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Extremaleigenschaften von Kreissektoren und Halbkugeln

Catherine Bandle

Einleitung

Die Schwarzsche Symmetrisierung stellt ein wichtiges Instrument zur Gewinnung
isoperimetrischer Ungleichungen der mathematischen Physik dar. Darunter verstehen
wir eine geometrische Transformation [12, S. 189], welche jeder in einem ebenen

Gebiet G positiven Funktion/, die auf dem Rand F von G verschwindet, die Funktion
*S2jc/zuordnet. S2nf ist auf dem Kreis K={z; \z\<R} definiert, der die gleiche Flâche
wie G hat. S2nf ist eine monoton abnehmende Funktion von r \z\ mit der Eigen-
schaft, dass die Flâchen der Gebiete {P;PeG,f(P)^À} und {P;PeK, S2itf>À}
einander gleich sind. Die fur die Herleitung isoperimetrischer Ungleichungen wichtig-
sten Eigenschaften sind :

(a) Dus Dirichletintegral nimmt bei der Schwarzschen Symmetrisierung ab,

(b) JJg H(f) dxdy=\\K H(S2nf) dxdyfùrjede integrierbare Funktion H(t).

Wir werden eine Symmetrisierung Sa angeben, welche auch fur Funktionen
definiert ist, die nicht auf dem ganzen Rand Null sind. Der Definitionsbereich der trans-
formierten Funktion ist in diesem Fall der Kreissektor vom Ôffnungswinkel a. Die
Eigenschaft (b) ist immer gewâhrleistet, wâhrend fur (a) zusâtzliche Bedingungen
ûber den Tangentendrehwinkel von F erforderlich sind. Um (a) beweisen zu kônnen,
benôtigen wir geometrische isoperimetrische Ungleichungen fur das ,,Didoproblem".
Sie werden in § 1.1 hergeleitet.

Mit dieser Symmetrisierung beweisen wir einen Satz fur Moduln, der als Verall-
gemeinerung desjenigen von Carleman [5] und Szegô [14] aufgefasst werden kann.
Ferner geben wir eine untere und obère Schranke fur den ersten Eigenwert einer
stûckweise freien Membran und verallgemeinern damit die Ungleichungen von Nehari
[10, Satz III] und von Gasser-Hersch [7]. Im letzten Abschnitt dehnen wir die

Symmetrisierung auf Funktionen dreier Variabeln aus und leiten isoperimetrische
Ungleichungen fur dreidimensionale stûckweise freie Membranen her. Den Anstoss zu
dieser Arbeit gab ein Satz von Nehari [10, Satz III], welcher besagt, dass von allen
Membranen von gegebener Flâche, die langs einem bezùglich G konkaven Bogens frei
sind, die halbkreisfôrmige, die lângs dem Durchmesser frei ist, den kleinsten ersten

Eigenwert hat. Die wichtigsten Ergebnisse wurden in [2] zusammengefasst. In [3] und

[4] wurde die Schwarzsche Symmetrisierung in einer andern Richtung verallgemeinert.
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§ 1 a-Symmetrisierung

1. Isoperimetrische Ungleichungen fur das ,,Didoproblem"

1.1. y sei ein stûckweise glatter Jordanbogen mit dem Anfangspunkt A und dem

Endpunkt B. Der Parameter s bedeute die Bogenlânge lângs y und P{s) stelle den zum

\. v AP(s + As)-AP{s)
t(s) lim —.

As\O S

Parameterwert s gehôrigen Punkt von y dar (P(0)=A und P(l)=B). Wir definieren

In den regulâren Punkten fâllt t(s) mit dem Begriff der orientierten Tangente zu-

sammen. In den Eckpunkten stellt t(s) t(s+O) die rechte, t(s-O) die linke Halb-
tangente dar.

DEFINITION. (p7(Pi, P2), wobei sPl<sP2 ist, ist der Drehwinkel der Tangente
-»

t(s), wenn der Bogen von ^Pl+0 bis s>2 — 0 durchlaufen wird. (py(P~,P+) ist der
orientierte Winkel zwischen der linken und der rechten Halbtangente im Punkte P.

Der Winkel fâllt je nach dem Drehsinn positiv oder negativ aus.

BEISPIEL: Wenn das Bogenstûck zwischen Px und P2 glatt ist und die Krûm-
mung k(s) besitzt, dann ist q>y(Pl9 P2)=$Z2i+o K(s)ds.
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DEFINITION: cp =<

BEISPIELE.

CATHERINE BANDLE

<py(Pl9 P2), wenn dièses Maximum positiv ist
0 sonst

Fig.2

(a) In der Figur 1 ist (py(P~,P+)>0, also (py=çy(P~9P+).
(b) In der Figur 2 ist (py(P~9 P )<0, folglich ^y=0.

DEFINITION. Ein Bogen heisst konvex, wenn er immer links von seinen Tangen-
ten bzw. Halbtangenten liegt.

PROPOSITION 1. Wenn y konvex ist, gilt <py (py(A, B).
Beweis. Wir bezeichnen mit Et die Eckpunkte und mit k (s) die Krûmmung von y.

Dièse existiert ûberall mit Ausnahme endlich vieler Eckpunkte. Es gilt
sj»2-0

cpy(PuP2)= f K(s)ds+ I <py{E7,Et).
J Eckpunkte

zwischen
Pi und P2

Wegen der Konvexitât sind k(s)^0 und ^y^ E?)>0. Daraus ergibt sich, dass

<Py(Ql, Q2)><Py(PD Pl) i«t fÛf SQl^SP^SPl^SQr QED

Fig.3

co sei ein konvexer Bogen von A nach B9 der rechts von y liège (Fig. 3). co darf y auch
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berûhren. Gœ sei das Gebiet zwischen y und œ und (jtû Gû)uyuco. Wir setzen (jy*
PL &a>- 7 und 7* bilden den Rand von Gy*. Sie kônnen auch stûckweise zusammen-

fallen.

DEFINITION. Wir nennen y * die rechte konvexe Huile von y.

