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Toward a Generalized Gauss-Bonnet Formula

for Complète, Open Manifolds

By ESTHER PORTNOY

Introduction

The classical Gauss-Bonnet theorem has been extended in at least two directions.
In the 1940's an analogous theorem was proved for compact «-dimensional Riemann-
ian polyhedra by C. B. Allendoerfer and A. Weil [1], and by S. S. Chern [2,3].
For manifolds with smooth boundary this has the form

[ûdV+ f ndA x'

M dM

(Q and 77 will be defined in Section 1 ; x' is the inner characteristic).
In 1965, R. Finn [6] broadened the two-dimensional resuit by showing that for

a large class of complète, open manifolds, it is possible to choose, in a natural way,
a séquence of curves tending to the idéal boundary point at oo such that

— lim

M

where £é? and s# are the length and subtended area of the curves. Finn's results were
extended in important ways by A. Huber [7].

The question then arises whether it is possible to prove a formula relating curvature
intégrais, topological invariants, and purely géométrie quantities, for complète, open
w-dimensional manifolds, subject only to regularity and integrability conditions. The

object of this paper is to examine this question on tube régions, as defined in Section 2.

The most promising géométrie quantity appears to be the ratio <stfnln~1lnir, where

j/ is the (ti— l)-dimensional volume ("area") of one of a family of submanifolds

diverging to an idéal boundary point, and i^ is the w-dimensional volume of a compact

région bounded in part by that submanifold.
In Section 3 are given several examples of manifolds for which such a formula is

derivable. In each case there is a fairly simple relationship among the curvature
intégrais, the Euler characteristics of the manifold and submanifolds, and the limiting
value of the above ratio ofvolumes; however, the relationship varies from one example
to the next. I hâve not found any example for which another géométrie quantity enters
into such a formula. It seems likely, then, that while such a formula may hold in
gênerai, its form must be more complicated than that for the two-dimensional case.
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The boundary curvature 17 can be decomposed into several terms, each depending
to a différent degree on the intrinsic curvatures of the submanifold and on the
imbedding of the submanifold in the manifold. The term !F0, which dépends entirely
on the imbedding, is examined in the remaining sections. It is shown in Section 4

that Wo generalizes the géodésie curvature of a curve in a two-dimensional manifold,
in the sensé that each is a relative Gauss-Kronecker curvature, analogous to the
Gauss-Kronecker curvature of a hypersurface in euclidean space. In Section 6 it is

shown that under certain convergence conditions the cross-sections of an orthogonal
tube région are asymptotically submanifolds of constant mean curvature. If in addition

the cross-sections are asymptotically umbilic submanifolds, then

-1lim !F(lim ¥odA (-If"1 lim

Section 7 contains examples and counterexamples for the theorem of Section 6.

Analysis of the terms ¥*i,..., ^[^-1)121 will hopefully yield a similar asymptotic
formula for the complète boundary curvature II; then by considering a manifold
consisting of a compact manifold with smooth boundary, to each component of
which is smoothly attached a tube région, one will obtain an extended Gauss-Bonnet
formula.

1. The Gauss-Bonnet Formula in n Dimensions

Let Mn be an «-dimensional Riemannian manifold, and U a coordinate neighbor-
hood in Mn with coordinates («*)?= i« With respect to thèse coordinates define the

metric tensor gu with déterminant g, and the Riemannian curvature tensor

Then the Gauss curvature is defined by:

(- W2^
2nf27rYl/2f I2)\ ^e(*)e(fi R

for n even,
Q 0 for n odd.

fi(i) is the Kronecker index, which is ± 1 if i is an even or odd permutation of 1,...,«,
and otherwise 0. Q is invariant under change of coordinates. For «=2, Q is 1/2/c

times the usual two-dimensional Gauss curvature. On a hypersurface in euclidean

space, Q is a dimensional constant times the Gauss-Kronecker curvature for n even.

Next let Mn~1 be a regular submanifold of Mn. To simplify notation, choose
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coordinates near M"'1 so that Mn~1 {un=Q}9 while for i<n, gin 0, gnnfi=0. Let y
be the déterminant of the metric tensor on M""1. For other quantities, such as R*kh

an asterisk will be used to dénote a quantity defined in M""1 as an (« — l)-dimensional
Riemannian manifold with the metric induced from Mn; thus,

for i,j, k,l<n. Now define1)

# *# ^i(2
and

1 0 Jfc i

Note in particular that if n=2q + l, the coefficient of !FZ in II vanishes for l<q\

For«=2,

l/2n times the géodésie curvature of the curve M1, considered as part of the boundary
of a compact région in which w2<c; that is, with the opposite orientation as the
«1-curve.

