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Toward a Generalized Gauss-Bonnet Formula
for Complete, Open Manifolds

By ESTHER PORTNOY

Introduction

The classical Gauss-Bonnet theorem has been extended in at least two directions.
In the 1940’s an analogous theorem was proved for compact n-dimensional Riemann-
ian polyhedra by C. B. Allendoerfer and A. Weil [1], and by S. S. Chern [2, 3].
For manifolds with smooth boundary this has the form

deV+fHdA=x’(M)
M oM

(Q and IT will be defined in Section 1; y’ is the inner characteristic).

In 1965, R. Finn [6] broadened the two-dimensional result by showing that for
a large class of complete, open manifolds, it is possible to choose, in a natural way,
a sequence of curves tending to the ideal boundary point at co such that

32
KdA=2 M) —lim — |,
J n[x( ) lm4m¢]
M

where . and &7 are the length and subtended area of the curves. Finn’s results were
extended in important ways by A. Huber [7].

The question then arises whether it is possible to prove a formula relating curvature
integrals, topological invariants, and purely geometric quantities, for complete, open
n-dimensional manifolds, subject only to regularity and integrability conditions. The
object of this paper is to examine this question on tube regions, as defined in Section 2.
The most promising geometric quantity appears to be the ratio /™"~ 1/n¥", where
& is the (n—1)-dimensional volume (‘‘area’) of one of a family of submanifolds
diverging to an ideal boundary point, and ¥~ is the n-dimensional volume of a com-
pact region bounded in part by that submanifold.

In Section 3 are given several examples of manifolds for which such a formula is
derivable. In each case there is a fairly simple relationship among the curvature
integrals, the Euler characteristics of the manifold and submanifolds, and the limiting
value of the above ratio of volumes; however, the relationship varies from one example
to the next. I have not found any example for which another geometric quantity enters
into such a formula. It seems likely, then, that while such a formula may hold in
general, its form must be more complicated than that for the two-dimensional case.
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The boundary curvature II can be decomposed into several terms, each depending
to a different degree on the intrinsic curvatures of the submanifold and on the im-
bedding of the submanifold in the manifold. The term ¥,, which depends entirely
on the imbedding, is examined in the remaining sections. It is shown in Section 4
that ¥, generalizes the geodesic curvature of a curve in a two-dimensional manifold,
in the sense that each is a relative Gauss-Kronecker curvature, analogous to the
Gauss-Kronecker curvature of a hypersurface in euclidean space. In Section 6 it is
shown that under certain convergence conditions the cross-sections of an orthogonal
tube region are asymptotically submanifolds of constant mean curvature. If in addi-
tion the cross-sections are asymptotically umbilic submanifolds, then

n

limj PodA=(—1)y""1 limW.
Section 7 contains examples and counterexamples for the theorem of Section 6.

Analysis of the terms ¥,..., Y[,—1y/27 Will hopefully yield a similar asymptotic
formula for the complete boundary curvature IT; then by considering a manifold
consisting of a compact manifold with smooth boundary, to each component of
which is smoothly attached a tube region, one will obtain an extended Gauss-Bonnet
formula.

1. The Gauss-Bonnet Formula in » Dimensions

Let M" be an n-dimensional Riemannian manifold, and U a coordinate neighbor-
hood in M" with coordinates (u')!_,. With respect to these coordinates define the
metric tensor g;; with determinant g, and the Riemannian curvature tensor

Rijkl = gimFTk,l - gimr?z,k + F}';crmz/i - ?’lrmk/i'

Then the Gauss curvature is defined by:

(___ 1)"/2
= e(i) () Rityiczyicnriczy ** Rign=1yiemyjn—1)jn
2"(27r)"/2 (n/2)!gz ( ) (J) (1)i(2)j(1)i(2) i(n—1)i(n)j(n—1)j(n)

for n even,
Q=0 formnodd.

&(i) is the Kronecker index, which is +1 if i is an even or odd permutation of 1,..., n,
and otherwise 0. Q is invariant under change of coordinates. For n=2, Q is 1/2n
times the usual two-dimensional Gauss curvature. On a hypersurface in euclidean
space, Q is a dimensional constant times the Gauss-Kronecker curvature for n even.

Next let M~ ! be a regular submanifold of M". To simplify notation, choose
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coordinates near M" ! so that M"~! = {u"=0}, while for i<n, g,,=0, g,, ;=0. Let y
be the determinant of the metric tensor on M"~ . For other quantities, such as R}},,
an asterisk will be used to denote a quantity defined in M"~! as an (n— 1)-dimensional
Riemannian manifold with the metric induced from M"; thus,

Ri"}kl = Riju — DLy + Tl
for i, j, k, I<n. Now define?l)

GRUOTD

¥, = T 2. &(1) e () Ritnicyjnyicy
°* R;2l—1)i(21)j(21-—1)j(21) F?(21+ DjI+1) """ ?(n—l)j(n—l)
and
2\ -1z [(n—1)/2]
- 2 (- 1)y, (= 1)*(n—1)(n—3)- (n—2k+1)
- 22 Cn2 2% (k — I)!