PROPOSITION 2.

Beweis. Wir unterscheiden verschiedene Fâlle:
1. y und y* berûhren sich in den Punkten A und B. Dann gilt çy* (A, B) q>y (A, B)

^çy. Nach Proposition 1 ist (py*(A, B)=cpy+.
2. y und y* haben ausser A und B keine gemeinsamen Punkte (Fig. 4). y* ist in

diesem Fall ein Geradenstûck. Daraus folgt, dass (py*=O^<pr
3. Es seien P der erste, Q der letzte gemeinsame Punkt von y und y* mit Ausnahme

von A und B (Fig. 5).

dz(s)

M-t

dx (s) sei die Abstandsfunktion zwischen der Geraden AP und y und d2 (s) diejenige
zwischen QB und y. d1(s) resp. d2(s) nimmt in den Punkten Mtey resp. M2ey ihr
Maximum an. Falls in den beiden Punkten Mx und M2 die Tangenten existieren, gilt
q>r(A9 B)=(py(Ml9 M2)<cpr Andernfalls gibt es in den Umgebungen von Mt und
M2 Punkte R und S mit çy*(A, B)^çy(R, 5)<^r

4. y und y* berûhren sich nur in einem der beiden Eckpunkte. Dieser Fall lâsst
sich mit Hilfe von 1. und 3. sofort erledigen.

1.2. Wir betrachten ein ebenes Gebiet G. Sein Rand sei r=rouy, wobei sich y
aus endlich vielen stûckweise glatten Bôgen oder geschlossenen Kurven zusammen-
setzt. Wir werden mit A den Flâcheninhalt von G und mit L die Lange von Fo be-
zeichnen. In diesem Abschnitt werden isoperimetrische Ungleichungen hergeleitet,
welche eine Beziehung zwischen A und L herstellen.

(a) Voraussetzungen: G liège im Innern eines Sektors vom ôffnungswinkel
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y bestehe aus endlich vielen Bôgen auf den Grenzradien 0=0 und 0=a des Sektors

(r, 9 Polarkoordinaten) (Fig. 6).

Behauptung. L2 ^ 2(xA.

Das Gleichheitszeichen steht nur beim Kreissektor.
Beweis. Spiegeln wir G an der Geraden 0=0 und identifizieren wir die Geraden

9= a und 0 — ot, so erhalten wir ein Gebiet, das einem Gebiet auf einem geraden
Kreiskegel mit dem vollen Winkel 2a isometrisch ist. Auf Grund der isoperimetrischen
Ungleichung von Alexandrow auf Kegeln [1, S. 416]1) folgt (2L)2^2(2a) (2A% wo-
bei das Gleichheitszeichen nur bei der Mantelflâche steht. Daraus ergibt sich unmittel-
bar die Behauptung.

e-a

e=o

Fig. 6 Fig. 7

Légende zu Fig. 6 u. 7: y - ¦A.

(b) Voraussetzungen. Uber y treffen wir die gleichen Annahmen wie in (a). G

hingegen liège ausserhalb des Sektors (Fig. 7).

Behauptung,

Gleichheit tritt nur beim Halbkreis ein.
Beweis. Wir betrachten die Gerade g, welche die Punkte P und Q des àusseren

Randbogens von G verbindet. g wurde so gewâhlt, dass die Strecke PQ zusammen
mit FoCzFo ein einfach zusammenhângendes Gebiet G' begrenzt, das G enthàlt und

Dièse Ungleichung findet sich auch in der Arbeit von A. Huber, On the isoperimetric inequality
on surfaces of variable Gaussian curvature, Annals of Math., Bd. 60, Nr. 2, 1954.
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vollstândig auf einer Seite von g liegt. Wir spiegeln G' an der Geraden g und wenden
die isoperimetrische Ungleichung der Ebene an. Daraus folgt (IL (r'o))2 ^ 4n (2A (G')),
wobei L(r'o) die Lange von r'o und A (G') die Flàche von G' ist. Da L^L(T'O) und
A^A(Gr\ ist (b) gezeigt.

T(i-o)

Fig.8
Légende zu Fig. 8 u. 9:

(c) Voraussetzungen. (vgl. Fig. 8, 9) y muss folgende Bedingungen erfûllen
1. y besteht aus einer endlichen Anzahl stûckweise glatter Bogen, welche aile auf

der gleichen innern oder âussern Randkurve von G liegen. Der Rand von G sei

positiv orientiert.
2. y liegt ferner auf einem konvexen Bogen y' mit dem Anfangspunkt A, dem

Endpunkt B und der Bogenlânge s. y' ist gleich orientiert wie y; d.h. geht man lângs
des Randes in positivera Sinne von einem Punkt P'ey zu einem Punkt Q'ey, so ist

Sp—sQ>^0. Wir setzen voraus, dass q>y><n ist.

Behauptung. l}^2aA, wobei <x n — (py<.

Das Gleichheitszeichen steht genau dann, wenn G ein Kreissektor mit dem ôffnungs-
winkel a und Fo der Kreisbogen ist.

Beweis. Wir zeichnen in A und B die Tangenten t(Q) und t(l-0). Dièse bilden
wegen der Proposition 1 einen Sektor vom Offnungswinkel a. G zerfâllt in zwei Be-
reiche G' und G". G1 befindet sich innerhalb, G" ausserhalb des Sektors. F'o (Fq) be-
zeichne das Randstùck von G' (G"), das zu To gehôrt. Wegen (b) gilt

(1)

P und Q sind diejenigen Schnittpunkte von t(0) und t(l-0) mit ro, fur die QPerQ
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zusammenhângend ist, und die die Eigenschaft haben, dass das Gebiet innerhalb des

Sektors, das von QP begrenzt wird, G' ganz umfasst. Nach (a) folgt

(2)

Aus (1) und (2) ergibt sich

L2 ^ L2 (ré) 4- L2 (rfo) > 2<xA (G') + 2nA {G") > 2aA.

Die nachfolgende Ungleichung stellt eine Verallgemeinerung von (a), (b) und (c)
dar.