THEOREM. Let Kbe a compact n-dimensional région in a Riemannian manifold
Mn, such that ÔK consists of a finite number of smooth, regularly imbedded (# —1)-

dimensional closed submanifolds of Mn. Near each component of ÔK choose coordinates

so that dK is a submanifold ww=const, and d/ôun is the outward-directed normal to

x) The terms Wi are related to the tenns 0k of Allendœrfer-Weil by the formula

* 2*(iî-l-2^)!|-02I/!(Ar-/)!>
with a similar relationship holding for Chern's differential forms 0k.
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dK. Let dV=jgdu1 ...du" anddA =y/y du1 ...dun~l. Then

f QdV+ J ndA X'(K),
K dK

where x' is the inner Euler-Poincaré characteristic.

For the proof, see either Chern [2] or Allendoerfer-Weil [1]. The case in which
dK is polyhedral rather than smooth can also be treated, but requires a more detailed
analysis of 17.

2. Tube Régions in n Dimensions

A tube région is an «-dimensional manifold Mn diffeomorphic to Mn~l x [0, oo),
where M"'1 is a closed, compact (« — l)-dimensional manifold. Coordinates on a
tube région will always be chosen such that (w*)?=i are local coordinates on M"'1,
and wn /e[0, oo). Note that for a tube région /(Mn)=/(Mn"1), and that for a

compact subset of the form K=Mn~i x [Tl5 T2],

An orthogonal tube région is a tube région which is also a Riemannian manifold such

that, with the above convention on coordinates, for each i<n9 gin^0 and £„„,*=();
that is, the wn-curves are geodesics orthogonal to the submanifolds w"=const. For
orthogonal tube régions it will often be convenient to introduce the parameter s=sn9

arc length along the tAcurves; this is possible because dsldt=*Jgnn is independent
of m1,..., if'1. We will generally be dealing with complète orthogonal tube régions,
which means that s-+ oo as /-» oo.

We adopt the foliowing notation:

r(t) m""1 (0 K t}, KO m""1 x [o, q
y metric déterminant on M""1

glgnn f°r orthogonal tube régions

J y/y du1-du"-1
r(t)

J Jgdu'-du"
KO

t

s4 (un) yjgm du" for orthogonal tube régions

a lim -\1 if that limit exists.
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In an orthogonal tube région,

d drdtT s/, while
ds dt ds

ds

ds

I -T={Xxrijn)dA. Therefore
Jf y/gm,

!/„-!_ 1 2-./.-1 f l
"-1 J Jgm

LEMMA 1. If M" is a complète, orthogonal tube région, and lim d\ds
exists, then

x \ ds J

Proof. Since ^ is a continuously differentiable, strictly increasing function of s,

with d'f/ds^j/^O, we may take /" asa new parameter along the «"-curves. The

limit of i^ as s-* 00 is either finite or infinité. In the former case, certainly <z/-+Q,

and d/ds stflln~x ->0, thus the lemma holds. In the case that i^-^oo, we recall that

iff'(x)->l as #-* 00 then/(x)/x-> / also; hère,

d'T ds d-T ds se ds

implies that

*n/n-l\n-l
=limymJs^ -\nhmdr =Uhm r

3. Generalized Gauss-Bonnet Formulas for Spécial Tube Régions

This section contains generalized Gauss-Bonnet formulas for several particular
types of tube régions. Ail the manifolds are assumed to be complète, and coordinates

are chosen according to the conventions in Section 2. Note that the constant C(n)

of Case III is the leading coefficient of the polynomial P(n) of Case II. Case III in-
cludes a counterexample showing that Cohn-Vossen's inequality does not hâve an
/i-dimensional analogue for thèse curvatures.

CASE I: n odd. If Mn is an odd-dimensional orthogonal tube région,

f fQdV+ IIdA -
m» r(0)
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Proof. This is obtained directly from the définition Q =0 and the remark of Section
1 that n= -i&* for n odd.

