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Extremaleigenschaften von Kreissektoren und Halbkugeln

CATHERINE BANDLE

Einleitung

Die Schwarzsche Symmetrisierung stellt ein wichtiges Instrument zur Gewinnung
isoperimetrischer Ungleichungen der mathematischen Physik dar. Darunter verstehen
wir eine geometrische Transformation [12, S. 189], welche jeder in einem ebenen
Gebiet G positiven Funktion f, die auf dem Rand I" von G verschwindet, die Funktion
S,.f zuordnet. S,, fist auf dem Kreis K={z; |z| < R} definiert, der die gleiche Fliche
wie G hat. S,, f ist eine monoton abnehmende Funktion von r=|z| mit der Eigen-
schaft, dass die Flichen der Gebiete {P; PeG,f(P)>4} und {P; PeK, S,,.f>41}
einander gleich sind. Die fiir die Herleitung isoperimetrischer Ungleichungen wichtig-
sten Eigenschaften sind:

(a) Das Dirichletintegral nimmt bei der Schwarzschen Symmetrisierung ab,
() {[¢ H(f) dxdy={[x H(S.f ) dx dy fiir jede integrierbare Funktion H (t).

Wir werden eine Symmetrisierung S, angeben, welche auch fiir Funktionen defi-
niert ist, die nicht auf dem ganzen Rand Null sind. Der Definitionsbereich der trans-
formierten Funktion ist in diesem Fall der Kreissektor vom Offnungswinkel «. Die
Eigenschaft (b) ist immer gewdhrleistet, wihrend fiir (a) zusdtzliche Bedingungen
liber den Tangentendrehwinkel von I' erforderlich sind. Um (a) beweisen zu konnen,
benotigen wir geometrische isoperimetrische Ungleichungen fiir das ,,Didoproblem”.
Sie werden in § 1.1 hergeleitet.

Mit dieser Symmetrisierung beweisen wir einen Satz fiir Moduln, der als Verall-
gemeinerung desjenigen von Carleman [S] und Szegé [14] aufgefasst werden kann.
Ferner geben wir eine untere und obere Schranke fiir den ersten Eigenwert einer
stiickweise freien Membran und verallgemeinern damit die Ungleichungen von Nehari
[10, Satz IIT] und von Gasser-Hersch [7]. Im letzten Abschnitt dehnen wir die Sym-
metrisierung auf Funktionen dreier Variabeln aus und leiten isoperimetrische Un-
gleichungen fiir dreidimensionale stiickweise freie Membranen her. Den Anstoss zu
dieser Arbeit gab ein Satz von Nehari [10, Satz III], welcher besagt, dass von allen
Membranen von gegebener Fliche, die lings einem beziiglich G konkaven Bogens frei
sind, die halbkreisformige, die lings dem Durchmesser frei ist, den kleinsten ersten
Eigenwert hat. Die wichtigsten Ergebnisse wurden in [2] zusammengefasst. In [3] und
[4] wurde die Schwarzsche Symmetrisierung in einer andern Richtung verallgemeinert.
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§ 1 a-Symmetrisierung
1. Isoperimetrische Ungleichungen fiir das ,,Didoproblem'*

1.1. 7 sei ein stiickweise glatter Jordanbogen mit dem Anfangspunkt 4 und dem
Endpunkt B. Der Parameter s bedeute die Bogenldnge lings y und P (s) stelle den zum

— —

¢ AP (s + 4s) — AP

t(s) = lim (s + 45) (s)
As \O N

Parameterwert s gehorigen Punkt von y dar (P(0)=4 und P(/)=B). Wir definieren
In den reguldren Punkten féllt 7(s) mit dem Begriff der orientierten Tangente zu-

sammen. In den Eckpunkten stellt f (s)=; (s+0) die rechte, ¢(s—0) die linke Halb-
tangente dar.

DEFINITION. ¢, (P;, P,), wobei sp, <Sp, ist, ist der Drehwinkel der Tangente

t(s), wenn der Bogen von sp, +0 bis sp,—0 durchlaufen wird. ¢,(P~, P™) ist der
orientierte Winkel zwischen der linken und der rechten Halbtangente im Punkte P.
Der Winkel fillt je nach dem Drehsinn positiv oder negativ aus.

BEISPIEL: Wenn das Bogenstiick zwischen P; und P, glatt ist und die Kriim-
mung « (s) besitzt, dann ist ¢, (P, P,)=[:Z21g x(s) ds.

SPy
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maxp, p,cy (p,(Pl, Pz), wenn dieses Maximum positiv ist

DEFINITION: §, =] " P!

BEISPIELE.

Fig. 1 Fig.2

(a) In der Figur 1ist ¢,(P~, P*)>0, also @,=¢,(P~,P).
(b) In der Figur 2 ist ¢, (P~, P *)<0, folglich @,=0.

DEFINITION. Ein Bogen heisst konvex, wenn er immer links von seinen Tangen-
ten bzw. Halbtangenten liegt.

PROPOSITION 1. Wenn y konvex ist, gilt p,=¢,(A, B).
Beweis. Wir bezeichnen mit E; die Eckpunkte und mit « (s) die Krimmung von .
Diese existiert iiberall mit Ausnahme endlich vieler Eckpunkte. Es gilt

81:2‘0
o ®uP)= [ x©ds+ T o E).
Eckpunkte
sp1+0 zwischen
Py und P,

Wegen der Konvexitit sind x (s)>0 und ¢, (E;, E;" )>0. Daraus ergibt sich, dass
?y(Q1, Q2)= 0, (Py, P,) ist fiir 5o, <sp, <sp,<sg,. QED

o sei ein konvexer Bogen von A4 nach B, der rechts von y liege (Fig. 3). @ darf y auch
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beriihren. G, sei das Gebiet zwischen y und @ und G,=G,uyuw. Wir setzen G=
=[N Go- ¥ und y* bilden den Rand von G,.. Sie kénnen auch stiickweise zusammen-
fallen.

DEFINITION. Wir nennen y* die rechte konvexe Hiille von y.
PROPOSITION 2. ¢,.<0,,.

Beweis. Wir unterscheiden verschiedene Fille:

1. y und y* beriihren sich in den Punkten 4 und B. Dann gilt ¢,.(4, B)=¢,(4,B)
< @,. Nach Proposition 1 ist @,.(4, B)=,..

