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Homotopy Equivalences of Almost Smooth Manifolds

G. BRUMFIEL

§ 1. Introduction. Let M*, k> 6, be a simply connected, oriented, closed combina-
torial manifold with a differentiable structure in the complement of a point. Let
Mg§=M"*—interior (D*), where D*c M"* is a combinatorially embedded disc. M¥
inherits a differentiable structure from M*— (p), hence dM § belongs to I'_,, the group
of oriented differentiable structures on $*~ 1. In general, oM eI, _, is not a homotopy
invariant of M*, In this paper we study this non-invariance.

Specifically, let B,(M,)<TI;_, be the set of boundaries of homotopy smoothings
of My [18]. That is, 2* '€ B, (M,) if and only if there is a smooth manifold M, with
oM{=Z2*"1, and a homotopy equivalence of pairs h:M{, oMj—M,, dM,. Then
B,(Mg)=B,(M,), and M* is homotopy equivalent to a smooth manifold if and
only if 0eB,(M,). We will give a homotopy theoretic description of the set of
differences 4, (M,)={Z*"*~0M, | Z*"*eB,(M,)} = I';_, for certain classes of mani-
folds. If oM yeI', _, is known, for example if 0M =0, this determines B, (M,). In any
case, B,(M,) and 4, (M,) have the same number of elements.

Following Sullivan, two homotopy smoothings, #:M,, dM¢—M,, oM, and
g:Mg, 0Mg—M,, OM,, are called equivalent if there is a diffefomorphism f:Mj~M
such that / is homotopic to gf. The set of equivalence classes is denoted hS(M,). In
[18], Sullivan constructs a bijection 0:hS(M,)=[M,, F/0], where F/O is the fibre of
the map BSO— BSF. Thus, if h:M3—M, represents an element of AS(M,), the formula
d0 (Mg, h)=0M;—dM €T, defines a map d:[M,, F/0]—T_,,and 4,(M,)=image
()T,

The group I',_, can be described as follows. If k#2/—1 or 2/—2 then I',_, ~
~bP,® (n;_,/im(J)), where bP,=I',_, is the cyclic subgroup of homotopy spheres
that bound n-manifolds [9], [11], [15].

Iy, ,~kernel(n3;_ 2—¢->ZZ), where ¥ is the Arf invariant. ¥ #0 if and only if the
element h}_,eExt,(Z,, Z,) is an infinite cycle in the Adams spectral sequence [6].
Mahowald has shown that 47, is an infinite cycle if j<6. Also, if Y #1, I';7_;=
=s_afim(J) (=73 if j2).

If k is odd then bP,=0. If k is even, the direct sum decomposition of I';_, follows
from properties of two homomorphisms, namely, the Kervaire-Milnor map g:I',_;—
—7,_/im(J), with kernel (¢)=bP, [15], and an invariant f: ;1= Z, if k=4n+2 #
#21—2[11], or fg:Ty_;—>Z, if k=4n, where 0,=a, 2*"~%-(22"~ ! —1) num(B,/4n),
a,=2if nis odd, a,=1 if n is even, and B, is the Bernoulli number [9]. The restriction
of fg to bP, =T, _, is an isomorphism. Thus a homotopy sphere Z*~1eI’, _, is deter-
mined by ¢ (2*~')enj_,/im(J) and fx (Z*~1)ebP,.
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The invariants fg:l4,-,—Z,, and fr:bsping,.,—Z, are natural, and can be
computed where bsping,, , =I'g,. is the subgroup (of index 2) of homotopy spheres
that bound spin manifolds. However, fz:I'g,.s—Z, and the extension fz:I'g, .1~ Z,
depend on choices, and can not be effectively computed. Thus our results on 4,(M§)
are complete only if k%6 (mod 8) and if, when k=2 (mod 8), M is a spin manifold.

The paper is arranged as follows. In §§ 2 and 3, we discuss Sullivan’s work on
homotopy smoothings and describe the composition od:[M§, F/0]—-T;_—
-7 _¢/im(J). In § 4, we give some homotopy theoretic results on F/0. Many of the
results in these three sections are well-known. In § 5, we compute the composition
frd:[Mg", F|0]>T4,_,—Z, . In§ 6, we compute the composition frd: [M 3"* 2, F/0]—
—Tg,+1—Z, for spin manifolds, M 3"*2. The main results of the paper are Proposi-
tions 4.4, 4.5, 5.1, 5.2 and 6.5.

In two appendixes, we give applications of the results of §2 through §6. In
Appendix I, we set M?**=CP (k) and characterize those homotopy (2k — 1)-spheres
which admit differentiable, fixed point free, S* actions. In Appendix II, we set M**1=
=S x N* and compute certain canonical subgroups of the inertia group, I(N*)<=T,
of a smooth manifold N*.

Many of the ideas in this paper are due to D. Sullivan. I am very grateful to him
for many conversations.

§ 2. Homotopy Smoothings. We first sketch a definition of the bijection 6:AS (M)
x[M,, F/0]. Let h:Mj—M, be a homotopy smoothing of M§, and let / be a homo-
topy inverse of A. Homotope the map 4 to a smooth embedding of M in the total
space, E(&,), of the (stable) vector bundle &,=E&(h)=h* (14, )—Tu, OVer M,
where 7, is the tangent bundle. Then the normal bundle of M in E(&,) is trivial and
choosing a framing of Mg in E(&,) determines a fibre homotopy trivialization of &,,.
(In fact, it follows from the h-cobordism theorem that there is a diffeomorphism
H:MjxRIxE(&)), q large, homotopic to 4.) This defines an element 0 (h)e [M,, F/0],
which depends only on the class of (Mg, ) in AS(M,). By construction, the composi-
tion M,— F/O— BSO represents &, (h)e KO®(M,).

Now, & induces a bijection h,:hS (My)=xhS (M,), defined by h, (Mg, g)=(Myg, hg)
where g:M ;—Mg. Also, there is the bijection h*:[M, F/0]x[M,, F/0] induced by
the homotopy equivalence A:M;—M . Since F/0 is an H-space, A* is an isomorphism
of groups. Consider the diagram

hS (My) = [M,, F/0] N
h.n uh" /!
d

hS (Mg) ; [M;, F/O]

L 2.1)

This diagram is very non-commutative. In fact, if g:Mg—M, is a homotopy smoothing
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of M then dO (h,(g))=0My—0M,=(0Mg—0My)+(0Mg—0oMy)=d0(g)+do (h). We
also have

PROPOSITION 2.2. If gehS (M) then
h*0hy (g) — 0 (g) = h*0 (h)e[Mg, F/0].
This can be equivalently stated as follows. Suppose

S
Mg_“"“)Mo
g\ p /‘h

M,

is a homotopy commutative diagram and f, g, s are all homotopy equivalences. Then
f=h4(g) and applying the isomorphism A* to the equation in 2.2 gives

0(f) =0 (h) +h*(0 (2)) € [Mo, F[0] 2.3)
We will prove 2.3. In §§ 5 and § 6 we give formulas for the difference d—dh* and
for the deviation of d from linearity (that is, in general d is not a homomorphism of

groups).
Proof of 2.3. Choose a diffeomorphism H:Mgx R E(£4(6(h))) homotopic to
h, and, in the diagram below, let E(H ) be the obvious bundle map covering H=H 1.

E(H)

E(H*n} (£*(0(2))) == E(n1 (¢ (0(2))))
! " l
E((6() == MjxR?
I ﬁ e
M, —_— M,

Since n, H~ hn, it follows from the bundle covering homotopy theorem that there
is a bundle isomorphism, B, covering the identity on E(£7(6(h))), and a bundle
homotopy commutative diagram

E(* (£ (0e) + &(0(W) = E(@** (€ (02)) —— E(*(0(2)))

B TE(m1)
E(H)

E(A*r} (¢ (0@N)=E(n: (' (0())))
= E(£(6(g))) x R%.
Let G:MgxRIxE(£9(6(g))) be a diffeomorphism homotopic to g. Then F=
=(Gx1) E(H) B:E(h* (£1(0(2))) + &% (0(h))3MgxR?xR? is a diffeomorphism
homotopic to f=gh where G=G . Thus the fibre homotopy trivialization

(m; x m5) F:E(R*(£%(0(9))) + &*(8(R))) > R? x R?
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represents 6 ( f ). On the other hand, bundle homotopy commutativity of the diagram
above implies that (n, x 73) F'is properly homotopic to (n,GE(h) x n,H) 4 where

A:E(F* (£°(6(2))) + &1 (0(m)) —~ E(K* (£7(8(2)))) x E(E2(6(h)))

is the diagonal. Since (n,GE(h) x n,H )4 represents h*(6(g)) +0(h), we have shown
that 6(f)=h*(0(g))+0(h), as desired.

