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Note on Direct Decompositions of Torsion-free Abelian Groups

L. FucHs (New Orleans)

All the groups of this note are torsion-free abelian groups under addition.

Jonsson [5] was the first to point out that torsion-free groups of finite rank may
have non-isomorphic direct decompositions into (directly) indecomposable groups.
He discovered a few pathological phenomena, and using his techniques, Corner [1]
furnished examples, both in the finite and in the countable rank cases, with a sur-
prising flexibility even in the choice of the ranks of the indecomposable summands.
For groups of countable rank, Corner [1] proved that the same group can have two,
basically different direct decompositions: one with just two indecomposable summands
and one with infinitely many components. It is not difficult to find more pathological
decompositions (see e.g. Fuchs and Loonstra [4]). Unfortunately, no complete
survey is known of the variety of direct decompositions a torsion-free group might
have.

The aim of this note is to point out that a countable group can have continuously
many, pairwise non-isomorphic, indecomposable summands. Moreover, we are going
to prove the following two, more general theorems:

THEOREM 1. For every infinite cardinal m less than the first strongly inaccessible
aleph, there exists a torsion-free group A of rank m such that A has direct decompositions

and with j ranging over an index set J of cardinality |J|=2" where the B; are pairwise
non-isomorphic and indecomposable.

THEOREM 2. For every m as in Theorem 1 there is a torsion-free group A of rank
m such that

A=B;®C; (jeJ)

holds for an index set J of cardinality 2™ where all the B; are indecomposable and
isomorphic among themselves, while the C; are indecomposable and pairwise non-
isomorphic.

Recall that an infinite cardinal m*>¥N, is said to be strongly inaccessible if
(a) Ziel m; <m* whenever m;<m* for each iel and the index set I is of cardinality
<m*; (b) 2"<m* for cardinals n<m*. It is known (this follows from the
combination of the method of Fuchs [3] with a set-theoretical result by Corner [2])
that for every cardinal mt, less than the first strongly inaccessible cardinal, there is a
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(so-called rigid) system {X},.; of torsion-free groups X; with the following properties:
@) [Xi|=m;
@) |1]=2";
(1)) Hom (X;, X;)=Z (=integers) or =0according as i=k or i #k.
Notice that then all the X, are indecomposable.

Proof of Theorem 1. For the sake of convenience we shall denote by {X;, Y;};; a
system of groups with properties (i), (iii) and |I|=m; we assume Oel. Let {X], Y; };;
be another copy of the same system and x;— x}, y; - y; fixed isomorphisms between
X;and X/, Y;and Y;. Let p, g and r be different odd primes. In view of (iii), we can
select X;€X;, y;€Y, for all iel such that %; is not divisible in X, by p and r, and j, is
not divisible in Y; by g and r. Then the corresponding %;€ X; and y;eY; will have the
same properties. Writing

X=@®X, and Y=Y,

iel iel

and similarly X'=@X], Y'=@Y;, we define

B={X®Y,p '(Xo +%),q (o + 7)) forall i#0;

r (%, + ) forall iel)
and

C=LX'@Y,p " (% +%),q ' (Fo+7)) forall i#0;

rrl (%l +7) forall iel).
It is then obvious that B~ C.

Now B is indecomposable. For, if B=G® H then the full invariance of the sub-
groups X; and Y; in Bimplies that X;=(X;nG)®(X;n H)and Y;=(Y;nG)®(Y;n H),
so by indecomposability, each of X;, Y; must be contained entirely either in G or in H.
Arguing with the additional generators of B, standard techniques (see e.g. [3]) show
that all of X; and Y] have to belong to the same component of B. This proves that B
(and hence C) is indecomposable.

We define A=B®C, and D as the divisible hull of 4; then |4|=m. We wish to
change B and C in order to get other decompositions for 4. For each iel, choose an
integer k; (to be specified later), and consider the following subgroups of 4 (recall
that x; — x{, y, - y; are fixed maps):

U=X; Vi={ky+ ki —=1)y|re¥}, } )
U/ = {kix; + x; l x€X;}, Vi={y+ky l y;€eY}.

Then x;— kpx;+xj, ;= kiy;+ (k2 —1) yi, ;= y;+k;y: are isomorphisms. Let U, U’,
V, V' have the obvious meaning, and

=%, @ =k%+x, 0=ky+(ki=-1)p, b =p+k
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We consider the following subgroups of D:

B*=<U®I/’p_1(ﬁ0+ﬁi)9q—1(50+ﬁi) for all i#b;
r (@ + k5;) forall iel)
and
C*=U ®V,p (g + i), q (b + 5, forall i#0;
r (@ + ko;) forall iel).

From the definition it is readily seen that B* =~ C*. Notice that if the k; are chosen so
as to satisfy

k;= ko, (modpq)
k=1 (modr) } 2)

foralliel, thenin A
o + 4 = ko (%o + %) + (k; — ko) % + (%o + %}
is divisible by p,

Do + 0; = ko (Fo + 71) + (ki — ko) 7 + (k§ — 1) (76 + 71) + (kF — k3) 7},
to + U = (Fo + 7i) + ko (Fo + 71) + (ki — ko) J;

are divisible by g, while

t + kdy = (% + 7) + (ki = 1) Ji + ki (ki = 1) 71,
i + kioy = k(% + 7)) + (%1 + 7)) + (ki = 1) Ji

are divisible by 7. In other words, B* and C* are subgroups of A ; they are obviously
disjoint. From (1) it is evident that all of X;, X/, ¥; and Y; are contained in B*@® C*,
and it is straightforward to check that all the other generators of B and C also belong
to B*@® C*. Consequently, A=B*@®C*. Since no k; can be divisible by r, the inde-
composability of B* can be established in the same way as was done above for B.

