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Homotopy Equivalences of Àlmost Smooth Manifolds

G. Brumfiel

§ 1. Introduction. Let Mk9 k^6, be a simply connectée, oriented, closed combina-
torial manifold with a differentiable structure in the complément of a point. Let
MQ Mk — interior {Dk)9 where DkaMk is a combinatorially embedded dise. Mq
inherits a differentiable structure from Mk — (/?), hence ôMq belongs to Fk_i9 the group
of oriented differentiable structures on S*"1. In gênerai, dMleFk.x is not a homotopy
invariant of Mk. In this paper we study this non-invariance.

Specifically, let Bh(M0)czrk-l be the set of boundaries of homotopy smoothings
ofM0[18]. That is, Zk~1eBh(M0) if and only if there is a smooth manifoldMo, with
ôMq^I1*'1, and a homotopy équivalence of pairs /z:Mq, ôMq-*M0, ôM0. Then
Bh(MQ) Bh(M0), and Mk is homotopy équivalent to a smooth manifold if and
only if OeBh(M0). We will give a homotopy theoretic description of the set of
différences Ah(M0)={Zk~~1 — dM0 | 2lfc~1ejBfc(M0)}crfc_1, for certain classes of manifolds.

If dMoerk-1 is known, for example if dMo 0, this détermines Bh(M0). In any
case, Bh(M0) and /dj,(M0) hâve the same number of éléments.

Following Sullivan, two homotopy smoothings, h:M^ ôMq-^M09 dM0 and

g:Mç, dMQ-*M0, dM09 are called équivalent if there is a diffeomorphism fiM^M'o
such that h is homotopic to gf. The set of équivalence classes is denoted hS(M0). In
[18], Sullivan constructs a bijection 6:hS(Mo)^[MO9 F/0], where F/0 is the fibre of
themapitôO-^SF. Thus, if /j:Mo-»Morepresents an élément of hS(M0)9 the formula
d6(Mo, h) dMo~eMoerk..1 defines a map d: [Mo, F/0]-^/Vi,and 2lfc(M0)=image

The group Fk^1 can be described as follows. If k^2J—l or 2y —2 then F^x^
— bPk®(nsk_1/im(J)), where bPkczFk^1 is the cyclicsubgroup of homotopy sphères
that bound 7r-manifolds [9], [11], [15].

r2j_2~kernel(^2^-2—^^2)9 where ^ is the Arf invariant. xf/^O if and only if the
élément h*__1eExtA(Z2, Z2) is an infinité cycle in the Adams spectral séquence [6].
Mahowald has shown that hj_t is an infinité cycle if j^6. Also, if ^#1, r2^-3

If fc is odd then ôPk 0. If fc is even, the direct sum décomposition of rk-t follows
from properties of two homomorphisms, namely, the Kervaire-Milnor map Q:Fk^l-^
-*<_1/im(/), with kernel (g)=bPk [15], and an invariant/^ :rh^1^Z2 ifA:=4n+2#
^2^-2 [11], OTfR:Fk_1-»Zeniî Jc=4n, where 0lî a/I-22/|-2-(22n-1~l) num(Bnl4n)9
an 2 if n is odd, an 1 if « is even, and i?n is the Bernoulli number [9]. The restriction
offR to bPkczFk_1 is an isomorphism. Thus a homotopy sphère Ik"1eFk.1 is deter-
mined by Q(Zk-1)enl-1lim(J) andMZ
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The invariants fR:r4.n-1-+Zen and fR:bspm8n+2-*Z2 are natural, and can be

computed where bspm8n+2<=r8n+1 is the subgroup (of index 2) of homotopy sphères

that bound spin manifolds. However,/R:r8n+5->Z2 and the extension fR'.r8n+1-> Z2
dépend on choices, and can not be effectively computed. Thus our results on ^(Mq)
are complète only if k^6 (mod 8) and if, when k=2 (mod 8), Mj is a spin manifold.

The paper is arranged as follows. In §§ 2 and 3, we discuss Sullivan's work on
homotopy smoothings and describe the composition ^[MjjF/O]^.!-*
-*7ik-1lim(J). In § 4, we give some homotopy theoretic results on F/0. Many of the
results in thèse three sections are well-known. In § 5, we compute the composition
fRd: [Mqb, F/Ol-^n-i-^n- In § 6, we compute the composition/^: [M®"*2, F/0]-»
~+r8n+1-+Z2 f°r sPm manifolds, Mqw+2. The main results of the paper are Propositions

4.4, 4.5, 5.1, 5.2 and 6.5.

In two appendixes, we give applications of the results of § 2 through § 6. In
Appendix I, we set M2k CP(k) and characterize those homotopy (2k — l)-spheres
which admit differentiable, fixed point free, S1 actions. In Appendix II, we set Mk+1

S1 xNk and compute certain canonical subgroups of the inertia group, I(Nk)czrk,
of a smooth manifold Nk.

Many of the ideas in this paper are due to D. Sullivan. I am very grateful to him
for many conversations.

§ 2. Homotopy Smoothings. We first sketch a définition of the bijection 0 :

o, F/0"]. Let h:MQ-^M0 be a homotopy smoothing ofMj, and let h be a homotopy

inverse of h. Homotope the map h to a smooth embedding of Mq in the total

space, E(Ç0)9 of the (stable) vector bundle Ç0 Ço(h) h*(TMo') — TMo over Mo
where tMo is the tangent bundle. Then the normal bundle ofMq in E(Ç0) is trivial and

choosing a framing of Mq in E(Ç0) détermines a fibre homotopy trivialization of £0.

(In fact, it follows from the /z-cobordism theorem that there is a diffeomorphism
H:Mq x R«£*£(£S), q large, homotopic to h.) This defines an élément 9(h)e [M0,F/0],
which dépends only on the class of (Mo, h) in hS(M0). By construction, the composition

M0-+F/O-+BS0 represents Ç0(h)eKO°(M0l
Now, h induces a bijection h* :hS(Mi)^hS(M0)9 defined by h* (Mor, g) (Mg, %)

where g:Mo~>Mo. Also, there is the bijection A*:[M0, JF/0]^[Afo,i70] induced by
the homotopy équivalence /z:Mq->M0. Since JF/O is an f/-space, h* is an isomorphism
of groups. Consider the diagram

rk^ (2.1)

This diagram is very non-commutative. In fact, ifg:MQ->M'o is a homotopy smoothing
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ofMi then de(h*(g)) dMZ-dM0 (dM^-dMi) + (dMi-dM0) de(g)+d6(h). We
also hâve

PROPOSITION 2.2. IfgehS(M£) then

h*0h* (g) - 6 (g) h*0 (fc)e [A«, F/0]

This can be equivalently stated as follows. Suppose

—Mo
«\

is a homotopy commutative diagram and/, g, h are ail homotopy équivalences. Then

f—h^{g) and applying the isomorphism A* to the équation in 2.2 gives

9 (/) 9 (h) + h*(6 (g))e [Mo, F/0] (2.3)

We will prove 2.3. In §§ 5 and § 6 we give formulas for the différence d—dh* and
for the déviation of d from linearity (that is, in gênerai d is not a homomorphism of
groups).
Proofof'2.3. Choose a diffeomorphism H:MôxRq^E(^q(9(h))) homotopic to
/*, and, in the diagram below, let E(H) be the obvious bundle map covering H=H~1.

E{E)

I h l

Mo > M^

Since %±H~hn, it follows from the bundle covering homotopy theorem that there
is a bundle isomorphism, i?, covering the identity on E(Çq(0(h))), and a bundle

homotopy commutative diagram

E(n*h*(?(O(g))))

Let G:M'ôxR"^iE(iq(e(g))) be a diffeomorphism homotopic to g. Then /=
((7xl)£(^)5:£'(Â*(<J«(6»(g))) + ^(0(/î)))^MÔxR4xR« is a diffeomorphism

homotopic tof=gh where G=G~1. Thus the fibre homotopy trivialization

(«3 x «3) F:E(h*(?{0(g))) +
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represents 0(f). On the other hand, bimdle homotopy commutativity of the diagram
above implies that {n2 x n3) Fis properly homotopic to (n2GE(h) x n2H)A where

A:E(k*{?(0(g))) + £«(0(fr)))-+£(/>*(£«(0(g)))) x E(?{6{h)))

is the diagonal. Since (n2GE(h)xn2H)A represents h*(0(g)) + 0(h), we hâve shown
that 6(f)=h*(0(g))+0(h), as desired.