1=0

Note in particular that if n=2g+1, the coefficient of ¥, in IT vanishes for /<gq;

*
0= =73
For n=2,
1 1\/822F11 1
= —Pym— e e = e — gy,
(3 2“ gll 275

1/2n times the geodesic curvature of the curve M, considered as part of the boundary

of a compact region in which u?<c; that is, with the opposite orientation as the
1

u'-curve.

THEOREM. Let K be a compact n-dimensional region in a Riemannian manifold
M?", such that 0K consists of a finite number of smooth, regularly imbedded (n— 1)-
dimensional closed submanifolds of M". Near each component of 0K choose coordinates
so that 0K is a submanifold u"=const., and 0/0u" is the outward-directed normal to

1) The terms ¥; are related to the terms @i of Allendoerfer-Weil by the formula
(=D 5 (=D

2k(n— 1 —2k)! 10 201k — DY

with a similar relationship holding for Chern’s differential forms ®Px.

Dy =
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K. Let dV=./g du'...du" and dA =y du' ...dw"~*. Then

deV+ fHdA=x’(K),
K oK
where y' is the inner Euler-Poincaré characteristic.

For the proof, see either Chern [2] or Allendoerfer-Weil [1]. The case in which
0K is polyhedral rather than smooth can also be treated, but requires a more detailed
analysis of II.

2. Tube Regions in » Dimensions

A tube region is an n-dimensional manifold M" diffeomorphic to M"~! x [0, o),
where M"~! is a closed, compact (n—1)-dimensional manifold. Coordinates on a
tube region will always be chosen such that (u');=| are local coordinates on M™~!,
and u"=te[0, o). Note that for a tube region y(M")=yx(M""!), and that for a
compact subset of the form K=M""1x [T}, T,],

X (K)=x(K) = 2(0K) = x(M"™") = 2 (M"™" ") = — x(M"™7).
An orthogonal tube region is a tube region which is also a Riemannian manifold such
that, with the above convention on coordinates, for each i<n, g;,,=0 and g,,, ;=0;
that is, the u"-curves are geodesics orthogonal to the submanifolds " =const. For
orthogonal tube regions it will often be convenient to introduce the parameter s =s,,
arc length along the u"-curves; this is possible because 6s/6t=\/ ;,; is independent
of ul,...,u"~1. We will generally be dealing with complete orthogonal tube regions,
which means that s — oo as #— co.

We adopt the following notation:

r=M"'()={u"=t}, Y()=M""'x[0,1]

vy = metric determinant on M" ™!
= g/g,, for orthogonal tube regions
o
SA)y= | Jydu'---du™!

r@

V()= | Jgdu'---du"

o
()

t
= f o (u") \/ g, du" for orthogonal tube regions

ur=0
.ﬂn/n— 1 t
o = lim Q if that limit exists.
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In an orthogonal tube region,

d dv” dt
- = =, hil
ds dt ds whatle

f ——(trT .) dA. Therefore

1) Enn
d 1 1
__dlln—l________ﬂz—n/n—l ——-(tr1’ )dA
dS n— 1 g’m

re

LEMMA 1. If M" is a complete, orthogonal tube region, and lim d/ds o/1/"~!
exists, then
M" d n—1
! =lim ———— ———— = lim — R .
(n¥y )"~ ds

Proof. Since ¥ is a continuously differentiable, strictly increasing function of s,
with d¥"/ds =4/ #0, we may take ¥~ as a new parameter along the u"-curves. The
limit of ¥~ as s — o is either finite or infinite. In the former case, certainly &/ — 0,
and d/ds s71/"~1 - 0, thus the lemma holds. In the case that ¥"— co, we recall that
if f'(x)— 1 as x— oo then f (x)/x — [ also; here,

__d_ Mn/n—l — i JZ{"/"_I f_ii — n&i _c_l_ Ml/n—l _1_ =n _Ci Ml/n-—l
ayv’ ds av’ ds §-"4 ds

implies that
d n—1 1 d n—1 1 &‘/n/n—l n—1 ﬂn
lim— zt/*"1 =(-lim— """ 1 =[—lim =lim ———.
ds n dav n v (ny)"

3. Generalized Gauss-Bonnet Formulas for Special Tube Regions

This section contains generalized Gauss-Bonnet formulas for several particular
types of tube regions. All the manifolds are assumed to be complete, and coordinates
are chosen according to the conventions in Section 2. Note that the constant C,
of Case III is the leading coefficient of the polynomial P, of Case II. Case III in-
cludes a counterexample showing that Cohn-Vossen’s inequality does not have an
n-dimensional analogue for these curvatures.