2. y und y* haben ausser 4 und B keine gemeinsamen Punkte (Fig. 4). y* ist in
diesem Fall ein Geradenstiick. Daraus folgt, dass ¢,.,=0<@,.

3. Esseien P der erste, Q der letzte gemeinsame Punkt von y und y* mit Ausnahme
von 4 und B (Fig. 5).

d; (s) sei die Abstandsfunktion zwischen der Geraden AP und y und d, (s) diejenige
zwischen QB und 7. d, (s) resp. d,(s) nimmt in den Punkten M, ey resp. M,ey ihr
Maximum an. Falls in den beiden Punkten M, und M, die Tangenten existieren, gilt
¢+ (4, B)=¢,(M;, M,)<p,. Andernfalls gibt es in den Umgebungen von M; und
M, Punkte R und S mit ¢..(4, B)<¢,(R, S)<®,.

4. y und y* beriihren sich nur in einem der beiden Eckpunkte. Dieser Fall ldsst
sich mit Hilfe von 1. und 3. sofort erledigen.

1.2. Wir betrachten ein ebenes Gebiet G. Sein Rand sei I' =I",Uy, wobei sich y
aus endlich vielen stiickweise glatten Bégen oder geschlossenen Kurven zusammen-
setzt. Wir werden mit 4 den Flicheninhalt von G und mit L die Lange von I’y be-
zeichnen. In diesem Abschnitt werden isoperimetrische Ungleichungen hergeleitet,
welche eine Beziehung zwischen 4 und L herstellen.

(a) Voraussetzungen: G liege im Innern eines Sektors vom Offnungswinkel a <.
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y bestehe aus endlich vielen Bogen auf den Grenzradien 6 =0 und 0 =a des Sektors
(r, 6 Polarkoordinaten) (Fig. 6).

Behauptung. I >2uA.

Das Gleichheitszeichen steht nur beim Kreissektor.

Beweis. Spiegeln wir G an der Geraden 6 =0 und identifizieren wir die Geraden
0=a und 0= —a, so erhalten wir ein Gebiet, das einem Gebiet auf einem geraden
Kreiskegel mit dem vollen Winkel 2« isometrisch ist. Auf Grund der isoperimetrischen
Ungleichung von Alexandrow auf Kegeln [1, S. 416]1) folgt (2L)*>2(2«) (24), wo-
bei das Gleichheitszeichen nur bei der Mantelfliche steht. Daraus ergibt sich unmittel-
bar die Behauptung.

Fig. 6 Fig. 7
Legende zu Fig. 6 u. 7: —— v Io.

(b) Voraussetzungen. Uber y treffen wir die gleichen Annahmen wie in (a). G
hingegen liege ausserhalb des Sektors (Fig. 7).

Behauptung. 1?>2nA4

Gleichheit tritt nur beim Halbkreis ein.

Beweis. Wir betrachten die Gerade g, welche die Punkte P und Q des dusseren
Randbogens von G verbindet. g wurde so gewéhlt, dass die Strecke PQ zusammen
mit 'y=T, ein einfach zusammenhédngendes Gebiet G’ begrenzt, das G enthilt und

1) Diese Ungleichung findet sich auch in der Arbeit von A. Huber, On the isoperimetric inequality
on surfaces of variable Gaussian curvature, Annals of Math., Bd. 60, Nr. 2, 1954.
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vollstindig auf einer Seite von g liegt. Wir spiegeln G’ an der Geraden g und wenden
die isoperimetrische Ungleichung der Ebene an. Daraus folgt (2L(I'y))* >4 (24(G")),
wobei L (I'p) die Lange von I' und 4 (G’) die Fliche von G’ ist. Da L>L(I'y) und
A< A(G), ist (b) gezeigt.

1(0)

Fig. 8
Legende zu Fig. 8 u. 9:

(c) Voraussetzungen. (vgl. Fig. 8, 9) y muss folgende Bedingungen erfiillen

1. y besteht aus einer endlichen Anzahl stiickweise glatter Bogen, welche alle auf
der gleichen innern oder dussern Randkurve von G liegen. Der Rand von G sei
positiv orientiert.

2. y liegt ferner auf einem konvexen Bogen y’ mit dem Anfangspunkt 4, dem
Endpunkt B und der Bogenldnge s. y’ ist gleich orientiert wie y; d.h. geht man lings
des Randes in positivem Sinne von einem Punkt P'ey zu einem Punkt Q’ey, so ist
Sp—8o-<0. Wir setzen voraus, dass ¢, <m ist.

Behauptung. I? >2aA, wobei a=n—@,..

Das Gleichheitszeichen steht genau dann, wenn G ein Kreissektor mit dem Offnungs-
winkel « und I'y der Kreisbogen ist. . .

Beweis. Wir zeichnen in 4 und B die Tangenten #(0) und ¢(/—0). Diese bilden
wegen der Proposition 1 einen Sektor vom Offnungswinkel a. G zerfillt in zwei Be-
reiche G’ und G”. G’ befindet sich innerhalb, G” ausserhalb des Sektors. I'y (I'g) be-
zeichne das Randstiick von G’ (G”), das zu I'y gehdrt. Wegen (b) gilt

L*(I'g) > 2nA(G") )
P und Q sind diejenigen Schnittpunkte von #(0) und ¢(/—0) mit I',, fiir die QPerl,
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zusammenhéngend ist, und die die Eigenschaft haben, dass das Gebiet innerhalb des
Sektors, das von QP begrenzt wird, G’ ganz umfasst. Nach (a) folgt

L*(I'y) = L*(QP) = 20A(G) )
Aus (1) und (2) ergibt sich
L? > L*(Ip) + L*(I'g) = 204 (G') + 214 (G") = 204.

Die nachfolgende Ungleichung stellt eine Verallgemeinerung von (a), (b) und (c)
dar.

Fig. 10

Legende fiir alle weiteren Figuren: Fp i prrmerem P\y X X X X X y*\y.