The tangential homotopy equivalence, that is, #:Mj—M, with h* (1), ) =Ty, are
particularly important. Let B,,(M,)<I, -, be the set of boundaries of manifolds M
tangentially homotopy equivalent to M, and let 4,,(M,)={Z*"'—0oM, | Z*"'eB,
(Mo)} =Ty ; ;

There is a fibration SF—F/0—BS0, where SF=lim_, SF, and SF, is the space of
base point preserving maps of degree one of S to itself. Thus, given 7:Mj—>M,,
we have h*(ty,)=1y, if and only if &, (h)=A*(14,.)— Tar,=0€ K0°(M,) or, equi-
valently, if and only if 6 (h)eimage ([M,, SF ]—J:»[M 0s F/0]). Thus 4,,(M,)=d(image
([Mo, SF]—[M,, F/O]))-

Two other subsets of B,(M,) are of geometric interest. Let B,(M,)<T_; be the
set of boundaries of smooth manifolds My combinatorially equivalent to M, and let
B,.(My)=B_.(M,) be the subset of boundaries of those M such that some combina-
torial equivalence h:Mj—M,, preserves the (smooth) tangent bundles, that is, #* (1))
=1y, as vector bundles. Let A4, (My)={Z*"'—doM,|Z* 'eB,(M,)} and Ilet
A, (Mo)= {21 ~aM, | € B, (M,)}.

There are spaces SPL and PL/0, and a braid of fibrations

— T
L/0 BSO BSF
$P \r/u / \BSPL/
sn/ \SF/ \ F/PL/

From smoothing theory [14], it follows that A4, (M,)=d(image([M,, PL/0]—
—[M,, F/0])) and that 4,.(M,)=d(image([M,, SPL]—[M,, F/0])). Also, if
ve[M{, PL/O] then dv=0*(v)em,_, (PL/0)=T,_,, where 8:S*"'—>Mj represents
the homotopy class of the inclusion of the boundary, dM,—M,,.

In particular, d:[M§, PL/0]>T,_, and d:[M{&, SPL]-TI_, are group homo-
morphisms. Also, 4,(M¢) and 4,.(M§) are homotopy invariants of M¢.

Recall that for a simply connected, closed manifold, M*, there is the surgery
obstruction s: [ M*, F/0]- P,, where P,=Z, 0, Z,, 0 if k=0, 1, 2, 3 (mod 4), respect-
ively, defined as follows [18]. If ue [M*, F/0], represent u by a framing f: M’ x R?—
— E(&9(u)) of some manifold M’ in the total space of the bundle &4(u)=i, (1) over M.
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Then s(u)eP, is the obstruction to constructing a homotopy equivalence M" x R1—
—E(£%(w)), framed cobordant to M’ x R? in E(&1(u))=E(&9).

PROPOSITION 2.4 (Sullivan). Suppose u:M §— F|0 extends to a map ii: M*— F|0.
Then duebP,. In fact, du=bs(it) where b: P,—bP, is the natural projection.

PROOF. Represent # by a framing of a connected sum M’ W in the vector
bundle E(&(i2)) over M where the projection M j—M, is a homotopy equivalence and
where W is an almost parallelizable manifold. Then s(&#)= —[W]eP, where P, is
regarded as the group of cobordism classes of almost parallelizable PL manifolds. By
smoothing theory, in the complement of a point, M’ 4 W inherits a smooth structure
from E(&(i2)) and 0(M'# W)o=0M,. Then du=0M{y —0M,= —OW,=bs(i1)ebP,.

REMARK 2.5. If k=4n and ue[ M*", F/0] is represented by f: M’ x R1— E(£9),
then

5 () = (3) (index (M) — index (M")) = (3) <L (M) (1 — L(8)), [M*"]peZ

since Ty =f* (1 +&).
If k=4n+2 and ue[M*"*2, F|0], there is also a cohomology formula for s(u);
namely,

s(u) = (v* (M) -u* (K), [M], e Z,

where v(M)=1+4+v,(M)+v,(M)+...e H*(M,Z,) is the total Wu class, and
K=k, +kg+kio+...e H**2(F|0, Z,) is a suitable class [18].

§ 3. The composition od:[M{, F/0]-T,_,~n;_,/im (J)

Let 9:S*~ 1M represent the homotopy class of the inclusion of the boundary,
OM§—ME. Then 0 induces 0*:[ME, F/0]—[S*"1, F/0]=m,_,(F/0). Further, image
(0*) is contained in the torsion subgroup of ,_, (F/0), which is isomorphic to 7;_/
im (J).

PROPOSITION 3.1. Let ue[M, F/0]. Then
¢(du) = * (u)em;_,/im(J) = m—, (F/0).

Proof. Let u=0(h), where h:Mj—M,. Then u is represented by a fibre homotopy
trivialization of £, (h)=¢,, defined by a framing H:Mgx RIX E(£§). The restriction
of £, to OM ¥ is trivial. For, if k—1=0 or 4 (mod 8), the Pontrjagin class of &, ]aMok is
zero, and if k—1=1 or 2 (mod. 8) &, laMok is fibre homotopically trivial. Thus, H in-
duces a framing 0H: M, x R?30M, x R4, which represents 0* (u)en,_, (F/0). It now
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follows from the definition of the Kervaire-Milnor map, ¢, and a little smoothing
theory, that 0* (u) =0 (éMy—0M,)=¢(du).

COROLLARY 3.2, The composition od:[M§, F/0]-ni_,/im(J) is a homo-
morphism of groups. Thus, if u, ve[M§, F|0] then du+dv—d(u+v)ebP, T} _;.

COROLLARY 3.3. Let h:My—M, be any degree one map (not necessarilv a
homotopy equivalence). Then ¢(dh*(u))=o (du), where ue[M,, F/0] and h*:[M,,
F[0]-[My, F/0]. Thus dh* (u)—duebP, =T _;.

§ 4. Discussion of F/0. If we are to apply the results of § 2 and § 3 (and those in
§ 5 and § 6 below), we must be able to compute [M{, F/0]. In general, this is difficult.
The following discussion relates the group [Mf, F/0] to more familiar homotopy
invariants of M{.

There are fibrations SOs—z—J»SF—QF/O—gBSO—JeBSF. These induce an exact sequence
of groups

K0! (X) - [X, SF] 3 [X, F/0] 3 K0°(X) - J (X) =0

for any finite complex X. Further, since SF,.; is a component of Q4S9 [X, SF]=
=lim_, [S?A X, $¥] ==} (X), as sets, where 7y (X) is the 0" stable cohomotopy group
of X. Actually, 7 (X) is a ring, and, as groups, [X, SF]~1+={ (X ) where the addi-
tion on the right is given by (1 +a)(1 +8)=1+a+8+af [13].

The Adams conjecture on J: K0° (X)—J(X) can be stated as follows ([1]):

4.1 Let £€K0°(X). Then there is an integer, e(k, &), such that J(k*®® (y*—1)
(£))=0 where y* is the Adams operation.

Since K0° (X) is finitely generated, we may choose e (k, £)=e (k) independent of &.
For any function e(k), Adams has proved that kernel (J)=i,([X, F/0]) is contained
in the subgroup of K0°(X) generated by the elements k*® (y*—1) (&), £e K0° (X).
The Adams conjecture 4.1 has recently been proved by Sullivan and Quillen.

PROPOSITION 4.2. If K0°(M*)—K0°(Mg) is surjective (e.g., if k—1#1 or 2
(mod 8) or if M* is a spin manifold), then each element we[ M§, F|0] can be written as a
sum, w=u+ v, where ueimage ([M*, F/0]) and veimage ([M,, SF)].

Proof. J(&q(W))=J(ix(w))=0. It follows that there is an element ¢eK0°(M*)
such that J(£)=0 and ¢ |y, =&, (W)=¢&,. Then é=i, (i) for some ize [M*, F|0]. Let
u=1ii |p,. Then w—uekernel (i,)=image (j4), and 4.2 is proved.

Remark 4.3. 1t is a consequence of the Adams conjecture that for each prime p,
there is a homotopy equivalence (F/0),,~ BSO,, x Cok (J),, where X(,, denotes the
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localization of X at p. Morevoer, SJ,)~im(J). X% Cok(J),), and the map
Joy: SF(py= (F0)y is aproductmapj,, x Id:im(J ), X Cok (J )= BSO,, x Cok (J),,)-
This factoring of (£/0),, enables one to also establish the conclusion of 4.2 in the
case (k—1)=2 (mod 8).

PROPOSITION 4.4. If u, ve[M§, F/0], with ueimage ([M§, F/0]) and veimage
([My, SF]), then d(u+v)=du+dvel,_,.

Proof. Let v=0(h), and let A*(u)=60(g) where h: My—M, and g: Mj— M, are
homotopy equivalences. By 2.3, 6 ( f')=u+v where f=hg: Mg—M,. Thus, d(u+v)=
=0Mg—0My=(0Mg—0Mg)+(0Mo—0My)=dh* (u)+dv.

By the hypothesis, #: My—M, is a tangential homotopy equivalence. Also, the
maps M {)—h->M 0—“->F/O extend to maps M '—h>M—“>F/O. By Proposition 2.4, du and dh* (u)
belong to bP,el, ;. Since h*(L(M))=L(M’) and h*(v?(M))=v*(M"), it follows
from the formulas in Remark 2.5 that du=dh* (u). Thus d(u+v)=dh*(u)+dv=
=du+dv.

The following is an immediate consequence of Propositions 2.4, 4.2, 4.4, and
Remark 4.3, and is one of our main results.

PROPOSITION 4.5. Assume that k%2 (mod.8) or that M is a spin manifold. Then
4, (Mg) = (45(Mg) " bP) + Ay (Mg) = Ty .

