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On Central Group Extensions and Homology

by B. ECKMANN and P.J. HILTON

0. Introduction

Given an extension of groups

N—-»G—»Q 0.1)
it is well-known (see [7, 8]) that there is an exact sequence in homology
H,G - H,Q - N|[G, N] » H,G - H,Q -0, 0.2)

where H,G=G,, is the abelianized group G/[G, G]. Ganea pointed out in [5] that, if
N is central in G, we may extend the sequence (0.2) one place to the left, obtaining

N® Gy — H,G—> HQ—>N- Gy — Q0. (0.3)

Ganea’s proof is topological, but uses no explicit spectral sequence technique. In this
paper we exploit Ganea’s topological approach, but by using spectral sequence
techniques for fibre spaces, we extend (0.3) a further four places to the left. The feature
which then enters into the sequence, beyond the ordinary homology groups of groups,
is the group H, (N, 2), that is, the fourth homology group of the Eilenberg-Mac Lane
complex K(N, 2). Indeed, we associate naturally with the central extension (0.1) a
homomorphism

O':H4(N, 2)_’N®Gab (0‘4)
which, in fact, factors as
H,(N,2)5N®N >N Q G, (0.5)

where & is intrinsic to N and natural, and the second homomorphism is induced by
the evident map N—G,,. Then, in particular, we obtain the 8-term sequence

H3G—>H3Q—>00ker0'—>H2G—->H2Q—->N—>Gab-—>Qab—>0. (0.6)

Our full 10-term sequence (1.5) then involves a certain quotient, HyG, of H;G, which
we explicitly describe, and commences

H4Q—>kera'—>i{;5—»H3Q—>---. 0.7)

We remark that the Ganea extension (0.3) of (0.2) and certain parts of our further
extension can be established by an elementary method using free presentations of the
groups concerned. This is done in a separate paper [2] which also discusses some
elementary applications.?)

1 Added in proof: Y. NOMURA, The Whitney Join and its Dual, Osaka J. Math. 7 (1970), 353-373,
uses topological methods to obtain an extension of (0.2), different from ours, back to HsQ, even if
N is not central in G.
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In Section 3 of the present paper we show that the sequence (0.6) is relevant to the
study by Bass [1] and Kervaire [6] of perfect (or connected) groups, that is, groups G
such that the abelianized group G, is trivial. For we obtain immediately from it the
results of Section 1 of [6] and the principal lemma of Section 2 of [6], namely that,
if (0.1) is a central extension with G perfect, then H;G— H,Q is surjective. Kervaire
also obtains an exact sequence in [6], relating to an extension

K—-»G—»Q

of perfect groups, which suggests a definition of K;(A) in algebraic K-theory. In
Section 3 of this paper we offer a commentary on this sequence in the form of a natural
generalization which exploits again the fact that Hy;G— H;Q is surjective. With regard
to algebraic K-theory, we note that an immediate proof of the exact sequence

K;(4) - K; (4/a) > K (4, a) » K, (4) - K, (4/a)

of algebraic K-theory can be obtained from (0.2) and from well-known properties
(Theorem 15.1 of [9] of GL(A)) and GL(A/a); this proof is given in [2].

Section 2 is devoted to a study of ¢:H, (N, 2)>N®N and a companion homo-
morphism

7:Hs(N,2)—- Tor (N, N).

We use the full 10-term exact sequence to compute & and 7; we reobtain in the process
the values of the groups H, (N, 2), Hs (N, 2), first computed by Eilenberg-Mac Lane [3].
Their procedure in computing H, (N, 2) was to use the bar construction to identify
H, (N, 2) with Whitehead’s I'-group, and then use Whitehead’s calculations [10]. Our
procedure in computing H, (N, 2) exploits the more general homomorphism ¢ and the
factorization (0.5).

We remark in Section 1 that the topological situation giving rise to a 10-term exact
sequence is much more general than that obtained from a central extension of groups,
although the latter is in a sense universal. All we require is a fibration

F-E—-B

in which F is connected and B is 1-connected with H;B=0. Thus, for example, such
a sequence obtains whenever we have a fibration over S2.