(d) Voraussetzungen. (vgl. Fig. 10) y liegt auf einem Bogen y’ mit dem Anfangs-
punkt 4 und dem Endpunkt B. y’ sei gleich orientiert wie y (vgl. (c)), und es gelte
@,-<7 (y braucht nicht- wie in (c) auf einer einzigen Randkurve zu liegen und y’
braucht nicht konvex zu sein)

Behauptung. I*>2xA, wobei a=n— @,
Das Gleichheitszeichen steht nur beim Kreissektor, bei dem I'y der Kreisbogen ist.
Beweis. Wir betrachten das Gebiet G, das von einer Teilmenge I',<=I'y und
§"*<y'* (y'* ist die konvexe Hiille von y’ s.§ 1,1.1) berandet wird und G enthélt.y"*
verlduft stets rechts von y’. Da 9y’ und y gleich orientiert sind, existiert ein solches
Gebiet G = G. Durch die gleichen Uberlegungen wie in (c) schliesst man auf

L*(Iy) > 2dA(G) mit &=n— @,.(4, B)
Zusammen mit Proposition 2 (§ 1,1.1) folgt

I2>1?(Fy)>284(G)>2aA.
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1.3. Geometrische isoperimetrische Ungleichungen fiir symmetrische Gebiete

DEFINITION. Ein Gebiet heisst symmetrisch von der Ordnung ¢ (g natiirliche
Zahl), falls ein Punkt O (Symmetriezentrum) existiert, so dass G bei einer Drehung um
den Winkel 27/ um O in sich selbst iibergeht.

Wir treffen tliber G folgende Annahmen:

(A) G sei ein symmetrisches Gebiet der Ordnung g

(B) Sein Rand I' bestehe aus einer inneren, geschlossenen Randkurve y und den
iibrigen Randkurven I'y. Sowohl y als auch I' sollen dieselbe Symmetrie wie G auf-
weisen. (Fig. 11).

(C) Es sei S ein Sektor vom Offnungswinkel 27/q mit der Spitze in 0. S schneidet
aus y den Bogen 75 heraus. Wir setzen &5=0, und &, =maxs®s. Es gelte &, <.

G,=punktierte Gebiete

Fig. 11 Fig. 12

Nun betrachten wir einen Bereich G; im Innern von G mit derselben Symmetrie-
ordnung wie G. Der Rand von G, enthilt Teilbégen aus y. Denjenigen Teil, der nicht
zu y gehort, bezeichnen wir mit I';. G, braucht nicht zusammenhéngend zu sein (Fig.
12). A(A) ist die Fliche von G, und L(4) die Lange von I';.

Behauptung. Unter den Voraussetzungen (A), (B) und (C) gilt I*(41)>min
{4n, 2q0} A (), wobei a=(n—3,).

Beweis. 1. G, besteht nur aus einer Komponente. In diesem Fall gehort seine
dussere Randkurve ganz zu I';,. Wendet man die isoperimetrische Ungleichung der
Ebene an, so folgt I* (A)>4nA ().

2. G, setzt sich aus mehreren Komponenten zusammen. Wegen der Symmetrie
sind es deren kq (k natiirliche Zahl). G, geht durch Rotation aus den zusammen-
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hiingenden Gebieten G;, G3,..., G- hervor. I} i=1,..., k sind die zu I', gehdrigen
Randstiicke von G;. Wenn wir « = — &, setzen, so find fiir jedes G*, die Bedingungen
von (d) (§1,1.2) erfiillt. Somit ist

L*(I'Y)>20A(GY) i=1,..,k
und
k . 2 k . k .
2@=(a XL >4 X 10> T 24(6)) = 2104 ()
i=1 i=1 i=1

Aus 1. und 2. ergibt sich die Behauptung.

Bemerkung. In gewissen Féllen ist es nicht notig, dass y aus einer ganzen ge-
schlossenen Randkurve besteht. G sei ein Gebiet, das der Bedingung (A) (wie vorher)
geniigt und ferner die folgenden Voraussetzungen erfiillt:

(B") Sein Rand I'=I"yuUy, sowie I’y und y seien ebenfalls symmetrisch von der Ord-
nung ¢. y bestehe aus verschiedenen Bogen, welche im Innern von G auf einer ge-
schlossenen, symmetrischen Kurve y’ liegen.

(C’) Es gelte &,,=0

Behauptung 2. 12 (A)=4nA (1)

Das Gleichheitszeichen steht beim Kreis.

Beweis. Der Beweis ist gleich wie derjenige von Behauptung 1. Wir werden die
Behauptung 2 nur noch fiir Gebietstypen nachweisen wie sie in Fig. 13 eingezeichnet
sind.

Wir verbinden die Schnittpunkte 4 und B von y mit der dusseren Randkurve von
G, durch eine Gerade. (Die symmetrischen Punkte werden mit dem gleichen Buch-
staben versehen). Damit erhalten wir ein Gebiet G, das G enthiilt.

Wegen der Konkavitidt und der Symmetrie von y’ ist das Geradenstiick 4B kleiner
als Teilstiick DC von I',. Daraus folgt, dass die Randkurve von G kleiner ist als I';.
Wendet man auf sie die isoperimetrische Ungleichung der Ebene an, so ergibt sich die
Behauptung.

Aus der isoperimetrischen Ungleichung der Ebene folgt die Behauptung 2.
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2. Definition der a-Symmetrisierung

2.1. G sei ein ebenes Gebiet mit dem Rand I' und dem Flidcheninhalt A4.

DEFINITION. Mit S,(G) bezeichnen wir den Kreissektor mit dem gleichen
Flicheninhalt wie G, der durch die Radien 8 =0, 8 =x und durch den Kreisbogen
r={24/a}"* begrenzt wird («<2n).

f sei eine stiickweise stetig differenzierbare Funktion in GUT'. y ist eine endliche
Vereinigung stiickweise glatter Bogen, welche dem Rand I' angehoren. Es gelte ferner
f=0in Guy, f=0auf I'q=I\y.

Wir fiihren folgende Bezeichnungen ein:

G,={P; PeGUI, f(P)=4},
I,={P; PeGUTr, f(P)=A} sei derjenigen Teil des Randes von G,, der nicht zu y
gehort. O.B.d.A. kénnen wir annehmen, dass 0< f<1 ist und somit A€ [0, 1].

DEFINITION. S, fist die auf S, (G) definierte, positive, nicht-zunehmende Funk-
tion von r, die auf dem Kreisbogen des Sektors S, (G;) den Wert A annimmt.