The tangential homotopy équivalence, that is, /*:Mo-»Mo with /**(tmo)=tmo' are

particularly important. Let Bth(Mo)czFfc_t be the set of boundaries of manifolds Mq
tangentially homotopy équivalent to Mo, and let Ath{M0)={Ik~1 -ôM0 | Ik~1eBth

There is a fibration SF-+F/0-+BS0, where SF=linu SF€ and SFq is the space of
base point preserving maps of degree one of Sq~1 to itself. Thus, given A:Mo->Mo,
we hâve /**(tMo) tMo, if and only if Ço(h) h*(TMo,)-TMo 0eK0°(Mo) or, equi-

valently, if and only if 0(/j)eimage([Mo, SF]^>[M0, F/0]). Thus Ath(M0) d(image

Two other subsets of Bh(M0) are of géométrie interest. Let Bc(M0)czrk^î be the

set of boundaries of smooth manifolds Mq combinatorially équivalent to Mo, and let
Btc(M0)czBc(M0) be the subset of boundaries of thoseMo such that some combina-
torial équivalence h :Mq^M0 préserves the (smooth) tangent bundles, that is, /z* (tMo)

TM0' as vector bundles. Let Ac(M0)={Ik~1-ôM0 \ Ik~ieBc(M0)} and let

Jrc(M0)={rk-1-aM0 | I^eB^Mo)}.
There are spaces SFL and FL/0, and a braid of fibrations

From smoothing theory [14], it follows that Jc(M0)=d(image([M0, PL/0]->
and that 4c(M0) rf(image([M0,5PL]->[M0, F/0])). Also, if

then dv 5*(i;)e7rfc_1(PL/O)=FJk_1, where d\Sk~1-^Ml represents
the homotopy class of the inclusion of the boundary, ôM0^M0.

In particular, d:[MQ,PLI0~]-+rk-.t and d:\Ml, »SPL]->Fjfe_1 are group homo-

morphisms. Also, Ac(Mq) and Jrc(Mo) are homotopy invariants ofMj.
Recall that for a simply connected, closed manifold, Mk, there is the surgery

obstruction s: [M*, F/0]-+P*, where Pk Z, 0, Z2, 0 if A;=0, 1, 2, 3 (mod 4), respect-

ively, defined as follows [18]. If ue [Mk, F/0], represent u by a framing /: M' xR9->
-»ls (£€(m)) of some manifold M'in the total space of the bundle Çq (u)=/* (u) over M.
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Then s(u)ePk is the obstruction to constructing a homotopy équivalence M" x Rq-+

-+E(Çq(u)), framed cobordant to M' x Rq in

PROPOSITION 2.4 (Sullivan). Suppose u:M£->F/0 extends to a map ù: M*->F/0.
Then duebPk. Infact, du=bs(ù) where b;Pk-+bPk is the natural projection.

PROOF. Represent ù by a framing of a connected sum M'#W in the vector
bundle E(Ç(ù)) over M where the projection Mq^M0 is a homotopy équivalence and
where W is an almost parallelizable manifold. Then s(û)= — [W~\ePn where Pn is

regarded as the group of cobordism classes of almost parallelizable PL manifolds. By
smoothing theory, in the complément of a point, M'# Winherits a smooth structure
from £(£(«)) and d(M'# W)0 dM0. Then rfw=3M^

REMARK 2.5. If k 4n and we[M4n, F/0] is represented by f:M' x R«-
then

s 00 (i) (index (M) - index (M')) (i) <L(Af) (1 - L({)), [M4"]>eZ

If /:=4«+2 and we[A/4n+2, JP/O], there is also a cohomology formula for s(u);
namely,

where t;(M)=l +v1(M) + v2(M) + ...eH*(M, Z2) is the total Wu class, and

0, Z2) is a suitable class [18].

§ 3. The composition gd: [Mq, F/0~]-+rk-.î->nsk-l/im (J)

Let S:^"1^]^^ represent the homotopy class of the inclusion of the boundary,
dMk0-*Ml. Then d induces 5*:[M£, JP/O]-*^*"1, F/0] nk.l (F/0). Further, image

(5*) is contained in the torsion subgroup of nk^1 (F/0), which is isomorphic to nl-J
im (J).

PROPOSITION 3.1. Let ue[Mh F/0]. Then

Q{du) ô*(u)e<_1/im(J) cz tt,., (F/0).

Proof. Let u=0(h), where h:M^Mo. Then w is represented by a fibre homotopy
trivialization of Ç0(h)=Ç0, defined by a framing H:Mq x R^F(^). The restriction
of £0 to 3M£ is trivial. For, if k -1 0 or 4 (mod 8), the Pontrjagin class of Ço \0Mou is

zéro, and if k-1 1 or 2 (mod. 8) £0 \dMou is fibre homotopically trivial. Thus, H
induces a framing dH:dM'o x R«^3M0 x R«, which represents 3* (u)e7ik_1 (F/0). It now



386 G.BRUMFIEL

follows from the définition of the Kervaire-Milnor map, q, and a little smoothing
theory, that d*(u)

COROLLARY 3.2. The composition od:[M%, F/0']-+nsk_1lim(J) is a homo-

morphism of groups. Thus, ifu9 i?6[Mj, F/0] then du+dv-d(u + v)ebPkŒrk_1.

COROLLARY 3.3. Let h:M'0^>M0 be any degree one map (not necessarily a
homotopy équivalence). Then Q(dh*(u)) Q(du), where we[M0, F/0] and /z*:[M0,

[M^, F/0]. Thus

§ 4. Discussion of F/0. If we are to apply the results of § 2 and § 3 (and those in
§ 5 and § 6 below), we must be able to compute [Mj, F/0]. In gênerai, this is difficult.
The following discussion relates the group [Mj, F/0] to more familiar homotopy
invariants ofMj.

There are fibrations S0-*SF—>F/0-+BS0—>BSF. Thèse induce an exact séquence
of groups

KO'1 (X) -> [X, SF] à [X, F/0] -i KO0 (X) -> J (X) -> 0

for any finite complex X. Further, since SFq+l is a component of QqSq, \_X, »SF]

linu [Sq a X, Sq] ns0 (X), as sets, where ns0 (X) is the 0th stable cohomotopy group
of X. Actually, %s0 (X) is a ring, and, as groups, \X, SF~\ ^ 1 +ns0 (X) where the addition

on the right is given by (1 +a)(l +£)= 1 +a+p +afi [13].
The Adams conjecture on J:K0°(X)-*J(X) can be stated as follows ([1]):
4.1 Let ÇeK0°(X). Then there is an integer, e(k9 £), such that J(ke(k'°(il/k-l)

(<^)) 0 where i//k is the Adams opération.
Since KO0 (X) is finitely generated, we may choose e(k9 Ç) e(k) independent of Ç.

For any function e(k), Adams has proved that kernel (J) i*([X, F/0]) is contained
in the subgroup of K0°(X) generated by the éléments A:e(fc)(^-l)(O? ^K0°(X).
The Adams conjecture 4.1 has recently been proved by Sullivan and Quillen.

PROPOSITION 4.2. // K0°(Mk)->K0°(M%) is surjective (e.g., if k-l^l or 2

(mod 8) or ifMk is a spin manifold), then each élément we[Mj5 F/0] can be written as a

sum, w=u + v, where weimage ([Mk, F/0]) and ueimage ([Mo, SF)~\.

Proof J(Ç0(w)) J(i*(w))=°- Tt follows that there is an élément ÇeK0°(Mk)
such that /(<0=0 and <J |Mo <^0(w) ^0. Then £ /*(w) for some ùe[M\ F/0]. Let
M==" |m0- Tnen w^-wekernel (**)= image (j*% and 4.2 is proved.

Remark 4.3. It is a conséquence of the Adams conjecture that for each prime p,
there is a homotopy équivalence (FI0)(p)~BS0(p) x Cok(J)(p) where X(p) dénotes the
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localization of X at p. Morevoer, SJip)~im(J)(p)xCok(J)(p), and the map
jip) : SF(p)-> (F/0)(p)is aproductmapy(p) x Id:im(J\p) x Cok(J\p)-*BS0(p) x Cok(J\p).
This factoring of (F/0)(p) enables one to also establish the conclusion of 4.2 in the

PROPOSITION 4.4. If u, ve[Mk0, F/0], with weimage ([M^, F/0]) and ueimage
([Mo, SF]), then d(u + v)=du+dverk.v

Proof. Let v=0(h\ and let h*(u) 0(g) where h:M'0^M0 andg:Mo->Mo are

homotopy équivalences. By 2.3, 6(f) u + v where/=Ag:Mo-^M

By the hypothesis, /z:Mq->M0 is a tangential homotopy équivalence. Also, the

maps Mo—?MqAf/O extend to maps M'-^M-^F/0. By Proposition 2.4, */w and rf/** (w)

belong to bPkerk_v Since /?*(L(M)) L(M') and h*(v2(M))=v2(M')9 it follows
from the formulas in Remark 2.5 that du=dh*(u). Thus d(u + v) dh*(u)+dv
— du+dv.

The following is an immédiate conséquence of Propositions 2.4, 4.2, 4.4, and
Remark 4.3, and is one of our main results.

PROPOSITION 4.5. Assume that &=é2 (mod.8) or that Mofc is a spin manifold. Then

Ah (Mok) (Ah (Mofe) n bPk) + Ath (Mok) ci F,_ t.

