M), h{ (f)=f, so besagt (1.4), das @ eine natiirliche Trans-
formation von A} nach k" iiber der Kategorie der A*- und k*-orientierten Mannig-
faltigkeiten ist. Eine natiirliche Transformation

e:hf - ki

nennen wir eine Riemann-Roch-Transformation, man vgl. (4.1) fiir eine prézise
Definition.
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In der vorliegenden Note untersuchen wir den Zusammenhang zwischen Riemann-
Roch-Transformationen und stabilen Kohomologieoperationen. In Satz 4.1.1. stellen
wir fest, dass die durch (1.3) definierte Abbildung die jeder stabilen Kohomologie-
operation eine Riemann-Roch-Transformation zuordnet, im Falle von G-orientierten
Kohomologiefunktoren (G=0, U, Sp) bijektiv ist. Als Folgerungen ergeben sich
insbesondere ein Zusammenhang zwischen Riemann-Roch-Transformationen vom
Typ MGy — hf und stabilen charakteristischen Klassen fiir G-Biindel mit Werten in
h* (4.2.3.) und mit 4.2.4. eine Charakterisierung des differenzierbaren Riemann-Roch-
Satzen von Atiyah-Hirzebruch fiir schwach-fastkomplexe Mannigfaltigkeiten. In
4.2.2. geben wir eine Charakterisierung des Funktors MG, durch eine universelle
Eigenschaft.

Ich mochte an dieser Stelle Herrn Professor A. Dold meinen herzlichsten Dank
aussprechen. Er hat das Manuskript gelesen und durch seine freundliche Kritik
wesentlich zu dessen Verbesserung beigetragen.

2. Vorbereitungen

2.1. Mit W bezeichnen wir die stabile Kategorie der endlichen CW-Komplexe.
Die Objekte von W sind Paare (X, n) wobei X ein endlicher CW-Komplex mit
Basispunkt ist und n eine ganze Zahl. Die Morphismen sind die Mengen Mory X
(X, n), (Y, m))={S"*"X, ST*™Y}, r ist dabei eine ganze Zahl mit r +n>0, r+m>0.
Es ist klar, dass diese Definition unabhédngig von r ist. Objekte aus W werden wir in
der Form (X, n)=S"X schreiben. Grob geschrochen handelt es sich bei den Objekten
von W um endliche CW-Komplexe und deren formale Desuspensionen.

Spanier-Whitehead-Dualitdt erméglicht die Konstruktion eines kontravarianten
Funktors D:W — W, der ein Antiautomorphismus und eine Involution auf W ist.
Es gilt also

1) D*(8"X) = S"X

2) Mory (S"X, S"Y) = Mory (DS™Y, DS"X)
D ist wie folgt gegeben: Ist X =(X, 0) ein CW-Komplex, so wihlen wir eine geniigend
grosse natiirliche Zahl N derart, dass das Spanier-Whitehead-Dual von X, DyX,
existiert. Wir definieren DX =S""D,X was uns wegen der Beziehung D, X=SD,X

ein eindeutig bestimmtes, von N unabhingiges Objekt aus W gibt. Ist S"X ein be-
liebiges Objekt aus W, so setzen wir D (S'X)=S""DX.

2.2. Im Verlaufe der ganzen Arbeit verstehen wir unter G eine der stabilen Gruppen
O, U, oder Sp und unter F einen der Kérper R, C oder H. d sei 1, 2 oder 4, je nach
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Wahl der Gruppe G. Mit G, (F) bezeichnen wir die Grassmannmannigfaltigkeit der
n-Ebenen im F"**. BG(n)=lim G, (F) ist der Kklassifizierende Raum der Gruppe
.__)

G (n). y, bzw. y,, seien die universellen Biindel iiber BG (n) bzw. G, (F). Ein Vektor-
biindel iiber einem CW-Komplex X denken wir uns stets durch seine klassifizierende
Abbildung X — BO gegeben. Eine G (n)-Struktur auf einem Vektorbiindel ¢ ist eine
Aquivalenzklasse von Liftungen

BG(n)
55,/ lf,.
/
X —%5BO(dn)

Zwei Liftungen g und g’ heissen dabei dquivalent, wenn eine Homotopie H: X x [ —
BG (n) so existiert, dass fiir alle (x, t)e X x I gilt:

JnoH(x,t) =&(x).