CASE I: n odd. If M" is an odd-dimensional orthogonal tube region,

JQdV+ f HdA=— 4y (M),

M® r(o)
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Proof. Thisis obtained directly from the definition Q=0 and the remark of Section
1 that IT = —1Q* for n odd.

CASE I1: Spherical symmetry. If M is a complete, spherically symmetric manifold
(as defined below), then

Ja711/11—1
JQdV+ JHdA=P(lim— ),
ny”

r(0)
where P is a polynomial with coefficients depending on ».

Proof. A spherically symmetric tube region M" is given by assigning a spherically
symmetric metric in a region ¢<|x|<oo of R” that is, such that orthogonal trans-
formations of R" induce isometries of M". Then M" is an orthogonal tube region.
The rays from the origin correspond to geodesics, and the orthogonal trajectories
of these rays, the spheres about the origin, are isometric to (n— 1)-spheres of appro-
priate radius. We identify the rays as the u"-curves, and define r(u")>0, the radius
of I' (u"), by the relation

2"

)

Because of the symmetry, it is only necessary to compute IT at one point of each
submanifold " =const., and this computation can be greatly simplified by choice of
coordinates. In a neighborhood of the ray (0, ..., 0, x") choose coordinates u' =x'/|x|,
i=1,..., n—1; 4" =|x|; and define the auxiliary variable y =x"/|x| =[1-Y 7] («')*]"/2.

Define the map f: M"— R"*1 by

@, L u)=(rW)u, .., r@)u" Y r(u") y, u").

S Irwny is an isometry. Thus for i, j, k, I<n,
5 u'n’
8ij=Tr <5ij + "yT)
ukl (0 . 0, u") =r? (u") (5i1 5jk - 5,’1 5ik)

, n—1-21 1
%,(0,...,0,u") = (- 1)*~ 12’( ) s
& 4
Thus
p—-1

frea- ST et v

—1 if nisodd.

o (u") = [r ()]
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Now
n/2 —1/n—1 /2 —1/n=1 s
i1 2n . fl_ﬂ”n_l_ 27" \l r
= , -

(O] U

Therefore convergence (in even dimensions) of | IT dA is equivalent to convergence of

d/ds s/1"~1, since both are equivalent to convergence of r’/\/ ;; If lim r'/\/ ;c,r;
exists and is finite, then define the polynomial

p—1 p—1
(n—1) (-1 2P Pt 12l (- 1)(p —k)!
Py (x) = vl L I L(p—-1! L 4 (k- D!(n — 2k)!
if n=2p,
[-—1 if nisodd.

We have then shown

deV+ f MdA=—y(S"%) — Py ().

M ro)

CASE III: Flat cross-sections. Suppose that M" is an orthogonal tube region such
that each of the submanifolds #"=const. is flat. Then under the hypotheses of the
theorem in Section 6,

n

o
Qdv+ | MdA=Clim —,
w7y
M (o)

where C is a constant defined below.
Proof. For I>0, ¥,=0; thus

I =

F(g) v, [("_Z“m (= 1 (n = 1) (n = 3)-- (n — 2k + 1)

T o2 2k
0

21" 2y 2%k !

r(” (\/5;);1 [(n—1)/2] )
B (2) det I, Z (-1)mn-1)(n-3)(n—2k+1)

) (-1 1"(5) det I'j, L /2] (=1)*(n—1)(n—=3)(n—2k+1)
- 272 (\/g;)n—-l 2"k! .

k=0
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This vanishes for n odd (as is implied by the discussion above, Case I); for n=2p,

H_(n-—l)!detl“{,,p_l(— 1)*(p — k)!
2 (S s 4kt (n — 2k)!

Now Lemma 1 asserts that if lim &/"/(n¥")" ! exists, it must equal

1 n—1 Mz—n ) n—1
lim ——— | | tr 7, dA .
n—1 (V&m)"™

Therefore, if the eigen values of the (n—1) x (n—1) matrix (&Z/1/""! 1"{,,/\/ g 1) all
converge to the same finite value, we will have

p—1
(n—1)! (—1)"(1;--k)!li oL gt . "

lim | T d4 = .
m’f 7 F(n—26)! "yt
. k=0

The details of the proof are omitted here, since the situation is identical to that treated
in the theorem of Section 6. However, a special case may be of interest.
Consider the following manifold, whose cross-section is a torus:

M" = {(r,(t)cosOy, ry(t)sinby, ..., 7, (t) cOsO,_;, r,—y (t) sinb,_,, 1)}.
Setting ' =0, for i=1,...,n—1 and u"=t, we have, for i, j<n:
n—1
8ij = 6ijri2’ gn=0, gu=1+ iz:l ("3)2

. r;
Fijn"—'—léija M(t)=(27€)n_1 Pyt Tp—y
r

i

n—1)1Q2n)y ! -
JHdA=( p(\/)—()nzl F1t Taet =C(n)(2n)n lﬁl"'ﬂn—l’
T 8nn

where
8 r; d
i —

\/E;n=ds i
n—1

d n—1 2715 n—1 ﬁ n—1
— ggln—1 B 4 )
@) =G e ()0

j=1
The question then is, under what conditions the following limits exist and are equal:
n—1 )
. 1 "
hmﬁl “'ﬂn—l’ limrl"'rn_l( Z E!) . (3.1)
n—1 r

j=1
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If each B; has a positive limit, then r; » co for each i, and it follows by I’'Hospital’s
rule that
r; r .
lim B; ! = lim B; lim - = lim §; lim bi_ limB;.
F; F; i
Therefore the limits in (3.1) exist and are equal.
This is clearly not a necessary condition; for example, suppose r;=¢*. Somewhat
more generally, suppose

ri(s) = s exp { f @) dy}

y

where ¢;(s) >0 as s> c0. If exp {[] 1/y Y &;,(») dy} converges to some finite, nonzero
value, then:

(1) both limits in (3.1) are zero if ) a;<n—1;

(2) the limits exist and are equal if ) o;=n—1;

(3) the limits do not exist if ) a;>n—1, unless one or more of the a; vanish.

A more interesting case arises when one considers the above space with the same
coordinates, but assigns the metric

8ij = 6ij tzai’ 8in = 03 &m = 1.
Then if ) a;=n—1, we have

Bi o Bu—g =00ty g,

n—1 . n—1 .
1 B\~ 1 8-
see _ — == —_— N =1,
" r”‘(n—lzrj) ("“lzal)
j=1 i=1

and these are not in general equal. Now the sign of C,, depends on n: C(,,=1/2=,
Ciay=—1/4n%, Cs,=3/8n,.... However, for n>2 it is possible to choose the a; so
that

1 n—1
R <(n—1 Z “i) >

and for n>3, the opposite inequality can be obtained by choosing some of the «;
negative. Therefore, for n>4 and even, the difference

UQdV+ f HdA] — x(M)

reo)
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may have either sign; therefore an extension of Cohn-Vossen’s inequality is impossible
without further conditions on the manifold.

CASE IV: Flat manifolds. Let M be a tube region of dimension n=2p, which is
flat outside some compact set. Then

(p—=1) . "
Il dA = — | .
JQ i f d 2 A (ny )t

M o)

We begin with a geometric characterization of the boundary curvature for this case.

LEMMA 2. Let M" be a flat manifold of dimension n=2p, and N a smooth,
(n—1)-dimensional submanifold. Choose coordinates near N as in Section 1, and so
that g,,=1 near N. Then

_(p-1) @l
JHdA " 2P (n — 1) (du"y L

N

Proof of the lemma. In the specified coordinates, we have

R = Riju + gun (Il — Iily) = Iyly — Tyl
¥, = (—1)y"12 detI%,,
and
_(-1!

I
2nP

detI7,.

For PeN, let P, be the point whose coordinates are «'(P,)=u'(P), i=1,...,n—1,
u"(P,)=u"(P)+r; and let N,={P,:PeN}.

JI®)
JJr(®)

Let &/, (s) 6/0u’ be the parallel translate of 9/0u'(P) along the u"-curve to P,. Since
parallel translation preserves inner products,

2 (N,) =jJ;@’?) du' - du" ! =

0 () = o1 (P) 205 (P) = &y () €y () gu (P,

whence

VB _ gty 10, k=1, m 1,

Jr(P)
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Now the equations of parallel transport are

J
d&i; ri
du” = (l) kn>

and the hypothesis that M" is flat gives the differential equation
ftk,n =—T rjskr ‘
Together these imply

d"l
(du™)"

and, for r small enough to ensure convergence, the matrix equation

= (“ l)m (:) k1n kan

[& ()] = Z (= )" [ (P)]" =1 + r(ThL(P)]" .

Thus, for r sufficiently small,

jyg) det[I + rI;;(P)],

and

M(N,)=fdet[l+r1’ i1dAa;
N

finally,
4 . 277 (n — 1)!
= (n—=1)|detl*.dA =t . VI dA.
@yt =" )J e <p—1)!J

N

This completes the proof of Lemma 2.