Now let / be an integer such that

I=1(modpg) and I=-1(modr).

We fix ko =1 and, for each i#0, we let either k;=1 or k;=1. Such a choice will satisfy
conditions (2), thus for each choice of the k;(iel,i*0) we get a decomposition
A=B*®C* with indecomposable components B*=~C*. Because of |I|=m, there
are 2™ different ways of selecting {k;}. Therefore the proof will be completed if we can
verify that for a different choice, say {k{}, the corresponding group B** can not be
isomorphic to B*.
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Suppose ¢:B* — B** is an isomorphism. Owing to (iii), ¢ must induce on each
U, and V; an isomorphism with U] and V(< B**), respectively. In particular, ¢ acts
on the selected elements #, #,€ B* and &, §; € B** as follows:

#,—»>+a and -+ oF forall i. 3)

As divisibility by integers is preserved by ¢, p | o+~ + (@ ), q | B+ 5~
+ (5o £57) and r | dy+0,— % (g £ 0g) imply that in (3) we must have the same
sign throughout, say ¢:i;— i}, 5;— 0; . Hence we infer ¢:i; +k0; — ;" +k;v7, thus
r|af +k} for every iel. Since r | +k;'df and 3} is not divisible by r in 4, we
must have k;=k;* (mod r) for every i. This is impossible if one of k;, k} is equal to 1
and the other is /. Hence different choices of the k; yield non-isomorphic groups B*,
in fact. This completes the proof of Theorem 1.

Proof of Theorem 2. Let {W, Y;},; be a system of groups satisfying (i), (iii) and
|I]=m; we may again assume Oel. Let p and g be two odd primes such that p # g >3,
and let we W, 7,€Y; be chosen such that neither ¢ | w in W, nor p,q |y in ¥, Let
{X;}ic; be another system with Y;~ X; under fixed isomorphisms y; — x; under which
¥;— %;. We define A =B® C where

B={(® X, p ' (% + %) forall is0),

iel

C=XWO® Y,p '"(Jo+7) forall i#0,q ' (w+7) forall iel).

iel

Let s and ¢ be integers satisfying ps —gt=1, and set

Ui: {aixi-l_ﬁiyilyie),i}’ Kz{vixi+5iyi|yien}

for all ieI such that
either o;=s, B;=t 7y,=¢q, 0;=p, 4
or =5+ 1p, Bi=t+Lp, vi=4q, 6,=2p, )

where the integers /, and /, are chosen so as to have /,q—2/, p=s. Thus «;0;,— f;7;=1
for both cases.
Using the obvious notations #; = «;X; + f;7;, U;=y:%; +9,7;, let us define

B*=(@® U,p '(d@ +a) forall i#0),
iel
C*=W®® V,p '(5,+17) forall i#0,q *(6%+5) forall iel).
iel
Since i, +1; and ¥, + ; are divisible by p in A, and since 6,W + ;= gx; +6;(W + ;) are
divisible by g in 4, it is clear that B* and C* are subgroups of 4. They generate their
direct sum B*@®C* in A. Owing to «;0;— f;7;=1, all of X;and Y; are contained in
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B*@C*, and so are all the additional generators of B and C, as readily checked. We
thus have 4 = B*® C* where, obviously, B*2 B. The indecomposability of the groups
B, C, C*,... can easily be established.

Since [I|=m, there are 2™ different ways of choosing the coefficients «;, B,, 7,, 6;
as described in (4) and (5). In order to complete the proof of the theorem, it will there-
fore suffice to prove that different choices yield non-isomorphic groups C*.

Let C** be defined in terms of o, B, yI, 67 as generated by W@ @V},
p~ (04 +07) for alli#0and ¢~ (6fw+0;) for all iel. Any isomorphism ¢: C* — C**
must induce an automorphism on W and isomorphisms V- V* for every iel
which must act on the selected elements as w— +w, 5, +;. Investigating the
divisibility of &, +o;— + (#g + ;) by p, we conclude that the signs of #; must be
the same, say +1, for all i. From g | ;% +5,> +8,#+%;, q | 67w +1; and g7 w we
obtain that 6 =+5;(mod g). In view of (4) and (5) this is impossible unless &} =4,
foralli. Q.E.D.

It is easy to see that for m=©N,, all the groups X;, Y;, W in the construction can be
chosen to be of rank 1, and for an arbitrary m, to be of rank n where nm 2"

Using Pontrjagin’s duality theory, we conclude that, fo every cardinal m less than
the first strongly inaccessible aleph, there exists a connected compact group of cardinality
2™ which has 2™ non-isomorphic closed summands. Moreover, as a closer examination
of the invariants reveals, we may add that these summands are algebraically all iso-
morphic.
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