Here, by the sum of the two subsets, we mean all elements X +2’ where Ze 4, (M{)
NbP, and X' ed,,(M¢).

Remark 4.6. Note that the map 0*:[M§, SF]-n,_; (SF)=mnj}_, is an invariant of
the stable homotopy of M and can be computed as

0*:[ST A M, ST - 7 -1 (S%) = mh_ 4, g large.

We will need the following familiar invariant. Consider the subgroup of elements
(¢, 2)eK0° (X)®m4y_1 (X) such that ph, (£)=0e H**(X, Q) and a*=0: H**"1(X)—
- H*~1(§41), Let X=X, e**, and let Ee KO (X) restrict to £eK0°(X). Then
Py (E)ep* (H*(S**, 0))= 0, where p: X—S** is the projection. Further, since & is
well-defined modulo p* (K0° (S**)), ph, (€) is well-defined modulo p* (H**(S*%, 4, Z)).
It follows that ey (¢, &)= (1/a;) ph (¢)e Q/Z is a well-defined homomorphism. More-
over, the diagram

K0%(X) ® mar—1 (X) N
lé‘@s Q/Z (47)
KOO(SSAX)®7T4I¢+7(SSAX) o
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commutes (when ey is defined), where & is the periodicity isomorphism and s is
suspension. e can be interpreted as a functional operation from KO-theory to
cohomology. If X=5%" and £ K0°(S8") is a generator, we recover the Adams homo-
morphism eg:7g, 1 451 (S*")—>Q/Z [2]. If X=Mg" and aen,,_, (M§") represents the
inclusion of the boundary, we get a homomorphism eg: K0° (Mg")— Q/Z.

The following KO-theory invariant of F/0 bundles will also be essential.

PROPOSITION 4.8. There is an element yel+KO0°(F/0) such that ph(y)=

= AeH**(F)0, Q)~H** (BSO, Q). Further, if u, vel[X, F/0] then y(u+v)=y(u)-
-y (v)el +K0°(X), where by y(u) we mean u* (y)el +K0° (X).

Proof. The universal bundle over F/0 admits a unique spin structure. Thus, the
Thom space M (F/0) has two canoncial KO-theory orientations, namely, an orientation
U, e K0° (M (F/0)) induced from M Spin, with ph(U,)=® (A~ ')e H** (M (F/0), Q),
and an orientation, U,, with ph(U,)=®(1), induced from the sphere spectrum via a
fibre homotopy trivialization. Define yel+KO0°(F/0) by the equation y-U;=
=U,eK0°(M(F/0)). Then &(1)=ph(U,)=ph(y)ph(U;)=®(ph(y)-A™"), hence
ph(y)=4

The second statement follows from universal multiplicative properties of the

orientations U; and U,.

The final three results in this section are technical results about the invariants eg
and y which we will need in §5.

Let ue[M¢, F/0] correspond to a homotopy equivalence #: My— M,. Homotope
h to an embedding h:My— M, xR3%, The normal bundle of My in M, x R®?is
h*( &o (1)), and we have the ““collapsing map” c: T (epf, )T (h* (—&o )3, )- Since &
is a spm vector bundle there are Thom isomorphisms ®x,: KO (M 0)_~>K0° (T(h*(—
—Eit)) and Dgo=2:K0(M,)3K0°(T(e}s)), and a Gysin homomorphism
hy .KO(MO)—->K0 (M,) defined by h, (x)=2 " 1c*®gq (x).

PROPOSITION 4.9. If ue[M,, F|0] corresponds to h:My—M, then h,(1)=
=7 (u)e KO (M,).

Proof. This follows from the definition of y («) and the observation that the fibre
homotopy trivialization

T(E80+ ) S T(R(E)+ *(~ &89) = T(ehft) > '

represents ue [ My, F/0], where é is defined by embedding M, x R®7 < E(£3%) x R and
extending c, and = is the projection.

PROPOSITION 4.10(i) Let u, ve[Mg", F/0]. If ve[M,, PL|0] or ve[M,, SF],
then eg (v (u+v))=eg(y(u)) +er(y(v))eQ/Z.
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(i) Suppose M§" is a spin manifold. If ue[Mg", SF] or ue[M¢", PL/0], then
€r (7 (”)) =¢€gr (éggl_)) _=_(_)__

Proof. Let y(u), y(v)e KO(M*") extend y(u), y(v)eKO(Mg"). By 4.8, y(u+v)=
=yu) y(v), so m-y—(_v—)eKO(M“”) is an extension of y(u+v). Then

ex (v (u +0)) = (1/a,) <ph (y (u) 7 (0)), [M*"]>

= (1/a,) <ph(y () ph(y (v)), [M*"]>€Q/Z.

From the assumption, it follows that ph(y (v))=1+ph, (7 (v)); hence

(1/a,) <ph(y (u) ph (v (0), [M™']>

= (1/a,) {ph,(y (w)) + ph,(y (v)), [M*"]>€Q/Z,

and 4.10(i) follows immediately.

For 4.10(ii), note that the Thom space of the normal bundle of M, T(v;f), has a
canonical KO-orientation. This extends to some KO0-orientation, U, of T(vy#). Then,
since there is a degree one map S87**"—T(vyf), we have

(1/ay) <ph(y (u) — 1) ph (U), [T (vs)]>€Z.
Since ph (y(w))—1=ph,(y (u)), it follows that
ex (v () = (1/a,) <ph, (v (u)), [M*"])
= (1/a,) <ph,(y (w)) ph (U), [T (vsy)]> = 0€ Q/Z.

Similarly, eg (¢, ()= (1/a,) {ph,(¢o (w)) ph(U), [T(vy)]>=0€Q/Z, and 4.10(ii)
is proved.

PROPOSITION 4.11. Let ue[Mg", SF]. Then ex(y(u))=eg(0*(u)) where
0* (u)eny,_1 (SF)=n%,_ 1. Moreover, e (y(u)) has order a power of 2.

Proof. Let v: Myx S®1—S® be the adjoint of u: My—SFg,,,andletoae K0° (S®9)
be the generator. Then y (1) n* ()= v* (), where n: My x $84— S %7 is the projection.
Thus v* () —n* (@) =2 (7 (u) — 1)e K0° (S°? A M,). It follows that there is a homotopy
commutative diagram

80 A ;“.-————-—b Sﬁq A Ml‘n

/ \PiY(u)':)/ \ -

glartnt V=T BSO

¥ (u) /x \ /
qu Bg+4n

— MU ¢

% (u)
From the definitions and diagram 4.7, one sees that eg (8* (u))=eg (y (¥)).
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For the second statement, it is only necessary to observe that there are spin mani-
folds, Ng", with Ng"=S*""', and maps g: N&", ON&">Me" oM™ of degree a
power of 2, say 2. Then 2"eg(y(u))=2"eg(0* (u))=eg (20* (1)) =ex (6* (g* ()))=
=eg (7 (g*())) =0, by 4.10(i).

§5. The composition frd:[Mg", F|0]—>Z, . Theinvariant fz:I',,_;—Z,,_is defined
as follows. Given X** 'el,,_,, let Z**"1=0W,", where W," is a smooth spin mani-
fold such that the decomposable Pontryagin numbers of W*" vanish. Then

fr(E* ™Y = (}) index (W*")eZ/6, Z.

(It is proved in [9] that such manifolds Wg" exist and that f is well-defined.)

It will be convenient to regard fz as a homomorphism fg:I'4,_;—>Q/Z. Namely,
define fR (Z*"~1)=(}40,) index (W*")e Q/Z, where W*" is as above.

Recall that the L-genus is given by

Ln(pl pn) = (89npn/an(2n - 1)']}1) + Ln(pl «ve Dn-1> 0)

PROPOSITION 5.1. Let ue[Mg", F/O]. Then

fr(du) = (36,) <L (M) (1 - L (%)), [M*]>eQ/Z,
where L(&)=L (p1 (20 ()-+-Pu-1(E0 () Pu(&)) and p,(D/a,(2n—1)1j, € Q/Z is d deter-
mined (formally) by the equations

(1/a,) <A (&), [M*]) = ex(v(u))eQ/Z
and

(1/a,) <ph (&), [M*"]> = er (&0 (1))eQ/Z.

The proof of Proposition 5.1 will require some preliminary results.
First, note that since

(1/a,) 4,(py --- pn) = (— num (B,/4n) p,/a,(2n — 1)!j,) + A, (P - Pa-1, 0)
and
(l/an) phn (pl see pn) = ((— 1)n~1jnpn/an (2n - 1)' .In) + phn (pl <o« Pn-1> 0)’

and since num (B,/4n) and j,=denom (B,/4n) are relatively prime, it follows that the
equations in 5.1 for p,(¢)/a,(2n—1)!j,e Q/Z have at most one solution.

Secondly, the computation of p,, (¢)/a, (2n—1)!j,in Proposition 5.1 is purely formal.
That is, we do not assert the existence of a vector bundle & with the properties indicated.
However, Proposition 5.1 and Remark 2.5 are closely related. If ue [M§", F/0] extends
to e [M*", F|0], then £ =¢ (i) is an extension of &, =¢, (u). Remark 2.5 asserts that
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fr(du)=}0,){L(M)(1—L(&)), [M*"]>eQ/Z. Moreover, y(iz)eKO(M) extends
y(4)e KO(M,), hence eg(y(u))=(1/a,) <ph(y(@)), [M])>=(1/a,){A(¢), [M]) and
also, of course, eg (¢5)=(1/a,){ph(&), [M]).