Da S, f eine abnehmende Funktion ist, ist sie fast iiberall differenzierbar. S,,
bedeutet die Schwarzsche Symmetrisierung [12, S. 189]

2.2. Eigenschaften von S, f.
Aus der Definition von S, f geht hervor, dass

[[ryaxay= [[ Hisyaxay 3)

G Sx(G)

fiir jede in [0, 1] integrierbare Funktion H (¢).
Unter dem Dirichletintegral von f verstehen wir die Grosse D (f)=[[ grad?fdxdy.

SATZ 1. Gund I’ mégen den Voraussetzungen von (d) (§1,1.2) geniigen, ndmlich:
I'=T'yUy sei positiv orientiert, y liege auf einem Bogen y' mit derselben Orientierung
wie y und mit §,. <m. f sei eine positive, stiickweise stetig differenzierbare Funktion in
GUI, welche auf I, verschwindet. Dann nimmt das Dirichletintegral bei einer a-
Symmetrisierung ab:

Dg(f) = Ds ) (S.f), wobei a<m—, 4)

Beweis. Wir benétigen ein Lemma, das auf [6, 9, 12, S. 219...] zuriickgeht und
eine Moglichkeit darstellt, das Dirichletintegral mit Hilfe geometrischer Ungleichun-
gen abzuschitzen.
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LEMMA 1. Wenn A(4) die Fliche von G, und L(1) die Léinge von I'; bedeuten,

SO ist
1

DG(f)>j' _%%dx, 5)

0

wobei A’ (A) =(d/dA) A(A). Das Gleichheitszeichen steht genau dann, wenn df/on kon-
stant ist lings den Niveaulinien I'; von f (n innere Normale an G,).
Beweis des Lemmas. Es gilt die Umformung

Dg(f) = ngadzfdxdy~ H (af) dn ds = fd/lJ‘-—*ds (6)

A=0r,;

Unter Berticksichtigung der Schwarzschen Ungleichung

i K J of lon {J ds}z'""‘z“) @

und der Beziehung [, (9f/0n)ds=—(d/d1) A(%) folgt die Behauptung des Lemmas.

G, setzt sich aus einem oder mehreren Gebieten Gii=1, ..., n zusammen. Das zu
I'; gehorige Randstiick von G sei I':. Wird G, ausschliesslich von I'; berandet, so
gilt die isoperimetrische Ungleichung der Ebene

L*(I) > 4nA (GY). (8)

Andernfalls geniigen die G} mit dem Rand I';uy’(y'=7) den Voraussetzungen von
(d) (§1,1.2) und es ist in diesem Fall

L*(I) = 2¢A(GY). ©)
Aus (8) und (9) folgt
L*(2) > ): L*(I3) > 2 Z A(G}) = 204 (4). (10)

Mit Hilfe von (10) ldsst sich (5) weiter abschitzen

1

pa(r)> | 240

0

Wir berechnen nun Ds_g) (S, f). Es sei

20A (1)

70 dA. (11)

G,={P; PeS,(G),S.f (P)=> 1} und [,={P;PeS,(G),S.f(P)=24}
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der zum Rand von G, gehorige Kreisbogen. Da fiir S, f sowohl in (7) als auch in (10)
das Gleichheitszeichen steht, folgt

20A (Gl) J‘ 2aA(A) i

Prie el 4= f 1)) Tam

(A' (G,) = }i\oA (ngl A (Gl)>

Aus der Konstruktion von S, f geht unmittelbar hervor, dass 4 (G;)=4(A). Aus
(11) und (12) ergibt sich die Behauptung.

Bemerkung. Wie aus (12) ersichtlich ist, ist Dg_g,(S,.f ) eine zunehmende Funk-
tion von a.

(12)

SATZT'. G,y und 'y erfiillen die Voraussetzungen (A), (B), (C) oder (A), (B),
(C') aus §1,1.3 und f sei ebenfalls symmetrisch von der Ordnung q und geniige den
Voraussetzungen des Satzes I. Dann gilt:

De(f) = Dg ) (S.f), wobei o< min{2n, q(n— 5),)} )

Der Beweis ist genau gleich wie derjenige von Satz 1. Man beniitzt anstelle der
Ungleichung (10) die Ergebnisse aus §1,1.3.

§ 2 Anwendungen

1. Obere Schranken fiir den Modul

Fig. 14

G, : schraffierte Gebiete
Kurven und Bégen mit dem Zeichen 0 (1) gehdren zu I'y(I'y)
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Voraussetzungen. G sei ein ebenes Gebiet mit dem stiickweise glatten und positiv
orientierten Rand I'=I",uI';Uy. y habe dieselben Eigenschaften wie im Satz 1 aus
§1,2.2, d.h. y liegt auf einem gleich orientierten Bogen y’ mit @, <n. I'o=J7=; I'§’,
r,=Ui, rY, wobei Iy’ und Y Bogen mit dem Anfangs- und Endpunkt auf y
oder geschlossene Kurven bedeuten (Fig. 14)

Wir betrachten nun folgendes Dirichletproblem:

DI 4h=0in G (4 Laplaceoperator)
h=1auf I,
h=0auf I,
oh X
P 0 auf y (n dussere Normale an G)
n
p~'=ppr,= Min D(v)
v=0auf I'g
v=1auf I'y

wobei das Minimum tiber alle stiickweise stetig differenzierbaren Funktionen zu er-
strecken ist.

G, ist die Vereinigung aller Gebiete G,; mit G,; mit G;;nG=¢, deren Rand zur
Menge I';u{y'\y} gehort. 4 ist die Fldche von G, A; diejenige von Gj.

SATZ 2. Unter den zu Beginn dieses Abschnittes aufgestellten Voraussetzungen
gilt:
1 A+ A4 _

,u<§&ln 4 wobeli a <7 — @,.

Das Gleichheitszeichen tritt nur beim Gebiet G =S,(GUG,)\S,(G,) ein, wobei I',
aus dem Kreishogen r={2(A + A4,)/a}"/?, ', aus dem Kreisbogen r={2A4,/o}'/* und y
aus den Grenzradien 8 =0 und 0 =o bestehen.