Now if M" is an even-dimensional orthogonal tube region which is flat outside
some compact set, Lemma 2 together with the compact Gauss-Bonnet formula
implies that for »" sufficiently large, d"~1.27/(du")"~! is a constant; thus

& (W) =a; +2a,u" +-+na (u")*?
and

Y (u")=aq + au" +---+ a,(u")".
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Therefore,
i " 1 o 2n? i a4
—_— = na, = = m .
Myt~ " T G D)@y (p=1)!

CASE V: Similar cross-sections. Let M be an orthogonal tube region with similar
cross-sections. Then

dn/n—-l
deV+ JHdA=P(lim ),
ny”

M o)

where P is a polynomial whose coefficients depend on »n and on the intrinsic geometry
of the cross-section. (Note that spherical symmetry is a special case.)
Proof. Similarity of the cross-sections means that, for i, j<n,

g (' u L u") =2 (u") g (ul, ..., u""1,0).

Here we will assume reC? and r(0)=1. If r#1, then r’ is somewhere nonzero; we
may assume r’(0)#0. Then

R?‘jkl (ula ceey un—‘l’ u") = r2 (un) R:‘jkl (ul, vuy u"—l, 0),

and

’

- rr -
F?j(uls REE) u” 1’ u") B - gij(ul, cery u" 1, 0),

nn

rr' gm(0) . e
== ,j(ul,...,u 10).
1 (0) g

It follows that

' ' 0 n—1-21
'P,(ul,..., un-—l’ un)zr-n+1( r“_/ r ( ) ) W,(u’,..., un-—l,O)’
&l /8 (0)

f ¥, dA = (J;/\;g%’(%)wm JO) P, dA.

r'(u)

Thus [ITdA is a polynomial in r'/\/g, =dr/ds. But & (u")=r""'2£(0), so if
lim d/ds a71/"~1 exists, it follows that

' n/in—1

d
= ~1/n—1 . _dlln—l ___d—l/n—-l 0) li ,
=4 (0) lim % (0) lim —

m

so that lim | IT dA is a polynomial of degree p—1 in lim /"~ !/n¥".

lim
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The coefficients of this polynomial depend intrinsically on the cross-section, as
follows:

oM 1\n=1-21 “‘“6" n—1-21
lim j ¥, dA4 = (d““"‘l (0) lim ) (‘/ gﬂ)) J ¥, dA,

ny’ ' (0)
(o)
" O n—1-21
\/% 0) ¥, (u',...,u""1,0)
r'(0)
(-1 (2. O\ 7% "
= e (i) € (J) R nyicayicnys
(n—1)1y\ ¥ (0) (1) & (J) Ricuyiaricnricay
"'R;'EZI—1)i(2l)j(2!—1)j(21) ;'(21+1)j(21+1)"' ?(n—-l)j(n—l)
(_ 1)n—1+l
- (n—l)vy Ee(i)e(j) R?El)i(Z)j(l)jm)'”R;‘E2l—1)i(2l)j(2l—1)j(2l)
def — = _
8i2i+1)j2t+1) """ 8in-1)j(n—1)» = "1 72 1)(0) o,.
Thus
Mn/u—l n—1-21
n
r(o)

4. Relative Gauss-Kronecker Curvature

If M is a smooth, oriented hypersurface in R", the Gauss-Kronecker curvature
of M at a point P is found by comparing the volume element on M at P to the volume
element induced on the unit (n— 1)-sphere by the Gauss map ¢:M — S"~!, where
@ (P) is a unit normal to M at P. An analogous definition can be made for oriented
hypermanifolds of a general Riemannian manifold.

First consider a curve % in a two-dimensional manifold M. Let Pe% be a fixed
point, and let s be (signed) arc length along € from P. For Q€% near P let N(Q)
be the outer unit normal, that is, the normal to the right as s increases. In a sufficiently
small neighborhood U of P there exist unique geodesic rays L(Q) from P to points
Q in €N U, and we can define ¢ (Q)eTp(M) to be the parallel transport of N(Q)
along L(Q) to P. As s varies near 0, Q varies along € near P and ¢ (Q) varies in the
unit circle in Tp(M) near N(P). Let 0(s) be the angle from N(P) to ¢ (Q), where Q
1s the point a distance s from P along €. Then the ratio of element of “‘area” (that is,
length) on ¢ (%) to that on ¥ is df/ds(0).

Let a(s) be the angle from L(Q) to N(Q) and f(s) the angle from N(P) to L(Q).
Since parallel transport preserves angles, and L(Q) is a geodesic, a(s) is also the
angle from L(Q) to ¢(Q); thus 0(s)=a(s)+ ().
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Applying Liouville’s formula with respect to polar coordinates about P, we have

k(% Q0) = + K, (geodesic circle) cos o

£, [I+s< aorse)

do
K, (€; P) = ZES(O).