Recall that the image of the Adams homomorphism eg:75,_;—Q/Z consists of
integral multiples of 1/j,=1/denom (B,/4n) [2]. Thus, there is a unique homo-
morphism &z: 7%, —Q/Z, defined by num (B,/4n) & (a)=eg (2). If « is the image of
the generator of n,,_;(S0)=Z, then ez(a)=(B,/4n)=num (B,/4n)/denom (B,/4n).
Thus, &g is a normalization of eg, with &g (a) =1/},

PROPOSITION 5.2. If ue[Mg", SF], then f(du) =2y (0*(u))e Q/Z. In particular,
fr(du) has order a power of 2.

Proof. Represent u by a tangential homotopy equivalence 4,: My— M. Let A denote
the obvious extension h: M'— M. Then t,.=h*(1)+p*(c)) as PL bundles, where
p:M*">S*" is a map of degree one and oen,,(BSPL). Since h, is a tangential
homotopy equivalence, and since index (M')=index (M), it is easy to see that the
Pontrjagin class p,(6)=0. That is, ¢ is a torsion element of r,,(BSPL). Further,
Jpr(0)=0*(u), where Jp,:m4,(BSPL)>mn,,(BSF)=n%,-1, and f(c)=du, where
B:74u(BSPL)> 1y, (PL/0)=T,,_,. It then follows from [9; Theorems 4.7, 4.8]
that num (B,/4n) fg(du)=eg(0* (u)). This relation, together with 4.11, proves
Proposition 5.2.

Note that if ue[Mg", SF], then Proposition 5.1 asserts that fx(du)= —p,(¢)/
a,(2n—1)!j,eQ/Z, where

(1/a,) <A (§), [M*"]) = — num (B,/4n) p,(&)/a,(2n — 1)!j, = ex(y(u))eQ/Z.
Thus 5.2 and 4.11 imply 5.1 in the case ue[M3", SF].

COROLLARY 5.3(i). The map d:[My", SF]-T,,_, is a group homomorphism.
(i) If h:My— M, is any degree one map, then the diagram

[M,, SF]. 4
I >F4n-1
[Mg, SF17°

commutes.

Proof. This follows from 5.2 and 3.1 since fr@0:4p-1—Zy, @ (Mhn—1/im(J)) is
an isomorphism.

COROLLARY 5.4. If ue[M§", F/0] and ve[Mg", SF], then d(u+ v)=du+dv.
Proof. This follows from 4.2, 4.4 and 5.3(i).
We can also prove Proposition 5.1. By 2.5 and 5.2, Proposition 5.1 is true if
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ueimage ([M*", F/0]) or if ueimage ([Mg", SF]). By 4.4, it suffices to prove that
(36,) <L(M) (1 — L (¢ (u + v))), [M*"]>

(36,) <L (M) (1 = L (Ew)), [M™]> + (36,) <L (M) (1 = L(E(®))), [M*"]>

if ueimage ([M*", F/0]) and veimage ([Mg", SF]). Since L(&(v))=80,p,(¢(v))/
a,(2n—1)Yj,, this is equivalent to proving that p,(¢(u+v))/a,(2n—1)Yj,=p, (& ()]
a,(2n—1)Yj, +p, (£ (v))/a,(2n—1)Y,. But, by 4.10G), ex(y(u+v))=ex(y(®))+
+eg(y(v)), and, of course, e (&q (u+v))=eg (&, (u+v))=eg(&y (4)) +er (&0 (v)). The
equations given in 5.1 which determine p,(¢)/a,(2n—1)!j, now yield the desired
additivity result.

Remark 4.6 and Propositions 3.1 and 5.2 show that 4,,(Mg") is computable in
terms of the stable homotopy theory invariant 0*: [STA M§", S¥] 7 4 4n—1 (S9)=
=Ty, . Proposition 2.4 and Remark 2.5, together with the Adams conjecture, show
that 4, (Mg")nbP,, is computableinterms of L (M )and ph (KO (M *"))= H** (M*", Q).
Thus, 4,(Mg")=(4,(Mg")nbP,,)+4,,(Mg") is computable in terms of familiar
invariants.

It is interesting that by using the Riemann-Roch theorem for spin maps, Proposi-
tion 5.1 can be proved without using Proposition 4.2 or the Adams conjecture. Then
3.1 and 5.1 provide, in a sense, a homotopy theoretic computation of the geometric
map d:[Mg", F/0]—-T,,_,. However, use of the Adams conjecture gives the more
practical description of 4,(Mgy") above.

We now give some corollaries of the results above.

COROLLARY 5.5(). If Mg" is a spin manifold and ue[Mg", SF] or ue[Mg",
PL[0], then fr (du)=0. Hence dueny,_,/im(J)cT4,_;.

(ii) If M§" is a weakly complex manifold and ue [My", SF], then a,fx (du)=0.

Proof. In the notation of Proposition 5.1, it follows from 4.10(ii) that p,(&)/
a,(2n—1)!j,=0. Hence, L(¢)=1 and f3 (du)=0.

We will give an alternate proof of 5.5(i). Let h:My— M, represent u. Then
h* (Ta,) =Tu, as vector bundles if ue [ M,, SF], and as PLbundles if ue [ M,, PL/0].
In either case, Wo=Mg# (—M,) is a spin manifold, 0W,=0My—0M,, and all the
Pontrjagin numbers of W, including p, (W), vanish. Then f (du)=fx (0My—0M,)=
=(40,) index (W)=0.

5.5(ii) can be proved by an argument similar to the second proof of 5.5(i). Namely,
if M, is weakly complex and My, W, are as above, then M, and W, are weakly com-
plex, and all the Chern numbers of W vanish. An invariant f,:I',,_;—>Q/Z is defined
in [9], using weakly complex manifolds instead of spin manifolds, and f,=a,fg. It
follows that 0=f, (du)=a,fg (du).
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COROLLARY 5.6. If ue[Mg", PL|0], then num (B,/4n) f (du)=eg (7 (4)), and
f= (du) has order a power of 2.

Proof. The first statement follows from Proposition 5.1, since fg (du)= —p, (£)/
0,2n-1),eQ/Z and (1/a,) CA(E), [M*"]>=—num (B,/4n) p, (£)/a,2n—1)}j,=
er (v(¥))eQ/Z.

For the second statement, let g:Ny", d Ng"—Mg", OM3" be a map of degree 2"
where Ng" is a spin manifold. Then 2'fg (du)=1x (dg* (u))=0 by 5.5().

COROLLARY 5.7. If Mg" is a spin manifold with fr(0Mg")#0 (or if Mg™ is any
manifold and fr (0Mg") has order not a power of 2), then 0¢ By, (Mg") and 0¢ B,(M3");
that is, My" is not tangentially homotopy equivalent or combinatorially equivalent to a
smooth manifold.

Proof. This follows from 5.2 and 5.6.

Here is an example to show that fzd: [Mg", SF]—Z,_is not zero in general. Adams
has defined elements p, €7y, such that 24, =0, 4n#0 and wyneim(J)cngy, 5 [2].
If M®**4 is not a spin manifold (for example, M ®***=CP(4k +2)), choose xe H3**?
(M, Z,) such that S7 (x)#0 and let g:M,—S® % be a map such that g*(s)=x,
where ce H3**2(§8%*2), Then the composition S 8"+3—€>M3"+4-5->S 8k+225 S repre-
sents 0* (u,g)=pn, since gd=n. Since & (wmn)=4€Q/Z, 5.2 implies fr(d(ug))=
=}eQ/Z.

In [10] we showed that the element g, could, in fact, be defined in gy, , (SPL).
Thus, in the example above, we actually have u=u,ge[M§***, SPL] and
dued,.(My**®) is the element of order 2 in bPg_ .. I do not know of an example of
ue[Mg", SF] or ue[Mg", PL/0] such that a, f (du)#0.

We next give a somewhat simpler formula for fzd: [My", F/0]—Z, , when Mg" is
a spin manifold, generalizing 5.5(i).

COROLLARY 5.8. Let ue[M;", F0], where My" is a spin manifold. Then

Sr(du)=(30,)<L(M)(1—L(&)), [M]>€Q/Z, where L(&) is as in 5.1 and (p,(£)/
a,(2n—1)!j,)e Q/Z is determined by the equations

(1a,)<(A(&) - 1) A(M), [M]) =0eQ/Z

and ,
(1/a,)<ph (&) A(M), [M]) = 0eQ/Z.

Proof. This follows from 4.4, 5.5(i), and 2.4, and the Riemann-Roch Theorem for
manifolds with framed boundary.

The point of 5.8 is that for spin manifolds, fx (du) depends only on the Pontrjagin
classes of Mg" and &, (), and not on the KO-theory invariants y () and £, (). This is
because if W,=M,# (—M,) then W, is a spin manifold, W, =0My—0dM,, and the
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Pontrjagin numbers of W, including p, (W), are functions of the Pontrjagin classes of
M, and &, (u). Thus fr(du)=fr (0W,) can be computed in terms of Pontrjagin classes
alone. 5.8 gives a specific formula.