Unter einer G-Mannigfaltigkeit M verstehen wir eine kompakte glatte Mannigfaltig-
keit (mit oder ohne Rand) zusammen mit einer G-Struktur g,, auf dem stabilen
Normalenbiindel pu,, von M. Fiir Details verweisen wir auf [4].

Den Thomraum eines Vektorbiindels & bezeichnen wir mit 7°(¢). Fir T'(y,)
schreiben wir MG, (k), fiir T(y,) wie iiblich MG (k).

2.3. Unter einem Kohomologiefunktor verstehen wir stets eine iiber der Kategorie
der endlichen CW-Paare definierte, multiplikative Kohomologietheorie #* ={h"},. 5.
Mit h* bezeichnen wir die reduzierte Theorie iiber der Kategorie der endlichen CW-
Komplexe mit Basispunkt. X:4'(X)—h'*!(SX) bedeute stets den Suspensionsiso-
morphismus. Ist #* ein Kohomologiefunktor, so verstehen wir unter einer kanonischen
Thomklasse fiir G-Biindel beziiglich 4* eine Folge U={U,, neZ} von Kohomologie-
klassen, so dass gilt:

1) U,eh? (MG (n)) ist eine Orientierungsklasse von y, fiir alle 7.

2) Bezeichnet i: BG(n)— BG (n+1) die Inklusion, so gilt fiir alle neN: i*U, =

>,
Besitzt A* eine kanonische Thomklasse U fiir G-Bilindel, so nennen wir das Paar
(h*, U) eine G-Theorie.

Ist A* eine G-Theorie, so besitzt jedes G(n)-Biindel £ eine durch T'(g,):T(¢)—
— MG (n) induzierte Thomklasse und A* hat einen iiber der Kategorie der G-Biindel
funktoriellen Thomisomorphismus ¢,: #* (X) —h* (T (&)). Als Beispiel einer G-Theorie
erwdhnen wir die G-Kobordismustheorie MG*. Ist (X, 4) ein endliches CW-Paar,
so ist MG" (X, A) gegeben durch [S*~"X/4, MG (k)] fiir k gross genug. MG* besitzt
die durch U={U,}, U,=[idyc @u)]€ MG*" (MG (n)) erklirte kanonische Thomklasse.
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Jeder reduzierte Kohomologiefunktor A* ldsst sich auf die stabile Kategorie W
fortsetzen: Ist S"X ein Objekt aus W so setzt man einfach A* (S"X)=h*""(X).

2.4. Sind A* und k* Kohomologiefunktoren so bezeichnen wir mit Hom* (4, k)=
{Hom'(h, k)};.z die Z-graduierte abelsche Gruppe der natiirlichen stabilen Trans-
formationen @ :h* —k* vom Grad i. Mit Cg (h)={C{ (h)};., bezeichnen wir weiter
die graduierte abelsche Gruppe der stabilen charakteristischen Klassen fiir G-Biindel
mit Werten in #*. Ein Element we C§ (k) ist also eine Funktion, die jedem G-Biindel &
iiber X ein Element w(¢)eh’(X) zuordnet, natiirlich beziiglich G-Biindelabbildungen
ist und zudem die Eigenschaft w(é@1)=w(&) fiir alle ¢ aufweist.

3. Der Umkehrhomomorphismus

3.1. Ist M eine glatte kompakte Mannigfaltigkeit mit Rand 0 M so bezeichnen wir
mit G,, die Menge aller méglicher G-Strukturen auf M, d.h. die Menge der G-Struk-
turen des (stabilen) Normalenbiindels von M.

Fiir jede der stabile Gruppen G =0, U, Sp definieren wir eine Kategorie B; wie
folgt:

Die Objekte von By sind die Tripel <M, r, g,,» wobei M eine kompakte glatte
Mannigfaltigkeit mit Rand, r eine ganze Zahl und g,€G,, eine G-Struktur von
M bezeichnen. Die Morphismen in Bg erkliren wir durch Morg, (KM, r, gy,
(N, s, gy>)=Mory, (S"(M/0M), S* (NJON)) x (g, &x), Wobei (gy, gv) € Gy X Gy. Die
Komposition der Morphismen ist evident. F: B;— W sei der durch F({M, r, gy>)=
S"(M[OM), F(fx (g, &v)) =/ gegebene kovariante Funktor. Die Komposition
Do F:B; —» W von F mit dem Spanier-Whitehead-Dualitdtsfunktor D bezeichnen wir
mit D’. Es ist

D' ({M, r, g>) = D(S'M/3M) = S™"D (M/oM).