Beweis. Wir schitzen den Modul 2 des Extremalgebietes mit Hilfe des Dirichlet-
prinzips ab

L' < Dg(v), wobei v=0aufl, und v=1aufrl,.

Als Vergleichsfunktion wihlen wir S, H mit H ={ /11 ig g
1 .
Auf Grund von Satz 1 (§1,2.2) folgt
ﬂ—l < D (S.H) = Ds,(cucl)(SaH) < Dg g, (H) = DG(h) = ﬂ_l-

Die Losung von D1 in G ist A=(In Ry—In r)/In (Ro/R,); aR%/2=A+A;, aR}[2=
=A,. Daraus ldsst sich unmittelbar i berechnen.

Der Satz 2 stellt eine Verallgemeinerung eines Satzes von Carleman [5] und
Szeg6 [14] dar.
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BEISPIEL. G sei der Einheitskreis; y, I'y und I'; liegen auf der Peripherie. Die
Linge von I’y sei 2n-2w und diejenige von I'y 2. Es gelte 2w <z. Unterwerfen wir G
einer “zirkuldren” Symmetrisierung [12, S.193], so nimmt der Modul zu. Das neue
Gebiet ist wieder der Einheitskreis (Fig. 15). Der Rand ist symmetrisch beziiglich der
x-Achse. Die Liangen von I', und I'; sind wieder 2n-2w und 2f. Wir geben nun obere
Schranken fiir den Modul u von G’ an.

[}

A
(.x' ’, OB
B

Fig. 16

y"\y liegt auf den Tangenten in P und Q (Fig. 15). Die fiir Satz 2 bendtigten Grossen
sind: A=n, A+ A, =n+tg p—p, a=n—2w. Somit gilt nach Satz 2

< 1 nn+tgﬁ——[3
FSom-20) " tgf—-p

Die Wahl von y'\y ist bis auf die Bedingung @, <= willkiirlich. Wir erhalten eine
bessere Abschitzung, wenn y'\y beispielweise auf zwei Geraden durch P und Q liegt,
die parallel sind zu den Tangenten in 4 und in B (Fig. 16).

2. Untere Schranken fiir den ersten Eigenwert einer stiickweise freien Membran.

G sei ein ebenes Gebiet mit dem Rand I' =I'yuy. Wir betrachten die Membran

Ml Au+Au=0in G
u=0aufrl,

u .
P 0 auf y (n dussere Normale).
n

Der erste Eigenwert ist durch das Rayleighprinzip gekennzeichnet:

D
A = Min s (v)

v=0auf I'p ff vzdxdy‘
G
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Das Minimum ist iiber alle stiickweise stetigen Funktionen v zu erstrecken. Die
erste Eigenfunktion liefert das Minimum des Rayleighquotienten.

SATZ 3. Falls G, I'y und y die Voraussetzungen von (d) (§1,1.2) erfiillen, d.h. vy
liegt auf einem stiickweise glatten Bogen vy’, der gleich orientiert ist wie y und fiir den
@, <, 50 ist
24°
(A4 Flidche von G, j,=2.4048... erste Nullstelle der Besselfunktion nullter Ordnung).

Das Gleichheitszeichen steht nur bei der Membran G =S, (G), die lings dem Kreis-
bogen r={2A4/a}* eingespannt und liings den Radien 0 =0 und 0 =« frei ist.

Beweis. Die erste Eigenfunktion des Extremalgebietes G ist

a(r) = J, (1129 ) wobei R = {24/}

Ay =

AT — Py

Der entsprechende Eigenwert ist 4, =ji/R?. Wir bezeichnen mit u die erste Eigen-
funktion der Membran in G. ¥ hat konstantes Vorzeichen und kann demzufolge
symmetrisiert werden. Wir schitzen 4, mit Hilfe des Rayleighquotienten ab. Als Ver-
gleichsfunktion wihlen wir S,u. Somit erhalten wir unter Beriicksichtigung von (3)
und Satz 1 (§1,2.2)

7 Dy, ) (Satt) Dg(u)
1= - 1 »
ff(S u)? dx dy ff udx dy
S«(G)

Bemerkungen. 1. Wenn y konkav und zusammenhédngend ist, ist a=n und
A =mj2/2A. Dieses Resultat findet sich schon in einer Arbeit von Nehari [10, Satz
IIT]. Nehari verwendete konforme Abbildungen und musste daher einige Annahmen
topologischer Art liber G und y treffen, auf die hier verzichtet werden konnte.

2. Wenn @,.>m ist, gibt es keine untere Schranken, die nur von 4 und ¢, ab-
hingig sind. Gegenbeispiel: Wir betrachten das Rechteck der Hé6he BC=h und der
Linge AB=I. Es sei I'¢=DAUBC und y=ABUCD. A =Ih und

2 h2
11-_:(%) _(n ) O<h<w),@,=m.

BEISPIELE.

1) G sei ein beliebiges Gebiet, y eine geschlossene, konkave innere Randkurve
(Fig. 17). In diesem Fall ist ¢,,=@,=0 und 4, >nj2[2A.

2) G sei ein beliebiges Gebiet und y ein Schlitz im Innern von G (Fig. 18).
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Fig. 17 Fig. 18

Wir fassen y als Rand eines Gebietes der Fliche 0 auf. Folglich ist @,=
maxp, p,ey @41 (Py, P»)| (die Tangente durchléuft y in beiden Richtungen). Somit ist
Handelt es sich um einen geraden Schlitz, dann ist @, =0 und 1, >nj5/24.

Dieses letzte Ergebnis kann auch aus der Ungleichung von Rayleigh-Faber-Krahn
[6, 9, 13] und der alternierenden Symmetrisierung [11] gewonnen werden 2)

!\.
N
>t

~

r
I

|B =N
: '@Y= ZT[/”

J

DI -7 S
A ~ I
\\\//,,a

Fig. 19 Fig. 20

3) Es soll eine untere Schranke fiir den zweiten Eigenwert v, einer 6-eckigen freien
Membran angegeben werden (Fig. 19). v, ist gleich dem ersten Eigenwert der trapez-
formigen Membran ABCD, welche lings AB eingespannt und sonst frei ist. Die fiir
Satz 3 notwendigen Grdssen betragen a =n/3, 4=(3,/3/4) a*. Fiir die Abschdtzung
nach oben wird die Ungleigung von Szegt 3) beniitzt

2,331a72 < v, < 4,099a"2,

Im Fall von symmetrischen Membranen lisst sich der Satz 3 noch verschérfen.