Fig.10
Légende fur aile weiteren Figuren: A y y\y x x x x x y'*\y\

(d) Vorausseizungen. (vgl. Fig. 10) y liegt auf einem Bogen y' mit dem Anfangs-
punkt A und dem Endpunkt B. y' sei gleich orientiert wie y (vgl. (c)), und es gelte

q>y,<n (y braucht nicht wie in (c) auf einer einzigen Randkurve zu liegenund y'
braucht nicht konvex zu sein)

Behauptung. L2 ^ 2ocA, wobei (x=n — (py,.
Das Gleichheitszeichen steht nur beim Kreissektor, bei dem Fo der Kreisbogen ist.

Beweis. Wir betrachten das Gebiet G9 das von einer Teilmenge Focro und

f*c/* (y'* ist die konvexe Huile von y' s.§ 1,1.1) berandet wird und G enthâlt./*
verlâuft stets rechts von y'. Da y' und y gleich orientiert sind, existiert ein solches

Gebiet GcG. Durch die gleichen Ûberlegungen wie in (c) schliesst man auf

L2(f0)S*2<5L4((j) mit à % - (py,*(A9 B)

Zusammen mit Proposition 2 (§ 1,1.1) folgt
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1.3. Geometrische isoperimetrische Ungleichungen fur symmetrische Gebiete

DEFINITION. Ein Gebiet heisst symmetrisch von der Ordnung q (q natûrliche
Zahl), falls ein Punkt 0 (Symmetriezentrum) existiert, so dass G bei einer Drehung um
den Winkel 2n/q um 0 in sich selbst ûbergeht.

Wir treffen ûber G folgende Annahmen:

(A) G sei ein symmetrisches Gebiet der Ordnung q

(B) Sein Rand F bestehe aus einer inneren, geschlossenen Randkurve y und den

ûbrigen Randkurven Fo. Sowohl y als auch Fo sollen dieselbe Symmetrie wie G auf-
weisen. (Fig. 11).

(C) Es sei S ein Sektor vom Offnungswinkel 2n/q mit der Spitze in 0. S schneidet

aus y den Bogen ys heraus. Wir setzen $s cpys und <Py=maxs$s. Es gelte $y^n.

q-3

Fig. 11

GÀ=punktierîe Gebiete

Fig. 12

Nun betrachten wir einen Bereich Gx im Innern von G mit derselben Symmetrie-
ordnung wie G. Der Rand von Gx enthàlt Teilbôgen aus y. Denjenigen Teil, der nicht
zu y gehôrt, bezeichnen wir mit Fx. Gx braucht nicht zusammenhângend zu sein (Fig.
12). A (X) ist die Flâche von Gx und L(X) die Lange von Fx.

Behauptung. Unter den Voraussetzungen (A), (B) und (C) gilt L2(A)>min
{4n, Iqoî] A(X)9 wobei OL (n-$y).

Beweis. 1. Gx besteht nur aus einer Komponente. In diesem Fall gehôrt seine

âussere Randkurve ganz zu FA. Wendet man die isoperimetrische Ungleichung der
Ebene an, so folgt L2(X)^4nA(X).

2. Gx setzt sich aus mehreren Komponenten zusammen. Wegen der Symmetrie
sind es deren kq (k natûrliche Zahl). Gx geht durch Rotation aus den zusammen-
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hângenden Gebieten G\, G\,...,G\ hervor. F\ i l,..., k sind die zu Fk gehôrigen
Randstûcke von G\. Wenn wir a=n-$y setzen, so find fur jedes G\ die Bedingungen
von (d) (§1,1.2) erfùllt. Somit ist

2*A (G\) 2aqA (A)

und

L2 (A) (q i L (r\))2 >q2iL2 (r\) > q2

Aus 1. und 2. ergibt sich die Behauptung.

Bemerkung. In gewissen Fâllen ist es nicht nôtig, dass y aus einer ganzen ge-
schlossenen Randkurve besteht. G sei ein Gebiet, das der Bedingung (A) (wie vorher)
genûgt und ferner die folgenden Voraussetzungen erfûllt:
(B') Sein Rand F=rouy, sowie Fo und y seien ebenfalls symmetrisch von der Ord-

nung q. y bestehe aus verschiedenen Bogen, welche im Innern von G auf einer ge-
schlossenen, symmetrischen Kurve y' liegen.

(C) Esgelte*y,=0

Behauptung 2. L2 (A) ^ 4nA (À)
Das Gleichheitszeichen steht beim Kreis.

Beweis. Der Beweis ist gleich wie derjenige von Behauptung 1. Wir werden die

Behauptung 2 nur noch fur Gebietstypen nachweisen wie sie in Fig. 13 eingezeichnet
sind.

Wir verbinden die Schnittpunkte A und B von y mit der âusseren Randkurve von
Gx durch eine Gerade. (Die symmetrischen Punkte werden mit dem gleichen Buch-
staben versehen). Damit erhalten wir ein Gebiet G'x, das G enthâlt.

Wegen der Konkavitât und der Symmetrie von y' ist das Geradenstuck AB kleiner
als Teilstûck DC von Fx. Daraus folgt, dass die Randkurve von G\ kleiner ist als Fx.
Wendet man auf sie die isoperimetrische Ungleichung der Ebene an, so ergibt sich die

Behauptung.
Aus der isoperimetrischen Ungleichung der Ebene folgt die Behauptung 2.

Fig. 13
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2. Définition der a-Symmetrisierung

2.1. G sei ein ebenes Gebiet mit dem Rand F und dem Flâcheninhalt A.

DEFINITION. Mit Sa(G) bezeichnen wir den Kreissektor mit dem gleichen
Flâcheninhalt wie G, der durch die Radien 0=0, O—a und durch den Kreisbogen
r {2A/(x}1/2 begrenzt wird (a<2;r).

/ sei eine stûckweise stetig differenzierbare Funktion in GuF. y ist eine endliche

Vereinigung stûckweise glatter Bôgen, welche dem Rand F angehôren. Es gelte ferner
in Guy,/=0 auf F0=F\y.