Hère, by the sum of the two subsets, we mean ail éléments I+E' where ZeAh(Mo)
nbPk3LndZ'eAth(M$).

Remark 4.6. Note that the map 5* : [Mq, SF] ->^- i (SF) rcJ_ t is an invariant of
the stable homotopy of Mj and can be computed as

3*: [S« a Mo\ S4] -> *<+*- (S«) ^_ 1? q large.

We will need the following familiar invariant. Consider the subgroup of éléments

(É, a)eK00(X)®n4k.1(X) such that^(0 Oeiy4fc(Jr, g) and a* 0:JHr4fc-1(Z)-^

-?ff4*-1^4*-1). Let X=ZUa^4fc5 and let ïeK0°(X) restrict to ÇeK0°(X). Then

phk{l)ep^{HAk{S4rk, Q)) Q, wherep:X-+S*k is the projection. Further, since | is

well-defined modulo p* (KO0 (S4% phk (%) is well-defined modulo p* (H4k (S4k, akZ)).
It follows that eR(Ç, a) (\jak)phk(l)eQjZ is a well-defined homomorphism. More-
over, the diagram

(4.7)
KO0(S8 aX)® Jr4t+7 (S8 AX)/eR
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commutes (when eR is defined), where 0* is the periodicity isomorphism and s is

suspension. eR can be interpreted as a functional opération from ^0-theory to
cohomology. If X=*S8n and Ce KO0 (S8n) is a generator, we recover the Adams homo-
morphism eil:7r8lI+4jfe_1(5r8n)->g/Z [2]. If X=MAQn and 0Len4n.t(Min) represents the
inclusion of the boundary, we get a homomorphism eR:K0° (Mon)-+Q/Z.

The following KO-theory invariant of F/0 bundles will also be essential.

PROPOSITION 4.8. There is an élément yeH-#0°(F/0) such that ph(y)
i*

ÂeH**(F/0, Q)~H**(BS0,Q). Further, if u, ve[X,F/(ï] then y(u + v) y(u)-
• y (v)e 1 +K0° (X\ where by y (u) we mean u* {y)s\ +K0° (X).

Proof The universal bundle over F/0 admits a unique spin structure. Thus, the
Thom space M (F/0) has two canoncial A'O-theory orientations, namely, an orientation
l^eKO0(M(F/0)) induced from M Spin, with^(l/1)=^(i-1)e^**(M(F/O), Q),
and an orientation, U2, vfithph(U2) $(l), induced from the sphère spectrum via a
fibre homotopy trivialization. Define yel +K0°(F/0) by the équation yU1

U2eK0°(M(FI0)). Then <P(l)=ph(U2)=ph(y)ph(U1) <P(ph(y)-A-1), hence
Â

The second statement follows from universal multiplicative properties of the
orientations Ux and U2.

The final three results in this section are technical results about the invariants eR

and y which we will need in §5.

Let ue[Mo, F/0] correspond to a homotopy équivalence h :Mr0-*M0. Homotope
h to an embedding h:M'0-+M0xR8q. The normal bundle of M'o inMoxR8*is
A*(-^o(4 and we hâve the "collapsingmap" c:T(e*J0)^T(h*(-Ç0)*J0.). Since £0

is a spin vector bundle there are Thom isomorphisms <PKO:K0(M'o)^KO°(T(h*(—
-WmoO) and $Ko &'*KQ{MQ)^Ktf>(T{eX% and a Gysin homomorphism

defined by h^(x)=0f

PROPOSITION 4.9. If i/e[Mo,F/0] corresponds to h:M'0->M0 then A*(1)
y(u)eK0(M0).
Proof This follows from the définition of y (u) and the observation that the fibre

homotopy trivialization

represents ue [Mo, F/0], where c is definedby embedding Mo x R8qczE(Çlq) x *** and

extending c, and n is the projection.

PROPOSITION 4.10(i) Let u, ve\_Mt\ F/0]. If t;e[Mo,jPL/0] or we^



Homotopy Equivalences of Almost Smooth Manifolds 389

(ii) Suppose M4." is a spin manifold. If ue [Àf4,", SF] or ue [M4", PL/0], then

Proof. Let y (m), y(v)eK0(M4n) extend y(«), y(v)eK0(MÎ"). By4.8, y(u+v)=
=y(u)-y(v), so y(v)-y(v)eK0(M4n) is an extension of y(u + v). Then

From the assumption, it follows that ph (y (v))=l +phn(y(v)); hence

(1/a.) <ph (fôô) p/, (7ÔÔ), [M4B]>

and 4.10(i) follows immediately.
For 4.10(ii), note that the Thom space of the normal bundle of Mo, ^(v^), has a

canonical iCO-orientation. This extends to some 7£0-orientation, U, of r(v^). Then,
since there is a degree one map S8q+4'n^T(v^), we hâve

(1/a,) <ph (y («) - 1) ph (U), [T (vM)]> eZ.

Since ph (y (u)) — 1 =phn (y (u)), it follows that

(I/O <phH(y(u))ph(U), [T(vM)]> Oefi/Z.

Similarly, eR{^{u)) {\lan) (phn{ïQ{u))ph(U)9 [r(»M)]> 06fi/Z, and
is proved.

PROPOSITION 4.11. Let ue [M%n, 5F]. J/ï^ eR (y (u)) ^ (3* (m))

^*(w)67T4ll_1(*S'ir) 7r4n_1. Moreover, eR(y(u)) has order apower ofl.
Proof. Let !?:Af0 x S8q-+SSq be the adjointof w:M0-^>SrF8€+1,and]etaeÂ'0()(5f8«)

be the generator. Then y (u)-n* (a) i;* (a), where n:M0 x S8q-+S8q is the projection.
Thus v* (a) - 7i* (a)=9 (y (u) -1 e #0° (S 8 g a Mo It follows that there is a homotopy
commutative diagram

jso.S8«HH\ v-i .-. -

b*(u)

From the définitions and diagram 4.7, one sees that eR(d*(u)) eR(y (u)).
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For the second statement, it is only necessary to observe that there are spin mani-
folds, N%n, with dNtn S4n-\ and maps g: Nj", dN40n->M40\ dM40n of degree a

powerof 2, say 2r. Then 2reR(y(u)) 2r

=eR(y(g*(u)))=Q,by4A0(ii).

§5. The composition fRd: [M40n, F/O]->Z0n. The invariant fR:rArn_1->ZQn is defined
as follows. Given I^-^r^^ let I4n~1=ÔWt9 where JF04n is a sinooth^pinmani-
fold such that the decomposable Pontryagin numbers of W4n vanish. Then

Utf»-1) (i)index (W4n)eZ/On-Z.

(It is proved in [9] that such manifolds W$n exist and thatfR is well-defined.)
It will be convenient to regard fR as a homomorphism/^r^^-^g/Z. Namely,

define/^I4""1) (£#„) index (W4n)eQ/Z, where W4n is as above.
Recall that the L-genus is given by

Ln(pt ...p.) (WnPJan(2n - 1)1 j,) + Ln(Pl .../>„_„ 0).

PROPOSITION 5.1. Let ue[Mtn, F/O]. Then

fR (du) (ifl,) <L (M) (1 - L (0), [M4"]> e Ô/Z,

/».-i({o(«)),/'.(O) andPn(Ç)lan(2n-l)ljHeQIZ isddeter-
mined (formally) by the équations

{lia.) <Â(0, [M4"]> eR(y (u))eQjZ

and

{lia.) <ph(O, [M4"]> eR(Ç0{u))eQIZ.

The proof of Proposition 5.1 will require some preliminary results.

First, note that since

(l/an) Ân (/>!...£,) (- num (BJ4n) pjan (2n - 1)! ;„) + ÂH(Pi... Pn. l9 0)

and

(I/Ophn(Pl... Pn) ((- lY^jjtJa,.{In - 1)!yn) + Jp/Ïn(p1 ...Ph_19 0),

and since num (BJ4n) and./n denom (BJ4n) are relatively prime, it follows that the

équations in 5.1 forpn(Ç)/an(2n — l)\jneQIZ hâve at most one solution.
Secondly, the computation ofpn {Ç)lan (2n — 1 )\jn in Proposition 5.1 is purely formai.

That is, we do not assert the existence of a vector bundle £ with the properties indicated.

However, Proposition 5.1 and Remark 2.5 are closely related. If we [M4?, F/0] extends

to ùe [M4n, F/O], then { Ç («) is an extension of £0 £0 (m). Remark 2.5 asserts that
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Moreover, y(û)eK0(M) extends

y(u)eK0(M0), hence eR(y(u)) (\Ian) <j>h(y(û))9 [M]> (lK)<i(O, [M]> and

also, of course, eR(Ç0) (lfo,)</>*(0> [M]>.
Recall that the image of the Adams homomorphism e^.n^^^QIZ consists of

intégral multiples of l/yn l/denom (BJ4n) [2]. Thus, there is a unique
homomorphism ëR:n\n-1-+QjZ9 defined by num (BJ4n) ëR{u)=eR((x). If a is the image of
the generator of 7r4n_1(50)=Z, then eR(a)=(BJ4n)=num(BJ4n)léznom(Bnl4n).
Thus, ëR is a normalization of eR, with ëR(oc) l/jn.