In the next result, we study the deviation of d: [Mg", F/0]—T,,_, from linearity.

COROLLARY 5.9. Let u, ve[Mg", F/0]. Then

du + dv — d (u +v) = ()<L (M) (L (&) ~ 1) (L (& ®) — 1), [M])
€Z/0,Z = bP,,.

Proof. By 3.2, it suffices to prove that
S (du) + fr(do) = fi(d (u + v)) = (360,) <L (M) (L (&6 (@) — 1)
x (L (& @) — 1), [M]>€Q/Z.

By 4.4 and 5.3(i), we may assume that u, veimage ([M*", F/0]). The formula now
follows from 2.4 since L(& (u+v))=L(&(u)) L(£(v)), hence

LE@+0)—1=(LEW) -1)LED) - 1)+ (LEW-1)+LEW) - 1)
= (L&) —1) (L& W) —1)+(L(Ew)—-1)
+ (L(¢@) = 1).

Finally, we investigate the non-commutativity of d with maps.

COROLLARY 5.10. Let ue[My", F/0] and let h: Mj—M, be a map of degree
one. Then
ah* (u) — du = (3) <(R* (L(M)) — L (M) (R*L (0 ) — 1), [M]>
€Z/0,Z = bP,,.

Proof. By 3.3 it suffices to compute fg(dh* ())—fx(du). By 4.4 and 5.3(ii) we
may assume that u extends to e [M*", F/0]. Then, by 2.4

fr(dh* (u)) — fr(du) = (36,) <(W*L (M) — L(M"))-(L (£ (h* (w)) — 1), [M'])
= (30,) <(h*L(M) — L(M"))-(L (&0 (F* (w))) — 1), [M']>€Q/Z.

COROLLARY 5.11. If h:My—M, is a degree one map of 4n-manifolds which
corresponds rational Pontrajagin classes, then the diagram

[MOa F/O] \.d

commutes. Thus, if h is a homotopy equivalence which corresponds rational Pontrjagin
classes then 4,(M,y)=4,(Mg).

r4n—-1
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§ 6. The composition frd:[Mg"*?, F/0]—Z,. In this section we consider spin mani-
folds of dimension 8z +2. The main result is Proposition 6.5.

In [4], KO-characteristic numbers n’ (M®"*?)eZ,, where J=(j...;,) and n’=
=n/t...n"e K0° (BSO) are defined for smooth spin manifolds. In [10], the definition is
extend to almost smooth manifolds, provided that J#(0). Roughly, this is done as
follows.

Let My"*? be a spin manifold with 0My"*?eTl,, . Since vj is a spin vector
bundle, the Thom space T(vj4) has a canonical KO-orientation. This extends to a
KO-orientation Uy e K0°(T(vyf)). Also, vy, extends to a vector bundle v over M
and we have vy, = vy +p* (o) as PL bundles, where p: M®"*2558"*2 j5 a map of
degree one and cemng,,,(BSPL). Moreover, vy is well-defined by the additional
assumption that egJp; (6)=0, where Jp,:7g,,(BSPL)>ng,,,(BSF)=n%,,, is the
PL J-homomorphism and eg:7g,, ;—Z, is the homomorphism defined by Adams,
which splits off image (/) as a direct summand [2]. Set

nJ (M8n+2) — C*¢K0 (717] (V:}))EKOO (SSq+8n+2) — Z2 ,

where @y, : KO(M )3 K0® (T (v3f)) is the Thom isomorphism defined by multiplication
by Uy, and c:S84%8"*2,7(v}f) is the map of degree one defined by an embedding
M8 *+2_, 58a+8n+2 1f J£(0), the KO-operation n’ has filtration greater than zero,
hence the product #’ (vjy)- Uy € KO° (T (v3#)) is independent of the choice of the exten-
sion U,,.

We will also use the notation

n’ (M8n+2) = (n’ (th), [M]go>€Z,

where [ M ], is the fundamental K0-homology class dual to Uy,.
E. Brown has defined a homomorphism y: @5t > — Z,, extending the Kervaire-Arf
invariant Qf"*2, 7, [7]. In fact, Brown’s definition of { applies to PL manifolds

M®"*2 with w; (M)=w,(M)=0. From the main results of [4], it follows that for
smooth M8"*2,

¢(M8"+2) — Z ocJ'n'J(Ms"”) + Z ﬁz'WI (M8"+2)EZ2
where oy, B€Z,, J= (j;...j,), 1<j,;<...<jj,, and the w' are Stiefel-Whitney numbers.

LEMMA 6.1. The coefficients B, a; can be chosen such that a;=0if n(J)=j; +...
o tjp#2nand X, 5y oy, yn’ = (L71),, (0, n?...n%") (mod. 2) where L=1+Ly +L,+...
is the Hirzebruch L-polynomial.

Proof. We only outline the proof of this lemma, and refer to [4] and [8] for details.
The homotopy elements in mg,,, (M spin) which have Adams spectral sequence
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filtration greater than 2 are precisely the classes {M®"*?} with w!(M®"*2)=
=n’ (M®"*?)=0 for n(J)>2n. It can be shown that y ({M®"*2})=0 if {M®"*?}e
eQt?=ng, ., (M spin)represents such a homotopy element. Thus «;=0if n(J)<2n.
If n(J)==2n+1, then the KO-characteristic number =’ coincides with a Stiefel-
Whitney number for all (8#+2)-spin manifolds. Thus we may choose the coefficients
B! such that «; =0. Finally, if 72 is the torus with the exotic spin structure and N 8" is
a spin manifold, then y (N®"x T?)=index (N®") (mod 2). Since the Stiefel-Whitney
numbers of N®"x T? vanish, it follows that %, ;,-,, 0,7’ = (L™!),,(0, n*...7*"),

Let b sping,, , =I'g, . be the subgroup consisting of homotopy spheres that bound
spin manifolds. In [10], we showed that I'g,.,=>bsping,,,PZ,. An invariant
Sfr:b sping, , ,—Z,, splitting off Z, =bP;, , , =b sping,, , as a direct summand, can be
defined as follows. Given XZ®"*!eb sping, ., ,, let Z8"*1=0ME"*2, where M&"*? is a
spin manifold such that all the Stiefel-Whitney numbers of A ®"*2 vanish. Then

fR(zsn+ 1) — l/I(MB"+2) — (L_l)zn(O, nz 7!52") (M8n+2)eZ2 )

Let h:My— M, be a homotopy equivalence with 8 ()=ue[M$"* 2, F/0]. The spin
structure on M, induces a spin structure on M, and, since h:Mg— M, is a homotopy
equivalence, Y (M')=y (M). Further i* (w'(M))=w'(M’), hence

fR (du) = fR (aM(; - aMO) = (L—l)Zn (M) - (L-l)zn (M,)EZZ g

We now seek a formula expressing the KO-characteristic numbers of M’ in terms

of invariants of M and of the map u: M§"*%— F)0.

PROPOSITION 6.2. Let us[M3"*?, F/0] correspond to the homotopy equivalence
h:My— M,, where M, is a spin manifold. Then

n’ (M) = n’ (V:J - & (“)) 7 (u), [M]ko> €Z,

where h* (vyy— &g (1)) =vy.€ K0° (M’) and y* (u)e KO (M) extends y (u)e KO(M,).

Proof. Homotope h: M'—M to an embedding h: M'— M x R®%. The PL normal
bundle of M’ in M x R3? is h* ((— &)89), where h* (vy,— &)= vy By the h-cobordism
theorem, the embedding 4 extends to a PL isomorphism H: E(h* (—&)%%) 3 M x R®.
Let ¢;=H 1:T(e}f)—>T(h*(—E&)3#) be the induced collapsing map.

Now, &|y, =& (#)=&, and the canonical KO-orientation of the Thom space
T(h*(—¢&o)34.) extends to a KO-orientation Ue KO° (T'(h*(—¢&)3#)). For, h*(—&)=
= Vpp—h* (Vi) = (Vi —h* (viy)) + (2')* (6’ — 6), where p’: M'—S®"*2, and the Thom
space of the PL bundle ¢’ — ¢ over §8"*2 is K0O-orientable. Further, by 4.9, ¢} (U)e
e K0 (T'(e}f)) restricts to Pgq (y (#))eK0° (T (epf,))-
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There is a homotopy commutative diagram

Sl6q+ 8n+2
o/ N
T 164 ———— T( 16q
(VM_) — Ve
4l l(thd)A
IdAcy

TMHAT(E) == TO¥)ATH* (-5

where the diagonal 4: M— M x M and the composition (hxId)4d:M'->M'x M'—

164 8q

—M x M’ are covered by bundle maps 4: vy vy x epd and (hx Id) 4:v}o0— vy x
X B* (—E)NE.

The proof of homotopy commutativity is similar to the proof of 2.3 and will be
ommitted.
We thus have

' (M) = (¢')* (n” (v3p) Upe) = () (0™ (7" (vie = €3)) Unr))
= (c')* (4% (h x 1d)* ((=” (v}t — &5)" Uy)-U)
= c*(4* (2’ (Vi1 — &8)" Uy e (U)))
=c* (TCJ (V,Akl - f:)")’* (“)'A* (UM"—DKO (1))) = C*‘pxo (”J (V;} - 5:)'?* (u))

and Theorem 6.2 is proved.
LEMMA 6.3. If n(J)=2n then
(n? vy — &5 (“))'Y* (), [M]ko) = {n” (vig)¥* (u), [M]go> €Z, .