Next consider normal coordinates (u', u?) near P, related to geodesic polar
coordinates by the equations u' =r sinf, u®> = —r cos 8, where r is distance from P
and g the angle from N(P). Now

du' 0 du2 6)

g(% P)—_N(P) Kg(%) P) V6/6u1<d au ”Js"az

- 0= 2(—scosﬁ(s>)<0)=zj,’—f(o>.

Thus d0/ds(0) =da/ds(0) +dp/ds(0) =« ,(¥; P), that is, the geodesic curvature of a
curve in a two-dimensional manifold is geometrically characterized as a relative
Gauss-Kronecker curvature.

The Gauss-Kronecker curvature of a hypersurface is the product of its principal
curvatures, that is, of the extreme values of the normal curvature of a curve on the
hypersurface passing through a given point. The principal curvatures of a submanifold
of a general Riemannian manifold can be defined in the same fashion ([5]), and the
relative Gauss-Kronecker curvature is again the product of the principal curvatures.

Let M be an n-dimensional Riemannian manifold, and I" a (piece of a) regular,
smooth submanifold of codimension 1. Fix PeI’, and let U be a neighborhood of
P admitting geodesic spherical coordinates about P. For QeUnT, let x(Q)e To(M)
be a unit normal to I', the choice of orientation being made consistently throughout
the neighborhood; and let X(Q)eTp(M) be the result of translating x(Q) parallelly
along the geodesic ray PQ. Let &7 designate (n— 1)-dimensional area, and define
the relative Gauss-Kronecker curvature of I" at P:

A (x(UnT))
Z(UNT)

K(I'; P) =lim

that is, given £> 0, there is some neighborhood V of P such that for any subneighbor-
hood U< V, the above ratio of areas is within ¢ of K(I'; P). Clearly this definition
can be extended to include polyhedral submanifolds.
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LEMMA 3. K(I'; P) is the product of the principal curvatures of I at P.
Proof. Choose coordinates in U so that UnI' ={u"=0}; g,,=0 for i<n, g,, =1,
and on UNT, d/ou" =x. Define

0x 0x

ij=5;i.67j’ l,]<n.

Clearly K(I'; P)=1,/detL;;(P)//g. Since #'(P)=1 is an absolute maximum,
0x"/0u' (P)=0; thus

n—1
ox' ox!
Ly(P)= 8ii 5%
i,j=1
and

ox'
: P) =det — (P).
K(F’ ) ¢ auj( )

For a moment fix QeI', and define the vector function Y., f(¢) 8/64' which
is obtained by transporting x(Q) along PQ to P; ¢ here is the distance from P. The

equations of parallel transport imply

k
—— T c— ___F
Let r =0(Q), the distance from P to Q. Then
i i i o 3 5 du* _, 2
FO=70 -+ 5 I O=r () =t r Tt ().

Therefore, as Q varies,
b Sk 2 el o SR OO
ow'  ou'(Q) ou do et ()

which tends to I';;(P) as Q — P. Therefore
K(r;P)=detl,;(P) (i,j=1,....n—1),

which is the product of principal curvatures of I" at P (see [5], Chapter IV, sections 44
and 45.)

This gives a geometric characterization of the quantity previously denoted by ¥,,,
which is a generalization of geodesic curvature of a curve in a two-dimensional mani-

fold.
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5. The Spaces #?(M"~1)

Since M"~! is compact, it can be written as the union of finitely many compact
sets E;, each homeomorphic, by a map ¢;: E;— K;, to a compact subset of R""1,
We say that a function f on M"~! is in L?(M""1) if fo@; '€ £?(K;) for each i.
This notion is invariant under admissible changes of coordinates, which are con-
tinuously differentiable and thus have Jacobians in #®(K;)< £*(K;). Convergence
in #?(M"~1) is similarly defined, and also invariant under change of coordinates.
The statement *“f, —fa.e.” will mean that f,.p; ' - fop; ! a.e. with respect to Lebes-
gue measure in each K;. For quantities like y which depend on coordinates, the above
concepts are defined using the coordinate maps ¢; with respect to which the quantities
are defined.

The following facts follow directly from the above definitions and well-known
facts of real analysis.