Wir fûhren folgende Bezeichnungen ein :

Fx {P;PeGuF9f(P)=X} sei derjenigen Teil des Randes von Gx, der nicht zu y

gehôrt. O.B.d.A. kônnen wir annehmen, dass 0</^l ist und somit Ae[0, 1].

DEFINITION. »Sa/ist die auf *Sa (G) definierte, positive, nicht-zunehmende Funktion

von r, die auf dem Kreisbogen des Sektors Sa(Gx) den Wert X annimmt.
Da Saf eine abnehmende Funktion ist, ist sie fast ûberall differenzierbar. S2n

bedeutet die Schwarzsche Symmetrisierung [12, S. 189]

2.2. Eigenschaften von Saf
Aus der Définition von Sa/geht hervor, dass

dxdy= Jj H(SJ) dx dy (3)

G SX(G)

fur jede in [0, 1] integrierbare Funktion H{t).
Unter dem Dirichletintegral von/verstehen wir die Grosse D(/)=JJ gmd2fdxdy.

SATZ I. G und Fmôgen den Voraussetzungen von (d) (§1,1.2) genùgen, nâmlich:

F=F0Kjy sei positiv orientiert, y liège auf einem Bogen y mit derselben Orientierung
wie y und mit cpr<n.f sei eine positive, stûckweise stetig differenzierbare Funktion in

GkjF, welche auf Fo verschwindet. Dann nimmt das Dirichletintegral bei einer a-

Symmetrisierung ah:

DG(f)>DSa(G)(SJ)9 wobei a^n-çr (4)

Beweis. Wir benôtigen ein Lemma, das auf [6, 9, 12, S. 219...] zurûckgeht und
eine Môglichkeit darstellt, das Dirichletintegral mit Hilfe geometrischer Ungleichun-
gen abzuschâtzen.
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LEMMA 1. Wenn A(X) die Flâche von Gx und L(X) die Lange von Fx bedeuten,

so ist
1

(5)

0

wobei A'(X)=(d/dÀ) A(X). Das Gleichheitszeichen steht genau dann, wenn dfjôn kon-
stant ist lângs den Niveaulinien Fx von / (n innere Normale an GA).

Beweis des Lemmas. Es gilt die Umformung

î î

M/) JJgrad2 fax dy jj (^ dn ds f dX f
o

^ rfs (6)

g A=orA o rA

Unter Berûcksichtigung der Schwarzschen Ungleichung

und der Beziehung \Tx (df/dri)ds —(djdk) A(À) folgt die Behauptung des Lemmas.

Gx setzt sich aus einem oder mehreren Gebieten G\i l,..., n zusammen. Das zu

rA gehôrige Randstûck von G\ sei F\. Wird Gx ausschliesslich von F\ berandet, so

gilt die isoperimetrische Ungleichung der Ebene

L2(rt)>4nA(G\). (8)

Andernfalls genûgen die Gx mit dem Rand rAuyl(yc:y) den Voraussetzungen von
(d) (§ 1,1.2) und es ist in diesem Fall

(9)

Aus (8) und (9) folgt

L2 (A) > t L2 (ri) > 2a f A (G\) 2a>l (A). (10)

Mit Hilfe von (10) làsst sich (5) weiter abschâtzen

o

Wir berechnen nun DSgi(G)(Saf). Es sei

*} und fA {P; PeSa(G), SJ(P) X)
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der zum Rand von ôx gehôrige Kreisbogen. Da fur Sa/sowohl in (7) als auch in (10)
das Gleichheitszeichen steht, folgt

(12)

dk y>
Aus der Konstruktion von *Sa/geht unmittelbar hervor, dass A(ôÀ)=A(Â). Aus

(11) und (12) ergibt sich die Behauptung.
Bemerkung. Wie aus (12) ersichtlich ist, ist DSge(G)(Saf) eine zunehmende Funk-

tion von a.

SATZ I'. G, y und To erfullen die Voraussetzungen (A), (B), (C) oder (A), (B'),
(C) aus §1,1.3 undf sel ebenfalls symmetrisch von der Ordnung q und geniige den

Voraussetzungen des Satzes I. Dann gilt:

DG{f)>DSx{G)(Sj\ wobei a < min{2tt, q(n - $Y)}.

Der Beweis ist genau gleich wie derjenige von Satz 1. Man benûtzt anstelle der

Ungleichung (10) die Ergebnisse aus §1,1.3.

§ 2 Anwendungen

1. Obère Schranken fur den Modul

Fig. 14

Gt : schraffierte Gebiete
Kurven und Bôgen mit dem Zeichen 0 (1) gehôren zu
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Voraussetzungen. G sei ein ebenes Gebiet mit dem stûckweise glatten und positiv
orientierten Rand r=rour1uy. y habe dieselben Eigenschaften wie im Satz 1 aus

§1,2.2, d.h. y liegt auf einem gleich orientierten Bogen y' mit (py><n. ro (J7=i ^o\
A =U?=i r<i\ wobei ^o0 und ri° Bôgen mit dem Anfangs- und Endpunkt auf y

oder geschlossene Kurven bedeuten (Fig. 14)

Wir betrachten nun folgendes Dirichletproblem :

Dl Ah 0 in G (A Laplaceoperator)

h 0 auf To

— 0 auf y (n âussere Normale an G)

Oauf
l>=l auf

wobei das Minimum ûber aile stûckweise stetig differenzierbaren Funktionen zu er-
strecken ist.

Gx ist die Vereinigung aller Gebiete Glt mit Gu mit GunG (l), deren Rand zur
Menge ^u}/^} gehôrt. A ist die Flâche von G, Ax diejenige von Gx.