CASE II : Spherical symmetry. IfM is a complète, spherically symmetric manifold
(as defined below), then

J
M jT(O)

where P is a polynomial with coefficients depending on n.

Proof. A spherically symmetric tube région Mn is given by assigning a spherically
symmetric metric in a région e<|x|<oo of R", that is, such that orthogonal
transformations of Rn induce isometries of Mn. Then Mn is an orthogonal tube région.
The rays from the origin correspond to geodesics, and the orthogonal trajectories
of thèse rays, the sphères about the origin, are isometric to {n— l)-spheres of appro-
priate radius. We identify the rays as the «"-curves, and define r(w")>0, the radius

ofr(w"), by the relation

2nnl2
_ _,

'-G
Because of the symmetry, it is only necessary to compute IJ at one point of each

submanifold Mn=const., and this computation can be greatly simplified by choice of
coordinates. In a neighborhood of the ray (0,..., 0, x") choose coordinates ul=xl/\x\9
/ 1,..., n — 1 ; un \x\ ; and define the auxiliary variable y=xf1/ \x\ [1 —Jj=î (w*)2]1/2-

Define the map/:Mn-^Rw+1 by

/ (u\ O (r(un) u\ r(un) un~\ r(un) y9 un).

f |r(Mn) is an isometry. Thus for /, j, k, l<n9

*S«(0,..., 0, il") r2 (il") (5a ôjk - ôJt ôik)

Kn-l-2l

Thus

n!Pr^(_l)Y r' \n-l-2l
I n dA | J\ h U \/T)J F ^ S/»»' k=l

— 1 if n is odd.
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Now
~2nnl2~ 1/.-1 d

¦y r^frl/W 1
r27r"/2n l/n-l r,

\J 8>nn

Therefore convergence (in even dimensions) of J 17 dA is équivalent to convergence of
djds s/11"'1, since both are équivalent to convergence of r'/y/gnn. If ïhnr'ly/gm
exists and is finite, then define the polynomial

*P L /! LO>-1)'J X L4*(fc-Z)!(n-2fc)!
1 0

if n 2p9

— 1 if n is odd.

We hâve then shown

JQdV+ J iI
m r«»

CASE III: F/af cross-sections. Suppose that Afn is an orthogonal tube région such

that each of the submanifolds «n=const. is flat. Then under the hypothèses of the
theorem in Section 6,

m r<0)

where C is a constant defined below.

Proof. For />0, Wt=0; thus

2n"12
(~lf(n-l)(n-3)-(n-2k

2"kl

-i
detr?; V

*=o

(- !)"(» - 1) (n - 3)- (n - 2k + 1)

2**1
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This vanishes for n odd (as is implied by the discussion above, Case I); for n=2p,

(n-l)\dctr{ny\-l)k(p-k)\
11 j=z

Now Lemma 1 asserts that if lim s4n\(jïi^y exists, it must equal

Therefore, if the eigen values of the («-l)x(n-l) matrix (•a/1'""1 rjinjjgnn 1) ail
converge to the same finite value, we will hâve

-1*

The détails of the proof are omitted hère, since the situation is identical to that treated
in the theorem of Section 6. However, a spécial case may be of interest.

Consider the following manifold, whose cross-section is a torus:

M" {(ri (0 cosfli, r, (t) sinOl9..., rH^(t) cosOH-l9 rH-x(t) sinfl,.^ t)}.

Setting u^Oi for i — 1,..., «—1 and w" ^5 we hâve, for i,j<n:

0,

J'

where

IV as

2%

The question then is, under what conditions the following limits exist and are equal:

n-l
/ 1 V1 B \n~l

••&_!, lim»v-ra.A PA (3.1)
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If each pt has a positive limit, then rt -» oo for each i, and it follows by l'Hospital's
rule that

lim pi — lim pt lim -^ lim pt lim ^ lim fl,.
ri ri Pi

Therefore the limits in (3.1) exist and are equal.
This is clearly not a necessary condition; for example, suppose ri tCCi. Somewhat

more generally, suppose

where et(s) -»0 as s-» oo. If exp {J* 1/y £ £i(y) dy} converges to some finite, nonzero
value, then :

(1) both limits in (3.1) are zéro if ]T af <n — 1 ;