1. If fie £ for j=1,..., k, then f, f; ..., Z? (g2 1).

2. If f,—fin &9, then for each s such that 1<s<gq, f,—fin Z*.

3. For p and ¢ conjugate (1/p+1/g=1), if f,—»fin #? and g,— g in Z?, then
fo8n— 18 in L.

4. If p>1 and k>=1/p, then if f,—f in £*?, it follows that |f,|*—|f|* in Z>.

5 Let g=1. If f®5f® in #* for i=1,..., k, then [ .. fO - fO & in
74,

6. Asymptotic Behavior of | ¥, dA

In this section a geometric interpretation is given for the asymptotic behavior
of the relative Gauss-Kronecker curvature, analogous to the formula of Finn [6].
While the conditions in the n-dimensional case are more restrictive than in the two-
dimensional case, they are not unreasonable, as is demonstrated in Section 7 by the
fact that most of the manifolds of Section 3 satisfy the hypotheses of the theorem
in this section. It seems possible that these or similar hypotheses may figure in an
attempt to construct, on a given tube region, a semi-geodesic net, with respect to which
the tube region will be orthogonal.

THEOREM: Let M be a complete, orthogonal tube region, with cross-section I
having principal curvatures A,. Suppose that \/ v/ —G a.e. and in LP, and that
U= 1) 1 ae. and in V9 for each i, 1/p+1/q=1. Then both lim| ¥, dA and
limsZ™/(n¥")"~ 1 exist, and ) I, is a constant a.e. with respect to the limit measure G dx
(that is, the hypermanifolds I' are asymptotically submanifolds of constant mean
curvature). Furthermore:

I) If for each i, I,=1 a.e. with respect to the limit measure (that is, the hypermani-
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folds I" are asymptotically umbilic), then
(n,//‘)n— )
Il) If n=2, 3, or if for each i, 1,20 a.e. with respect to the limit measure, then
o
with equality iff ;=1 a.e. for each i (and so always for n=2).
Proof.

d 1

~__"%l/n—-l — MZ-—n/n—l trri' dA = Ml/n—-l ) '\_/_‘}jd )
dS n ___1 Jn (Z A‘l) of X

Since «/1/"71). > [, in "~V and thus also in £, and \/)_:/&i—» G in %7, it follows
that (Y, /"~ 14,) /y/ - (3 1;) G in £*, and thus

limJ‘ ¥YydA=(—1)"""'lim

(- 1)1 limJTo dA<li

1
n-—1

d 1

lim — " = ) Gdx. .

im — n_lj@ )G dx (6.1)
By Lemma 1,

M” 1 n—1

i = I)Gd .

"y [n—lf @h) ]
Similarly,

Jy

(_ 1)n—1J\lpo dA =fdetF;"dA=f(Hﬂ1/"—lli)§ydx,

thus
(- 1)"“1limfll’o dA=J\ll~--l,,_1 Gdx. (6.2)
Note that

d 1/2(n—1) 1 1/2(n—1) 1 \/; =t 1/n~
20 T 12 g o —— [ /1),
ds’ n—1" ) n—1\ & & 2

converges in "~ ! to G'"71 (3. I,)/n—1. It follows that ) I, is nonnegative a.e.
with respect to the limit measure G dx. For suppose there were a set B< K of positive
Lebesgue measure where G>0 and ) /;<0. Then

0> f G (Y 1) dx = limf(\;/;)m-l (X V" 1)) dx

_— - d
=(n—1)lim | — 2= 1) gy = —1)lim — 1/2(n=1) g5
( ) 1 f Is ? X (n ) m SJ v X

B B
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Since [ y/2®~ 1 dx>0 for all s, its derivative cannot tend to a negative limit as
§— 00.

Now if d/ds «'"~1 =0, then by (6.1), together with the fact that } /,>0 a.e.
with respect to G dx, it follows that ), /;=0 a.e. with respect to G dx. Now suppose
limd/ds o/1/"~1>0; then &/ — 00. Let G>0o0n B, \/y/,szi—+ G on B, and ) &/tm1),
—Y I, on B,. Then d/ds y'/>"~D— G'"~1% I,/n—1 on B, B,. For xeB, N B,,
\/y(x, 8)/ < (s) » G(x)>0 implies \/y(x, §)— co as §— 00 that is, \/)“)—> o a.e. with
respect to G dx. Furthermore, for xe B, n B, N B;,

- 4 -1
_ llm _,y1/2(n—1)
0<G(x)=lim:{;= ds :
lim & o7tn=1
| ds |
1 n—1 — li m—1
(o E T
S lim & st
S

whence

d
Yl=(n-— 1)1imd—b<a¢”""1 on B;nB,nB;,
s

that is, a.e. with respect to G dx. Therefore )  /; is a constant a.e. with respect to G dx.
Now if for each 7, ;=1 a.e. with respect to the limit measure,