Ist u ein a-dimensionales Normalenbiindel von M, so sind die Rdume T'(u) und
M|oM dual in S™***! m=dimM. D.h. D(M/OM)=S~™***DT(u) oder also
D'({M, 1, gy)) =S~ "4 TOT ().

3.2. Jeder G-Theorie (h*, U) ordnen wir einen kovarianten Funktor
h{:B; — Ab*

wie folgt zu: Ist (M, r, g, ein Objekt aus B, so setzen wir iy ((M, r, gp>) =h*(M);
ist f:{M,r,gy>—><{N,s,gy> ein Morphismus aus Bg so erkliren wir A} (f)=f):
thy ({M, r, gy >) = B¥ ((N, s, gy)) folgendermassen: Ist u ein Normalenbiindel von
M mit G-Struktur g,,, v ein Normalenbiindel von N mit G-Struktur gy so ist f, durch
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das Diagramm

W (KM, 7, gp)) —Ls EHOTMAETD (N s g0 3)
i I

hq\M) hq—r-—m+s+n(N)
oul oy 1T
h‘q+a(T('u)) ﬁq—r—m+s+n+b(T(v))

I |
ﬁq—r—m(s—r—m—-aT (u)) (D' f)* h"q—r—m(s-s—n—bT (V))

gegeben.

Die Unabhingigkeit dieser Definition von einer speziellen Wahl der Normalen-
biindel pu, v verifiziert man leicht, ebenso die Funktoreigenschaften von A; .

Wir nennen 4 den zur G-Theorie (h*, U) gehorigen Gysinfunktor iiber der
Kategorie Bg.

Bemerkung. Es ist bekannt (vgl. etwa [4]), dass sich bei darstellbaren Kohomologie-
funktoren A* Orientierungsklassen des Normalenbiindels einer differenzierbaren
Mannigfaltigkeit und Fundamentalklassen dieser Mannigfaltigkeit vermoge des
Slantproduktes wechselseitig entsprechen. Ist U eine Orientierungsklasse und [ M, dM |
die zugehorige Fundamentalklasse, so hat man das folgende kommutative Diagramm:

R (T ()
0/ o
) — 2, (M, M)

P bezeichnet dabei den Poincaré-Lefschetz-Dualitdtsisomorphismus, D Spanier-
Whiteheaddualitit und r die Dimension von u. Aus dieser Beziehung und der Kom-
mutativitit von

Hq+r(T (Il)) (DSf)* Hq+r(T (v))
Dl Dl
B g (M, 0M) —L— h,,_ (N, 6N)
folgert man leicht, dass sichfiir einen Morphismus f: { M, g, — {N, gy) fiinder Form

fi="Py" o fuoPy

schreiben lidsst. In diesem Falle handelt es sich bei f, also um den ,,gewohnlichen*
Umkehrhomomorphismus.

3.3. Sind {M, r, g30>, {N, s, gy» zwei Objekte aus Bg, so definieren wir ihr Produkt
in Bg durch (M, r, gy XN, s, gx> ={M X N, r+5, gyrxn» WObei gy «y die Produkt
G-Struktur bezeichnet.
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Ist (h*, U) eine G-Theorie, so induziert die Kohomologiemultiplikation
h*XQ@h*Y — h* (X™*Y) offensichtlich ein Produkt

m:hy (KM, 1, gy)) ® B ({N, s, gwd) > BT/ (KM x N, 7+ 5, garund)

auf dem Funktor A",

Weil in der stabilen Kategorie W die Beziehung D(X)A D(Y)=D(X A Y) gilt und
weil der Thomisomorphismus einer G-Theorie (A*, U) multiplikativ ist (im Falle
G=0 folgt dies aus der Bemerkung, dass jede O-Theorie strikt-kommutativ ist),
d.h. fiir G-Biindel &, n gilt: @, (x X y) =@:(x) x ¢, (»), folgt leicht, dass fir G=0, U
Sp die Relation

(fxghm(x®y)=m[fi(x)®g(y)]
gilt, d.h. das Produkt m ist natiirlich.

4. Riemann-Roch-Transformationen

4.1. DEFINITION. Es seien A* und k* zwei G-Theorien. Eine nattirliche Trans-
formation

o:hf - ki

tiber der Kategorie B; nennen wir eine Riemann-Roch-Transformation.