PROPOSITION 5.2. //we[M^w, SF], thenfR(du)=ëR(d*(u))eQ/Z.Inparticular,
fR(du) has order apower ofl.

Proof. Represent u by a tangential homotopy équivalence h0 : Mo' -? Mo. Let h dénote
the obvious extension h\M'-±M. Then tM/ /**(tm+/?*(<t)) as PL bundles, where

p:M*n-+S4n is a map of degree one and aen^n{BSPL). Since /*0 is a tangential
homotopy équivalence, and since index (M/) index (M), it is easy to see that the

Pontrjagin class pn(<r) 0. That is, a is a torsion élément of nAn{BSPL). Further,
JPL((r) d*(u), where JrPL:7r4/l(55PL)->7c4n(J55'F) <7î_1, and P(<r) du, where

p:n4n(BSPL)-+7z4.n-1(PL/0) r4rn-.l. It then follows from [9; Theorems 4.7, 4.8]
that num (BJ4n)fR(du) eR(d*(u)). This relation, together with 4.11, proves
Proposition 5.2.

Note that if ue[M^, SF]9 then Proposition 5.1 asserts that fR(du)= -pn(OI
an(2n-l)\jneQ/Z, where

Thus 5.2 and 4.11 imply 5.1 in the case ue[MÎn, 5F].

COROLLARY 5.3(i). The map d: [M^, SF']-^r4n-1 is a group homomorphism.
(ii) Ifh:MÔ^M0 is any degree one map, then the diagram

[Mo, 5F]
II.* * Fin xl 4/1-1

commutes.

Proof. This follows from 5.2 and 3.1 since fR@Q\rApn^1^ZBn® «^/im^)) is

an isomorphism.

COROLLARY 5.4. Ifus[Mt\ F/0] and ve[M?9 SF\ then d(u+v)=du+dv.
Proof. This follows from 4.2, 4.4 and 5.3(i).
We can also prove Proposition 5.1. By 2.5 and 5.2, Proposition 5.1 is true if



392 G.BRUMFIEL

weimage ([M4n, F/0]) or if weimage ([Mo4", SF~]). By 4.4, it suffises to prove that

(R) <L(M) (1 - Ltf(u + !>))), [M4«]>

L({(ii))), [M4"]> +

if weimage ([Af4n, F/0]) and ueimage ([M04n, 5F]). Since

an(2n-l)ljn, this is équivalent to proving that pn(Ç(u + v))lan(2n-l)ljn=pn(Ç(u))l
am(2n-l)ljH+pH(t(v))laH(2n-l)ljH. But, by 4.10(i), eR(y(u + v)) eR(y(u)) +
+^ (y (v)), and, of course, eR (f0 (w +1;)) e* (£0 (w +1;)) eR (£0 (1/)) + eR (<J0 (1;)). The
équations given in 5.1 which détermine pn(^)jan(2n — \)\jn now yield the desired

additivity resuit.
Remark 4.6 and Propositions 3.1 and 5.2 show that Ath(M$n) is computablein

terms of the stable homotopy theory invariant d*: [^aMq", Sq~]-+nq+4n_1(Sq)

7C4n_1. Proposition 2.4 and Remark 2.5, together with the Adams conjecture, show
that Ah (Mon)nbP4n is computablein terms ofL (M) andph (KO (M4")) ci/** (M4n, g).
Thus, Ah(M^n) (Ah(Mon)nbP4n)+Ath(M^n) is computable in terms of familiar
invariants.

It is interesting that by using the Riemann-Roch theorem for spin maps, Proposition

5.1 can be proved without using Proposition 4.2 or the Adams conjecture. Then
3.1 and 5.1 provide, in a sensé, a homotopy theoretic computation of the géométrie

map ^[Mo^f/Oj-^r^.!. However, use of the Adams conjecture gives the more
practical description of Ah(M£n) above.

We now give some corollaries of the results above.

COROLLARY 5.5(i). //M4" is a spin manifold andue[_M%\ SF] or ue[M%\
PL/0], thenfR(du) 0. Hence duenln.Jim(J)czr\n^.
(ii) If Mqu is a weakly complex manifold and we[Mon, *SF], then anfR(du) 0.

Proof In the notation of Proposition 5.1, it follows from 4.10(ii) that pn(Ç)l
an(2n-l)\jn 0. Hence, L(É)=1 andfR(du) 0.

We will give an alternate proof of 5.5 (i). Let /z:Mo->Mo represent u. Then
h* (tMo) tMo, as vector bundles if we [Mo, SF], and asFLbundles if we [Mo, PL/0].
In either case, W0 Mq#( — Mo) is a spin manifold, dWo dMo — dMo, and ail the

Pontrjagin numbers of W, including j9n(FF), vanish. ThenfR(du)=fR(dMo — ôM0)
(£0J index (W)=0.
5.5(ii) can be proved by an argument similar to the second proofof 5.5(i). Namely,

if Mo is weakly complex and Mq, Wo are as above, then Mq and Wo are weakly complex,

and ail the Chern numbers of W vanish. An invariant fc:r4n^1-^Q/Z is defined
in [9], using weakly complex manifolds instead of spin manifolds, and/c an/R. It
follows that 0 =fc (du) anfR (du).



Homotopy Equivalences of Almost Smooth Manifolds 393

COROLLARY 5.6. If ue[M$*9 PL/0], then num (BJ4n)fR(du) eR(y(u)), and

fR(du) has order apower of2.
Proof. The first statement follows from Proposition 5.1, since fR(du) —pn(Ç)/

an(2n-l)\jneQ/Z and (l/an) <Â(i), [M*»]> -num (BJ4n)pn(0!an(2n-l)\jn
eR{y(u))eQIZ.

For the second statement, let g:N$n, dN%n->M%n, dM£n be a map of degree 2r

where JVj" is a spin manifold. Then 2rfR(du)=fR(dg*(u)) 0 by 5.5(i).

COROLLARY 5.7. IfM%n is a spin manifold withfR(ôM^n)¥=0 (or if M%n is any
manifold andfR(dMon) has order not a power of2), then HBth(M%n) and 0^Bc(M^n);
that is, Mqh is not tangentially homotopy équivalent or combinatorially équivalent to a
smooth manifold.

Proof This follows from 5.2 and 5.6.

Hère is an example to show that/Rrf: [M<*", SF~\-+ZQn is not zéro in gênerai. Adams
has defined éléments Mken8k+2 such that 2juk 09 //fcrç#0 and fikrJe^m(J)c:nS8k+3 [2].
If M8fc+4 is not a spin manifold (for example, M8fc+4 CP(4A;+2)), choose xeH8k+2
(M, Z2) such that Sl(x)^0 and let g:M0->SSk+2 be a map such that g*(cr) x9

where aeH8k+2(S8k+2). Then the composition S8k+3^M80k+4-^S*k+2^SF repre-
sents d*(iikg)=nkti, since gô n. Since ëR(jukrj) iGQ/Z, 5.2 implies fR(d(fikg))
=ieQ/Z.

In [10] we showed that the élément fik could, in fact, be defined in n8k+2(SPL).
Thus, in the example above, we actually hâve u=jukge[M8k+4, SPL] and

dueAtc(M8k+6) is the élément of order 2 in bP8k+4. I do not know of an example of
ue[Mt, SF] or we[A#n, PL/0] such that an-fR(du)ï0.

We next give a somewhat simpler formula for fRd: [Mq", F/0~]-^Zen, when Mq" is

a spin manifold, generalizing 5.5(i).

COROLLARY 5.8. Let ue[M%\ /î/O], wAm? M04n w fl jt/wi manifold. Then

fR(du) (ien)<L(M)(l-L(Ol [M]>eÔ/Z, wtere L({) £s a^ m 5.1 and

an(2n—l)ljn)eQ/Z is determinedby the équations

(1/O<(J(£) - 1) Â(M), [M]> Oeg/Z

and(^ OeQ/Z.

/ This follows from 4.4, 5.5(i), and 2.4, and the Riemann-Roch Theorem for
manifolds with framed boundary.

The point of 5.8 is that for spin manifolds, fR(du) dépends only on the Pontrjagin
classes of M$n and £0 (w)> and not on the ATO-theory invariants y (m) and Ç0(u). This is

because if PF0 Mo#(-M0) then Wo is a spin manifold, dW0 dMi-dM09 and the
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Pontrjagin numbers of W, including/?B(W), are functions of the Pontrjagin classes of
Mo and Ç0(u). Thus fR(du)=fR(dWo) can be computed in terms of Pontrjagin classes

alone. 5.8 gives a spécifie formula.
In the next resuit, we study the déviation of d: [M4", F/0']->r4.n-.l from linearity.