SATZ 2. £/hter dew zu Beginn dièses Abschnittes aufgestellten Voraussetzungen

gilt:

fi^ — In -, wobei a^n-~(pyf.2a At

Das Gleichheitszeichen tritt nur beim Gebiet ô Sa(GuG1)\Sa(G1) ein, wobei Fo

aus dem Kreisbogen r {2(A+A1)/u}1/2, rx aus dem Kreisbogen r {2A1/a}1/2 und y

aus den Grenzradien 6=0 und 0=a bestehen.

Beweis. Wir schâtzen den Modul (l des Extremalgebietes mit Hilfe des Dirichlet-
prinzips ab

fi1 < Dq (y)î wobei v 0 auf f0 und v 1 auf f\
Als Vergleichsfunktion wâhlen wir SaH mit H=<

l 1 in Cjj.
Auf Grund von Satz 1 (§1,2.2) folgt

A"1 < Dô(SaH) DSa(GKjGl)(SaH) < DGuGl(H) DG(h) p'1.

Die Lôsung von Dl in Ô ist fi (ln i?o-ln r)/In(Rq/R^; aRlj2=A +Al9 <xR2J2

=AV Daraus lâsst sich unmittelbar (l berechnen.

Der Satz 2 stellt eine Verallgemeinerung eines Satzes von Carleman [5] und

Szegô [14] dar.
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BEISPIEL. G sei der Einheitskreis; y, Fo und F1 liegen auf der Peripherie. Die
Lange von Fo sei 2n-2œ und diejenige von F1 2/?. Es gelte 2œ<%. Unterwerfen wir G

einer "zirkulâren" Symmetrisierung [12, S. 193], so nimmt der Modul zu. Das neue
Gebiet ist wieder der Einheitskreis (Fig. 15). Der Rand ist symmetrisch bezùglich der
x-Achse. Die Lângen von Fo und J\ sind wieder 2n-2œ und 2/?. Wir geben nun obère

Schranken fur den Modul fx von G' an.

Fig. 15 Fig. 16

y'\y liegt auf den Tangenten in P und Q (Fig. 15). Die fur Satz 2 benôtigten Grôssen

sind: A=n, A+A1=n+tg fi-fi, a=7i-2co. Somit gilt nach Satz 2

tg/J-/ï
*

Die Wahl von y'\y ist bis auf die Bedingung <py'<n willkûrlich. Wir erhalten eine

bessere Abschâtzung, wenn y'\y beispielweise auf zwei Geraden durch P und Q liegt,
die parallel sind zu den Tangenten in A und in B (Fig. 16).

2. Untere Schranken fur den ersten Eigenwert einer stùckweise freien Membran.

G sei ein ebenes Gebiet mit dem Rand T=rouy. Wir betrachten die Membran

Ml Au + lu 0 in G

u 0 auf Fo

— 0 auf y (n âussere Normale).
dn

Der erste Eigenwert ist durch das Rayleighprinzip gekennzeichnet:

A1= Min D»«
v 0 auf Fo f f 2 j jJJ „<!**,
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Das Minimum ist ûber aile stûckweise stetigen Funktionen v zu erstrecken. Die
erste Eigenfimktion liefert das Minimum des Rayleighquotienten.

SATZ 3. Falls G, Fo und y die Voraussetzungen von (d) (§1,1.2) erfùllen, d.h. y

liegt auf einem stilckweise glatten Bogen y', der gleich orientiert ist wie y und fur den

q>y><n, so ist

2A

(A Flâche von G, jo=2.4048... erste Nullstelle der Besselfunktion militer Ordnung).
Das Gleichheitszeichen steht nur bei der Membran ô=Sa(G), die lângs dem Kreis-

bogen r {2Aja}1/2 eingespannt und lângs den Radien 0=0 und 9=ccfrei ist.
Beweis. Die erste Eigenfunktion des Extremalgebietes ô ist

wobei R

Der entsprechende Eigenwert ist Xx =Jq/R2. Wir bezeichnen mit w die erste Eigen-
funktion der Membran in G. u hat konstantes Vorzeichen und kann demzufolge

symmetrisiert werden. Wir schâtzen Xt mit Hilfe des Rayleighquotienten ab. Als Ver-

gleichsfunktion wâhlen wir Sau. Somit erhalten wir unter Berûcksichtigung von (3)

undSatzl (§1,2.2)

^ DSet(G)(Sau) DG(u)
_Ài ^ Y7 77 "" * '

J (Sau)2 dxdy J J u2dx dy

S*(G) G

Bemerkungen. 1. Wenn y konkav und zusammenhângend ist, ist a=7r und
Xx^njlj2A. Dièses Résultat findet sich schon in einer Arbeit von Nehari [10, Satz

III]. Nehari verwendete konforme Abbildungen und musste daher einige Annahmen

topologischer Art ûber G und y treffen, auf die hier verzichtet werden konnte.
2. Wennç>y,>7i ist, gibt es keine untere Schranken, die nur von A und (py> ab-

hângig sind. Gegenbeispiel: Wir betrachten das Rechteck der Hôhe BC=h und der

Lange AB=L Es sei rQ=DAvBC und y=ABuCD. A=lh und

BEISPIELE.
1) G sei ein beliebiges Gebiet, y eine geschlossene, konkave innere Randkurve

(Fig. 17). In diesem Fall ist (pr=(py=O und X{^%jl\2A.
2) G sei ein beliebiges Gebiet und y ein Schlitz im Innern von G (Fig. 18).
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Fig. 17 Fig. 18

Wir fassen y als Rand eines Gebietes der Flâche 0 auf. Folglich ist cpy

maxPl>p2ey (py\(Pu P2)\ (die Tangente durchlâuft y in beiden Richtungen). Somit ist

l
Handelt es sich um einen geraden Schlitz, dann ist <py=0 und

Dièses letzte Ergebnis kann auch aus der Ungleichung von Rayleigh-Faber-Krahn
[6, 9, 13] und der alternierenden Symmetrisierung [11] gewonnen werden2)

Fig. 19 Fig. 20

3) Es soll eine untere Schranke fur den zweiten Eigenwert v2 einer 6-eckigen freien
Membran angegeben werden (Fig. 19). v2 ist gleich dem ersten Eigenwert der trapez-
fôrmigen Membran ABCD, welche làngs AB eingespannt und sonst frei ist. Die fur
Satz 3 notwendigen Grôssen betragen a=7r/3, A =(3^/3/4) a2. Fur die Abschâtzung
nach oben wird die Ungleigung von Szegô3) benûtzt

2,331a~2<v2<4,099a~2,

Im Fall von symmetrischen Membranen lâsst sich der Satz 3 noch verschârfen.