(2) the limits exist and are equal if £ a, =« -1 ;

(3) the limits do not exist if £af>« — 1, unless one or more of the at vanish.
A more interesting case arises when one considers the above space with the same

coordinates, but assigns the metric

oij ij oin ' onn *

Then if £ at =n—l, we hâve

Pi '"Pn-i =ai ••*an-i>
n-l n-l

-
and thèse are not in gênerai equal. Now the sign of C(n) dépends on n: C(2) l/27r,

C(4) — 1/47T2, C(6)=3/8tt3,.... However, for «>2 it is possible to choose the at so

that
n-l

a-i •••aII_1 <

and for «>3, the opposite inequality can be obtained by choosing some of the af
négative. Therefore, for n^4 and even, the différence

[f OdF+ f 17 dA -x(M)
m r(0)
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may hâve either sign; therefore an extension of Cohn-Vossen's inequality is impossible
without further conditions on the manifold.

CASE IV: Fiat manifolds. Let M be a tube région of dimension n=2p, which is

fiât outside sorne compact set. Then

-lim „_,-.
m r(0)

We begin with a géométrie characterization of the boundary curvature for this case.

f f

LEMMA 2. Let Mn be a flat manifold of dimension n=2p, and N a smooth,
(n—l)-dimensional submanifold. Choose coordinates near N as in Section 1, and so
that gnn 1 near N. Then

n\n- 1 *

2np(n-l)\(dun)n
N

Proof of the lemma. In the specified coordinates, we hâve

and

For PeN, let Pr be the point whose coordinates are ul(Pr)=«'(/*), i l,..., n—1,

Let 5(o (-ï) s/SuJ be the parallel translate ofd/ôu^P) along the tAcurve to Ps. Since

parallel translation préserves inner products,

whence

^ [det4(r)]-S î,fc=l,...,n-l.



334 ESTHER PORTNOY

Now the équations of parallel transport are

^2> -{* rJkn,

and the hypothesis that M" is flat gives the differential équation

Together thèse imply

and, for r small enough to ensure convergence, the matrix équation

L4W]= £ (-irrM[
m=0

Thus, for r sufficiently small,

and

finally,

This complètes the proof of Lemma 2.

Now if Mn is an even-dimensional orthogonal tube région which is flat outside

some compact set, Lemma 2 together with the compact Gauss-Bonnet formula
implies that for un sufficiently large, dn~vs^l{dun)n~x is a constant; thus

and

"T (un) a0 + ^u11 + ••• + an(un)n.
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Therefore,

^n 1 d"-ls/ 2n"
l

CASE V: Similar cross-sections. Let M be an orthogonal tube région with similar
cross-sections. Then

Ç [ /
\QdV + ndA P lim

J J V
m r(0)

where P is a polynomial whose coefficients dépend on « and on the intrinsic geometry
of the cross-section. (Note that spherical symmetry is a spécial case.)

Proof. Similarity of the cross-sections means that, for i9j<n,

Hère we will assume reC2 and r(0) l. If r^l, then r' is somewhere nonzero; we

may assume r'(0)=£0. Then

R*kl(u\ u-~\ u") r2{u") Rtm{u\ u""\ 0),

and

Hjiu1,..., u"-\ u") - — go>\.... u"~\ 0),
on»

-•(ô) fa wv" •••••" tw"
It follows that

/ r' I r'(Q) y-1'21
Wi(u\. ,uw~1 un) r~n+l\ / v J

1 ^(«^....tt""1^),* V ' •••5 *? 5 «? / ' 1 / / / —— I ¦*- f V1* »•••»•? J vy

r,,
Thus JUûU is a polynomial in r'/y/gm=dr/ds. But j/(wII)=rll"1c^(0), so if

lim rf/di j^1/""1 exists, it follows that

lim 4= j/"1/8-J (0) lim4 •^1/"~' J*~1/B" ' (0) li

so that lim J n dA is a polynomial of degree p—1 in li
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The coefficients of this polynomial dépend intrinsically on the cross-section, as

follows

Thus

hm
r /J^»/»-i\«-i-2/ /•

MF, <L4 hmf 0, dA

r0r(0)

4. Relative Gauss-Kronecker Curvature

If M îs a smooth, onented hypersurface in R", the Gauss-Kronecker curvature
of M at a point P îs found by companng the volume élément on M at P to the volume
élément induced on the unit (n— l)-sphere by the Gauss map (p M-^Sn~1, where

q>(P) îs a unit normal to M at P An analogous définition can be made for onented
hypermanifolds of a gênerai Riemanman manifold.