COROLLARY 5.9. Let u, ve{M%", F/0]. Then

du + dv-d(u + v) (i) <L (M) (L («o («)) - 1) (L (Éo 0)) - 1

Proof. By 3.2, it suffices to prove that

A (<*u) + /„ (d») - fR (d (u + »)) (R) <L (M) (L ({0 (m)) - 1)

By 4.4 and 5.3(i), we may assume that m, t>eimage ([M4", F/0]). The formula now
follows from 2.4 since L(Ç(u + v))=L(Ç(u)) L(Ç(v)), hence

L(«(« + »)) - 1 (L(i(u)) - 1) (L({(»)) - 1) + (L(i(u) - 1) + (L(f (p)) - 1)

Finally, we investigate the non-commutativity of d with maps.

COROLLARY 5.10. Let we[M04n,^/0] and let h:M^M0 be a map of degree

one. Then

dh* (u) -du (*) {(h* (L(M)) - L (M')) (h*L {i0 (u)) - 1), [M']>

Proof. By 3.3 it suffices to compute fR(dh*(m))-fR(du). By 4.4 and 5.3(ii) we

may assume that u extends to ûe[M4", F/0]. Then, by 2.4

fR(dh*(u)) - fR(du) (R) {(h*L(M) - L(M'))-(L(Uh*(u)) - 1), [M'

- L(M'))'{H£0(h*(u))) - 1), [M']>eG/Z.

COROLLARY 5.11. If h:MQ-+M0 is a degree one map of An-manifolds which

corresponds rational Pontrajagin classes, then the diagram

[Mo, F/0] „

{Mi, F/0]/1,

commutes. Thus, if h is a homotopy équivalence which corresponds rational Pontrjagin
classes then Ah(M0) Ah{Mq).
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§ 6. The composition fRd: [M8/I+2, i70]->Z2. In this section we consider spin manifolds

of dimension 8«+2. The main resuit is Proposition 6.5.

In [4], ZO-characteristic numbers 7iJ(M8rt+2)eZ2, where J=(j\...jr) and nJ

nh...7iJreK00 (BSO) are defined for smooth spin manifolds. In [10], the définition is

extend to almost smooth manifolds, provided that /^(0). Roughly, this is done as

follows.
Let M8n+2 be a spin manifold with dM8n+2er8n + 1. Since v8jo is a spin vector

bundle, the Thom space T(v^0) has a canonical ÂX)-orientation. This extends to a
ÂX)-orientation UMeK0°(T(v^)). Also, vMo extends to a vector bundle v^ over M
and we hâve vM v^ +/?* (g) as PL bundles, where p;M8n+2-+S8n+2 is a map of
degree one and aen8n+2(BSPL). Moreover, v^ is well-defined by the additional
assumption that eRJPL(a) 0f where JPL:7r8n+2(BSPL)-+ n8n + 2(BSF)^=ns8n+1 is the
PL /-homomorphism and eR:ns8n+1->Z2 is the homomorphism defined by Adams,
which splits off image (/) as a direct summand [2]. Set

tt'CM8^2) c**KO(rcJ(v*))eK0o(S8*+8n+2) Z2!

where <PK0 : KO (M)^K0° (T(v^)) is the Thom isomorphism defined by multiplication
by UM9 and c:S8q+8n+2-^T(v^) is the map of degree one defined by an embedding
^8n+2_^8<*+8H+2 jf /^ (o), the ^TO-operation nJ has filtration greater than zéro,
hence the product nJ(v%)- UMeK0°(T(v8^)) is independent of the choice of the extension

UM.

We will also use the notation

where [M]K0 is the fundamental X0-homology class dual to UM.

E. Brown has defined a homomorphism \j/ : Os8p"t2 - Z2, extending the Kervaire-Arf
invariant ^frnamed^Z2 [7]. In fact, Brown's définition of i/t applies to PL manifolds
M8n+2, with w1(M) w2(M) 0. From the main results of [4], it follows that for
smooth M8n+2,

il/(M8n+2) £ aj-nJ(M8n+2) + £ ^•w/(M8/l+2)eZ2

where a,, PteZ2, J= (j\..Jr)9 1 <7i< ...<yr, and the w1 are Stiefel-Whitney numbers.

LEMMA 6.1. The coefficients Pl9 oij can be chosen such that (Xj 0 ifn (J) =j\ +...
+jr*2n andln(j)=:2n (XjnJ~ (L"1^,,^, 7C2...7r2n)(mod. 2) where L= 1 +LX +L2 +

is the Hirzebruch L-polynomial.
Proof. We only outline the proof of this lemma, and refer to [4] and [8] for détails.

The homotopy éléments in n8n+2 (M spin) which hâve Adams spectral séquence
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filtration greater than 2 are precisely the classes {MSn+2} with wI(M*n+2)
nJ(M8n+2)=0 for n(J)>2n. It can be shown that ^({M8n+2})=0 if {M8n+2}e

e ^fpin 2
n8n+2 (M spin) represents such a homotopy élément. Thus a, 0 if n (J) < 2n.

If n(J)==2n + l, then the ^TO-characteristic number nJ coincides with a Stiefel-

Whitney number for ail (8n+2)-spin manifolds. Thus we may choose the coefficients
P1 such that aj 0. Finally, if T2 is the torus with the exotic spin structure and N8nis
a spin manifold, then i//(N8nxT2) =index (N8n) (mod 2). Since the Stiefel-Whitney
numbers of N8n x T2 vanish, it follows that 2n(J)=2n aj7^ (L"1)^^, n2...n2n).

Let b spin8n+2 c r8M+1 be the subgroup consisting ofhomotopy sphères that bound
spin manifolds. In [10], we showed that r8M+1=èspin8rt+2©Z2. An invariant
fR:b spin8n+2-»Z2, splitting off Z2 bPSn+2czb spin8n+2 as a direct summand, can be

defined as follows. Given r8n+1e6spin8n+2, let £8n+1 3Mo8ll+25 where M08n+2 is a

spin manifold such that ail the Stiefel-Whitney numbers of M8n+2 vanish. Then

fR(I8n+1) i/f(M8n+2) - (L-^O, n2 .- n2n) (M8n+2)eZ2.

Let h:Mo->Mo be a homotopy équivalence with 0{h) ue[M$n+2, F/0]. The spin
structure on Mo induces a spin structure on Mq and, since h:Mo^Mo is a homotopy
équivalence, \I/(M') ^(M). Further h* (w1(M)) wI (M'), hence

fR(du) fR(dMi - dM0) (L-%n(M) - (U1)2n{M')eZ2.

We now seek a formula expressing the ^TO-characteristic numbers of M'in terms
of invariants of M and of the map u:M8n+2-*F/0.

PROPOSITION 6.2. Let ue[M8n+29 F/0] correspond to the homotopy équivalence

h:Mo-*Mo, where Mo is a spin manifold. Then

nJ (M') <tij (v£ ~ $ (u)) y* (u), [M]K0> e Z2

where h*(vtI-^(u)) v^eK0°(Mf) and y*(u)eK0(M) extends y(u)eK0(M0).
Proof. Homotope h\M'-*M to an embedding h:M'-*MxR8q. The PL normal

bundle of M'in M x R8q is h* ((- Ç)8q), where A* (vM - {) vM,. By the A-cobordism

theorem, the embedding h extends to a PL isomorphism H:E(h*(-^)8q)^M xR8q.

Let cl=H-1:T(eîï)-*T(h*(-Çj}f.) be the induced collapsing map.
Now, ^|Mo =io(u)=^o and the canonical Â'O-orientation of the Thom space

r(A*(-£o)Sfo') extends to a iiTO-orientation l/6J8:00(r(A*(-{)îlr))- For> **(-€)=
vm,-A*(vm)=(v^-/î*(v£)) + (/)*((t/-(7), where/iM'^^8^2, and the Thom

space of the PL bundle a1-g over £8ll+2 is £0-orientable. Further, by 4.9, cî(C/)e
eK0°(T(e8Mq)) restricts to ^0(y



Homotopy Equivalences of Almost Smooth Manifolds 397

There is a homotopy commutative diagram

V V
(vm68) =5 r(vip)
AÏ 1 (h x Jd)J

where the diagonal A:M-+MxM and the composition (hxId)A\M'-*M'xM'->
->MxM' are covered by bundle maps J : vif9-*v8^ x*# and (h x/</)J: v^*-»v8j x

The proof of homotopy commutativity is similar to the proof of 2.3 and will be

ommitted.
We thus hâve

(c'f {A* {h x Idf ({n] (vi - «)• l/M)-17)

and Theorem 6.2 is proved.

LEMMA 6.3. Ifn(J) 2nthen

W(v*m - €S(«))-y*(u), [M]K0> <^(v^).y*(W), [M]X0>eZ2.