Es ist klar, dass die Komposition zweier Riemann-Roch-Transformationen wieder
eine Riemann-Roch-Transformation ist. Die abelsche Gruppe (beziiglich der iiblichen
Addition) der Riemann-Roch-Transformationen von A* nach k* vom Grade i be-
zeichnen wir mit Homj_ (hy, k,), Homg_ (h,, k) steht fiir die Z-graduierte abelsche
Gruppe {Hom’(h,, k,)};cz. Es sei @:h* —>k* eine stabile Kohomologieoperation
zwischen den beiden G-Theorien (h*, U) und (k*, V), fi<{M, r, gy> = (N, s, gy €in
Morphismus aus Bg. Sind g und v G-Normalenbiindel von M bzw. N so definieren
wir fiir alle xeh! ({M, r, gy>) =h*(M):

0 (x) =0, '09,(x).

Man sieht sofort, dass der Homomorphismus @ : 4 (M, r, gp>) = ki (M, 1, 83>)
wegen der Stabilitit von @ unabhingig von p ist. Eine einfache Rechnung zeigt,
dass das Diagramm

h* (<Ms r, gM>)——9——>k* (<M’ r, gM>)
f!l f:l
h* (<Ns S, gN>) _g_)k* (<N’ S, gN>)

kommutativ ist, d.h. die Zuordnung @ — @ definiert einen Homomorphismus

¥: Hom™* (h, k) » Hom™ (h,, k,)
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vom Grade 0.
m:h{ @k} — h* bezeichne die in 3.3. definierte Produktabbildung.

DEFINITION. Eine Riemann-Roch-Transformation ¢:Af — k| iiber der Kate-
gorie B heisst multiplikativ, wenn fiir alle xehf ({(M, r, gy)), yehy (KN, s, gy») gilt:

e[m(x®y)]=mle(x)®ec(»)].

Mann sieht leicht ein, dass die einer multiplikativen Kohomologieoperation @ : A* — k*
vermdge der Abbildung ¥ zugeordnete Riemann-Roch-Transformation ® multipli-
kativ ist, @ ldsst sich iiberdies in der Form

O(x) =6 (x)UO(1,)

darstellen, dabei ist xeh ((M, r, g\y) (vgl. [2]).

Der nachfolgende Satz gibt insbesondere eine positive Antwort auf die Frage, ob
jede Riemann-Roch-Transformation ¢: Ay — k;* zwischen Gysinfunktoren iiber B, von
der Form @ =¥ (0) ist, wobei @ e Homy, (4, k).

SATZ 4.1.1. Es seien (h*, U) und (k*, V) zwei G-Theorien. Dann ist der durch
O — O gegebene Homomorphismus

¥: Homgy, (h, k) - Homg_ (hy, k,)

ein Isomorphismus graduierter abelscher Gruppen vom Grad 0. ¥ bildet die Menge der
multiplikativen stabilen Kohomologieoperationen auf die Menge der multiplikativen
Riemann-Roch-Transformationen ab.

Beweis. Es bezeichne T:B; — W den (kontravarianten) Funktor, der jedem Objekt
{M, r, gy> aus B; den Thomraum des stabilen Normalenbiindels von M zuordnet.
F:B;— W sei der Vergissfunktor, der ein Objekt <M, r, g;,> aus B; in den stabilen
CW-Komplex S"XeOb(W) tberfiihrt, X =M/0M. Der Funktor F ist voll und treu,
weil zudem jedes Objekt S"X von W W-isomorph zu einem Objekt der Form
F({m,r, gp>) ist (man bette einen zu X homotopiedquivalenten kompakten Simpli-
zialkomplex X’ simplizial in einen geeigneten F” ein und betrachte anschliessend eine
»regular neighbourhood* von X') stellt F eine Kategorieendquivalenz dar. Ist
D:W - W die durch Spanier-Whitehead-Dualitdt gegebene Antfidquivalenz, so ist
das Diagramm

B, —— W

/
T D
W

aufgrund des S-Dualitdtssatzes von Atiyah [1] kommutativ. Daraus resultiert, dass
auch T eine Antifiquivalenz ist. Sind nun A*, k*:W — Ab* zwei Kohomologie-
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funktoren so folgt aus der Antiiquivalenz von T die Existenz einer Bijektion
Homyy, (h, k) ¥ Homg_ (ho T, ko T). 1)

Ist ¢, ein Gysinfunktor iiber B, so ist das Diagramm

t;k (<M’ r, gM>)—:_')i* oT (<M’ ry gM>)
Il v LD-Ep)y* ()
t;k (<N’ S, gN>) Ti*oT(<N, S, gN>)

definitionsgemdss fiir alle Morphismen f aus B; kommutativ, d.h. der kanonische
Thomisomorphismus der G-Theorie t* definiert eine natiirliche Aequivalenz

QD:t;th*oT (3)

liber der Kategorie By.