First consider a curve fé7 m a two-dimensional manifold M. Let Pefé5 be a fixed

point, and let s be (signed) arc length along V from P. For Qetf near P let N(0
be the outer unit normal, that îs, the normal to the nght as s increases. In a sufficiently
small neighborhood U of P there exist unique géodésie rays L(Q) from P to points
Q m tfnU, and we can define cp{Q)eTP{M) to be the parallel transport of N{Q)
along L(Q) to P. As 5 varies near 0, Q varies along *f near P and 9(g) varies in the

unit circle in TP(M) near N(P). Let 00) be the angle from N(P) to (p(Q), where g
îs the point a distance ^ from P along #. Then the ratio of élément of "area" (that îs,

length) on <p(#) to that on * îs d6/ds(0).
Let a (5) be the angle from L(Q) to iV(g) and fi (s) the angle from N(P) to L(g).

Since parallel transport préserves angles, and L(Q) îs a géodésie, a (.y) îs also the

angle from L(g) to q>(Q); thus 0(s)=a(,s)+£Cs).
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Applying Liouville's formula with respect to polar coordinates about P, we hâve

doc

Kg{<£\Q) h Kg(géodésiecircle)cosa
cts

<

Next consider normal coordinates (w1, w2) near P, related to géodésie polar
coordinates by the équations w1=rsin^, u2 — r cos fi, where r is distance from P
and P the angle from N(P). Now

s du1 ds d\

2^(0).

Thus d6/ds(0)=d<x/ds(0)+dp/ds(0) Kg(&;P); that is, the géodésie curvature of a

curve in a two-dimensional manifold is geometrically characterized as a relative
Gauss-Kronecker curvature.

The Gauss-Kronecker curvature of a hypersurface is the product of its principal
curvatures, that is, of the extrême values of the normal curvature of a curve on the

hypersurface passing through a given point. The principal curvatures of a submanifold
of a gênerai Riemannian manifold can be defined in the same fashion ([5]), and the
relative Gauss-Kronecker curvature is again the product of the principal curvatures.

Let M be an «-dimensional Riemannian manifold, and F a (pièce of a) regular,
smooth submanifold of codimension 1. Fix PeF, and let U be a neighborhood of
P admitting géodésie spherical coordinates about P. For QeUnF, let x(Q)eTQ(M)
be a unit normal to F, the choice of orientation being made consistently throughout
the neighborhood; and let x(Q)eTP(M) be the resuit of translating x(Q) parallelly
along the géodésie ray PQ. Let s/ designate (w-l)-dimensional area, and define
the relative Gauss-Kronecker curvature of F at P:

that is, given e>0, there is some neighborhood VofP such that for any subneighbor-
hood t/c y, the above ratio of areas is within e of K(F; P). Clearly this définition
can be extended to include polyhedral submanifolds.
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LEMMA 3. K(F; P) is the product of the principal curvatures ofT at P.
Proof. Choose coordinates in (7so that Unr {un=0};gin 0 for i'

and on UnT, d/dun=x. Define

dx dx

Clearly K(r;P) ly/detLiJ(P)/s/g. Since x"(P) l is an absolute maximum,
&ic7ôu'(P)=0;thus

and

For a moment fix QeF, and define the vector fonction ^jsslfi(o)d/dui which
is obtained by transporting x(Q) along PQ to P; # hère is the distance from P. The

équations of parallel transport imply

1 m
dq dq

Let r=g(Q)9 the distance from P to £). Then

Therefore, as Q varies,

dxi_dfi(O,Q)_drduk
du^ duj(Q) duj dg nk*n'")

which tends to ^(P) slsQ-+P. Therefore

K(r; P) detrî^P) (i, j 1,..., n - 1),

which is the product ofprincipal curvatures ofr atP (see [5], Chapter IV, sections 44

and 45.)
This gives a géométrie characterization of the quantity previously denoted by Wo,

which is a generalization of géodésie curvature of a curve in a two-dimensional mani-
fold.
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5. TheSpaces^M"-1)