SATZ 3': Wenn G, To und y den Bedingungen (A), (B), (C) oder (A), {B')t (C)

2) siehe auch J. Hersch, Enseignement mathématique, 5, (1959).
3) G. Szegô, J. rat. Mech. Analysis 3, S. 343-356 (1954).
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aus §1,1.3 genùgen, gilt

Das Gleichheitszeichen steht fur oc=2n beim Kreis mit radialen Schlitzen (Fig. 20).
Der Kreis mit radialen Schlitzen hat denselben ersten Eigenwert wie derjenige ohne

Schlitz.
Fur den Beweis dièses Satzes sei auf den Beweis von Satz 3 hingewiesen. Der

einzige Unterschied besteht darin, dass man anstelle von Satz 1 den Satz Y verwendet.

3. Obère Schrankenfùr den ersten Eigenwert einer elastisch gebundenen Membran.

Wir gehen von denselben Voraussetzungen wie in §2,1. aus. Insbesondere werden

dort der Winkel a und der âussere Flâcheninhalt Ax definiert. Das Problem der
elastisch gebundenen Membran lautet:

M2 u + Au 0 in G

du
— =0 auf y
on

— + kf (s)u =0 auf rf j=0,lon

fl,..., m falls / 0 ^T xi <
4 r t1 4 (n aussere Normale)

\l9...,n falls j l v 'falls j
Wir fuhren die Bezeichnungen K0=Yj=i J/v*) k% ds und Kx =Ya=i J/v») ^i0 ds. ein

Ko ist die totale Federung von To, Kx diejenige von Fl. Wir nehmen an, der Modul

Vrori von G sei //0.
Nun betrachten wir die Membran: Aû+Xû=0 im Kreisringsektor (S, der durch ^

(auf 0=0 und 0=a), /*0 (auf r=Ê0) und ^ (auf r=^x) berandet ist. Die Rand-

bedingungen sind: ôû/dn=0 auf J, dû/dn+K0/aR0 û=0 auf /*o und dûjdn-\-Kll(xR1
w=0auf Pv

Êt wird so bestimmt, dass ô1 Sa(G1), d.h. aRl/2=A1. Der Modul von ô sei

ebenfalls fi0. Daraus folgt, dass Ê0 {2AJa}i/2 eafi0.

Der nâchste Satz verallgemeinert denjenigen von Gasser-Hersch [7]

SATZ 4. Unter den Voraussetzungen von §2,1. iiber G,

y undFQ gilt: kt ^ Xx
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Beweis. Wir schâtzen Xt mit Hilfe des Rayleighquotienten ab

i=i J

f f
(13)

v2dx dy

Die zu Xx gehôrige Eigenfunktion û hat dieselben Niveaulinien wie die Lôsung îi

von D\ in 6. Wir kônnen sie demzufolge harmonisch nach G verpflanzen [8].
h sei die Lôsung von D\ in G. Wir bezeichnen mit Fx (tA) die Niveaulinien

h l(ji X) und mit GA (<3A) das Gebiet, in welchem h (h) grôsser ist als X. Als Para-

meter fur die Niveaulinien wâhlen wir lirxr^ipx) resp. firir^i^x)- Es gilt

und ebenso
1 ôîi 1 1

X dn 1 - X ju0

Daraus folgt, dass ii(Gx) n(ôx). Da die Fx resp. tx Niveaulinien einer harmo-
nischen Funktion sind, ist der Modul additiv, d.h. n=$dfi (^=jUr^rA+dA(GA\GA+dA)).
Wir definieren û(x, y) ij/(h(x, y)) x{n(x, y)) und U(x, y) ij/(h(x, y)) x(n(*> y))-
Setzt man U(x, y) als Vergleichsfunktion in (13) ein und berucksichtigt man, dass

U(x, y) lângs Fo und /\ konstant und dass DG(U) Dô(û) ist, so folgt

0)
L—, wobei

¦J
an {s, X) bedeutet die Lange der Normalen zwischen Fx und TA+dA im Punkt, der zur
Bogenlânge s gehôrt; r(^) r1_Ai//i0.

Nach Satz 2 (§2,1) gilt

(16)
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und nach Ungleichung (d) (§1,1.2)

(15), (16) und (17) ergeben zusammen

dA

und somit

f*o Ho

X2 (ii) — dfx ^ I x2 (^) L2 (f (/à)) à\i I I û2dx dy. (18)oo ô

(18) in (14) eingesetzt ergibt die Behauptung.

§ 3 Symmetrisierungen im Raum

1.1. Zwei isoperimetrische Ungleichungen
G sei ein Kôrper im Raum, der durch eine endliche Schar F stuckweise analytischer

Flâchen begrenzt wird. F setzt sich aus der Vereinigung stuckweise analytischer
Flâchenstiicke y und F\y F0 zusammen. Fbedeute den Flâcheninhalt von Fo und V
das Volumen von G.