Sind nun A* und k* zwei G-Theorien, so folgt die Satzaussage sofort durch
Kombination von (1) und (3). Der Zusatz, dass ¥ multiplikative Transformationen
in multiplikative tiberfiihrt, ist evident.

Bekanntlich ldsst sich nach Dold - sofern £* rationale Vektorrdume als Koeffi-
zienten besitzt — jeder Homomorphismus: 7*(S°)—k*(S°) eindeutig zu einer
stabilen natiirlichen Transformation ii* — k* fortsetzen. Mit Satz 4.1.1. folgt daraus
unmittelbar:

KOROLLAR 4.1.2. Es seien h* und k* zwei G-Theorien. Sind die Koeffizienten
von k* rationale Vektorrdume, so ldsst sich jeder Homomorphismus

hY (pt) - ki (pt)
eindeutig zu einer Rieman-Roch-Transformation

hi -k
forsetzen.

4.2. In diesem Abschnitt untersuchen wir den der G-Kobordismustheorie zu-
geordneten Gysinfunktor etwas genauer.

Ist #* =MG* und k* eine beliebige G-Theorie, so ist jede Riemann-Roch-Trans-

formation o: MGY -k durch ihre Werte auf den Einselementen 1,,e MG° (M), M
eine kompakte G-Mannigfaltigkeit, vollstindig bestimmt:

LEMMA4.1.1. Es sei h* eine G-Theorie, M™ eine kompakte G-Mannigfaltigkeit und
eeHom* (MG,, h,). Ist xe MG* (M) und wird das Poincarédual z=P (x)e MG,,_;(M)
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durch die singulire Mannigfaltigkeit f:N™ ' — M™ repriisentiert, so gilt

e(x) = fie (cy1)

Dabei bezeichnet cy: N — pt die triviale Abbildung von N auf den Punkt.

Beweis. N™ =N ist eine kompakte G-Mannigfaltigkeit ohne Rand, der Poin-
caréisomorphismus Py: MG*(N)— MG, (N) ist gegeben durch Py(u)=un[N] und
die Fundamentalklasse [ N]e MG,,_;(N) von N lésst sich durch idy: N — N reprisen-
tieren. ze MG,,_;(M) lisst sich demnach in der Form z=f, ([ N]) darstellen und es
gilt

e(x) =[Py’ (2)]
= o[Py' (f«[N])]
= 0[Py lf*PN(lN)]
=olf (C;I)]
= fi0 ("';1)-

Bemerkung. Setzt man MG*=MU* =k* und bezeichnet s,: MU* > MU* eine
Landweber-Novikovoperation, so liefert Lemma 4.1.1. angewandt auf die Riemann-
Roch-Transformation s, einen Satz von Novikov, vgl. [1] Thm. 8.3. Man hat dabei
zu beriicksichtigen, dass s,(cyl) im Falle M =pt gerade gleich der Conner-Floyd-
Chernklasse des stabilen Normalenbiindels von N ist.

Lemma 4.1.1. erméglicht eine einfache Charakterisierung des Gysinfunktors MG
tiber der Kategorie B; durch folgende universelle Eigenschaft:

SATZ 4.2.2. Zu jedem Gysinfunktor hf iiber der Kategorie B existiert genau eine
Riemann-Roch-Transformation

1, MG} - hf
derart, dass fiir alle kompakten G-Mannigfaltigkeiten M gilt:
(enl) = en(1).

Beweis. Mit Lemma 4.2.1. schliesst man sofort, dass fiir alle 4 hdchstens ein
solches 7 existieren kann. Um die Existenz nachweisen, betrachten wir den fiir jede
G-Theorie (h*, V) erklirten Orientierungshomomorphismus u: MG* — h*, der wie
folgt definiert ist: Wird xe MG'(X, A)=[S*"'X/A, MG (k)] durch f:S* 'X/4—
— MG (k) reprisentiert, und ist ¥V'={V,} eine kanonische Thomklasse von A*,
V,eh®™ (MG (k)), so gilt: u(x)=Z""%f*(¥;). Der Definition von p entnimmt man
sofort, dass das Diagramm

MG*(T (£))——h*(T (£))

o:l Toe
M *(X) — h*(X)
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fiir jedes G-Biindel ¢ kommutiert und daraus folgt unmittelbar, dass die Riemann-
Roch-Transformation p die geforderten Eigenschaften besitzt.

