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Note on Direct Décompositions of Torsion-free Abelian Groups

L. Fuchs (New Orléans)

Ail the groups of this note are torsion-free abelian groups under addition.
Jônsson [5] was the first to point out that torsion-free groups of finite rank may

hâve non-isomorphic direct décompositions into (directly) indécomposable groups.
He discovered a few pathological phenomena, and using his techniques, Corner [1]
furnished examples, both in the finite and in the countable rank cases, with a sur-
prising flexibility even in the choice of the ranks of the indécomposable summands.

For groups of countable rank, Corner [1] proved that the same group can hâve two,
basically différent direct décompositions : one with just two indécomposable summands
and one with infinitely many components. It is not difficult to find more pathological
décompositions (see e.g. Fuchs and Loonstra [4]). Unfortunately, no complète

survey is known of the variety of direct décompositions a torsion-free group might
hâve.

The aim of this note is to point out that a countable group can hâve continuously
many, pairwise non-isomorphic, indécomposable summands. Moreover, we are going
to prove the following two, more gênerai theorems :

THEOREM 1. For every infinité cardinal m less than thefirst strongly inaccessible

aleph, there exists a torsion-free group A ofrank m such that A has direct décompositions

A Bj® Cj with Bj s Cj

and withj ranging over an index set J of cardinality \J\ =2m where the Bj are pairwise
non-isomorphic and indécomposable.

THEOREM 2. For every m as in Theorem 1 there is a torsion-free group A ofrank
m such that

A Bj®Cj (jeJ)
holds for an index set J of cardinality 2m where ail the Bj are indécomposable and

isomorphic among themselves, while the Cj are indécomposable and pairwise non-

isomorphic.
Recall that an infinité cardinal m*>X0 is said to be strongly inaccessible if

(a) Zfeittti<îrt* whenever m^rrt* for each iel and the index set / is of cardinality
<m*; (b) 2n<m* for cardinals n<m*. It is known (this follows from the
combination of the method of Fuchs [3] with a set-theoretical resuit by Corner [2])
that for every cardinal m, less than the first strongly inaccessible cardinal, there is a
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(so-called rigid) System {Xt}iBi of torsion-free groups Xt with the following properties :

(i) l^| m;
(ii) |/|=2m;
(iii) Hom (Xi9 Xk) sZ integers) or 0 according as i—k or /^ k.

Notice that then ail the Xt are indécomposable.
Proof of Theorem 1. For the sake of convenience we shall dénote by {Xu Yt}iBl a

System of groups with properties (i), (iii) and |/| =m; we assume 0e/. Let {Xri9 Y{}ieI
be another copy of the same system and xt-*xfi9 yf^y'i fixed isomorphisms between

X( and X[9 Yt and Y{. Let p, q and r be différent odd primes. In view of (iii), we can
sélect xtsXi9 ytéYt for ail iel such that xt is not divisible in Xt by p and r, and jt- is

not divisible in Yt by ^ and r. Then the corresponding x'teXl and jje Y/ will hâve the
same properties. Writing

X= ®Xt and 7=0 Yt,
iel iel

and similarly X' ®X;, Y' ® y/, we define

for ail i#0
r"1^ + jpf) for ail îe/>

and

C <rer,p-1(4 + ^)^"1(jo+j0 forall iV
^"H^ + ^O fora11

It is then obvious that B^C.
Now jB is indécomposable. For, if B=G®H then the full invariance of the sub-

groupsXjand Yt in Bimplies that Xi=(XinG)®(XinH) and yi (y,nG)©(îin^),
so by indecomposability, each of Xf, 7f must be contained entirely either in G or in H.
Arguing with the additional generators of B, standard techniques (see e.g. [3]) show
that ail of Xt and Yt hâve to belong to the same component of B. This proves that B
(and hence C) is indécomposable.

We define A B®C, and D as the divisible hull of A; then \A\ =m. We wish to
change B and C in order to get other décompositions for A. For each iel, choose an
integer kt (to be specified later), and consider the following subgroups of A (recall
that xt -* x'h yt -* y\ are fixed maps) :

| + **{ |*6 7,}. J ^
Then jc4 —^fc|JC|+jcJ,>^i->fc|yf + (Arf — 1)y'hyi-+yi+kiy'i are isomorphisms. Let U, U',
F, V hâve the obvious meaning, and

ût xh û'i^kiXi + xl, vt k#t + (k? -
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We consider the foliowing subgroups ofD :

B* <JJ®V,p-l(ûQ + ûi\q-1(vQ + vl) for ail i#0;
vi) for ail ie/>

and

C* (U'®V',p-1(û'0 + ù'i),q-1(v'0 + v'i) forall i#0;
r'^ûi + kfi'i) forall ie/>.

From the définition it is readily seen that B* s C*. Notice that if the fcf are chosen so
as to satisfy

fcf fc0 (mod pq) \
fc? l (modr) J w

for ail iel, then in ,4

û'o + «/ &o (*o + xt) + (fc, - k0) xt + (x0 + x\)

is divisible by/?,

«o + »i ^o (j\> + A) + (fei - fco) 9i + (*o - 1) (#> + j?J) + (fc? - kl) y\,
% + vt (j?0 + yt) + fc0 (j?i + y't) + (fc, - fc0) y't

are divisible by g, while

û. + fcA (*. + j;.) + (fc? - 1) y. + fc. (fc? _ 1) #,
û/ + fc^' fc, (x, + ^.) + (xi + j?;) + (fc? - 1) y\

are divisible by r. In other words, B* and C* are subgroups of A; they are obviously
disjoint. From (1) it is évident that ail of Xi9 X(, Yt and 7/ are contained in B*®C*,
and it is straightforward to check that ail the other generators of J? and C also belong
to J5*©C*. Consequently, A B*®C*. Since no k{ can be divisible by r, the inde-
composability ofB* can be established in the same way as was done above for B.