Since Mn~x is compact, it can be written as the union of finitely many compact
sets Eh each homeomorphic, by a map ç^E^K^ to a compact subset of R""1.
We say that a function/on M""1 is in ^p(Mn~x) iffo<PÏle&p(KÙ for each i.
This notion is invariant under admissible changes of coordinates, which are con-
tinuously differentiable and thus hâve Jacobians in J?00^) s .£?*(£,). Convergence
in^fp{Mn~1) is similarly defined, and also invariant under change of coordinates.
The statement "/„->/a.e." will mean that/,0^""1 -+fo(p[l a.e. with respect to Lebes-

gue measure in each Kr For quantities like y which dépend on coordinates, the above

concepts are defined using the coordinate maps <pt with respect to which the quantities
are defined.

The following facts follow directly from the above définitions and well-known
facts of real analysis.

1. lffJe&k*forj=l9...9k, ihenf1f2...fk^*(q>l).
2. If/n->/in &q, then for each s such that 1 < $<#,/,-*/in -Sf*.

3. For p and q conjugate (1/^ + 1/^ 1), if/n-*/in &q and £»-*£ in &p> then

nfg
4. If p^\ and k^l/p, then if/n-»/in &**, it follows that I//-H/I* in &p.
5. Let q>l. If /n(0^/(f) in J?*« for / 1,..., Jk, then/n(1).../n(k)-^/(1).../(fc) in

6. Asymptotic Behavior of J To dA

In this section a géométrie interprétation is given for the asymptotic behavior
of the relative Gauss-Kronecker curvature, analogous to the formula of Finn [6].

While the conditions in the «-dimensional case are more restrictive than in the two-
dimensional case, they are not unreasonable, as is demonstrated in Section 7 by the
fact that most of the manifolds of Section 3 satisfy the hypothèses of the theorem
in this section. It seems possible that thèse or similar hypothèses may figure in an

attempt to construct, on a given tube région, a semi-geodesic net, with respect to which
the tube région will be orthogonal.

THEOREM : Let M be a complète, orthogonal tube région, with cross-section F
having principal curvatures /Lf. Suppose that y/'y\s# -* G a.e. and in J£p, and that^//. a.e. and in ^n~1)qfor each i, l/p + l/q L Then both limj Wo dA and

^)"'1 exist, and^h is a constant a.e. with respect to the limit measure G dx

(that is, the hypermanifolds F are asymptotically submanifolds of constant mean

curvature). Furthermore:

I) Iffor each it lt=l a.e. with respect to the limit measure (that is, the hypermani-
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folds F are asymptotically umbilic), then

II) If n=2, 3, or iffor each i, 1^0 a.e. with respect to the limit measure, then

with equality iffli—l a.e. for each i (andso alwaysfor n=2).
Proof.

i. .rfi/»-i J_ ^2-.,.-i [tir^dA J— f
ds n — 1 J n — 1J

Since ^^""U,->/, in ^?("-1)« and thus also in &*,and Jyl^^Gin -§?p, it follows

that (£ j*ll"-lkù y/vlJ*-*(L ld G in jSP1, and thus

^r^h)Gdx. (6.1)

By Lemma 1,

Similarly,

thus

(- l)""1 lim f ^o ^ J ïi - h-i G dx. (6.2)

Note that

i y1/20.-1) _L_ i/2(«-i) y A _J_ (Jy

converges in g"'1 to Giin"1^£ul^)\n-\. It follows that J]/, is nonnegative a.e.

with respect to the limit measure G dx. For suppose there were a set B^Kj of positive
Lebesgue measure where G>0 and £ /f<0. Then

h) dx lim jY^0 > J G1'-1

B fi

(n - l)lim f- y1^"-1) dx (n - l)lim - f
J ds dsj

yU2i"-1)dx.