Proof. 1t suffices to prove that n’ (vi;—&5)=n" (viy) (mod 2) in K0° (M).

First, n’ (vy;— £4) is independent of the choice of £§, extending é,€ K0° (M,). For,
if a =p*(0), where ce K0° (S®"*2), and ne K0° (M) then n’ (n + ) =2’ () n(«). But if
J"#(0), #’ (1) n’" () =0 unless J” =J, and n’(x)=0 unless J=(2n), since products
of elements of high filtration vanish. But also 72" (¢)=0 because o =un?, where
1eK0°(S8") and #?:88"*2 88", and n®" (u)=(4n—1)!yu. Thus o’ (n +a)=7’ ().

Secondly, since J(&,)=0, &, =2, k°(Y*—1) (&) for some (arbitrarily) large integer
e and & eK0°(M,). Since 2¢, and (Y*—1)¢, k odd, extend to K0°(M) and since
Y2 —1= (Y2 —y*) + (Y*—1), it suffices to prove n’(n, +2°(Y*—1)n,)=xn’(n,)
(mod 2) and =’ (n, + (y*~1) ) =7’ (y,) (mod 2), k odd, where ;, #,€ K0°(M) and
€ K0° (M,).

If we set m,=X ., n/t/ then

(1, + ze(‘/’z - 1)) =m, ('11)’75:((‘/’2 -1) ’12)2. = 7,(n,) (mod 2),



398 G.BRUMFIEL

because e is large, hence 2°-fold powers vanish in KO0°(M). It follows that

' (ny+2¢(Y?—1) n,) =7’ (n,) (mod 2). .
If k is odd it suffices to prove that all products x-z/(((y*—1) 7, ) =0 (mod 2), where
j=1, filtration (x)=8n—4j if j is even, and filtration (x)=8n—4j—2 if j is odd. Now,

(W= 1)) =1+ [2' (¥* () — =" ()] ¢
+ [(=* (W* () — = () — =" (n) (=" (W* () — 2" ()] £ + -

An easy induction shows that it suffices to prove x- (7’ (¥*(n))—n’ (1))=0 (mod 2).
But a computation in K0°(BS0) shows that

niyt — kil — (2k* (K — 1)/4)) (2V" D — jr’* )

has filtration greater than 4j+4. Since k is odd, 2k*/ (k* —1)/4! and k*/—1 are even
integers, hence

x- (! (W ) = =’ (n)) = x-((k* = 1) = () — (2K (k* — 1)/4!)
x (n¥ V) — ja’*1) (1)) = 0 (mod 2.).

LEMMA 6.4. (L), (vr) (7* @) —1). [M 1o =<0, (M) w, (v (), [M 1> €Z,.

Proof. Let y*(u)=1+7%. Then L, (vy;)7 has filtration 8z +2, and we have a homo
topy commutative diagram

Lan= 1A

M A MAM """ BSOABSO >  BSO

! | i 1
S8 *2 5 (M/M®""D)AM — BS0(8n) A BSO— BS0{8n + 2.

The product L3,' (vj): 7 can thus be computed by evaluating the cohomology map
Z,=H®"*2(BS0(8n+2), Z,)»H®""*(M, Z,) in the diagram. The results of [4] on
the operations n’: BS0— BS0{8n), n(J)=2n, can be used to show that this coincides
with <v},(M)-w,(y(u)), [M]>€Z,.

Note that since (y—1): F/0—BSO0 is a homotopy equivalence on the 5-skeltons,
w, (y ())=u* (k,), where ue [My"* 2, F|0] and k,e H* (F/0, Z,)= Z, is the generator.

PROPOSITION 6.5. Let uc[M&"*2, F/0], where MJ"*? is a spin manifold. Then
fr(du) = vz, (M)- u* (ky), [M1>€Z,.
Proof. This follows immediately from 6.2, 6.3, 6.4 and the formula

fR (du) = (L— 1)2n (M) - (L— 1)Zn (MI)
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COROLLARY 6.6. d:[My"*2, FJ0]— g, is a group homomorphism.
Proof. This follows from 3.2 and 6.5 and the fact that k,e H2(F/0, Z,) is primitive.

COROLLARY 6.7. Let h:My—M, be a map of degree one. Then dh* (u)—du=
= (V5 (M") = h* (v3,(M)))-h*u* (k,), [M']>€bPy,,,="2Z,, where uc[M"*2, F/0].
In particular, if h is a tangential map or a homotopy equivalence, then dh* (u)=du. Thus

4,(M,) is a homotopy invariant of 8n+2 spin manifolds.
Proof. This follows from 3.3 and 6.5.

COROLLARY 6.8 Let ue[M""?, PL|0]. Then fg(du)=0.
Proof. PL/O is 6-connected, hence u* (k,)=0 and 6.8 follows from 6.5.

Remark 6.9. In §5, we showed that for 4n-spin manifolds, f(4.(Mg"))=
fr (4,4, (M3"))=0. For (8n+2)-spin manifolds, fx (4,,(M"*?)) need not be zero. For
T 2
example, if M§" 2= (N®" x §%),and index (N®")is odd, and u: (N8 x §2)y—S 2L SF,
then f (du) = 1.

Remark 6.10. Let M®"*2 be a closed, smooth spin manifold. The above results,
along with Proposition 2.4, determine the exact sequence of Sullivan [18],

0— hS (M**2) 5 [M®**2 Fj0] > Z, .
Namely, if ue[M®"*2, F/0], then
(1) = <o, (M)-u* (k). [M]Y €2,

Thus, the cohomology formula of 2.5 simplifies for 82 +2 spin manifolds.
The Adams conjecture, and the resulting factoring (F/0);,=BS0(,, x (CokJ ),
implies that s=0 if and only if v3,(M) w,(y)=0 for all ye K0°(M).

Appendix I. S! actions on homotopy spheres

It is known that equivariant diffeomorphism classes of differentiable, fixed point
free S' actions on homotopy (2n—1)-spheres, n>4, correspond bijectively with
equivalence classes of homotopy smoothings of CP(n—1) [12]. The correspondence
is defined as follows. If S* acts on X2"~!, there is a diagram

~

ZZn"' 1 _Ll_) S2n'—1

l l L1)
P2n-—2 — ZZn—l/Sl :’ CP(n - 1) = SZn—l/Sl
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where A classifies the principal S' bundle over P2"~2 given by the action of S! on
X2m=1_An easy spectral sequence argument shows that 4 is a homotopy equivalence.

There are homotopy equivalences CP(n—1)—CP (n)o—">CP (n—1), since CP(n),
is the total space of a D? bundle, H, over CP(n—1). (If CP(n—1) is regarded as the
space of lines in C” then H is the dual of the “canonical” line bundle.) Consider the
diagram

hS(CP(n — 1)) > [CP (n — 1), F/0] > P,,_,
L 12, 1.2)
hS,CP(n)o) % [CP(n)o, FIO] T

where, if h:P?""2-»CP(n—1) then i,(P?*""% h) is the homotopy equivalence
h:Pi"=E(h*H)—E(H)=CP(n),.

LEMMA 1.3(1). Diagram 1.2 commutes.

(i) dOiy(P*"~2, h)=X2""'el,,_,, where 2*" "' P*"~ 2 s as in diagram 1.1.

(iii) si*0:hS(CP(n)o)—P,,- is the geometric obstruction to finding a codimension
2, homotopy CP(n—1) in a homotopy CP(n),.

The proof of 1.3 is relatively straightforward and will be omitted. It follows from
I.3 that the set of homotopy (2n— 1)-spheres which admit free S* actions coincides
with d (i, (hS(CP(n—1))))=d((si*)~*(0))=4,(CP(n)o) =B, (CP (n)o)=I'5,-1.
Denote this set by B, (CP(n),).

We now want to apply the results of § 2 through § 6 to compute B, (CP(n),).
First, it follows from the exact sequence

K0! (CP(n)o) = [CP (n)y, SF]— [CP (n),, F/0] — KO° (CP (n)o)
- J(CP(n),)—0

and results of [3] that [CP(n),, F/0] =ZI""V/2IQ[CP(n),, SF], where ZI"~ D21
cimage ([CP(n), F/0]—[CP (n)o, F/0]) and image (Z'*~ /215 K0° (CP(n),)) is gen-
erated by elements k°(y*—1)(¢), £eK0°(CP(n),). In theory it is thus possible to
compute the fibre homotopically trivial bundles over CP(n),. We have done this for
n<8 [12]. Let w=r(H—1)eK0°(CP(n)), where r forgets the complex structure.

LEMMA 1.4. Kernel (K0°(CP(8)y)—J(CP(8)o)=Z> has generators & =24w+
+98w% + 11103, &, =240 +380w°, and &, =504w°. If n<8, kernel (K0°(CP(n)°)—
—J(CP(n),)) is generated by &,, &,, &, restricted to K0O°(CP(n),).

Next, we need to compute si*:[CP(n)o, F/0]>P,,_,.