SATZ 3': Wenn G, I'y und y den Bedingungen (A), (B), (C) oder (A4), (B), (C’)

%) siehe auch J. Hersch, Enseignement mathématique, 5, (1959).
%) G. Szego, J. rat. Mech. Analysis 3, S. 343-356 (1954).



372 CATHERINE BANDLE

aus §1,1.3 geniigen, gilt
Ay = 70, a = min {27, q (n — D,)}.

Das Gleichheitszeichen steht fiir o =21 beim Kreis mit radialen Schlitzen (Fig. 20).
Der Kreis mit radialen Schlitzen hat denselben ersten Eigenwert wie derjenige ohne

Schlitz.
Fiir den Beweis dieses Satzes sei auf den Beweis von Satz 3 hingewiesen. Der

einzige Unterschied besteht darin, dass man anstelle von Satz 1 den Satz 1’ verwendet.
3. Obere Schranken fiir den ersten Eigenwert einer elastisch gebundenen Membran.
Wir gehen von denselben Voraussetzungen wie in §2,1. aus. Insbesondere werden

dort der Winkel o und der dussere Flacheninhalt 4, definiert. Das Problem der elas-
tisch gebundenen Membran lautet:

M, u+A4Au=0in G
0
—u=0aufy
on
ou

—+ kP (s)u=0auf I j=0,1
on

= {i: : nm i:ﬂ: ; Z (1) (n dussere Normale)

Wir fiihren die Bezeichnungen Ko=Y"7", (. k) ds und K; =Y, [, k{ ds. ein

K, ist die totale Federung von I'y, K; diejenige von I'y. Wir nehmen an, der Modul

Ur,r, von G sei p.

Nun betrachten wir die Membran: 4i+ 44 =0 im Kreisringsektor G, der durch %
(auf 8=0 und 6=a), [y (auf r=R,) und [, (auf r=R,) berandet ist. Die Rand-
bedingungen sind: 0i/on =0 auf %, di/on+Ky/aR, i=0 auf I'y und 04/on+K,/aR,
#=0 auf [,.

R, wird so bestimmt, dass G, =S,(G,), d.h. aR}/2=A,. Der Modul von G sei
ebenfalls p,. Daraus folgt, dass Ry={24,/a}!/? ™o,

Der nidchste Satz verallgemeinert denjenigen von Gasser-Hersch [7]

SATZ 4. Unter den Voraussetzungen von §2,1. iiber G,

yund Ty gilt: 1, < A,
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Beweis. Wir schiatzen A, mit Hilfe des Rayleighquotienten ab

D)+ Y | k§v?*ds+ Y f kv ds
=1 i=1

To(M ri®
f f vidx dy
G

Die zu 1, gehdrige Eigenfunktion # hat dieselben Niveaulinien wie die Losung A
von D1 in G. Wir kdnnen sie demzufolge harmonisch nach G verpflanzen [8].

h sei die Losung von D1 in G. Wir bezeichnen mit I", (I;) die Niveaulinien
h=2A(h=A) und mit G, (G,) das Gebiet, in welchem 4 (k) grosser ist als A. Als Para-
meter fiir die Niveaulinien wihlen wir ur. r, (G,) resp. pr,r, (G;). Es gilt

_ h— 4 1 oh 1 1
) 1(G»=DG(——-—)=J—~_dS=_~_._

A <

(13)

1—-21 1—A0h 1—2 y
ry
und ebenso
h—2 1 oh 1
-1(G,) =D I L P
(G G(l—/l) 1—Aon" 1—2 po

I,

Daraus folgt, dass u(G,)=u(G,). Da die I', resp. I'; Niveaulinien einer harmo-
nischen Funktion sind, ist der Modul additiv, d.h. u={du (du=pr,r,, 1, (G:\G1+42))-
Wir definieren @ (x, y)=¢ (A(x, »))=x(u(x, y)) und U(x, y)=y (h(x, »))=x (u(x, )).
Setzt man U(x, y) als Vergleichsfunktion in (13) ein und beriicksichtigt man, dass
U(x, y) lings I'y und I'; konstant und dass D¢ (U)= D¢ (4) ist, so folgt

_Da(®) + Kox? (uo) + K1x* (0)

Ay < ™ , wobei A (u)=A4(Gy — pluo) (14)
dA
fxz (k) 7 du
u
0
dA ds 2
i J dn ds .[ - l:j ds] L*(I (p)) (15)
I(w () T(k)

dn(s, 1) bedeutet die Liange der Normalen zwischen I'; und I';, 4, im Punkt, der zur
Bogenlinge s gehort; I'(p) =TI - ,/u,
Nach Satz 2 (§2,1) gilt

L*(T3)

A(G,) = A(G)y) = 5

(16)
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und nach Ungleichung (d) (§1,1.2)

L*(T;) = 2¢A(G,). (17)
(15), (16) und (17) ergeben zusammen

dA

d—,l; > L? (F (ﬂ))
und somit

Ho , dA Ko i ) ,

Jx (u)&;du>fx (w) L (f(u))du=ﬂu dx dy. (18)

0 0 é

(18) in (14) eingesetzt ergibt die Behauptung.
§ 3 Symmetrisierungen im Raum

1.1. Zwei isoperimetrische Ungleichungen

G sei ein Korper im Raum, der durch eine endliche Schar I' stiickweise analytischer
Flachen begrenzt wird. I' setzt sich aus der Vereinigung stiickweise analytischer
Flachenstiicke y und I'\y =TI, zusammen. F bedeute den Flicheninhalt von I’y und V
das Volumen von G.

(a) Wenn y auf einer Ebene liegt, gilt die Ungleichung

F3 > 18zV2.

Diese Ungleichung ist isoperimetrisch, denn das Gleichheitszeichen steht bei der
Halbkugel, wobei y die Aequatorebene ist.