1. The Extended Exact Sequence

Let
N>G—»Q (1.1)
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be a central group extension. There is then an operation of N on G, that is, a homo-
morphism

0:NxG->G (1.2)

which is simply given by the product operation in G, ¢(x, y)=xy, xe N, yeG. Then ¢
induces a homomorphism, which we also denote g, in homology,

0:H;(N xG)-»HG, iz>0. (1.3)

Our main theorem is the following.

THEOREM 1.1: Given the central group extension N»»G-»Q, there is a natural
homomorphism

G:H4(N, 2)—_)N®Gab (1.4)
and a natural exact sequence
H4Q — kero — H3G/Q ((N ® HzG) @ Tor (N, Gab))

(1.5)
— H,Q — coker g > H,G — H,Q->N-G,;—»Q,—0.

Before proving this theorem we make the following remark. In the third term of
the sequence the denominator is to be understood as the image under g of a subgroup
of H; (N x G). Now it is true that the Kiinneth formula does not split naturally; never-
theless, the quotient group of H,G is described in natural, unambiguous fashion, since
Tor (N, G,;) is embedded naturally in Hy(N x G)/N® H,G. Equivalently, one may
observe that H, (G; H,N) is embedded naturally in H; (N x G).

We now prove the theorem. Following Ganea [5], we base ourselves on the fibre
sequence

K(G,1)>K(Q,1)>K(N,2). (1.6)

There is then an operation of K(N, 1)=QK(N, 2) on K(G, 1) and this is precisely the
operation derived from g (1.2). This observation enables us to interpret certain
differentials in the Serre spectral sequence associated with2) (1.6). This spectral
sequence relates, in its simplest form, to a fibration

F-E->B

in which B is 1-connected and F is O-connected. Then, in the spectral sequence
{EF}, we have

EY = HP(B; Hq(F)),

2) Ganea [5] does not use the Serre spectral sequence directly, basing himself instead on his
result [4] that a fibration F— E— B yields a fibration F*QB— E U CF— B. However, the action
of 2B on F is also implicit in this result.
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and the sequence converges (finitely) to the graded group associated with H,E, suitably
filtered. Moreover the degree of d, is (—r, r—1).

Since in the fibration (1.6) the base is 1-connected and the fibre 0-connected, we
immediately obtain the right hand end of the sequence (1.5), beginning with
H,G—-H,0, i.e., the sequence (0.2) in the central case. Moreover, the homomorphism
H,G-H,Q is effectively just the passage from E7> to E2? in the spectral sequence.
Now consider

EX B E1 5 E92, (1.7)
The first homomorphism provides the definition of o: H, (N, 2)-»N®G,,, while the

second is the restriction of ¢: H, (N x G)—»H,G to N®G,,; we also denote this restric-
tion by ¢. We thus have exactness

N®G,, > H,G—»ES*.

However, E;°=H, (N, 2)=0, so EJ*=EJ*=E?? and we have the exact sequence, due
to Ganea [5],

N®G,, > H,G— H,0. (1.8)
Now E3! =Kker g/im o, hence

EZ%! = kerg/imo. (1.9)
Also

E3 =0, (1.10)
since E3°=0, and

E=0, (1.11)

since E4%=0. Thus we have an exact sequence

E%>» H,Q »kerg/ima, (1.12)
which yields, with (1.8), the exact sequence

E%®»H,0 > N ® G,/imo > H,G - H,Q, (1.13)

where we again denote by ¢ the homomorphism induced by ¢.

We now analyze the passage through the spectral sequence from E?* to E2*. We
start with E9%=H,G; passing to E93, we factor out ¢ (N® H,G); passing to E;>, we
further factor out ¢ (Tor (¥, G,;,)); we thus have the exact sequence

E* s E2* 5 H,Glo((N ® H,G) @ Tor (N, G,,))»ES2 . (1.14)

Now, reverting to (1.7), Ef°=ker o; and E;°=E;° since E;*=0. This completes
the proof of the theorem since E+° is a quotient of H,Q.
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COROLLARY 1.2 (see also [2]): Suppose that G is perfect (i.e., G,,=0). Then
a) There is an exact sequence

0-H,G->H,Q—>N-O0,
b) HyG— H;Q is surjective. Indeed, we have an exact sequence

H,Q - H, (N, 2) - H;G/o (N ® H,G) - H;Q - 0.