/. It suffices to prove that tt/(v^-^) ^j(v^) (mod 2) in KO0 (M).
First, 7rJ(v^-^J) is independent of the choice of £*, extending £oeJ£0o(Mo). For,

if a =/?*(cr), where (rei^O0 (S8n+2), anàrieK0o(M) then tc7^ +a) =S7tr(rj) n(a). But if
/V(0), 7rJ'(?/)7rJ"(a)=O unless /"=/, and 7rJ(a)=0 unless J=(2ri), since products
of éléments of high filtration vanish. But also n(2n)((r)=0 because (T=/if/2, where

lieK0°(S8n) and rj2:S8n+2-*S8n, and ni2n)(ju)^(4n-1)!^. Thus ^(if+a)*^(ij).
Secondly, since /(Ço)=^> ^o=^fc ^e OA* -1 (éfe) f°r some (arbitrarily) large integer

e and 4e#0°(M0). Since 2<^2 and (^*-l)4, Jk odd, extend to KO0(M) and since

xlt^-l^^k-^ + tyK-l^ it suffices to prove 7rJ(^i+2e(iA2-l)f/2) 7rJ(f/1)

(mod 2) and ti7^ + (\j/k-1) i/Js/^) (mod 2), A: odd, where f|x, ^2e^0°(M) and
°

If we set nt=Zjzo nJtJ then

^(^i + 2c(iA2 - 1) if2) »,(ifi)^((^a - 1) niT s ^(ifi) (mod 2),
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because e is large, hence 2e-fold powers vanish in KO0 (M). It follows that
nJ{ni +2e{xjj2-1) ^n'im) (mod 2).

If k is odd it suffices to prove that ail products x• nJ(((i/fk — 1 rçfc) 0 (mod 2), where

7> 1, filtration (x) Sn — 4j ify is even, and filtration (x) Sn — 4j—2 ify is odd. Now,

n,(W - 1) 1 + [V {V(r,)) - n1 (,)] t

An easy induction shows that it suffices to prove x- (nJ (il/k(rj)) — nJ (r})) 0 (mod 2).
But a computation in â:0° (BSO) shows that

nJij/k - k2jnJ - (2k2j(k2 - l)/4!) (tt0'^ -;V+1)

has filtration greater than 4/+4. Since k is odd, 2k2j{k2 — \)jA\ and A:2j — 1 are even

integers, hence

x (ti0' 1} -jnJ + 1) (ri)) 0 (mod 2.).

LEMMA 6A {(L-1)^)^
Proof. Let y* (w) 1 + y. Then L^,1 (v^) y has filtration 8« +2, and we hâve a homo

topy commutative diagram

M -t MaM L2%Ay

i ï r î
S8w+2->(M/M(8""1)) a M -> £S0<8n> a J350-^B50<8n + 2>

The product LJnA (v^)-y can thus be computed by evaluating the cohomology map
Z2 H8n+2(BS0(Sn+2}, Z2)->H8n+2(M, Z2) in the diagram. The results of [4] on
the opérations nJ: BS0-+BS0 <8«>, n(J) 2n, can be used to show that this coincides

with < v2An (M)-w2 (y (u)), [M] > eZ2.
Note that since (y — l):F/0^>BS0 is a homotopy équivalence on the 5-skeltons,

w2 (y (u)) u* (k2), where ue [M08n+2, F/0] and k2 e H2 (F/0, Z2) Z2 is the generator.

PROPOSITION 6.5. Le* we[M08lI+2, F/0], w/rerg M08w+2 is a spin manifold. Then

fR(du) (v\n(M)-u* (fc2), [M]>eZ2.

Proof. This follows immediately from 6.2, 6.3, 6.4 and the formula
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COROLLARY 6.6. d: [M08n+2, F/0]->F8n+1 is a group homomorphism.
Proof. This follows from 3.2 and 6.5 and the fact that k2 eH2 (F/0, Z2) is primitive.

COROLLARY 6.7. Let h:M^M0 be a map of degree one. Then dh*(u)-du
<(v24n(M')-h*(v24n(M))yh*u*(k2), [M']>e6P8M+2 Z2, where We[M8"+2, F/0].

Inparticular, ifh is a tangential map or a homotopy équivalence, then dh* (u) — du. Thus

Ah(M0) is a homotopy invariant ofSn+2 spin manifolds.
Proof. This follows from 3.3 and 6.5.

COROLLARY 6.8 Let we[M08n+2, PL/0]. Then fR(du) O.

Proof PL/0 is 6-connected, hence w*(A:2) 0 and 6.8 follows from 6.5.

Remark 6.9. In §5, we showed that for 4/i-spin manifolds, fR(Ac(M£n))
fR(Ath(M£n)) 0. For (8>r+2)-spin manifolds, fR(Ath(M$n+2)) need not be zéro. For

example, ifM08/î+2 (N8n x S2)0 and index (N8n) is odd, and u: (NSn x S2)0^>S2^SF,
then fR (du) =1.

Remark 6.10. Let M8n+2 be a closed, smooth spin manifold. The above results,
along with Proposition 2.4, détermine the exact séquence of Sullivan [18],

O- hS(M8n+2)^ [M8"+2, F/0] ^ Z2.

Namely, if we[M8w+2, F/0], then

Thus, the cohomology formula of 2.5 simplifies for 8«+2 spin manifolds.
The Adams conjecture, and the resulting factoring (F/0)(2) 2?S0(2)x (CokJ\2)f

implies that 0 if and only if v\n(M) w2(y) 0 for ail yeK0°(M).

Appendix h S1 actions on homotopy sphères

It is known that equivariant diffeomorphism classes of differentiable, fixed point
free S1 actions on homotopy (2«-l)-spheres, n^4, correspond bijectively with
équivalence classes of homotopy smoothings of CP(«~1) [12]. The correspondence
is defined as follows. If S1 acts on Z2""1, there is a diagram

ï
p2n-2 _ v2n-l CP(n

l
-1)
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where h classifies the principal S1 bundle over P2n~2 given by the action of S1 on
jr2n-i ^n eaSy Spec^rai séquence argument shows that h is a homotopy équivalence.

There are homotopy équivalences CP(«— 1)—>CP(«)0—>CP(«— 1), since CP(n)0
is the total space of a D2 bundle, H, over CP(w— 1). (If CP(n — 1) is regarded as the

space of lines in C" then His the dual of the "canonical" Une bundle.) Consider the

diagram

hS(CP(n - 1))-^ [CP(n - 1), F/0] -^P2n_2

!<•
^

î^
^

(1.2)

hSiCP(n)0) *k [CP(n)o,F/0] ^F^
where, if /î:P2w"2->CP(«-1) then i*(P2n~2,h) is the homotopy équivalence

LEMMA 1.3 (i). Diagram 1.2 commutes.

(ii) d6i*{P2n-2, h)=I2n~ier2n_l, where Z2»'1^2»-2 is as in diagram 1.1.

(iii) si*d\hS{QP{n)^)-^P2n-2 ^ *Ae géométrie obstruction tofinding a codimension

2, homotopy CP(«~1) //i a homotopy CP(n)0.
The proof of 1.3 is relatively straightforward and will be omitted. It follows from

1.3 that the set of homotopy (2«—l)-spheres which admit free S1 actions coïncides
with 4^/tf(CP(« -1))))=^
Dénote this set by Éh(CP(n)0).

We now want to apply the results of § 2 through § 6 to compute Bh(CP(n)Q).
First, it follows from the exact séquence

KO-x (CP (n)0) -* [CP (n)0, SF] ^ [CP (n)0, F/0] -> X0° (CP (n)0)

czand results of [3] that [CP(n)0, F/0]=Z[(n~1)/2]e[CP(«)0, 5F], where z[("-1)/2]

cimage([CP(«), F/0]->[CP(«)o, F/0]) and image(Z[(w-1)/2]->^0°(CP(«)0)) is gen-
erated by éléments ke(\l/k-l)(Ç), ÇeK0°(CP(n)o). In theory it is thus possible to
compute the fibre homotopically trivial bundles over CP(/î)0. We hâve done this for

[12]. Let œ=r(H- l)eK0°(CP(n)), where r forgets the complex structure.

LEMMA 1.4. Kernel (^0°(CP(8)0)->/(CP(8)0)=Z3 has generators ^=
+98û)24-lllct)3, {2 =240g>2 +380û)3,anc/^3 =504œ3.7jTn<8, A:erne/ (KO0(CP(n)°)^>
->/(CP(n)0)) to generated by £l5 £2, ^3 restricted to KQ°(CP(n)0).

Next, we need to compute si*:[CP(ri)0, F/0]->P2rt_2.

LEMMA 1.5. If n \ or 3 (mod4) and we[CP(«)0, F/0] then si*(u)=$)
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In particular,
(i)5/*([CP(«)0,SF])=0
(ii) If n 5 and ^0(/*(w))=m^ +«£2 then

si*(u) -4m2 + 10m + 28neZ.

In particular, if si*(u)=0 then 10m 0 (mod 4), or, m 0 (mod 2).