Beweis. Durch Spiegelung von G an der Aequatorebene entsteht ein Korper mit
dem Volumen 2V und der Oberfliche 2F. Wenn sich der Ko6rper durchdringt, trennen
wir den innern vom &dusseren Korper. Wendet man die isoperimetrische Ungleichung
des Raumes an, so erhidlt man

(2F)? > 367 (2V)?

und daraus die Behauptung.

(b) G sei ein Drehkérper mit der z-Achse als Drehachse. Wir werden mit™ die
Schnittfigur in der (r, z)-Ebene (Meridianebene) bezeichnen. Wir treffen folgende
Annahmen:

(Fig. 21)

(i) I ist positiv orientiert.

(i) 7 ist eine Teilmenge der dusseren Randkurve von G und befindet sich auf einem
Bogen 7', der gleich orientiert ist wie 7. 4 ist der Anfangs- und B der Endpunkt von ¥'.
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(iii) P und Q seien zwei Punkte der dusseren Randkurve von G mit der grossten
bzw. kleinsten z-Komponente. Die dussere Randkurve besteht aus den zwei Teilen
PQ und QP; ¥ liegt auf dem Bogen PQ, der nadher bei der z-Achse ist.

(iv) Alle Teilbogen aus Iy, die dem Bogen 4B angehoren, verlaufen beziiglich der
Orientierung von j’ links von ',

(v) Ist s die Bogenlidnge von 7' (0<s5</), so gilt fiir jeden Wert s r(s)>min {r(0),
r(1)} (r(s): -Komponente des zum Parameterwert s gehdrigen Punktes von 7).

Behauptung. F>>18nV?

Gleichheit tritt wie in (a) wiederum bei der Halbkugel ein.

Beweis.
z

AL

Fig. 21 Fig. 22

R sei derjenige Punkt auf I'y mit der kleinsten r-Komponente rg=a. Mit S be-
zeichnen wir denjenigen der Punkte P und Q, der die Elgenschaft hat dass das Gebiet

G', das durch die Geraden r=a, z=zg und dem Bogen RS bzw. SR aus I', begrenzt
WlI’d, G ganz enthilt. Durch Spiegelung von G’ an der Geraden z=zg entsteht ein

Gebiet G" > G, dessen Rand aus dem Bogen I = RSUSR’ (R’ Spiegelbild von R) und
aus einem Teilstiick der Geraden r=a besteht. G” entstehe durch Drehung von G”,
I'” durch Drehung von I'” um die z-Achse. Es ist klar, dass

V(G")=2V (V(G") Volumen von G”) 19)
F(I'")<2F (F(I")Flicheninhalt von I'"). (20)
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Wir werden nun die Ungleichung
F*(I'") = 36nV2(G") 1)

beweisen, aus welcher wegen (19) und (20) sofort die Behauptung (b) folgt.
Wir fiihren die Grésse ¢g=r—a ein.

V(G")=2=n f (e +a)do dz =2n ff 0 do dz +2naAd(G")
J
G” Gu

F(I'")=2r | (e +a)ds= an o ds + 2raL(I"")
J
rll ru

G" setze sich zusammen aus G” und dem Gebiet, das durch Spiegelung von G” an der
Geraden r=a entsteht. Die Fliche von G" betriagt 24 (G"). Nun betrachten wir den
geraden Zylinder mit der Grundfliche G” und der H6he za. An jedem seiner beiden
Enden setzen wir den Koérper auf, der durch Drehung von G” um den Winkel 7 um
die Gerade r=a entsteht. Damit haben wir einen Koérper mit dem Volumen V' (G")
und der Oberfliche F(I'”) konstruiert. Wenden wir auf diesen die isoperimetrische
Ungleichung des Raumes an, so ergibt sich (21). Da in (21) Gleichheit nur im Fall der
Kugel eintreten kann, folgt aus (19) und (20), dass im Extremalfall G ein Viertelskreis
ist und 7 aus den Grenzradien z=0 und r=0 besteht. Damit ist (b) gezeigt.

Die Ungleichung (b) ldsst sich in gewissen Spezialféllen noch verschérfen.

(b") G sei ein zur (x, y)-Ebene symmetrischer Drehkdrper mit der z-Achse als
Drehachse. y sei ebenfalls symmetrisch zur (x, y)-Ebene. Es gelten ferner die Voraus-
setzungen (i), (ii), (iii), (iv) und (v) von (b) (Fig. 22).

Behauptung. F?>36nV? (Gleichheit bei der Kugel)

Beweis. Wir betrachten das Gebiet G’, das von einem Teilstiick der Geraden r=a
(vgl. den Beweis von (b)) und einem Teilbogen I'' = RR’ =T’ begrenzt wird (Fig. 22).
Genau gleich wie in (b) (21) beweist man, dass F>(I'")>36zV?(G’'). Da V< V(G')
und F>F(I''), folgt die Behauptung.

1.2. Symmetrisierungen

G, y und I', geniigen den zu Beginn von §3,1.1 aufgestellten Voraussetzungen.
[ sei eine auf GUI definierte, stiickweise stetig differenzierbare Funktion mit 0<f<1
in GUTI, f=0 auf I',. Wir bezeichnen mit I'; die Niveauflichen f=4 und mit G, den
Korper in G, auf dem f> A. F(A) stelle die Fliche von I'; und V(1) das Volumen von
G, dar.

S(G) ist die Halbkugel im oberen Halbraum z >0 mit dem Mittelpunkt in 0 und dem-
selben Volumen wie G.
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Sf ist die auf S(G) definierte, monoton abnehmende*) Funktion von r, die auf der
Halbkugeloberfliche von S(G,) r=(3V(1)[2n)'/® den Wert ) annimmit.

Uber Sf gelten dhnliche Sitze wie iiber die a-Symmetrisierung (§1,2.2).

Fiir jede in [0, 1] integrierbare Funktion H () ist

~fffH(f)dxdydz=fffH(Sf)dx_dydz (22)

S(G)

SATZ 5. Das Dirichletintegral nimmt in den folgenden Fillen bei einer Symmetri-
sierung ab:

Do(f)> s (1) (D)= [ [ [ erad s ay az)

(a) y liegt in einer Ebene

(b) G ist ein Drehkorper mit der z-Achse als Drehachse. f ist auch rotations-
symmetrisch. Es gelten ferner die Voraussetzungen (i), (ii), (iv) von (b) (§3,1.1) und
(iii") z(s) ist nicht zunehmend (z(s): z-Komponente des Punktes P(s)ey'), (v') fiir be-
liebige s, s, mit sy <S<8, ist r(s)= min{r(s,), r(s;)} (r(s): r-Komponente des Punktes
P(s)ey’).