We observe that we may pass immediately to a generalization of Theorem 1.1. We
suppose given a fibration

F—E—-B, (1.15)

with F connected and B 1-connected; and we suppose further that Hy;B=0. We have
an operation of QB on F,

0:Q2Bx F—-F,
and, by identifying H, 2B with H,B, we obtain induced homomorphisms

¢o:H,B® HF — H;,,F, g¢:Tor(H,B, H,_,F)— H;,F. (1.16)
Then Theorem 1.1 generalizes to assert a natural homomorphism

o:H,B— H,B® H,F (1.17)
and a natural exact sequence

H,E — ker o — H3F /o (H,B ® H,F @ Tor (H,B, H,F)) L.18)

— H,E — coker ¢ > H,F - H,E — H,B— H,F - H,E - 0.

Indeed, the homomorphism o (1.17) exists without the supplementary hypothesis that
H3B = 0.

2. The Homomorphism o

Let us consider the homomorphism ¢ : H, B— H,B® H, F of (1.17) in full generality.
By considering the diagram

OB—-EB—-B

! ! l 2.1
F - E 5B

we obtain the commutative diagram

H4B :) HzB ® HIQB
I ! 2.2)
H,B> H,BQ® H,F,
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so that it is sufficient to analyze the homomorphism ¢: H,B—H, BQ H, QB or, equiv-
alently,

¢:H,B— H,B® H,B, (2.3)

arising from the path-space fibration QB— EB— B.
Now let n=mn,B=H,B; then another application of naturality shows that if
n: B— K(n, 2) is the fundamental class, then ¢ in (2.3) factors as

HBSH,(n,2)5>n@m.

Thus we will be content to take B= K(r, 2) and thus to analyze 6 =6:H, (%, 2)>n®mn;
this is, in any case, our real concern in this note. We will use (1.5) to carry out the cal-
culation of ¢ and will at the same time compute H,(n, 2). This group has, of course,
originally been computed by Eilenberg-Mac Lane [3], but we will base ourselves
simply on (1.5).

We thus consider the homomorphism

6:H,(n,2)>n@mn. : (2.4)
The sequence (1.5) reduces, for the central extension n>»>n—» 1, to
0 — ker 6 — Hyn/o((n @ Hym) @ Tor (m, m)) —» 0 — coker 6 —» Hyn — 0. (2.5)

Assume now that = is cyclic; then H,n=0 and coker 6=0, & is surjective. If n=2Z,
then ker 6 =0, so & is an isomorphism, and (2.4) is then an isomorphism 6: ZxZ.
Now let n=Z,,. Then Hyn=2Z,, and we will prove below the key lemma.

LEMMA 2.1:

¢ Tor(Z,,Z,) =2Z,.

Granted this lemma, we immediately deduce that, if t=2,, then

_ {0, m odd
kerg =
Z,, meven.

Thus, if n=2Z,,, m odd, (2.4) is then an isomorphism ¢:Z,~Z,,. If m is even, we must
determine the group extension to compute H,(Z,, 2). To do this we consider the
central extension Z,>»Z,,.—»Z,,. Then (1.5) yields

0 — kero — quotient of Z,. —»---. (2.6)
Moreover, by (2.2), 6:H,(Z,,, 2)>Z,,®Z,, factors as
Hy(Zp2) 520 @ Zy 27, ® L.

But plainly 1®:=0, so 6=0, ker ¢ =H, (Z,, 2), so that, by (2.6), H,(Z,,, 2) is cyclic,
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and we have proved that if n=Z,, m even, then (2.4) is an epimorphism : Z,,,~»Z,,.
Summing up, we have

THEOREM 2.2:

(i) If n=2Z, then Hy(n, 2)=1Z and (2.4) is an isomorphism;

(i) if n=1Z,, m odd, then H,(n, 2)=Z,, and (2.4) is an isomorphism,
(iii) if n=1Z,,, m even, then H,(n, 2)=1Z,,, and (2.4) is an epimorphism.

We now prove Lemma 2.1. Let x generate n=2Z,, and let
wLznbznldznsz 0, f=x—1, g=x""14x"2 4+ +x+1,

be the usual n-resolution of Z. That is, we take the resolution P—»Z in which P,=Zn,
generated by a,, and

J,a,= fa,_,, nodd,
=ga,_,, neven, n>0,
eap=1.