LEMMA 1.5. If n=1 or 3 (mod4) and ue[CP(n),, F/O] then si*(u)=(%)
(L(CP(n—1)) (1= L(&*@)))), [CP(n—1)]>€Z.
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In particular,
@) si* ([CP(n)o, SF])=0
(ii) If n=>5 and &, (i* (u))=mé, +né, then

si*(u) = — 4m* + 10m + 28neZ.

In particular, if si*(u) =0 then 10m=0 (mod 4), or, m=0 (mod 2).
(i) If n=7 and &, (i* (u)) =m&, +né, +q¢&; then

si*(u) = (— m(32m? + 301)/3) + 84m? + 224mn — 384n — 496gc Z .

Proof. The formula for s was given in Remark 2.5.
Statements (ii) and (iii) follow from 1.4 and explicit computation of theL-polynomials
in the formula.

LEMMA 1.6. If n=2 (mod 4) and ue[CP(n)y, F/O] then si*(u)=
(v2_,(CP(n—1))i*u*(k,), [CP(n—1)])eZ,.
Thus si* (1) =0if and only if w, (y (i* (u))) =i*u* (k,) =0, or equivalently, if and only if
p1 (€0 (i* (1)))=0 (mod 48). In particular,

(i) si*([CP(n)o, SF])=0,

(i) If n=6 and &, (i* (u)) =mé, +né, then si* (u) =m (mod 2).

Proof. The formula follows from 6.5 and 6.10. If n=2 (mod 4) then
vZ_, (CP (n— 1))#0 and the second statement follows. Statements (i) and (ii) also
follow easily.

We do not have general results with which to compute si* if n=0 (mod 4). The
following conjecture is probably true.

Conjecture 1.7(i). If n=0 (mod 4), n#2/, then si* ([CP (n),, F/0])=0.

(ii) There are elements 4} €7,;+1— 4 (SF)such thatifu: CP (2’ Yo S 2" SFthen
si*(u)=1€Z,. The summand Z®' '~Vc[CP(27),, F/0] can be chosen so that
si* (2?77 ") =0.

1.7(ii) is true if j<6. For example h% =n*en}, h =v?ens, and h} =a’eni,.

We can use the results 2.5, 3.1, 4.4, 5.2, and 6.10 to compute d: [CP(n),, F/0] =
=Z[(”'1)/2]G-)[CP(n)o, SF]->I3p-1=bP2,® (n;n~1/im("))’

LEMMA 1.8. We have d(Z'"~V/2))cbP,,. Specifically,

(i) IfueZ<[CP(4),, F/0] and &, (u)=m¢, then du=10m—4m*eZ/28Z =bPy.

(i) If ueZ?><=[CP(5)y, F/0] and &, (u)=mé, +né&,, then du=meZ[2Z =bP;,,.

(iii) IfueZ*<[CP(6)o, F/0] and &, (1) =mé&, +né,, then du=(—m(32m> +301)/3)
+84m? +224mn — 384neZ/992Z =bP,,.

(iv) If ueZ?*<[CP(7),, F/0] then du=0, since bP;,=0.
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Proof. Z'"~ V21 =image ([CP (n), F/0]—[CP(n),, F/0]), hence the first statement
follows from 2.4 and 6.10. Statements (i) and (iii) follow from 1.5 and 2.4 and (ii)
follows from 1.6 and 6.10.

Specific formulas for d(Z"~1/21) 5 >8, would only require extending the compu-
tations of 1.4 and L.5.

Recall that as a set [CP(n)y, SF]=n_(CP(n),). In [12] we computed the p-

primary summand ,z{ (CP(n),) and the map = °(CP(n)O)—>p 0(S == 75, for

n< (p*+2p)(p—1)—2, p odd, and we computed ,7; (CP(n)O)—aznz,, , for n<11.
Thus, using 5.2 and 6.9, we also computed d:[CP(n)y, SF]—TI,,_, if n=0, 1, or
2 (mod 4) or if n=27—1. (note that by 5.5(ii), a,fz (d[CP(2n),, SF])=0 and by 6.9,
Sfr(d[CP(4n+1)y, SF])=0.) These results involve computations in stable homotopy
theory and are too complicated to reproduce here. We will state the conclusions for
n<7.

LEMMA 1.9(i). [CP(4),, SF1=2Z, and d([CP(4),, SF])=0.

(i) [CP(5)o, SF]1=2Z5 and d([CP(5)e, SF])=2Z,={v*}=(n}/im(J))=T,.

(iii) [CP(6)o, SF1=2Z3+Z5 and d([CP(6)o, SF])=Z,<bP,,=T1,.

(iv) [CP(7)o, SF1=Z,+Z; and d([CP(7),, SF])=2Z3={0,f,} =n13=T3.

The construction of the non-zero element of d([CP(6),, SF]) is described in § 5,
following the proof of 5.7.

Finally, we combine the results I.5 through 1.9 to describe the set of homotopy
spheres of dimensions 7, 9, 11, and 13 which admit free S' actions. That is, we
compute B, (CP(n)o)=d((si*)"*(0))=d([CP(n)o, F/0])=B,(CP(n)o)=TI,,—,, for
n=4,5,6,and 7.

THEOREM 1.10(i). I';=bP3=2Z/28Z and B,(CP(4),)={10m—4m*/meZ}=
{0, 4, +6, +8, —10, 14} cZ/28Z.

(i) I'o=bP,o®(n%/im(J))=Z,®Z5 and B,(CP(5)o)=2Z,={v*} = (n}/im(J))<
<l

(iii) I'y; =bP,,=2/992Z and B,(CP(6),)
= {(—m(32m* +301/3) +84m* +224mn—384n | m, ne Z, m even} = Z/992Z.

(iv) I'y3=n3=2Z; and B, (CP(7)o)=Z3={p;} =Ty

Appendix II. Applications to inertia groups

Given a smooth manifold N*, the inertia group of N*, I(N*)<=TI, is defined to be
the group of homotopy spheres 2 g eI, suchthat thereis a dlffeomorphlsm N¥x NE# Tk,
Define I, (N*)cI(N¥) to be the subgroup of homotopy spheres Z*eI(N*) such that
some diffeomorphism N* N*# 2* is homotopic to the identity. (By the “identity’’
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N*¥=N"*# 2* we mean the obvious PL identification.) Similarly, define I,(N*)< I, (N¥)
to be the subgroup of homotopy spheres X* such that some diffeomorphism N* =~ N* % >*
is PL isotopic to the identity. Equivalently, X*eI.(N*) if the smoothings N* and
N¥*# X* are concordant.

The group I, is naturally isomorphic to the group of isotopy classes of orientation
preserving diffeomorphisms of $*~!. If X*eI', corresponds to the diffeomorphism
o:S*"1x85% ! then Z*¥eI(N*) if and only if there is a diffeomorphism /: N§~ N§ such
that /1 |,y,=sx-1=0. Let h: N*— N* also denote the PL extension of / defined by coning
h |on, OVer D¥< N*. Tt is easy to see that the mapping torus of A, T, =N*x I/(x, 0)=
=(h(x), 1), is an almost smooth manifold, with 0(T,),=2*. Further, Z*e,(N*)
(resp. Z¥e 1, (N*)) if and only if 4 can be chosen such that there is a homotopy equiva-
lence (resp. a PL isomorphism) H:T,—N*x S, with H ]ka0=1d. Then H:(T,),—
—(N*eS'), is a homotopy smoothing of (N*x S1),.

Now N*x S! is not simply connected. However, if N* is simply connected, the
map 0:hS((N*x S1)o)— [(N*x S*),, F/0] is still useful. There is a natural decomposi-
tion [(N*x S'),, F/0]~[N*, F/O]®[N§ A S*, F/0]. The first summand contains the
image under 0 of the homotopy smoothings gx Id:(N’x S'),—(Nx S'),, where
g:N'—>N is a homotopy equivalence. The second summand corresponds bijectively
with the homotopy smoothings described above, H:(T,)o—(N*x S')y, H |yxxo=14d,
where 4: NiN¥ is a diffeomorphism homotopic to the identity. Denote this second

set of homotopy smoothings of (N*x S'), by f:S’((N" x S1)o)-

PROPOSITION IL.1. I,(N*)=d(0 (IZS'(N" x SM)o))=d([NsA S*, F/0])=T. Also,
I.(N¥)=d([N A S*, PL/0]).

Proof. This follows from the discussion in the three paragraphs above.

We can thus use the results of § 2 through § 6 to compute I,(N*). If ue[Ng A S*,
F/0], k odd, the formulas in 5.1 and 6.5 for f (du) simplify.

PROPOSITION 11.2. If N&'*! is a simply connected spin manifold and
ue[Ng"*' A S, F/0] then fz(du)=0. Thus I,(N8"*') is contained in the summand
(M§n+1/im(J)) =T,y and I,(N®" )0 (I, (NB"*1)) is a homotopy invariant of N®"*1,

Proof. Since u* (k,)=0, the result follows from 6.5.

PROPOSITION I1.3. If ue[Ng" ' A S', F/O] then
Fu(du) = (= ) <L (N*=1 x %) (kz (80, (2K — 1)!jk)pk(c)), [N+t S‘]>
eZ/0,Z,

where p,(&) is as in 5.1 and p (&) =p,(Eo (W) if k<n.
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Proof. Since cohomology products vanish in N**~1 A S, we have (1—L(¢))=—
— (3 %=1(80/a, 2k — 1) )P, (€)) and the result follows from 5.1. We point out that
P,(&) is determined by the equations (—num (B,/4n)/a,(2n—1)!j,)p,(€)=eg (y(x))e
€0/Z and (= 1)"~Y,/a, (21— 1)11,) P (&) =ex (¢0 (4)) € O/Z.