(iii) If n=7 and ^oO'*(w))=Ki+«^2+^3 then

si* (u) (- m (32m2 + 3Oi)/3) + 84m2 4- 224mn - 384n - 496qeZ.

Proof. The formula for s was given in Remark 2.5.

Statements (ii) and (iii) follow from 1.4 and explicit computation of theL-polynomials
in the formula.

LEMMA 1.6. Ifn~2 (mod 4) and we[CP(«)0, F/0] then si*(u)
<vl2(CP(n-l))i*u*(k2)9[CP(n-lïï}eZ2.
Thus si* (m) =0 if and only if w2 (y (i* (u))) i*u* (k2) =0, or equivalently, if and only if
Pi (£oO*(w))) 0 (mod 48). In particular,

(ii) If n — 6 and £0 (/* (m)) =m<!;1 +«^2 then ji* (u) —m (mod 2).

/. The formula follows from 6.5 and 6.10. If « 2 (mod 4) then

(1))#0 and the second statement follows. Statements (i) and (ii) also

follow easily.
We do not hâve gênerai results with which to compute si* if n 0 (mod 4). The

following conjecture is probably true.

L7(ii) is true ifj<6. For example A2=^2e7i2, hl v2ens69 and /*3=<72e7is14.

We can use the results 2.5, 3.1, 4.4, 5.2, and 6.10 to compute d\ [CP(n)0, F/0]

Conjecture 1.7®. If n 0 (mod 4), n*V, then «?([CP(n)0, ir/0])=0.
(ii) There are éléments h) e 7i2i+1 _ t (SF) such that ifw : CP (2j)0^S2J+i~ 2-iSFthen

2. The summand Z(2"/"1-1)cz[CP(20o5 ^/0] can be chosen so that

LEMMA 1.8. We hâve d(Zlin-1)/21)czbP2n. Specifically,
(i) IfueZc:[CP(4)O9FI0]andÇo(u)=mti then du l0m-4m2eZ/28Z=bP8.
(ii) IfueZ2c[CP(5)0, F/0} and io(u)=mi1+ni29 then du=meZ/2Z=bP10.
(iii) IfueZ2cz [CP(6)0, P/0] aw/{0(tf)=w{, +"£2, r/rarfw (-m(32m2 +301)/3)

+ 84m2 +224mfl-384/îeZ/992Z=6P12.
(iv) IfueZ3cz [CP(7)0, F/0]



402 G. BRUMFIEL

Proof. Zc(n~1)/2]cirnage([CP(«), F/0]->[CP(w)o, F/0]), hence the first statement
follows from 2.4 and 6.10. Statements (i) and (iii) follow from 1.5 and 2.4 and (ii)
follows from 1.6 and 6.10.

Spécifie formulas for é/(ZC(/i"~1)/2]), «^8, would only require extending the compu-
tations of 1.4 and 1.5.

Recall that as a set [CP(/i)0, SF~]=n°(CP(n)0). In [12] we computed the p-

primary summand p7rs0(CP(«)0) and the map pns(CP(n)0)-^pn°s(S2n~1)=pn2n-i for

n^ (p2+2p)(p-l)-2, p odd, and we computed 2^°(Ci)(/î)o)->24-i f°r n^U.
Thus, using 5.2 and 6.9, we also computed d:[CP(n)0, SF]-+r2n-1 if » 0, 1, or
2 (mod 4) or if n V-1. (note that by 5.5(ii), aJR(d[CP(2n)0, SF])=0 and by 6.9,

/fl(df[CP(4« + l)0, 5F]) =0.) Thèse results involve computations in stable homotopy
theory and are too complicated to reproduce hère. We will state the conclusions for

LEMMA I.9(i). [_CP(4)0, SF~]=Z2 andd([CP(4)0,
(ii) [CP(5)0,SF]=Z2 and d([CP(5)O9 SF]) Z2 {
(iii) [CP(6)0, SF]=Z2+Z3 andd([CP(6)0,
(iv) [CP(7)0, SF]=Z2+Z3 andd([CP(7)0,
The construction of the non-zero élément of J([CP(6)0, SF~]) is described in § 5,

foliowing the proof of 5.7.

Finally, we combine the results 1.5 through 1.9 to describe the set of homotopy
sphères of dimensions 7, 9, 11, and 13 which admit free S1 actions. That is, we

compute Bh(CP(n)o)=d((si*)-1(O))czd([CP(n)o, F/0])=^(CP(«)0)c=r2n_1, for
n=49 5, 6, and 7.

THEOREM I.10(i). r7=bP8=Z/2SZ and Bh(CP(4)o) {l0m-4rn2/meZ}
{0, 4, ±6, ±8, -10, 14}cZ/28Z.

(ii) r9=bP10®(ns9/im(J))=Z2®Z22 andBh(CP(5)0)=Z2 {v3}Œ(ns9/im
czF9.

(iii) rn=bP12 =Z/992Z andBh(CP(6)0)
{(-m(32m2+301/3) + 84m2+224rn«-384« | m, neZ, m even}czZ/992Z.
(iv) r13=7rs13=Z ^(

Appendix II. Applications to inertia groups

Given a smooth manifold Nk, the inertia group of Nk, I(Nk)c=.rk, is defined to be

the group ofhomotopy sphères Ik e Fk such that there is a diffeomorphism Nk^Nk# Ik.
Define Ih(Nk)cI(Nk) to be the subgroup of homotopy sphères IkeI(Nk) such that
some diffeomorphism Nk^Nk#Ik is homotopic to the identity. (By the "identity"
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Nk=Nk# Ik we mean the obvious PL identification.) Similarly, define Ic (Nk) c Ih (Nk)
to be the subgroup ofhomotopy sphères Ik such that some diffeomorphism Nk^Nk#Ik
is PL isotopic to the identity. Equivalently, IkeIc(Nk) if the smoothings Nk and
Nk#Zk are concordant.

The group Fk is naturally isomorphic to the group of isotopy classes of orientation
preserving diffeomorphisms of S*"1. If IkeFk corresponds to the diffeomorphism
a:Sk~1^Sk~1 then ZkeI(Nk) if and only if there is a diffeomorphism hiNfaNç such

that h |djvo=sk-i <t. Let h: Nk->Nk also dénote the PL extension of h defined by coning
h \ÔNo over DkaNk. It is easy to see that the mapping torus of h, Th=Nk xl/(x, 0)

(h(x), 1), is an almost smooth manifold, with d(Th)0=Ik. Further, ZkeIh(Nk)
(resp. ZkeIc(Nk)) if and only if h can be chosen such that there is a homotopy équivalence

(resp. a PL isomorphism) H:Th->NkxS1, with H\Nkx0=Id. Then H:(Th)0-+
-?(A^eS1^ is a homotopy smoothing of (iVfc x S1)o.

Now Nk x S1 is not simply connected. However, if Nk is simply connected, the

map 0:hS((Nk x S1^)-*[(Nk x S1)^ F/0] is still useful. There is a natural décomposition

[(NkxS1)0,F/0]~[Nk,F/0~]@[N%AS\F/0]. The first summand contains the

image under 9 of the homotopy smoothings gxId\{Nf xSl)0-^(NxS1)0, where

g:N'-+N is a homotopy équivalence. The second summand corresponds bijectively
with the homotopy smoothings described above, H:(Th)0->(NkxS1)o, H\NkX0=Id,
where h'.No^No is a diffeomorphism homotopic to the identity. Dénote this second

set of homotopy smoothings of (Nk x S1^ by hS((Nk x S1^).

PROPOSITION II.l. Ih(Nk)=d(6(hS(NkxS1)0))=d([NÏ>AS\F/0~])czrk.Also9kk
Proof. This follows from the discussion in the three paragraphs above.

We can thus use the results of § 2 through § 6 to compute Ih(Nk). If we[iVo a S1,

F/O], k odd, the formulas in 5.1 and 6.5 forfR(du) simplify.

PROPOSITION II.2. If N8n+1 is a simply connected spin manifold and

ue[N$n+1AS\F/0~] then fR(du)=0. Thus Ih(N8n+1) is contained in the summand

(ns8n+Jim(J))c:rSn+1andIh(N8n+1)^Q(lh(N8n+1))is
Proof Since u*(k2)=0, the resuit follows from 6.5.

PROPOSITION II.3. IfuelNÎ"-1 a S1, F/0] then

fR(du) (- i) /lCjV4""1 x S1) (JtQ&OJa&k - 1)!à)a(»), [N4""1 x S

wherepH(Ç) is as in 5.1 andpk(Ç)=pk(Ç0(u)) ifk<n.
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Proof. Since cohomology products vanish in TV4""1 a S1, we hâve (1 — L(Ç))= —

"-(S=i(80*/fl*(2k"-1)U)P]k(€)) and the result follows from 5.1. We point out that
pn(Ç) is determined by the équations (-num(BJ4n)/an(2n-l)ljn)pn(Ç)=eR(y(u))e
eQ/Z and ((-l)n-V;K(2«-l)!Â)^«)=^(^0(W))ee/Z.