Then PQP is a n x n-resolution of Z and we seek a chain map ¢ : P®QP—P, compatible
with the augmentations and with the multiplication map g:7 x n—n. Proceeding
step-by-step, we find that we may define ¢ as follows in dimensions <3:

Po (a0 ® ao) = ao,

¢1(a; ®ao)=¢;(ao®a,)=ay,

$2(a; ®ag) = ¢, (ao ® a,) = a5, ¢, (a; ®a,) =0,

¢3(a; ®ao) = ¢3(a, ®a,) = $3(a; ® a,) = 3 (ao ® a3) = as.

Now Tor(Z,,, Z,) < H;(Z,,x Z,,) is generated by a,®a, +a, ®a,. Thus, the image
of Tor(Z,,, Z,,) in H;Z,, under g is the subgroup generated by 2a,, that is, 2Z,,.

Remark. We may identify ¢:H,(n, 2)-»n®n with an element of H*(m, 2; n®mn)
since H,(n, 2)=0. Since G is just d, in the Serre spectral sequence, the standard iden-
tification of the differential shows that & =n,n,, wherene H? (=, 2; n) is the fundamental
class and #,, n, copy  into the first and second factors of 7®@n. This remark may be
used to establish the next theorem.

Let 1=NQ®N’. Then plainly 6:H,(n, 2)-»n®=n maps NOQN' to NQN'®N'®N.

THEOREM 2.3:
F(x®x)=x®@x" +x'®x,xeN,x'eN’.

Proof. We note from (2.5) that ¢:n®n—H,n induces an isomorphism
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coker 6=~ H,r. Itis plain that o (x®x') =x®x" and o (x'®x) = — x®x". This establishes
the theorem, in view of the naturality of & with respect to =.

We thus have a complete determination of H, (n, 2) and & for any finitely generated
abelian group n. Of course we may, if we wish, use a direct limit argument to extend
the determination of ¢ to any abelian group .

We close this section by mentioning a companion homomorphism to ¢, namely,
7:Hs(N, 2)-»Tor (N, G,,) in the situation of (1.1). This is just d,: E;°—E;" in the
Serre spectral sequence of (1.6). Again it follows by naturality that 7 is just

Hy (N, 2) 5 Tor (N, N) - Tor (N, G,),

where the second homomorphism is induced by N— G,,. Thus, reverting to our previous
notation, we consider the central extension n>»7n-» 1 and the resulting

T:Hs(m,2) - Tor (=, 7). (2.7)

We will be content to study (2.7) when = is cyclic.

THEOREM 2.4:

(1) If n=2Z, then Hs(xn, 2)=0;

(ii) if n=Z,, m odd, then Hy(n, 2)=0;

(iii) if n=2Z,,, m even, then Hs(n, 2)=Z, and T is a monomorphism.

Proof. (i) is well-known. We will prove (ii) and (iii) simultaneously. In the Serre
spectral sequence we have T=d,: E;°—E3'. Then ker 7=E;°. Now E;?=0since s
cyclic; E;3=0; and E2*=0 since 7 is cyclic. Thus E3°=E2°=0, and 7 is a mono-
morphism.

Since E,2=0, coker 7=E;". Thus we have the exact sequence

Hy (n, 2)»>Z,—»E3'.
Also, we have ¢: E;°—E?! and we know that

0, m odd
Z,, meven,

E° =keré = {
by Theorem 2.2. Then E°=E}° since E;*=0, so we have an exact sequence
E3! >d—3>E23 —» E93
and
Eio >d—4>E23

Finally, E2*=0 since = is cyclic and EJ*=Z,, so E;’=Z,. Putting all these facts
together yields the theorem.
We remark that this theorem does have some relevance to (1.5); for in the third term,
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when we factor out the image of Tor (N, G,,), we actually pass through coker 7, where
1:Hs (N, 2)-Tor (N, G,).