Note that by 5.9, d:[Ni A S%, F/0]—-T, is a group homomorphism if k=4n—1.
Actually, if u, ve[N§ A S*, F/0] correspond to H:(T,)o—(N*x S*), and G:(T,),—
(N*x S1),, respectively, where 4, g: Ny=3 N¢ are diffeomorphisms, then d(u+v)el,
corresponds to the diffeomorphism (A |,x,)* (g |ov,): S* ' 23.S* 1. Since this composite
diffeomorphism also corresponds to du +dv, we have that d: [N§ A S1]—T, is a group
homomorphism for all N*,

There is a braid of four interlocking exact sequences

. k/—\ km
LI (F/0) Pk+] hS(N") hS(ND) JLOR] (F/0)
AT AWEY
Tio1 [N*AS! /0] T, INKF/a] i

AXEXAVEW.

' AS(N¥xs' AS((N x5
Peo  BSINSS)  BSINGSD)  m(FAo

Here, a:I',—hS(N*) is defined by «(Z*)=(N*#Z*, Id# (point))ehS(N*), Z*erl,.
Since kernel (¢)NbP,,,;=bs([N*A S*, F/0])=db (hTS‘((N" X S1)o))NbPy 1 =1, (N¥)n
NbP, 1, we see that I, (N*) is very useful for computing S (N*).

If we replace F/O by PL/O, the cofibrations S* 1> Ni—-N*->S*>NyA S? yield
an exact sequence [N{AS?, PL/O]—d>I‘k—> [N*, PL/0]-[Ng, PL/O]—d>I“k_1. Since
[N*, PL/0] and [N§, PL/0] correspond to concordance classes of smoothings of N*
and N§, respectively, it is clear that I (N*)=d([N§AS*, PL/0])={Z*el| the
smoothings N* and N*# X* are concordant}. The following is also clear.

PROPOSITION 11.4. I.(N*) is a homotopy invariant of N*.

There are natural subgroups I,(N*)cI,(N*) and I,.(N*)<I,(N*) defined by
I, (NY)=d([N§ A S*, SF]) and IL.(N*)=d([NEAS', SPL]). Geometrically,
L, (N*)= T (resp. I,.(N¥)<I}) corresponds to those diffeomorphisms ¢: 8%~ 1x.8%1
such that there is a diffeomorphism h:Ng3N§, with h |,y,=0, and a tangential
homotopy equivalence (resp. PL equivalence preserving the smooth tangent bundles)
H:(T,)o— (N*x 8')o with H |ykxo=14d.

PROPOSITION IL5(@). fr(L(N*"™1)) and fr(1,(N*""1))cZ, are 2-primary
groups.

(i) If N**~Y is a spin manifold then fg (I, (N*" 1)) =fr (L, (N*"~1))=0

(iii) I,(N*""1) and I,.(N*"~1) are homotopy invariants.
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Proof. These results follow from 5.2, 5.5, and 5.6. It follows from the construction
given after the proof of 5.7 that if w,(N3*3)30 then the element of order 2 in
bPg, +4 belongs to I, (N8*+3),

PROPOSITION IL6. I,(N®"*')x0l,(N®"*')and I, (N®"* )0l (N®"*1) are
homotopy invariants of (8n +1)-spin manifolds.

Proof. This follows from II.2.

Next we consider manifolds with a trivial stable normal bundle (n-manifolds) or
a fibre homotopically trivial stable normal bundle ( fA¢-manifolds).

LEMMA IL.7. M* is an fht-manifold if and only if there is a n-manifold M’ and a
degree one map M’ — M.

Proof. By transverse regularity, such a manifold M’, with M’ x R9< E(v},), exists
if and only if there is a fibre homotopy trivialization T'(v};)—S%

Boardman and Vogt have shown that PL/0 and F/O are infinite loop spaces [5]. It
follows easily that the suspension maps 7, (F/0)—n} (F/0)=5%*™¢(F/0) and
4 (PL/0)—> 7 (PL/0) =Q%*™* (PL/0) are monomorphisms onto direct summands.

LEMMA 118. If M* is an almost smooth, fht-manifold then A.(M*)=0 and
4,(M*)<bP,. If k=8n+2 then 4,(M*)=0.

Proof. Let ue[M¢, PL/0] and let h: Mj—M, be a degree one map where M’ is a
n-manifold. Then by the above remark du=0* (u) =0*h* (u)=0en,_, (PL/0)=T,_,.
Similarly, if ue[Mg, F/0] then by 3.1 o(du)=0* (u)=0*h* (u)=0en,_, (F/0). The
second statement follows from the first and the fact that the surgery obstruction
s:[M®"*2, FJ0]—-Z, is given by s(u) = (v, (M )u* (k,), [M]) =0, since the Wu class
V4n(M)=0.

PROPOSITION IL.9. If N* is a smooth, fht-manifold then I,(N*)=0 and
L,(N*)<bPy, . If k=8n+1 then I,(N*)=0. If N* is a n-manifold and k#5 (mod 8)
then I,(N*)=0.

Proof. The first two statements follow from II.8 since N* x S! is an fAt-manifold.
If N**~1 is a n-manifold and ue[Ng" ' A S?, F/O] then fz(du)=0 by 5.8. Thus
L,(N*)=1,(N*)nbP, ., =0 if k=1, 3, or 7 (mod 8) and the third statement follows.
(I am grateful to D. Sullivan for pointing out the first statement of I1.9.)

Finally, as an example, we compute, I, (CP(3) x S')=I'; =bPg=Z,5. (CP(3) x S!
is not simply connected, but our methods remain valid for special cases with simple
fundamental groups.) Now (CP(3) x S*) A S* is homotopy equivalent to
(CP(3)AS%)v (CP(3) A S*)v S2. Thus, since K0°(CP(3) A S*)=0,
image ([ (CP(3)x S*) A S?, F/0]—K0° ((CP(3)x S*) A S')) =image ([CP(3) A S?,
F[0]-KO0°(CP(3) A S?))=2Z?, with generators ¢, and £, which satisfy P(£;)=1+



406 G.BRUMFIEL

+p1 (&) +p2(&)=1+48(z'0)+32:15(z>-0) and P(&,)=1+32-45(z%0), where
ze H*(CP(3), Z) and o H*(S?, Z) are generators. Thus if ue [(CP(3)x S')o A S,
FJ0] extends to ae[(CP(3)x S')A S, F/0] and &=¢(a) =mé&, +né, then

du =s(1)=(})<L(CP(3) x S*' x S") (1 — L(&)), [CP(3) x S* x S'])
= (-3 (1 + (%) 2) ((48m/3) (zo) + (7 (32-15m + 32-45n)/45) (z°0),
[CP(3) x S' x S']) =—12m — 28neZ/28Z.

It follows that I, (CP(3)x S*)=Z,<Z,s.

Remark 11.10. R. Lee [16] has shown that every self-homotopy equivalence of
CP(n) x S' is homotopic to a diffeomorphism. If a manifold M* has this property it is
easy to see that I,(M*)=I(M"). Thus I(CP(3)x S')=Z,<Z,s.

Remark 11.11. Let ng (Diff(CP(n))) denote the group of pseudo-isotopy classes
of diffeomorphisms of CP(n) which leave fixed a generator of H? (CP(n), Z). Lee has
shown that g (Diff CP(n)) is isomorphic to the equivariant diffeomorphism classes
of differentiable, semi-free S actions on homotopy (27 +2)-spheres, with fixed point
set S°. (A group action is semi-free if it is free outside the fixed point set.) It follows

from results of Sullivan that the natural map I'; =7, (Diff (S¢))>ng (Diff(CP(3))) is
a surjection, where, if X7el’; corresponds to a diffeomorphism ¢:D®~xD°®, with
o |ss=Id, then y(27) |pe=0 and y(Z7) |cpay-ps=Id, where D®cCP(3). It is not
difficult to see that the mapping torus of y(27) is (CP(3)xS")#Z’. Hence,
7(£7)=0eng (Diff (CP(3))) if and only if y(Z7) is pseudo-isotopic to the identity,
or equivalently, if and only if there is a diffeomorphism (CP(3) x S")#Z27 =T, ;7\~
~xCP(3)x S' which is the identity on CP(3)x0. Since any diffeomorphism
(CP(3)xSH)#X"xCP(3)xS' is pseudo-isotopic to one which fixes CP(3)x0
[19; Lemma 4], this proves that kernel(y)=I(CP(3)xS')=Z,cZ,s and that
n¢ (Diff(CP(3))) =Z,.

Remark 11.12. For each integer j there is a manifold P 1-6 homotopy equivalent to
CP(3) with p; (P7)=(4+24j)z* Thus if ue[(P; x S*)o A S*, F/0] with & (@) =m¢é, +
+né, then du=s(7)=—(12+16j)m—28neZ/28Z. It follows that I,(P; x S')=0 if

j=1 (mod7) and I,(Py xS')=Z, if j#1 (mod 7). In particular, I,(N*) is not a
homotopy invariant of N*,
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