(a) Wenn y auf einer Ebene liegt, gilt die Ungleichung

Dièse Ungleichung ist isoperimetrisch, denn das Gleichheitszeichen steht bei der

Halbkugel, wobei y die Aequatorebene ist.
Beweis. Durch Spiegelung von G an der Aequatorebene entsteht ein Kôrper mit

dem Volumen 2 Fund der Oberflâche 2F. Wenn sich der Kôrper durchdringt, trennen
wir den innern vom âusseren Kôrper. Wendet man die isoperimetrische Ungleichung
des Raumes an, so erhâlt man

(2F)3^36n(2V)2

und daraus die Behauptung.
(b) G sei ein Drehkôrper mit der z-Achse als Drehachse. Wir werden mit"" die

Schnittfigur in der (r, z)-Ebene (Meridianebene) bezeichnen. Wir treffen folgende
Annahmen:

_(i) r ist positiv orientiert.
(ii) y ist eine Teilmenge der âusseren Randkurve von G und befindet sich auf einem

Bogen y'9 der gleich orientiert ist wie y. A ist der Anfangs- und B der Endpunkt von y'.
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(iii) P und Q seien zwei Punkte der âusseren Randkurve von G mit der grôssten
bzw. kleinsten z-Komponente. Die âussere Randkurve besteht aus den zwei Teilen
PQ und QP; y liegt auf dem Bogen PQ, der nâher bei der z-Achse ist.

(iv) Aile Teilbôgen aus f0, die dem Bogen AB angehôren, verlaufen beziiglich der
Orientierung von f links von f.

(v) Ist s die Bogenlânge von f (0<,$•</), so gilt fur jeden Wert s r(,y)^min{r(0),
r(l)} (r(s): r-Komponente des zum Parameterwert s gehôrigen Punktes von f).

Behauptung. F3^l8nV2
Gleichheit tritt wie in (a) wiederum bei der Halbkugel ein.

Beweis.
r=a

**r

Fig. 22

R sei derjenige Punkt auf Fo mit der kleinsten r-Komponente rR=a. Mit S be-
zeichnen wir denjenigen der Punkte P und Q, der die Eigenschaft hat, dass das Gebiet

G', das durch die Geraden r a, z zs und dem Bogen RS bzw. SR aus Fo begrenzt
wird, G ganz enthâlt. Durch Spiegelung von G' an der Geraden z=zs entsteht ein

Gebiet G"=>Gf, dessen Rand aus dem Bogen P'^RSuSR' (R' Spiegelbild von jR) und
aus einem Teilstûck der Geraden r=a besteht. G" entstehe durch Drehung von G\
F" durch Drehung von f" um die z-Achse. Es ist klar, dass

V {G") > 2V (V {G") Volumen von G")

F (F") < 2F (F (F") Flâcheninhalt von F").

(19)

(20)
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Wir werden nun die Ungleichung

F3(F")^36nV2(G") (21)

beweisen, aus welcher wegen (19) und (20) sofort die Behauptung (b) folgt.
Wir fuhren die Grosse g r—a ein.

V(G") 2tt f f (g + a) dg dz 2n f f g dg dz + 2naA(G")
G" G"

F (F") 2tt f (g + a) ds 2tc f g ds + 2naL{F")
T" T"

G'" setzesich zusammen aus (/" und dem Gebiet, das durch Spiegelung von G" an der
Geraden r a entsteht. Die Flâche von G'" betrâgt 2A {G"). Nun betrachten wir den

geraden Zylinder mit der Grundflâche G" und der Hôhe na. An jedem seiner beiden
Enden setzen wir den Kôrper auf, der durch Drehung von G" um den Winkel n um
die Gerade r a entsteht. Damit haben wir einen Kôrper mit dem Volumen V{G")
und der Oberflâche F(F") konstruiert Wenden wir auf diesen die isoperimetrische
Ungleichung des Raumes an, so ergibt sich (21). Da in (21) Gleichheit nur im Fall der

Kugel eintreten kann, folgt aus (19) und (20), dass im Extremalfall G ein Viertelskreis
ist und y aus den Grenzradien z=0 und r 0 besteht. Damit ist (b) gezeigt.

Die Ungleichung (b) lâsst sich in gewissen Spezialfâllen noch verschârfen.

(b') G sei ein zur (x, y)-Ebene symmetrischer Drehkôrper mit der z-Achse als

Drehachse. y sei ebenfalls symmetrisch zur (x, j>)-Ebene. Es gelten ferner die Voraus-

setzungen (i), (ii), (iii), (iv) und (v) von (b) (Fig. 22).

Behauptung. F3^36nV2 (Gleichheit bei der Kugel)
Beweis. Wir betrachten das Gebiet G', das von einem Teilstiick der Geraden r a

(vgl. den Beweis von (b)) und einem Teilbogen F' RR'czro begrenzt wird (Fig. 22).
Genau gleich wie in (b) (21) beweist man, dass F3(Ff)^36nV2(G'). Da F< V(G')
und F^F{F'\ folgt die Behauptung.

1.2. Symmetrisierungen

G, y und Fo geniigen den zu Beginn von §3,1.1 aufgestellten Voraussetzungen.

/sei eine auf GkjF definierte, stiickweise stetig differenzierbare Funktion mit 0^/< 1

in Gur,/=0 auf ro. Wir bezeichnen mit FX die Niveauflâchen/=A und mit Gk den

Kôrper in G, auf dem/>A. F(X) stelle die Flâche von Fk und V(X) das Volumen von
Gx dar.

S(G) ist die Halbkugel im oberen Halbraum z^ 0 mit dem Mittelpunkt in 0 und dem-

selben Volumen wie G.
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Sf ist die auf S (G) definierte, monoton abnehmende4) Funktion von r, die auf der
Halbkugeloberflâche von S(Gk) r=(3V(X)l2n)lf3 den Wert X annimmt.

Ùber Sf gelten âhnliche Sâtze wie ûber die a-Symmetrisierung (§1,2.2).
Fur jede in [0, 1] integrierbare Funktion H(t) ist

H (f) dx dy dz f f f H (Sf) dxdy dz (22)

G S(G)

SATZ 5. Das Dirichletintegral nimmt in denfolgenden Fâllen bei einer Symmetri-
sierung ab:

DG{f)> DSiG) (Sf) (d (/) jjj grad2 fdx dy

(a) y liegt in einer Ebene

(b) G ist ein Drehkorper mit der z-Achse aïs Drehachse. f ist auch rotations-
symmetrisch. Es gelten ferner die Voraussetzungen (i), (ii), (iv) von (b) (§3,1.1) und

(iiï) z(s) ist nicht zunehmend (z(s): z-Komponente des Punktes P{s)ef), (V) fur be~

liebigeslf s2 mit si^s^s2 istr(s)^ minlr^), r(s2)} (r(s): r-Komponente des Punktes

P{s)ef),
Beweis. Das nachfolgende Lemma ist das Analogon von Lemma 1 (§1,2.2) im

R3. Sein Beweis, auf den hier verzichtet wird, entspricht demjenigen von Lemma 1.