3. The Kervaire Exact Sequence

In [6], Kervaire associates with a short exact sequence of perfect groups
1o K->G->0-1 3.1
an exact sequence
H,K,— H3;Gy - H;Q, —» H,K - H,G - H,Q0 -0, (3.2)

provided that Q operates trivially on H,K; here, G, (for example) denotes the universal
cover of G, that is, there is a central extension

NHGO—»G,

G, is perfect and H,G,=0.
We wish to remark in this section that we may, just as easily, obtain an exact
sequence like (3.2) for any covering

K-G-0-1

of (3.1). We first explain what we mean by a covering of (3.1). From (3.1) we obtain
the exact sequence

H,K - H,G—- H,Q—-0; (3.3)

this follows (see [6]) from the Hochschild-Serre spectral sequence and the fact that
K is perfect. Now let

U->V->W-0 (3.4
be an exact subsequence of (3.3); that is, (3.4) is exact and

U >V - W -0
! I !
H,K - H,G-> H,Q -0

commutes. Let K, G, 0 be the covers of K, G, Q corresponding to U, ¥, W. Then there
1s a sequence

R-G-0

covering K—G—Q and an elementary and familiar argument establishes the exactness
of

I?—)G—)Q—»l 3.5)
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Thus, we call (3.5) the covering of (3.1) corresponding to (3.4). As special cases we have
the universal cover of Kervaire, when (3.4) is the zero sequence; and (3.1) itself when
(3.4) coincides with (3.3). We may set the covering of (3.1) in evidence by means of the
commutative diagram

K-G»0
2 T (3.6)
K—»G-»Q

THEOREM 3.1. Let (3.5) be a covering of the sequence (3.1) of perfect groups. If
Q operates trivially on H,K, the sequence

H;(K)— Hy(G) —» H3 () » H,K - H,G - H,Q — 0

is exact.

Proof. A straightforward application of the Hochschild-Serre spectral sequence
for the extension K—G—»Q (E}*=H,(Q; H,K)), using the facts that EZ" =0 since K is
perfect and E;2=0 since Q is perfect and operates trivially on H,K, yields the exact
sequence

‘ H3K—)H3G-')H3Q"’HzK"')HzG'—)Hzg—*O‘

Now let C be the kernel of K—G. Then it is clear from (3.6) that C lies in the kernel of
K- K and hence is central in K. Moreover, K/C is also perfect. We obtain from (3.6)
the commutative diagram

KiC->G—»0

T
K —»G-»Q.

We claim that H, (K/C)— H,K is monomorphic. This follows from Corollary 1.2 since
the kernel of K/C—»K is central. Thus, by the naturality of the operation, we infer
that J operates trivially on H,(K/C). Thus, we have the commutative diagram, with
exact rows,

Hj (K/C) - HyG - H;0 - H, (IZ/C) - H,G->H,0 -0

! ! ! | ! ! (3.7)
H,K — H,G -» H;Q—— H,K— H,G - H,Q - 0.

Now the first three vertical arrows in (3.7) are surjective by Corollary 1.2, and the last
three are injective. Since, again by Corollary 1.2, H;K—H;(K/C) is surjective, the
theorem is proved.

We close by offering an example to show that, if G covers G, then H,G— H;G may
fail to be injective, that is, fail to be an isomorphism. Let B be the binary icosahedral
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group.?) Then Bis perfect and the center of B is Z, and we have the central extension
ZZ > B il A5

where 45 is the alternating group of degree 5. Moreover, B is the fundamental group
of a Poincaré space with universal covering space S3, so that H,B=0, H;B=1Z,,,.
Thus B is the universal cover of the group A5 and plainly H3;B— H3 A4 is not injective,
since the order of 45 is 60. Indeed, the exact sequence b) of Corollary 1.2 reads, in
this case,

HyAs > Zy—>Zy50— 23— 0

(from the exact sequence, H;As must be Zg, or Z,,; since the 2-Sylow subgroup of
AsisZ, x Z,, it follows that the 2-component of H; 4 has exponent 2, so H;A5=Z;,).
Part a) of Corollary 1.2 simply asserts that H,As=17Z,.

The failure of Hy;G—H,G to be an isomorphism, on the one hand, vindicates
Kervaire’s definition of #,G as H3G,. On the other hand, it does introduce a somewhat
unsatisfactory feature into the analogy with covering spaces of connected spaces.
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