Now let / be an integer such that

/ s 1 (mod pq) and / - 1 (mod r).

We fix ko 1 and, for each i'#0, we let either fcf 1 or kt L Such a choice will satisfy
conditions (2), thus for each choice of the fcf(/e/,/#0) we get a décomposition
A B*®C* with indécomposable components B*^C*. Because of |/|=îît, there
are 2m différent ways of selecting {fcj. Therefore the proof will be completed if we can
verify that for a différent choice, say {kf}, the corresponding group B** can not be

isomorphic to B*.
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Suppose (j):B*-+B** is an isomorphism. Owing to (iii), </> must induce on each

Ut and Vt an isomorphism with 17? and Ff(ç5**)5 respectively. In particular, (j) acts

on the selected éléments ûh vteB* and û*9 vfeB** as follows:

wi->±w? and â,-*±t;? for ail i. (3)

As divisibility by integers is preserved by $, p\ ûo+ûi-^± (m* + «?), # | ùo + ^->
± (£* + £?) an<i r | wo + yo^i: (w*±^o) imply that in (3) we must hâve the same

sign throughout, say 0:wt->w?, vt^>vf. Hence we infer cj):ùi+kivi-+ù? +ktvf, thus

r | ûf+ktvf for every iel. Since r | ûf+kfvf and û? is not divisible by r in ^4, we
must hâve kt=kf (mod r) for every /. This is impossible if one of kh kf is equal to 1

and the other is /. Hence différent choices of the kt yield non-isomorphic groups 5*,
in fact. This complètes the proof of Theorem 1.

Proof of Theorem 2. Let {W, Yi}ieI be a System of groups satisfying (i), (iii) and

|/| =m; we may again assume Oe/. Let/? and q be two odd primes such that/?^^>3,
and let weW,yieYi be chosen such that neither q | w in W, nor /?, q | j^ in 7f. Let

be another system with ^ Xf under fîxed isomorphisms yt-^Xi under which

xt. We define ^ B® C where

B <exi,p"1(*o + *i) fora11 **°>>
1 forall î 9fe 0, «"1(>P +j?,) forall îe/>.

iel
Let s and t be integers satisfyingps-qt=l, and set

Ut {(XiXi + Ptfi | yte Yj, Vt {y^ + «5^, | yte Yt}

for ail ze/such that

either af s, /?, f, yf q, ôt p, (4)

where the integers lx and l2 are chosen so as to hâve I2q — 2l1p=s. Thus a^f—^7^= 1

for both cases.

Using the obvious notations w£ afxf +Piyh vt yfxf+<51->5ï-, let us define

B* < © I7f, p"x (w0 + wt) for ail i ^ 0>,
ief

C* <W © © Ff, p1 (t;0 + vt) for ail i ^ 0, ^f"1 (^fVP + vt) for ail ie/>.
iel

Since m0 +^ and v0 +vt are divisible by p in ^4, and since ôiW + Vi qxi+ôi(w+yi) are

divisible by q in >4, it is clçar that B* and C* are subgroups of A. They generate their
direct sum j5*©C* in A. Owing to a^ — fty^l, ail of JQand 7f are contained in
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B*®C*, and so are ail the additional generators of B and C, as readily checked. We
thushave A B*@C* where, obviously, B*^B. The indecomposability of the groups
B, C, C*,... can easily be established.

Since |/| =m, there are 2m différent ways of choosing the coefficients oct, f}l9 y» ôv

as described in (4) and (5). In order to complète the proof of the theorem, it will there-
fore sufiice to prove that différent choices yield non-isomorphic groups C*.

Let C** be defined in terms of a?, ft*, yf, ôf as generated by W® ©fFf,
p^iïo+v?) for ail ï#0 and q"1(ôfw + vf) for ail iel. Any isomorphism 0: C* -> C**
must induce an automorphism on W and isomorphisms V?-+V?* for every iel
which must act on the selected éléments as w-+±w,vl-+±vî. Investigating the

divisibility of vo+Vi-*± (v*±vf) by p, we conclude that the signs of vf must be

the same, say +1, for ail i. From q | ô-w + vt-+ ±ôtw + vf9 q \ ôfw + vf and q"\ w we
obtain that <5f ±<5l-(mod q). In view of (4) and (5) this is impossible unless ôf ôt

for ail L Q.E.D.
It is easy to see that for m Ko, ail the groups Xh Yb W in the construction can be

chosen to be of rank 1, and for an arbitrary nt, to be of rank n where n ^ m ^ 2n.

Using Pontrjagin's duality theory, we conclude that, to every cardinal m less than

thefirst strongly inaccessible aleph, there exists a connected compact group ofcardinality
2m which has 2m non-isomorphic closed summands. Moreover, as a closer examination
of the invariants reveals, we may add that thèse summands are algebraically ail iso-

morphic.
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