B
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Smce JB y1/2(n 1} dx>0 for ail s, îts denvative cannot tend to a négative hmit as

S-+O0.
Now if djds £/i/n~1-*0, then by (6.1), together with the fact that £ A^O a.e.

with respect to G dx, lt follows that ]T ^=0 a.e with respect to G dx. Now suppose

hmd/ds ^^""^Ojthen <£/-> oo. LetGf>0on2?1,N/'y/^-*(j! on B2 and £ £?1In~îAl

->£/, on ^3- Then d/dsy1/2in-1)-+Glfn-iY,IJn-l on 52n53. For xEB.nB^
^fy(x,s)/s/(s)->G(x)>0 implies y/y(x9s)-+co as j-^oo, that is, ^/y-^oo a.e. with
respect to G dx. Furthermore, for xeB1nB2nB3,

à _
~1"-1

lim-y1^" l
ds

n- 1
G(x)

d

Js

whence

Y4h {n- l)hm — j/17""1 on B1nB2nB3,

that is, a.e. with respect to G dx. Therefore £ /t is a constant a.e. with respect to
Now if for each i, lt=l a.e. with respect to the hmit measure,

(-If-1 hm VodA= Ç
lx ln_lGdx ln~1 f

whereas

For «=2, 3, or if /t>0 for each i, we hâve the înequality

-l

with equality îff /, /, this yields (II) directly, since ^ lt îs a constant:

1 hmj !P0 dA ,_! G
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7. Examples

1. Spherical symmetry (see Section 3, case II). Since

and

isindependent of un and therefore converges trivially. Furthermore, since r{n=r//r <50-,

it follows that Xi=rf/r>/g^n for each i, and

Since this quantity is independent of u1,..., un~l, its convergence dépends only on the

convergence of r'/yjgnn=dr/ds. If dr/ds converges, then

2. Similar cross-sections (see Section 3, Case V). Again y/yjsf is independent

of un and T/n=r '/r ôij9 whence ^1/n "xÀt r ' ,tf1/n ~x (0)/^/^,. Thxis if rfr/& converges,

lim !F0 dA lim _t 0O dA ;

r(O)

but 0o=(-l)n""V^(OX and thus

3. Fiat tube régions (see Section 3, Case IV). The équation

pi pj pi1 »fe, » — l nkl jn

implies the matrix équation

thus the eigen-vectors of [r^(^)] are the same as the eigen-vectors of [/^(O)], and
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the eigen-values (that is, the principal curvatures) are related by the équation

,n_ MO)
<U l + sA,(O)'

which tends to zéro as s-+ oo. However, j/-> oo in gênerai (unless Af(0) =0 for each /),
and thus

s/1 d
lira sflln~ % lim -. —r—— lim -(1 + 5^(0)^(0) ds

(applying l'Hospital's rule). Thus, if limd/ds ja/1'""1 exists, it follows
exists and is independent of / and of m1, m""1 ; then

But the discussion in Section 3 implies that d/ds stf11"'1 must converge: for s

sufficiently large,

i Dq -\- b±s -{~ '" -h bn— ±s

2np f
ftn_1=- ndA (=const.).

Thus

4. A manifold whose cross-section is a torus (see Section 3, Case III).
=(l/27c)n~1. Since rjn=r[/ri ôtp it follows that the principal curvatures

4-!-^= and i!A sufficient, but not necessary, condition for convergence of <stfi/n U, is \imdri/ds>0;
that condition yields

l/n-l
ds ds

independent of i and of w1,..., w""1.

Other examples can be obtained by setting



344 ESTER PORTNOY

where 8j(y)-+O as y-> oo. In this case

y
i

and thus

x
(a, + e, (s)) exp f — dj>,

y
i

where Jc l/«—1 £xI5 the anthmetic mean. Now if £a,<w — 1, then ts/lfn~1XJ->0
for each j, while if £ oct>n— 1, <s/1/n~1XJ diverges unless a, =0 and sr £-?() rapidly
enough. If ^a,=« —1, convergence dépends on the behavior of £fi,, if this sum
tends to zéro quickly enough so that expj* s(y)/y dy converges, then lim sélin~xX3
will generally dépend onj, unless a, l for eachj.

The situation îs quite différent if not ail the rt vary regularly. For example, let
n 3, r1=b + sms (6>1), and r2=s2cL. Then «s/1/2A1=27Lsacos,s (b+sms)~1/2, which
tends to zéro if <x<0, oscillâtes between finite values if a=0, and oscillâtes without
bound if a>0. Similarly, s/1I2X2=4n(xscl~1 y/b+sms converges or oscillâtes depend-

îng on whether a<l, a l or a>l. Thus s#ll2Xu j/1/2X2 can both converge only if
a<0, in which case both limits, and mdeed the limit of sf9 are zéro
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