Note that by 5.9, </: [j\$ a S1, F/0]->rfc is a group homomorphism if k=4n-\.
Actually, if u, DefiVjA^F/O] correspond to H:(Th)0^(NkxS1)0 and G:(Tg)0-+
(iV^xS1)^ respectively, where h, g'.No^No are diffeomorphisms, then d(u + v)erk
corresponds to the diffeomorphism (h \dNo)-(g |ôiVo):5'&~1^Sffc~1. Since this composite
diffeomorphism also corresponds to du +dv, we hâve that d\ [Nq a S'1]->Tk is a group
homomorphism for ail Nk.

There is a braid of four interlocking exact séquences

Hère, a\rk-*hS{Nk) is defined by a(Zk) (Nk#Zk9 Id#(point))ehS(N% Ikerk.
Since kernel (aJnfeP^+^fa^^AS11, i70])=^(W(((^x5fl)o))nZ?Pfc+1=4(iVfc)n
r\bPk+l9 we see that Ih(Nk) is very useful for Computing hS(Nk).

If we replace F/0 by PL/0, the cofibrations Sk-i-+N%-+Nk-+Sk->N0ASi yield

an exact séquence [iV^AS1, PL/0]-4rfc->[iVfc, PL/0]^[iV5, PLIG^r^. Since

[iV*, PL/0] and [iVo, PL/0] correspond to concordance classes of smoothings of TV*

and Ni respectively, it is clear that Ic{Nk)=d{lNk0AS\ PL/0]) {Zkerk \ the

smoothings Nk and Nk#Ik are concordant}. The following is also clear.

PROPOSITION II.4. Ic(Nk) is a homotopy invariant ofNk.
There are natural subgroups Ith(Nk)czIh(Nk) and Itc(Nk)aIc(Nk) defined by

Ith(Nk)=d([N%AS\SF]) and Itc(Nk)=d(lN^AS\ SPL]). Geometrically,
Ith(Nk)c:rk(resp. Itc(Nk)czrk) corresponds to those diffeomorphisms <r:Sk~12tSk~i
such that there is a diffeomorphism HiNq^Nq, with h \SNo=<r, and a tangential
homotopy équivalence (resp. PL équivalence preserving the smooth tangent bundles)

H:(Th)0->(NkxS1)0 with H\m*0=Id.

PROPOSITION 11.5®./*(lc(N*n-x)) and fR(Ith(N*n-1))c:Z9n are 2-primary
groups.

(ii) IfN*»-1 is a spin manifold thenfR(Ic(N*n-1))=fR(Ith(N*n~1))=O
(iii) IthiN4""1) and /^(iV4""1) are homotopy invariants.
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Proof. Thèse results follow from 5.2, 5.5, and 5.6. It follows from the construction
given after the proof of 5.7 that if w2(N8k+3)^0 then the élément of order 2 in

belongs to Itc(N8k+3).

PROPOSITION II.6. Ith(N8n+l)^Qlth(N8n+1)andItc(N8n+1)^QItc(N8n+i)are
homotopy invariants of(8n + l)-spin manifolds.

Proof. This follows from II.2.
Next we consider manifolds with a trivial stable normal bundle (7c-manifolds) or

a fibre homotopically trivial stable normal bundle (//tf-manifolds).

LEMMA II.7. Mk is an fht-manifold ifand only ifthere is a n-manifold M' and a
degree one map M'->M.

Proof By transverse regularity, such a manifold M', with M' x RqczE(vqM), exists

if and only if there is a fibre homotopy trivialization T(vqM)-*Sq.
Boardman and Vogt hâve shown that PL/0 and F/0 are infinité loop spaces [5]. It

follows easily that the suspension maps n*(F/0)->nl(F/0)=Q{?m*d(F/0) and

n* (PL/0)^n% (PL/0)=OÏamed (PL/0) are monomorphisms onto direct summands.

LEMMA II.8. If Mk is an almost smooth, //tf-manifold then Ac(Mk)=0 and
Ah(Mk)czbPk. Ifk 8n+2 then Ah(Mk)=0.

Proof Let we [Mq, PL/0] and let h:MQ-+Mo be a degree one map where M' is a
7c-manifold. Then by the above remark du=d*(u)=d*h*(u)=0enk-l(PL/0)=rk_i.
Similarly, if we[M*,F/0] then by 3.1 Q(du) d*(u)=:d*h*(u)=0enk-1(F/0). The
second statement follows from the first and the fact that the surgery obstruction
s: [M8n+2, F/0]->Z2 is given by s(u) (vln(M)u*(k2), [M]> =0, since the Wu class

PROPOSITION II.9. lfNk is a smooth, fht-manifold then Ic(Nk)=0 and
Ih(Nk)czbPk+1. Ifk 8n + l then Ih(Nk)=0. If Nk is a n-manifold and k£5 (mod 8)
then Ih(Nk)=0.

Proof The first two statements follow from II.8 since Nk x S1 is an fht-manifold.
If N4"-1 is a 7i-manifold and uelNÎ"'1 aS\ F/0] then fR(du)=0 by 5.8. Thus
Ih(Nk)=Ih(Nk)nbPk+1 =0 if k= 1, 3, or 7 (mod 8) and the third statement follows.
(I am grateful to D. Sullivan for pointing out the first statement of II.9.)

Finally, as an example, we compute, Ih(CP(3) x Si)czr1 =bP8 =Z28. (CP(3) x S1

is not simply connected, but our methods remain valid for spécial cases with simple
fundamental groups.) Now (CP(3)xS'1)a5'1 is homotopy équivalent to
{CP(3)aS2)v(CP(3)aS1)vS\ Thus, since K0°(CP(3)aS1)=0,
image([(CP(3) x S1) a S\ F/0]->K0° ((CP(3) x S1) a S1)) =image ([CP(3) a S\
F/0~}-+K00(CP(3)aS2))=Z2, with generators ^ and £2 which satisfy
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5(z3-a) and P(£2) l +32-45(z3-<j), where

ze#2(CP(3),Z) and aeH2(S2, Z) are generators. Thus if ue[(CP(3)xS1)0 aS\
F/0] extends to ûe[(CP(3)x S1) a S1, F/Û] and £ £(w)=™£i+«£2 then

^ s(â) (*) <L(CP(3) x S1 x S1) (1 - L(0), [CP(3) x S1 x S1])

(" i) <(1 + (f) ^2) ((48m/3) (zer) + (7(32-15m + 32-45n)/45) (zV),
[CP(3) x S1 x S1]) - 12m - 28rceZ/28Z.

It follows that 4(CP(3)x51)=Z7c:Z28.

Remark 11.10. R. Lee [16] has shown that every self-homotopy équivalence of
CP(n) x S1 is homotopic to a diffeomorphism. If a manifold Mk has this property it is

easy to see that Ih(Mk)=I(Mk). Thus /(CP(3)x5fl)=Z7cZ28.

Remark 11.11. Let 7Tq (Diff(CP(n))) dénote the group of pseudo-isotopy classes

of diffeomorphisms of CP(n) which leave fixed a generator of H2 (CP(«), Z). Lee has

shown that ttq (Diff CP(«)) is isomorphic to the equivariant diffeomorphism classes

of differentiable, semi-free S1 actions on homotopy (2« + 2)-spheres, with fixed point
set S0. (A group action is semi-free if it is free outside the fixed point set.) It follows

from results of Sullivan that the natural map T7 =n0 (Diff(56))-^7io (DifF(CP(3))) is

a surjection, where, if I1er7 corresponds to a diffeomorphism a:D6^D6, with
a |S3 Id, then yil1) \De=a and y{In) |cp(3)-D«=Id, where Z)6cCP(3). It is not
difficult to see that the mapping torus of y(Z7) is (CP(3)x5'1)#2'7. Hence,

y(I1)=0eno (Diff(CP(3))) if and only if y(Z7) is pseudo-isotopic to the identity,
or equivalently, if and only if there is a diffeomorphism (CP(3) x 51)#2'7 Ty(l7)^
^CP(3)xS1 which is the identity on CP(3)x0. Since any diffeomorphism
(CP(3)x51)#2:7^CP(3)xtS'1 is pseudo-isotopic to one which fixes CP(3)x0
[19;Lemma4], this proves that kernel(<y)=/(CP(3)x5'1)=Z7c:Z28 and that
7ro+(Diff(CP(3)))=Z4.

Remark 11.12. For each integer j there is a manifold Pf homotopy équivalent to
CP(3) with pt (P/) (4 +24/)z2. Thus if ue [(P/ x Sx)0 a S1, F/0] with {(ù)=m^ +
+n{2 then ^=j(fi)=-(12 + 16/)m-28/ieZ/28Z. It follows that 4(P/x51)=0 if
jsl (mod7) and Ih(PfxSl) Z7 if j£\ (mod7). In particular, Ih(Nk) is not a

homotopy invariant of Nk.
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