(—1)""‘1ime’o dA=fll---l,,_lde=l"‘1dex=l"“1,

whereas

" 1 il
llm( V)n_*I = [—IJ\ (n - 1) IG dX] = l”—l )
n n—

For n=2, 3, or if /;>0 for each i, we have the inequality

1 n—1
ll"‘ln...l\ n-—l li

i=

A

with equality iff /,=1; this yields (II) directly, since Y_/; is a constant:

mry [ J (L] -Gy

o 1 n—1 ) "
(=) lllmIWOdA=Jll...ln~1 de<(n_121i) =11m(“n—7)7r—‘1-
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7. Examples

1. Spherical symmetry (see Section 3, case II). Since

u'u’
y=r"""%det (I +— )
y

_ 272
" I'(nf2) '

Gt

is independent of »” and therefore converges trivially. Furthermore, since I'},=r’/r §, i

and

n—1
b

it follows that A,=r’/r./ g,, for each i, and

Ml/n_l;{l _ rr— ?TC”/Z 1/n—1.
\/gnn 1 (n/2)
n—1

Since this quantity is independent of «', ..., 4", its convergence depends only on the
convergence of r’/./g,, =dr/ds. If dr/ds converges, then

2 n/2 ! n—1 "
(=1 im | Yodd = lim(——) =lim —o .
I'(n/2) - (n?v)y

2. Similar cross-sections (see Section 3, Case V). Again \/ ):/ &/ is independent
of u” and I'},=r'/r ,;, whence &1/"~ 1), =r" /" /"~1(0)// gy Thus if dr/ds converges,

: : "
llqu’o dA -"-'-llmW J‘ @0 dA;
r(0)

but ©,=(—1)""1/7(0), and thus

limJ‘Y’o dA=(-1)""'lim (’-1-—1—/-5"—_—1
3. Flat tube regions (see Section 3, Case IV). The equation
o w=—TiI%,

implies the matrix equation
[T (s)] = [T2;(0)] [1 + sTo (0)]7

thus the eigen-vectors of [I:,(s)] are the same as the eigen-vectors of [I":;(0)], and
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the eigen-values (that is, the principal curvatures) are related by the equation

4:(0)

Ai(s)=m,

which tends to zero as s — co. However, &/ — oo in general (unless 4,(0) =0 for each i),
and thus
Ml/n— 1 d
lim &1}, = lim — = lim — w7'/""!
(1 + s4;(0))/4,(0) ds
(applying 'Hospital’s rule). Thus, if limd/ds «7/"~! exists, it follows that lim /"~ 1},
exists and is independent of i and of u!,..., 4" !; then

n

limj Wo dA = (—" l)n—l hm W_‘I.

But the discussion in Section 3 implies that d/ds «/!/*~! must converge: for s
sufficiently large,
M(S) — bo + b1S + -4 bn..lsn—l N
2nP
(p—1)!

b,—4 J I1dA (=const.).

I'(s)
Thus

d
lim Zg dl/n—l — (bn_l)lln—l )

4. A manifold whose cross-section is a torus (see Section 3, Case III). \/ )—z/ oA =
=(1/2m)*". Since I'},=r//r; 8,;, it follows that the principal curvatures

dr;

1 r§ 3 1 B
and YT =21 —(ry e ram )T 2
ri

ri\/ nn

A sufficient, but not necessary, condition for convergence of &//*~1,is limdr,/ds>0;
that condition yields

A
: ds

dr dr,_\'/""1
lim 1" 1) =2 ek Dt ,
- ' n(ds ds

independent of i and of #?, ..., "~ !
Other examples can be obtained by setting

ri(s)=s% expjej ) dy
y

1
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where ¢;(y) =0 as y — co. In this case

M — (zn)n—l Sza,- expj‘z Ej (y) dy, i{ - af + gf(s)
y rj S
1

and thus

L = 2w o + & (5)) expfiQL) dy,
y
1

where X=1/n—1) x,, the arithmetic mean. Now if ) a;<n—1, then &/'*"11;-0
for each j, while if )’ a;>n—1, &#'/"711; diverges unless a;=0 and ¢;, - 0 rapidly
enough. If )" a;=n—1, convergence depends on the behavior of Y ¢;; if this sum
tends to zero quickly enough so that exp |} &(y)/y dy converges, then lim 2/'/"~1};
will generally depend on j, unless o;=1 for each j.

The situation is quite different if not all the r; vary regularly. For example, let
n=3, r, =b+sins (b>1), and r, =s** Then &/}, =2ns* coss (b +sins)~ /2, which
tends to zero if a <0, oscillates between finite values if =0, and oscillates without
bound if «>0. Similarly, /121, =4mos*~! \/ b +sins converges or oscillates depend-
ing on whether a<1, a=1 or a>1. Thus «//?4,, o«//?1, can both converge only if
o <0, in which case both limits, and indeed the limit of &7, are zero.
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