LEMMA 2.

i

Das Gleichheitszeichen steht genau dann, wenn df/ôn (n Normale in Richtung
von gradf konstant ist auf Fx.

Gx besteht aus einer oder mehreren Komponenten G\ i=l,...,n. Wird G\ aus-
schliesslich von T\<=.TX begrenzt, so gilt die isoperimetrische Ungleichung

F3(ri)S*367rF2(Gl). (24)

Andernfalls erfûllen G\ und sein Rand die Bedingungen der Ungleichungen (a) oder
(b) aus §3,1.1. Somitgilt

G\). (25)

4) Die Funktion kann auch stûckweise konstant sein.
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Aus (24) und (25) und der Jensenschen Ungleichung5) folgt

F(X)= t F(rlx)> £ (iSnV2 (Gi))1/3 > {f yÎ8^7(GÎ)}2/3
i=l i=l »=1

{18tcF2(A)}1/3. (26)

Setzt man (26) in (23) ein und beriicksichtigt, dass

î
2/3

(vgl. §1,2.2 Beweis von Satz 1) so folgt die Behauptung.
Die Schwarzsche Symmetrisierung einer Funktion f in G ist wie folgt definiert

[12, S. 189]:/wird in eine Funktion /transformiert, die nur von r abhângig ist. Auf
der Kugeloberflâche r=(3V(X)l4n)113 [die Kugel hat dasselbe Volumen wie G (À)]

nimmt/den Wert k an.

Mit Hilfe der Ungleichung (bf) und des Lemmas 2 lâsst sich der nâchste Satz

beweisen.

SATZ 5'. G sei ein zur (x,y)-Ebene symmetrischer Drehkôrper. y sei ebenfalls

symmetrisch zur (x, y)-Ebene. Es môgen ferner gelten die Voraussetzungen (i), (ii), (iv)
von (b') (§3,1.1) und (iiir): z(s) sei nicht zunehmendfur se[0,1/2] [z(s): z-Komponente

vonP(s)ef91 Lange von y'], (y1): fur beliebige sl9 s2e[0,1/2] mit si^s^s2gelte r(s)^
> min {/•(,$!), r(s2)} (r(s): r-Komponente von P(s)ef). Weist ferner f die gleichen

Symmetrien wie G auf, so nimmt das Dirichletintegral bei einer Schwarzschen SymmetrU

sierung ab.

KOROLLAR 1. G sei ein beliebiger Kôrper ausserhalb der Kugel {x; \x\<k}; y

liège auf der Kugeloberflâche \x\ =k. Dann gilt:

DG(f)>DS(G)(Sf).

Beweis. Zunâchst unterwerfen wir/einer sphârischen Symmetrisierung bezùglich
der z-Halbachse (z^O) und dem Mittelpunkt im Ursprung [12, S.205ff.]. Dabei nimmt
das Dirichletintegral von/ab, ohne dass sich V(k) ândert. Die transformierte Funktion

befriedigt die Voraussetzungen von Satz 5 (b). Durch Anwendung dièses Satzes

ergibt sich die Behauptung.

2. Anwendungen

Âhnlich wie in §2 kann die Symmetrisierung aus §3,1.2 benûtzt werden, um

5) Beckenbach-Bellman, Inequalities S. 18.
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Ungleichungen, welche den drei-dimensionalen Modul und den ersten Eigenwert der
drei-dimensionalen Membran betreffen, herzuleiten. Wir werden uns auf die Abschât-

zung des ersten Eigenwertes nach unten beschrânken.

Das Problem der drei-dimensionalen stûckweise freien Membran lautet:

ô2 Ô2 d2
Au + Xu 0 in G A —= + —~ + —=

ox dy dz

m 0 auf r0

du
— 0 auf y (n âussere Flâchennormale)
on

G, y und Fo wurden in §3,1.1 definiert. Xx ist durch das Rayleighprinzip

,._ Min ^W_v 0 auf Fn 1 i I 2 t t 7
v dxdydz

G

charakterisiert, wobei das Minimum von der ersten Eigenfunktion angenommen wird.
u hat in G konstantes Vorzeichen und kann demnach symmetrisiert werden.

SATZ 6. Wenn G und y eine der Bedingungen (a) und (b) von Satz 5 (§3,1.2)

genugen, gilt

Das Gleichheitszeichen steht nur bel der Halbkugel, wobei y die Aequatorebene und
Fo die Kugelkalotte ist,

Beweis. Die Beweisidee von Satz 3 (§2,2) kann auf diesen Fall wôrtlich iïber-
tragen werden. Wir setzen in den Rayleighquotienten zur Charakterisierung von
Xl (2n4/3V)2/3 (erster Eigenwert des Extremalgebietes) die Vergleichsfunktion Su
ein und schâtzen diesen mit Hilfe von Satz 5 un (22) ab.

Die nachstehenden Ergebnisse sind Folgerungen aus dem Korollar 1 und dem
Satz 5'.

KOROLLAR 2. Ist G ausserhalb der Kugel {x; \x\<k}, und liegt y auf der
Kugeloberflâche r k, so ist
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SATZ 6'. Unter den Voraussetzungen von Satz 5' làsst sich Àx wiefolgt nach unten
abschàtzen:

4\2/3

Das Gleichheitszeichen tritt nur bel der Kugel ein.

Dièse Ergebnisse stellen eine teilweise Erweiterung der Ungleichung von Nehari
[10, Satz III] auf drei-dimensionale Membranen, sowie eine Verallgemeinerung der

Ungleichung von Rayleigh-Faber-Krahn [6, 9, 13] auf stûckweise freie Membranen
dar.
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