Beweis. Das nachfolgende Lemma ist das Analogon von Lemma 1 (§1,2.2) im
R?. Sein Beweis, auf den hier verzichtet wird, entspricht demjenigen von Lemma 1.

LEMMA 2.
D(f);j%di (V’(l)=‘%V(A)>. (23)

Das Gleichheitszeichen steht genau dann, wenn Jf /on (n Normale in Richtung
von gradf) konstant ist auf I',.

G, besteht aus einer oder mehreren Komponenten G i=1,..., n. Wird G’ aus-
schliesslich von I'; = I', begrenzt, so gilt die isoperimetrische Ungleichung

F3(I) = 36nV2(GY). (24)

Andernfalls erfiillen G% und sein Rand die Bedingungen der Ungleichungen (a) oder
(b) aus §3,1.1. Somit gilt

F3(I%) > 182V2(GY). (25)

4) Die Funktion kann auch stiickweise konstant sein.
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Aus (24) und (25) und der Jensenschen Ungleichung5) folgt
F()= 3 F(D)> ¥, 85V (G))7 > {3, /1877 (6D}
= {_18nV2 (/1)}1/;. ) (26)
Setzt man (26) in (23) ein und beriicksichtigt, dass

¢ {187V (D)

0 d

DS(G) (Sf ) =
0

(vgl. §1,2.2 Beweis von Satz 1) so folgt die Behauptung.

Die Schwarzsche Symmetrisierung einer Funktion f in G ist wie folgt definiert
[12, S. 189]: f wird in eine Funktion f transformiert, die nur von r abhingig ist. Auf
der Kugeloberfliche r=(3V(1)/4n)'/® [die Kugel hat dasselbe Volumen wie G(1)]

nimmt f den Wert A an.
Mit Hilfe der Ungleichung (5') und des Lemmas 2 lédsst sich der nédchste Satz

beweisen.

SATZ 5'. G sei ein zur (x, y)-Ebene symmetrischer Drehkdrper. y sei ebenfalls
symmetrisch zur (x, y)-Ebene. Es mogen ferner gelten die Voraussetzungen (i), (ii), (iv)
von (b') (§3,1.1) und (iii’): z(s) sei nicht zunehmend fiir s€[0, 1/2] [z(s): z-Komponente
von P(s)e¥’, | Linge von '], (V'): fiir beliebige sy, s,€[0, I/2] mit s, <s<s, gelte r (s)>
>min {r(s,), r(s;)} (r(s): r-Komponente von P(s)ey’). Weist ferner f die gleichen
Symmetrien wie G auf, so nimmt das Dirichletintegral bei einer Schwarzschen Symmetri-
sierung ab.

KOROLLAR 1. G sei ein beliebiger Korper ausserhalb der Kugel {X; |X|<k}; v
liege auf der Kugeloberfiiche |X|=k. Dann gilt:

D (f) = D5y (SS)-

Beweis. Zunichst unterwerfen wir f einer sphirischen Symmetrisierung beziiglich
der z-Halbachse (z>0) und dem Mittelpunkt im Ursprung [12, S.205fF.]. Dabei nimmt
das Dirichletintegral von f ab, ohne dass sich ¥ (1) dndert. Die transformierte Funk-
tion befriedigt die Voraussetzungen von Satz 5 (b). Durch Anwendung dieses Satzes
ergibt sich die Behauptung.

2. Anwendungen

Ahnlich wie in §2 kann die Symmetrisierung aus §3,1.2 beniitzt werden, um

5) Beckenbach-Bellman, Inequalities S. 18.
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Ungleichungen, welche den drei-dimensionalen Modul und den ersten Eigenwert der
drei-dimensionalen Membran betreffen, herzuleiten. Wir werden uns auf die Abschét-
zung des ersten Eigenwertes nach unten beschrénken.

Das Problem der drei-dimensionalen stiickweise freien Membran lautet:

52 62 62
Adu+Au=0in G A=a;3+5;5+¢3_£§

u=0auf I,

0
a_u =0 aufy (n dussere Flichennormale)
n

G, y und I’y wurden in §3,1.1 definiert. 4, ist durch das Rayleighprinzip

D
i = Min (v)

H=D Buk By f f f v¥dxdydz
G

charakterisiert, wobei das Minimum von der ersten Eigenfunktion angenommen wird.
u hat in G konstantes Vorzeichen und kann demnach symmetrisiert werden.

SATZ 6. Wenn G und y eine der Bedingungen (a) und (b) von Satz 5 (§3,1.2)
geniigen, gilt

4\ 2/3
().
3y

Das Gleichheitszeichen steht nur bei der Halbkugel, wobei y die Aequatorebene und
I'y die Kugelkalotte ist.

Beweis. Die Beweisidee von Satz 3 (§2,2) kann auf diesen Fall wortlich iiber-
tragen werden. Wir setzen in den Rayleighquotienten zur Charakterisierung von
A= (2743 V')?/3 (erster Eigenwert des Extremalgebietes) die Vergleichsfunktion Su
ein und schitzen diesen mit Hilfe von Satz 5 un (22) ab.

Die nachstehenden Ergebnisse sind Folgerungen aus dem Korollar 1 und dem
Satz 5.

KOROLLAR 2. Ist G ausserhalb der Kugel {X; |X|<k}, und liegt y auf der
Kugeloberfliche r=k, so ist

4\ 2/3
2> (L) |
3V
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SATZ 6'. Unter den Voraussetzungen von Satz 5’ lisst sich A, wie folgt nach unten
abschdtzen:

471,4 2/3
h> (m) .
K14
Das Gleichheitszeichen tritt nur bei der Kugel ein.
Diese Ergebnisse stellen eine teilweise Erweiterung der Ungleichung von Nehari
[10, Satz III] auf drei-dimensionale Membranen, sowie eine Verallgemeinerung der

Ungleichung von Rayleigh-Faber-Krahn [6, 9, 13] auf stiickweise freie Membranen
dar.
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