Nach Landweber ([5], Thm. 3.1. und seinen an den Beweis anschliessenden Be-
merkungen) ist die durch @+ ¢@; '@¢,(1) gegebene Abbildung ¢:Hom* (MG, h) -
— Cg(h) ein Isomorphismus. Mittels Satz 4.1.1. folgt daraus leicht

SATZ 4.2.3. (h*, U) sei eine G-Theorie. Zu jeder stabilen charakteristischen Klasse
weCyg (h) gibt es genau eine Riemann-Roch-Transformation

0,: MG} — h{
derart, dass fiir alle geschlossenen G-Mannigfaltigkeiten (M, g,,>€O0b(By) gilt

2w (eal) = w ()

wobei vy, das stabile Normalenbiindel von M bezeichnet.

Bemerkung. Jede stabile Operation @:h* —k* zwischen G-Theorien definiert
vermoge &—¢; 'OU, eindeutig ein Element weCg (k) mit @ (cyl)=w(vy). Mit
4.1.4.,4.2.2. und 4.2.3. folgert man leicht, dass zu jedem ge Hom* (A, k,) ein eindeutig
bestimmtes Element e Hom* (MG, k,) so existiert, dass das Diagramm

W &
AN /
mN, e
M G§"
kommutiert.

Wir geben zum Schluss noch eine Charakterisierung des differenzierbaren
Riemann-Roch-Satzes von Atiyah-Hirzebruch fiir schwach fastkomplexe Mannig-
faltigkeiten.

Wir betrachten die Z,-graduierten Kohomologiefunktoren KU* =KU°@KU !,
MU* =MU*@MU** und H* (,Q)=H*(,Q)@®H*(,Q); dabei setzen wir
MUX =Y., MU*X, MU*¥X =Y., MU***'X und analog fiir H® und H**,
Der komplexen K-Theorie geben wir die durch([¢]—1)eK® (CP,) bestimmte kano-
nische Orientierung, ¢ bezeichnet hier das kanonische Linienbiindel iiber CP,.
ch:KU* - H* ( , Q) sei der Cherncharakter, tde Cy (H" ) bezeichne die Toddklasse.

SATZ 4.2.4. Es gibt genau eine multiplikative Riemann-Roch-Transformation
QiKUx# "’Hr#( , Q)

derart, dass fiir alle natiirlichen Zahlen n gilt: ¢ (1¢p,) =td(CP,). @ ist identisch mit der '
dem Cherncharakter ch assoziierten Riemann-Roch-Transformation ch.
Bemerkung. Die Tatsache, dass ch eine Riemann-Roch-Transformation ist, besagt
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wegen ch(x)=ch(x)uch(l,,) und aufgrund der Beziehung ch(1,,) =td(z))=td (M),
dass fiir jede stetige Abbildung f: M — N zwischen schwach fastkomplexen Mannig-
faltigkeiten und fiir alle xe KU* (M) gilt

fileh(x) v td(y)] = ch[fi(x)] L td (zy).

Dies ist gerade die Aussage des differenzierbaren Riemann-Roch-Satzes.

Beweis. Es ist klar, dass der Orientierungshomomorphismus u: MU* - KU* ver-
moge der Bottperiodizitit eine multiplikative Kohomologieoperation MU * — KU *
liefert, die wir mit demselben Symbol bezeichnen. Nach [6] Thm. 10.1. ist u: MU” —
— KU* epimorph. Daraus folgt, dass auch 7, =p epimorph ist. Sei nun ¢:K; —
— H? ( , Q) eine Riemann-Roch-Transformation mit ¢ (l¢p, ) =td(CP,), neN. Jede
Riemann-Roch-Transformation nach H” ( , Q) ist nach Korollar 4.1.2. vollstindig
bestimmt durch ihre Restriktion auf die Koeffizienten. Man hat ein kommutatives
Diagramm

K/ (pt) : > HY (pt, Q)
NN /)
N S
MU/ (pt) ®Q/
3% T®1 eTK
MU} (pt)

Weil MU*(pt)®Q der durch die Kobordismusklassen der komplexen projektiven
Ridume erzeugte rationale Polynomring ist, ist gotx durch die Werte gotx(1cp,)
eindeutig bestimmt (vgl. 4.2.1.). Weil 74 epimorph ist folgt das Resultat mit den be-
bekannten Eigenschaften des Cherncharakters.
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